
Yocto Project and OpenEmbedded Training

Yocto Project and OpenEmbedded
Training

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Latest update: April 20, 2022.

Document updates and sources:
https://bootlin.com/doc/training/yocto

Corrections, suggestions, contributions and translations are welcome!
Send them to feedback@bootlin.com

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/296

https://bootlin.com/doc/training/yocto
mailto:feedback@bootlin.com

Rights to copy

© Copyright 2004-2022, Bootlin
License: Creative Commons Attribution - Share Alike 3.0
https://creativecommons.org/licenses/by-sa/3.0/legalcode
You are free:

▶ to copy, distribute, display, and perform the work
▶ to make derivative works
▶ to make commercial use of the work

Under the following conditions:
▶ Attribution. You must give the original author credit.
▶ Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only

under a license identical to this one.
▶ For any reuse or distribution, you must make clear to others the license terms of this work.
▶ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Document sources: https://github.com/bootlin/training-materials/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/296

https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://github.com/bootlin/training-materials/

Hyperlinks in the document

There are many hyperlinks in the document
▶ Regular hyperlinks:

https://kernel.org/

▶ Kernel documentation links:
dev-tools/kasan

▶ Links to kernel source files and directories:
drivers/input/
include/linux/fb.h

▶ Links to the declarations, definitions and instances of kernel symbols (functions,
types, data, structures):
platform_get_irq()
GFP_KERNEL
struct file_operations

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/296

https://kernel.org/
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://elixir.bootlin.com/linux/latest/source/drivers/input/
https://elixir.bootlin.com/linux/latest/source/include/linux/fb.h
https://elixir.bootlin.com/linux/latest/ident/platform_get_irq
https://elixir.bootlin.com/linux/latest/ident/GFP_KERNEL
https://elixir.bootlin.com/linux/latest/ident/file_operations

Company at a glance

▶ Engineering company created in 2004,
named ”Free Electrons” until Feb. 2018.

▶ Main locations: Toulouse, Lyon (France). Presence in Italy too.
▶ Serving customers all around the world
▶ Head count: 14 - Only Free Software enthusiasts!
▶ Focus: Embedded Linux, Linux kernel, build systems and low

level Free and Open Source Software for embedded and
real-time systems.

▶ Feb. 2021: Bootlin is the 20th all-time Linux kernel contributor
▶ Activities: development, training, consulting, technical support.
▶ Added value: get the best of the user and development

community and the resources it offers.
Top Linux contributors since git (2005)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/296

Bootlin on-line resources

▶ All our training materials and technical presentations:
https://bootlin.com/docs/

▶ Technical blog:
https://bootlin.com/

▶ Quick news (Twitter):
https://twitter.com/bootlincom

▶ Quick news (LinkedIn):
https://www.linkedin.com/company/bootlin

▶ Elixir - browse Linux kernel sources on-line:
https://elixir.bootlin.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/296

https://bootlin.com/docs/
https://bootlin.com/
https://twitter.com/bootlincom
https://www.linkedin.com/company/bootlin
https://elixir.bootlin.com

Generic course information

Generic course
information

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/296

Two supported hardware platforms

Two variants for this course, each using a different hardware platform.

Beaglebone Black
https://bootlin.com/doc/training/yocto/

STM32MP157D-DK1 Discovery
https://bootlin.com/doc/training/yocto-stm32/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/296

https://bootlin.com/doc/training/yocto/
https://bootlin.com/doc/training/yocto-stm32/

Shopping list: BeagleBone Black Wireless variant

▶ Beaglebone Black or Beaglebone Black Wireless, USB-A to
micro B power cable included
https://www.mouser.fr/ProductDetail/BeagleBoard-by-GHI/BBBWL-SC-

562?qs=k%2Fsw%252B3Yi%2FUbELBjXQpiBUQ%3D%3D

▶ USB Serial Cable - 3.3 V - female ends (for serial console)
https://www.olimex.com/Products/Components/Cables/USB-Serial-Cable/USB-SERIAL-F/

▶ Nintendo Nunchuk with UEXT connector
https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/

▶ Breadboard jumper wires - Male ends (to connect to
Nunchuk) https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/

▶ Micro SD card with 8 GB capacity

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/296

https://www.mouser.fr/ProductDetail/BeagleBoard-by-GHI/BBBWL-SC-562?qs=k%2Fsw%252B3Yi%2FUbELBjXQpiBUQ%3D%3D
https://www.mouser.fr/ProductDetail/BeagleBoard-by-GHI/BBBWL-SC-562?qs=k%2Fsw%252B3Yi%2FUbELBjXQpiBUQ%3D%3D
https://www.olimex.com/Products/Components/Cables/USB-Serial-Cable/USB-SERIAL-F/
https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/
https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/

Shopping list: STM32MP1 Discovery Kit variant

▶ STMicroelectronics STM32MP157D-DK1 Discovery kit
https://www.st.com/en/evaluation-tools/stm32mp157d-dk1.html#sample-buy

▶ USB-C cable for the power supply
▶ USB-A to micro B cable for the serial console
▶ RJ45 cable for networking
▶ Nintendo Nunchuk with UEXT connector

https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/

▶ Breadboard jumper wires - Male ends
https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/

▶ Micro SD card with 8 GB capacity

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/296

https://www.st.com/en/evaluation-tools/stm32mp157d-dk1.html#sample-buy
https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/
https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/

Supported hardware

BeagleBone Black or BeagleBone Black Wireless, from BeagleBoard.org
▶ Texas Instruments AM335x (ARM Cortex-A8 CPU)
▶ SoC with 3D acceleration, additional processors (PRUs) and lots of

peripherals.
▶ 512 MB of RAM
▶ 4 GB of on-board eMMC storage
▶ USB host and USB device, microSD, micro HDMI
▶ WiFi and Bluetooth (wireless version), otherwise Ethernet
▶ 2 x 46 pins headers, with access to many expansion buses (I2C, SPI, UART

and more)
▶ A huge number of expansion boards, called capes. See

https://elinux.org/Beagleboard:BeagleBone_Capes.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/296

https://beagleboard.org
https://elinux.org/Beagleboard:BeagleBone_Capes

Supported hardware

STMicroelectronics STM32MP157D-DK1 Discovery board
▶ STM32MP157D (Dual Cortex-A7 + Cortex-M4) CPU

from STMicroelectronics
▶ 512 MB DDR3L RAM
▶ Gigabit Ethernet port
▶ 4 USB 2.0 host ports
▶ 1 USB-C OTG port
▶ 1 Micro SD slot
▶ On-board ST-LINK/V2-1 debugger
▶ Misc: buttons, LEDs, Audio codec
▶ Currently sold at 65 EUR + VAT at Mouser

Board and CPU documentation, design files, software:
https://www.st.com/en/evaluation-tools/stm32mp157d-dk1.html

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/296

https://www.st.com/en/evaluation-tools/stm32mp157d-dk1.html

Training quiz and certificate

▶ You have been given a quiz to test your knowledge on the topics covered by the
course. That’s not too late to take it if you haven’t done it yet!

▶ At the end of the course, we will submit this quiz to you again. That time, you
will see the correct answers.

▶ It allows Bootlin to assess your progress thanks to the course. That’s also a kind
of challenge, to look for clues throughout the lectures and labs / demos, as all the
answers are in the course!

▶ Another reason is that we only give training certificates to people who achieve at
least a 50% score in the final quiz and who attended all the sessions.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/296

Participate!

During the lectures...
▶ Don’t hesitate to ask questions. Other people in the audience may have similar

questions too.
▶ Don’t hesitate to share your experience too, for example to compare Linux with

other operating systems you know.
▶ Your point of view is most valuable, because it can be similar to your colleagues’

and different from the trainer’s.
▶ In on-line sessions

• Please keep your camera on too if you have one.
• Also make sure your name is properly filled.
• If Jitsi Meet is used, you can also use the ”Raise your hand” button when you wish

to ask a question but don’t want to interrupt.
▶ All this helps the trainer to engage with participants, see when something needs

clarifying and make the session more interactive, enjoyable and useful for everyone.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/296

Collaborate!

As in the Free Software and Open Source community, collaboration
between participants is valuable in this training session:
▶ Use the dedicated Matrix channel for this session to add

questions.
▶ If your session offers practical labs, you can also report issues,

share screenshots and command output there.
▶ Don’t hesitate to share your own answers and to help others

especially when the trainer is unavailable.
▶ The Matrix channel is also a good place to ask questions outside

of training hours, and after the course is over.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/296

Practical lab - Training Setup

Prepare your lab environment
▶ Download and extract the lab archive

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/296

Introduction to Embedded Linux

Introduction to
Embedded Linux

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/296

Simplified Linux system architecture

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/296

Overall Linux boot sequence

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/296

Embedded Linux work

▶ BSP work: porting the bootloader and Linux kernel, developing Linux device
drivers.

▶ system integration work: assembling all the user space components needed for
the system, configure them, develop the upgrade and recovery mechanisms, etc.

▶ application development: write the company-specific applications and libraries.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/296

Complexity of user space integration

ALL

toolchain busybox libgtk3 xapp_xkbcomp

xfont_font-aliasxfont_font-cursor-misc xfont_font-misc-misc

xserver_xorg-server

rootfs-tar

toolchain-buildroot

host-gcc-final

glibc

host-gawkhost-gcc-initiallinux-headers

host-automake

host-gettext

host-autoconf

host-libtool

host-m4

host-binutils

host-mpc

host-mpfr

host-gmp

atk

gdk-pixbuf

host-libgtk3 pango

xlib_libXcursor xlib_libXdamage xlib_libXi xlib_libXineramaxlib_libXrandr xlib_libxkbfile

libglib2

host-libglib2

libffi zlibhost-libffi

host-pkgconf

host-zlib

libpng

xlib_libX11

host-xproto_xproto

libxcb xlib_xtransxproto_inputproto xproto_kbprotoxproto_xextprotoxproto_xf86bigfontproto

host-libxslthost-xcb-protolibpthread-stubs xcb-proto xlib_libXauxlib_libXdmcp

host-libxml2host-python

host-expat

xproto_xproto xutil_util-macros

host-gdk-pixbuf

host-libpng

harfbuzz

xlib_libXftcairo

fontconfig

pixman

xlib_libXextxlib_libXrender

expat

freetype

xproto_renderproto

xlib_libXfixes

xproto_fixesproto

xproto_damageproto xproto_xineramaprotoxproto_randrproto

host-xapp_bdftopcfhost-xapp_mkfontdir host-xfont_font-util xfont_font-util

host-xlib_libXfont

host-xfont_encodingshost-xlib_xtrans host-xproto_fontsproto

host-xapp_mkfontscale

host-xutil_util-macros

host-freetype host-xlib_libfontenc

libsha1

mcookie xdata_xbitmaps xkeyboard-config

xlib_libXfont

xlib_libXres xlib_libXxf86vm xproto_bigreqsproto xproto_compositeproto xproto_glproto

xproto_presentproto

xproto_videoprotoxproto_xcmiscproto xproto_xf86dgaproto

host-intltool

host-xapp_xkbcomp

host-libxml-parser-perl

host-xlib_libxkbfile

host-xlib_libX11

host-libxcb host-xproto_inputproto host-xproto_kbproto host-xproto_xextprotohost-xproto_xf86bigfontproto

host-libpthread-stubs

host-xlib_libXau host-xlib_libXdmcp

xfont_encodings

xlib_libfontenc

xproto_fontsproto

xproto_resourceproto xproto_xf86vidmodeproto

host-fakeroot host-makedevs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/296

System integration: several possibilities

Pros Cons
Building everything manually Full flexibility

Learning experience
Dependency hell
Need to understand a lot of details
Version compatibility
Lack of reproducibility

Binary distribution
Debian, Ubuntu, Fedora, etc.

Easy to create and extend Hard to customize
Hard to optimize (boot time, size)
Hard to rebuild the full system from source
Large system
Uses native compilation (slow)
No well-defined mechanism to generate an
image
Lots of mandatory dependencies
Not available for all architectures

Build systems
Buildroot, Yocto, PTXdist, etc.

Nearly full flexibility
Built from source: customization and op-
timization are easy
Fully reproducible
Uses cross-compilation
Have embedded specific packages not nec-
essarily in desktop distros
Make more features optional

Not as easy as a binary distribution
Build time

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/296

Embedded Linux build system: principle

▶ Building from source → lot of flexibility
▶ Cross-compilation → leveraging fast build machines
▶ Recipes for building components → easy

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/296

Embedded Linux build system: tools

▶ A wide range of solutions: Yocto/OpenEmbedded, PTXdist, Buildroot,
OpenWRT, and more.

▶ Today, two solutions are emerging as the most popular ones
• Yocto/OpenEmbedded

Builds a complete Linux distribution with binary packages. Powerful, but somewhat
complex, and quite steep learning curve.

• Buildroot
Builds a root filesystem image, no binary packages. Much simpler to use, understand
and modify.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/296

Yocto Project and Poky reference system overview

Yocto Project and Poky
reference system
overview

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/296

Yocto Project and Poky reference system overview

The Yocto Project overview

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/296

About

▶ The Yocto Project is a set of templates, tools and methods that allow to build
custom embedded Linux-based systems.

▶ It is an open source project initiated by the Linux Foundation in 2010 and is still
managed by one of its fellows: Richard Purdie.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/296

The Yocto Project lexicon

▶ The core components of the Yocto Project are:
• BitBake, the build engine. It is a task scheduler, like make. It interprets

configuration files and recipes (also called metadata) to perform a set of tasks, to
download, configure and build specified applications and filesystem images.

• OpenEmbedded-Core, a set of base layers. It is a set of recipes, layers and classes
which are shared between all OpenEmbedded based systems.

• Poky, the reference system. It is a collection of projects and tools, used to bootstrap
a new distribution based on the Yocto Project.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/296

The Yocto Project lexicon

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/296

The Yocto Project lexicon

▶ Organization of OpenEmbedded-Core:
• Recipes describe how to fetch, configure, compile and package applications and

images. They have a specific syntax.
• Layers are sets of recipes, matching a common purpose. For Texas Instruments

board support, the meta-ti layer is used.
• Multiple layers are used within a same distribution, depending on the requirements.
• It supports the ARM, MIPS (32 and 64 bits), PowerPC, RISC-V and x86 (32 and 64

bits) architectures.
• It supports QEMU emulated machines for these architectures.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/296

The Yocto Project lexicon

▶ The Yocto Project is not used as a finite set of layers and tools.
▶ Instead, it provides a common base of tools and layers on top of which custom

and specific layers are added, depending on your target.
▶ The main required element is Poky, the reference system which includes

OpenEmbedded-Core. Other available tools are optional, but may be useful in
some cases.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/296

Example of a Yocto Project based BSP

▶ To build images for a BeagleBone Black, we need:
• The Poky reference system, containing all common recipes and tools.
• The meta-ti layer, a set of Texas Instruments specific recipes.

▶ All modifications are made in the meta-ti layer. Editing Poky is a no-go!
▶ We will set up this environment in the lab.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/296

Yocto Project and Poky reference system overview

The Poky reference system overview

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/296

Getting the Poky reference system

▶ All official projects part of the Yocto Project are available at
https://git.yoctoproject.org/cgit/

▶ To download the Poky reference system:
git clone -b dunfell https://git.yoctoproject.org/git/poky

▶ Each release has a codename such as dunfell or hardknott, corresponding to a
release number.

• A summary can be found at https://wiki.yoctoproject.org/wiki/Releases
▶ A new version is released every 6 months, and maintained for 7 months
▶ LTS versions are maintained for 2 years, and announced before their release.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/296

https://git.yoctoproject.org/cgit/
https://wiki.yoctoproject.org/wiki/Releases

Poky

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/296

Poky source tree 1/2

bitbake/ Holds all scripts used by the BitBake command. Usually matches the
stable release of the BitBake project.

documentation/ All documentation sources for the Yocto Project documentation. Can
be used to generate nice PDFs.

meta/ Contains the OpenEmbedded-Core metadata.
meta-skeleton/ Contains template recipes for BSP and kernel development.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/296

Poky source tree 2/2

meta-poky/ Holds the configuration for the Poky reference distribution.
meta-yocto-bsp/ Configuration for the Yocto Project reference hardware board

support package.
LICENSE The license under which Poky is distributed (a mix of GPLv2 and MIT).

oe-init-build-env Script to set up the OpenEmbedded build environment. It will create
the build directory. It takes an optional parameter which is the build
directory name. By default, this is build. This script has to be sourced
because it changes environment variables.

scripts Contains scripts used to set up the environment, development tools,
and tools to flash the generated images on the target.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/296

Documentation

▶ Documentation for the current sources, compiled as a ”mega manual”, is available
at: https://docs.yoctoproject.org/singleindex.html

▶ Variables in particular are described in the variable glossary:
https://docs.yoctoproject.org/genindex.html

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/296

https://docs.yoctoproject.org/singleindex.html
https://docs.yoctoproject.org/genindex.html

Using Yocto Project - basics

Using Yocto Project -
basics

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/296

Using Yocto Project - basics

Environment setup

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/296

Environment setup

▶ All Poky files are left unchanged when building a custom image.
▶ Specific configuration files and build repositories are stored in a separate build

directory.
▶ A script, oe-init-build-env, is provided to set up the build directory and the

environment variables (needed to be able to use the bitbake command for
example).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/296

oe-init-build-env

▶ Modifies the environment: has to be sourced!
▶ Adds environment variables, used by the build engine.
▶ Allows you to use commands provided in Poky.
▶ source ./oe-init-build-env [builddir]

▶ Sets up a basic build directory, named builddir if it is not found. If not provided,
the default name is build.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/296

Common targets

▶ Common targets are listed when sourcing the script:
core-image-minimal A small image to boot a device and have access to core

command line commands and services.
core-image-sato Image with Sato support. Sato is a GNOME mobile-based user

interface.
meta-toolchain Generates the cross-toolchain in an installable format.
meta-ide-support Generates the cross-toolchain and additional tools (gdb, qemu,

...) for IDE integration.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/296

Exported environment variables

BUILDDIR Absolute path of the build directory.
PATH Contains the directories where executable programs are located.

Absolute paths to scripts/ and bitbake/bin/ are prepended.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/296

Available commands

bitbake The main build engine command. Used to perform tasks on available
recipes (download, configure, compile…).

bitbake-* Various specific commands related to the BitBake build engine.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/296

The build/ directory 1/2

conf/ Configuration files. Image specific and layer configuration.
downloads/ Downloaded upstream tarballs of the recipes used in the builds.

sstate-cache/ Shared state cache. Used by all builds.
tmp/ Holds all the build system outputs.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/296

The build/ directory 2/2

tmp/buildstats/ Build statistics for all packages built (CPU usage, elapsed time, host,
timestamps…).

tmp/deploy/ Final output of the build.
tmp/deploy/images/ Contains the complete images built by the OpenEmbedded build

system. These images are used to flash the target.
tmp/work/ Set of specific work directories, split by architecture. They are used to

unpack, configure and build the packages. Contains the patched sources,
generated objects and logs.

tmp/sysroots/ Shared libraries and headers used to compile applications for the target
but also for the host.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/296

Using Yocto Project - basics

Configuring the build system

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/296

The build/conf/ directory

▶ The conf/ directory in the build one holds build specific configuration.
bblayers.conf Explicitly list the available layers.

local.conf Set up the configuration variables relative to the current user for the
build. Configuration variables can be overridden there.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 48/296

Configuring the build

▶ The conf/local.conf configuration file holds local user configuration variables:
BB_NUMBER_THREADS How many tasks BitBake should perform in parallel.

Defaults to the number of CPUs on the system.
PARALLEL_MAKE How many processes should be used when compiling.

Defaults to the number of CPUs on the system.
MACHINE The machine the target is built for, e.g. beaglebone.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 49/296

Using Yocto Project - basics

Building an image

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 50/296

Compilation

▶ The compilation is handled by the BitBake build engine.
▶ Usage: bitbake [options] [recipename/target ...]

▶ To build a target: bitbake [target]
▶ Building a minimal image: bitbake core-image-minimal

• This will run a full build for the selected target.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 51/296

Practical lab - First Yocto build

▶ Download the sources
▶ Set up the environment
▶ Configure the build
▶ Build an image

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 52/296

Using Yocto Project - advanced usage

Using Yocto Project -
advanced usage

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 53/296

Advanced build usage and configuration

▶ Select package variants.
▶ Manually add packages to the generated image.
▶ Run specific tasks with BitBake.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 54/296

A little reminder

▶ Recipes describe how to fetch, configure, compile and install applications.
▶ These tasks can be run independently (if their dependencies are met).
▶ All available packages in Poky are not selected by default in the images.
▶ Some packages may provide the same functionality, e.g. OpenSSH and Dropbear.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 55/296

Using Yocto Project - advanced usage

Advanced configuration

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 56/296

Overview

▶ The OpenEmbedded build system uses configuration variables to hold information.
▶ Configuration settings are in upper-case by convention, e.g. CONF_VERSION
▶ To make configuration easier, it is possible to prepend, append or define these

variables in a conditional way.
▶ Variables defined in Configuration Files have a global scope

• Files ending in .conf

▶ Variables defined in Recipes have a local scope
• Files ending in .bb, .bbappend and .bbclass

▶ Recipes can also access the global scope
▶ All variables can be overridden or modified in $BUILDDIR/conf/local.conf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 57/296

Operators and Overrides

▶ BitBake uses a dedicated set of operators to assign values to variables
▶ The operators apply their effect immediately when executed
▶ The parsing order is difficult to predict, no assumption should be made about it.
▶ Variables in the global scope therefore have a value difficult to predict
▶ Bitbake supports overrides, to allow appending, prepending or modifying a

variable at expansion time, when the variable’s value is read
▶ Overrides are written as VARIABLE_override = "some_value"

▶ A new syntax was introduced in bitbake : VARIABLE:override = "some_value"

▶ It will be the new syntax to be used starting with Honister, with no
retrocompatibility

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 58/296

Methods and conditions 1/4

▶ Append the keyword _append to a configuration variable to add values after the
ones previously defined (without space).

• IMAGE_INSTALL_append = " dropbear" adds dropbear to the packages installed
on the image.

▶ Append the keyword _prepend to add values before the ones previously defined
(without space).

• FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:" adds the folder to the set of
paths where files are located (in a recipe).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 59/296

Methods and conditions 2/4

▶ Append the keyword _remove to a configuration variable to remove all
occurrences of a value within a configuration variable.

• IMAGE_INSTALL_remove = "i2c-tools"

▶ Append the machine name to only define a configuration variable for a given
machine. It tries to match with values from MACHINEOVERRIDES which include
MACHINE and SOC_FAMILY.

• KERNEL_DEVICETREE_beaglebone = "am335x-bone.dtb" tells to use the kernel
device tree am335x-bone.dtb only when the machine is beaglebone.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 60/296

Methods and conditions 3/4

▶ The previous methods can be combined.
▶ If we define:

• IMAGE_INSTALL = "busybox mtd-utils"
• IMAGE_INSTALL_append = " dropbear"
• IMAGE_INSTALL_append_beaglebone = " i2c-tools"

▶ The resulting configuration variable will be:
• IMAGE_INSTALL = "busybox mtd-utils dropbear i2c-tools" if the machine

being built is beaglebone.
• IMAGE_INSTALL = "busybox mtd-utils dropbear" otherwise.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 61/296

Methods and conditions 4/4

▶ The most specific variable takes precedence.
▶ Example:

IMAGE_INSTALL_beaglebone = "busybox mtd-utils i2c-tools"
IMAGE_INSTALL = "busybox mtd-utils"

▶ If the machine is beaglebone:
• IMAGE_INSTALL = "busybox mtd-utils i2c-tools"

▶ Otherwise:
• IMAGE_INSTALL = "busybox mtd-utils"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 62/296

Operators 1/2

▶ Various operators can be used to assign values to configuration variables:
= expand the value when using the variable
:= immediately expand the value

+= append (with space)
=+ prepend (with space)
.= append (without space)
=. prepend (without space)
?= assign if no other value was previously assigned
??= same as previous, with a lower precedence

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 63/296

Operators 2/2

▶ Avoid using +=, =+, .= and =. in $BUILDDIR/conf/local.conf due to ordering
issues.

• If += is parsed before ?=, the latter will be discarded.
• Using _append unconditionally appends the value.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 64/296

Using Yocto Project - advanced usage

Packages variants

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 65/296

Introduction to package variants

▶ Some packages have the same purpose, and only one can be used at a time.
▶ The build system uses virtual packages to reflect this. A virtual package

describes functionalities and several packages may provide it.
▶ Only one of the packages that provide the functionality will be compiled and

integrated into the resulting image.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 66/296

Variant examples

▶ The virtual packages are often in the form virtual/<name>
▶ Example of available virtual packages with some of their variants:

• virtual/bootloader: u-boot, u-boot-ti-staging…
• virtual/kernel: linux-yocto, linux-yocto-tiny, linux-yocto-rt, linux-ti-staging…
• virtual/libc: glibc, musl, newlib
• virtual/xserver: xserver-xorg

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 67/296

Package selection

▶ Variants are selected thanks to the PREFERRED_PROVIDER configuration variable.
▶ The package names have to suffix this variable.
▶ Examples:

• PREFERRED_PROVIDER_virtual/kernel ?= "linux-ti-staging"
• PREFERRED_PROVIDER_virtual/libgl = "mesa"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 68/296

Version selection

▶ By default, Bitbake will try to build the provider with the highest version number,
from the highest priority layer, unless the recipe defines
DEFAULT_PREFERENCE = "-1"

▶ When multiple package versions are available, it is also possible to explicitly pick a
given version with PREFERRED_VERSION.

▶ The package names have to suffix this variable.
▶ % can be used as a wildcard.
▶ Example:

• PREFERRED_VERSION_linux-yocto = "5.14%"
• PREFERRED_VERSION_python = "2.7.3"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 69/296

Using Yocto Project - advanced usage

Packages

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 70/296

Selection

▶ The set of packages installed into the image is defined by the target you choose
(e.g. core-image-minimal).

▶ It is possible to have a custom set by defining our own target, and we will see this
later.

▶ When developing or debugging, adding packages can be useful, without modifying
the recipes.

▶ Packages are controlled by the IMAGE_INSTALL configuration variable.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 71/296

Exclusion

▶ The list of packages to install is also filtered using the PACKAGE_EXCLUDE variable.
▶ If you choose to not install a package using this variable and some other package

is dependent on it (i.e. listed in a recipe’s RDEPENDS variable), the
OpenEmbedded build system generates a fatal installation error.

▶ This only works with RPM and IPK packages.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 72/296

Using Yocto Project - advanced usage

The power of BitBake

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 73/296

Common BitBake options

▶ BitBake can be used to run a full build for a given target with bitbake [target].
▶ But it can be more precise, with optional options:

-c <task> execute the given task
-s list all locally available packages and their versions
-f force the given task to be run by removing its stamp file

world keyword for all recipes
-b <recipe> execute tasks from the given recipe (without resolving

dependencies).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 74/296

BitBake examples

▶ bitbake -c listtasks virtual/kernel
• Gives a list of the available tasks for the recipe providing the package

virtual/kernel. Tasks are prefixed with do_.
▶ bitbake -c menuconfig virtual/kernel

• Execute the task menuconfig on the recipe providing the virtual/kernel package.
▶ bitbake -f dropbear

• Force the dropbear recipe to run all tasks.
▶ bitbake world --runall=fetch

• Download all recipe sources and their dependencies.
▶ For a full description: bitbake --help

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 75/296

shared state cache

▶ BitBake stores the output of each task in a directory, the shared state cache. Its
location is controlled by the SSTATE_DIR variable.

▶ This cache is use to speed up compilation.
▶ Over time, as you compile more recipes, it can grow quite big. It is possible to

clean old data with:
$./scripts/sstate-cache-management.sh -y -d \

--cache-dir=$SSTATE_DIR

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 76/296

Practical lab - Advanced Yocto configuration

▶ Modify the build configuration
▶ Customize the package selection
▶ Experiment with BitBake
▶ Mount the root file system over NFS

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 77/296

Writing recipes - basics

Writing recipes - basics

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 78/296

Writing recipes - basics

Recipes: overview

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 79/296

Recipes

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 80/296

Basics

▶ Recipes describe how to handle a given application.
▶ A recipe is a set of instructions to describe how to retrieve, patch, compile, install

and generate binary packages for a given application.
▶ It also defines what build or runtime dependencies are required.
▶ The recipes are parsed by the BitBake build engine.
▶ The format of a recipe file name is <application-name>_<version>.bb

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 81/296

Content of a recipe

▶ A recipe contains configuration variables: name, license, dependencies, path to
retrieve the source code…

▶ It also contains functions that can be run (fetch, configure, compile…) which are
called tasks.

▶ Tasks provide a set of actions to perform.
▶ Remember the bitbake -c <task> <target> command?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 82/296

Common variables

▶ To make it easier to write a recipe, some variables are automatically available:
PN package name, as specified in the recipe file name

BPN PN with prefixes and suffixes removed such as nativesdk-, or
-native

PV package version, as specified in the recipe file name
PR package revision, defaults to r0
BP defined as ${BPN}-${PV}

▶ The recipe name and version usually match the upstream ones.
▶ When using the recipe bash_4.2.bb:

• ${PN} = "bash"
• ${PV} = "4.2"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 83/296

Writing recipes - basics

Organization of a recipe

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 84/296

Organization of a recipe

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 85/296

Organization of a recipe

▶ Many applications have more than one recipe, to support different versions. In
that case the common metadata is included in each version specific recipe and is
in a .inc file:

• <application>.inc: version agnostic metadata.
• <application>_<version>.bb: require <application>.inc and version specific

metadata.
▶ We can divide a recipe into three main parts:

• The header: what/who
• The sources: where
• The tasks: how

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 86/296

The header

▶ Configuration variables to describe the application:
DESCRIPTION describes what the software is about
HOMEPAGE URL to the project’s homepage
PRIORITY defaults to optional
SECTION package category (e.g. console/utils)
LICENSE the application’s license

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 87/296

The source locations: overview

▶ We need to retrieve both the raw sources from an official location and the
resources needed to configure, patch or install the application.

▶ SRC_URI defines where and how to retrieve the needed elements. It is a set of URI
schemes pointing to the resource locations (local or remote).

▶ URI scheme syntax: scheme://url;param1;param2
▶ scheme can describe a local file using file:// or remote locations with https://,

git://, svn://, hg://, ftp://…
▶ By default, sources are fetched in $BUILDDIR/downloads. Change it with the

DL_DIR variable in conf/local.conf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 88/296

The source locations: remote files 1/2

▶ The git scheme:
• git://<url>;protocol=<protocol>;branch=<branch>
• When using git, it is necessary to also define SRCREV. If SRCREV is a hash or a tag

not present in master, the branch parameter is mandatory. When the tag is not in
any branch, it is possible to use nobranch=1

▶ The http, https and ftp schemes:
• https://example.com/application-1.0.tar.bz2
• A few variables are available to help pointing to remote locations:

${SOURCEFORGE_MIRROR}, ${GNU_MIRROR}, ${KERNELORG_MIRROR}…
• Example: ${SOURCEFORGE_MIRROR}/<project-name>/${BPN}-${PV}.tar.gz
• See meta/conf/bitbake.conf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 89/296

The source locations: remote files 2/2

▶ An md5 or an sha256 sum must be provided when the protocol used to retrieve the
file(s) does not guarantee their integrity. This is the case for https, http or ftp.

SRC_URI[md5sum] = "97b2c3fb082241ab5c56ab728522622b"
SRC_URI[sha256sum] = "..."

▶ It’s possible to use checksums for more than one file, using the name parameter:

SRC_URI = "http://example.com/src.tar.bz2;name=tarball \
http://example.com/fixes.patch;name=patch"

SRC_URI[tarball.md5sum] = "97b2c3fb082241ab5c56..."
SRC_URI[patch.md5sum] = "b184acf9eb39df794ffd..."

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 90/296

The source locations: local files
▶ All local files found in SRC_URI are copied into the recipe’s working directory, in

$BUILDDIR/tmp/work/.
▶ The searched paths are defined in the FILESPATH variable.

FILESPATH = "${@base_set_filespath(["${FILE_DIRNAME}/${BP}",
"${FILE_DIRNAME}/${BPN}","${FILE_DIRNAME}/files"], d)}

FILESOVERRIDES = "${TRANSLATED_TARGET_ARCH}:
${MACHINEOVERRIDES}:${DISTROOVERRIDES}"

▶ The base_set_filespath(path) function uses its path parameter,
FILESEXTRAPATHS and FILESOVERRIDES to fill the FILESPATH variable.

▶ Custom paths and files can be added using FILESEXTRAPATHS and
FILESOVERRIDES.

▶ Prepend the paths, as the order matters.
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 91/296

The source locations: tarballs

▶ When extracting a tarball, BitBake expects to find the extracted files in a
directory named <application>-<version>. This is controlled by the S variable.
If the directory has another name, you must explicitly define S.

▶ If the scheme is git, S must be set to ${WORKDIR}/git

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 92/296

The source locations: license files

▶ License files must have their own checksum.
▶ LIC_FILES_CHKSUM defines the URI pointing to the license file in the source code

as well as its checksum.

LIC_FILES_CHKSUM = "file://gpl.txt;md5=393a5ca..."
LIC_FILES_CHKSUM = \

"file://main.c;beginline=3;endline=21;md5=58e..."
LIC_FILES_CHKSUM = \

"file://${COMMON_LICENSE_DIR}/MIT;md5=083..."

▶ This allows to track any license update: if the license changes, the build will
trigger a failure as the checksum won’t be valid anymore.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 93/296

Dependencies 1/2

▶ A recipe can have dependencies during the build or at runtime. To reflect these
requirements in the recipe, two variables are used:
DEPENDS List of the recipe build-time dependencies.

RDEPENDS List of the package runtime dependencies. Must be package specific
(e.g. with _${PN}).

▶ DEPENDS = "recipe-b": the local do_configure task depends on the
do_populate_sysroot task of recipe-b.

▶ RDEPENDS_${PN} = "recipe-b": the local do_build task depends on the
do_package_write_<archive-format> task of recipe b.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 94/296

Dependencies 2/2

▶ Sometimes a recipe have dependencies on specific versions of another recipe.
▶ BitBake allows to reflect this by using:

• DEPENDS = "recipe-b (>= 1.2)"
• RDEPENDS_${PN} = "recipe-b (>= 1.2)"

▶ The following operators are supported: =, >, <, >= and <=.
▶ A graphical tool can be used to explore dependencies or reverse dependencies:

• bitbake -g -u taskexp core-image-minimal

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 95/296

Tasks

Default tasks already exists, they are defined in classes:
▶ do_fetch
▶ do_unpack
▶ do_patch
▶ do_configure
▶ do_compile
▶ do_install
▶ do_package
▶ do_rootfs

You can get a list of existing tasks for a recipe with:
bitbake <recipe> -c listtasks

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 96/296

Writing tasks 1/2
▶ Functions use the sh shell syntax, with available OpenEmbedded variables and

internal functions available.
WORKDIR the recipe’s working directory

S The directory where the source code is extracted
B The directory where bitbake places the objects generated during the

build
D The destination directory (root directory of where the files are

installed, before creating the image).
▶ Syntax of a task:

do_task() {
action0
action1
...

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 97/296

Writing tasks 2/2

▶ Example:

do_compile() {
oe_runmake

}

do_install() {
install -d ${D}${bindir}
install -m 0755 hello ${D}${bindir}

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 98/296

Modifying existing tasks

Tasks can be extended with _prepend or _append

do_install_append() {
install -d ${D}${sysconfdir}
install -m 0644 hello.conf ${D}${sysconfdir}

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 99/296

Adding new tasks

Tasks can be added with addtask

do_mkimage () {
uboot-mkimage ...

}

addtask do_mkimage after do_compile before do_install

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 100/296

Writing recipes - basics

Applying patches

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 101/296

Patches use cases

Patches can be applied to resolve build-system problematics:
▶ To support old versions of a software: bug and security fixes.
▶ To fix cross-compilation issues.

• In certain simple cases the -e option of make can be used.
• The -e option gives variables taken from the environment precedence over variables

from Makefiles.
• Helps when an upstream Makefile uses hardcoded CC and/or CFLAGS.

▶ To apply patches before they get their way into the upstream version.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 102/296

The source locations: patches

▶ Files ending in .patch, .diff or having the apply=yes parameter will be applied
after the sources are retrieved and extracted, during the do_patch task.

SRC_URI += "file://joystick-support.patch \
file://smp-fixes.diff \
"

▶ Patches are applied in the order they are listed in SRC_URI.
▶ It is possible to select which tool will be used to apply the patches listed in

SRC_URI variable with PATCHTOOL.
▶ By default, PATCHTOOL = 'quilt' in Poky.
▶ Possible values: git, patch and quilt.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 103/296

Resolving conflicts

▶ The PATCHRESOLVE variable defines how to handle conflicts when applying patches.
▶ It has two valid values:

• noop: the build fails if a patch cannot be successfully applied.
• user: a shell is launched to resolve manually the conflicts.

▶ By default, PATCHRESOLVE = "noop" in meta-poky.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 104/296

Writing recipes - basics

Example of a recipe

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 105/296

Hello world recipe

DESCRIPTION = "Hello world program"
HOMEPAGE = "http://example.net/hello/"
PRIORITY = "optional"
SECTION = "examples"
LICENSE = "GPLv2"

SRC_URI = "git://git.example.com/hello;protocol=https"
SRCREV = "2d47b4eb66e705458a17622c2e09367300a7b118"
S = "${WORKDIR}/git"
LIC_FILES_CHKSUM = \

"file://hello.c;beginline=3;endline=21;md5=58e..."

do_compile() {
oe_runmake

}
do_install() {

install -d ${D}${bindir}
install -m 0755 hello ${D}${bindir}

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 106/296

Writing recipes - basics

Example of a recipe with a version agnostic part

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 107/296

tar.inc

SUMMARY = "GNU file archiving program"
HOMEPAGE = "https://www.gnu.org/software/tar/"
SECTION = "base"

SRC_URI = "${GNU_MIRROR}/tar/tar-${PV}.tar.bz2"

do_configure() { ... }

do_compile() { ... }

do_install() { ... }

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 108/296

tar_1.17.bb

require tar.inc

LICENSE = "GPLv2"
LIC_FILES_CHKSUM = \
"file://COPYING;md5=59530bdf33659b29e73d4adb9f9f6552"

SRC_URI += "file://avoid_heap_overflow.patch"

SRC_URI[md5sum] = "c6c4f1c075dbf0f75c29737faa58f290"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 109/296

tar_1.26.bb

require tar.inc

LICENSE = "GPLv3"
LIC_FILES_CHKSUM = \
"file://COPYING;md5=d32239bcb673463ab874e80d47fae504"

SRC_URI[md5sum] = "2cee42a2ff4f1cd4f9298eeeb2264519"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 110/296

Practical lab - Add a custom application

▶ Write a recipe for a custom application
▶ Integrate it in the image

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 111/296

Writing recipes - advanced

Writing recipes -
advanced

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 112/296

Writing recipes - advanced

Extending a recipe

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 113/296

Introduction to recipe extensions

▶ It is a good practice not to modify recipes available in Poky.
▶ But it is sometimes useful to modify an existing recipe, to apply a custom patch

for example.
▶ The BitBake build engine allows to modify a recipe by extending it.
▶ Multiple extensions can be applied to a recipe.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 114/296

Introduction to recipe extensions

▶ Metadata can be changed, added or appended.
▶ Tasks can be added or appended.
▶ Operators are used extensively, to add, append, prepend or assign values.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 115/296

Extend a recipe

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 116/296

Extend a recipe

▶ The recipe extensions end in .bbappend
▶ Append files must have the same root name as the recipe they extend.

• example_0.1.bbappend applies to example_0.1.bb

▶ Append files are version specific. If the recipe is updated to a newer version, the
append files must also be updated.

▶ If adding new files, the path to their directory must be prepended to the
FILESEXTRAPATHS variable.

• Files are looked up in paths referenced in FILESEXTRAPATHS, from left to right.
• Prepending a path makes sure it has priority over the recipe’s one. This allows to

override recipes’ files.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 117/296

Writing recipes - advanced

Append file example

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 118/296

Hello world append file

FILESEXTRAPATHS_prepend := "${THISDIR}/files:"

SRC_URI += "file://custom-modification-0.patch \
file://custom-modification-1.patch \
"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 119/296

Writing recipes - advanced

Advanced recipe configuration

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 120/296

Advanced configuration

▶ In the real word, more complex configurations are often needed because recipes
may:

• Provide virtual packages
• Inherit generic functions from classes

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 121/296

Providing virtual packages

▶ BitBake allows to use virtual names instead of the actual package name. We saw
a use case with package variants.

▶ The virtual name is specified through the PROVIDES variable.
▶ Several recipes can provide the same virtual name. Only one will be built and

installed into the generated image.
▶ PROVIDES = "virtual/kernel"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 122/296

Writing recipes - advanced

Classes

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 123/296

Introduction to classes

▶ Classes provide an abstraction to common code, which can be re-used in multiple
recipes.

▶ Common tasks do not have to be re-developed!
▶ Any metadata and task which can be put in a recipe can be used in a class.
▶ Classes extension is .bbclass
▶ Classes are located in the classes folder of a layer.
▶ Recipes can use this common code by inheriting a class:

• inherit <class>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 124/296

Common classes

▶ Common classes can be found in meta/classes/
• base.bbclass
• kernel.bbclass
• autotools.bbclass
• autotools-brokensep.bbclass
• cmake.bbclass
• native.bbclass
• systemd.bbclass
• update-rc.d.bbclass
• useradd.bbclass
• …

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 125/296

The base class

▶ Every recipe inherits the base class automatically.
▶ Contains a set of basic common tasks to fetch, unpack or compile applications.
▶ Inherits other common classes, providing:

• Mirrors definitions: DEBIAN_MIRROR, GNU_MIRROR, KERNELORG_MIRROR…
• The ability to filter patches by SRC_URI
• Some tasks: clean, listtasks or fetch.

▶ Defines oe_runmake, using EXTRA_OEMAKE to use custom arguments.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 126/296

The kernel class

▶ Used to build Linux kernels.
▶ Defines tasks to configure, compile and install a kernel and its modules.
▶ The kernel is divided into several packages: kernel, kernel-base, kernel-dev,

kernel-modules…
▶ Automatically provides the virtual package virtual/kernel.
▶ Configuration variables are available:

• KERNEL_IMAGETYPE, defaults to zImage
• KERNEL_EXTRA_ARGS
• INITRAMFS_IMAGE

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 127/296

The autotools class

▶ Defines tasks and metadata to handle applications using the autotools build
system (autoconf, automake and libtool):

• do_configure: generates the configure script using autoreconf and loads it with
standard arguments or cross-compilation.

• do_compile: runs make
• do_install: runs make install

▶ Extra configuration parameters can be passed with EXTRA_OECONF.
▶ Compilation flags can be added thanks to the EXTRA_OEMAKE variable.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 128/296

Example: use the autotools class

DESCRIPTION = "Print a friendly, customizable greeting"
HOMEPAGE = "https://www.gnu.org/software/hello/"
PRIORITY = "optional"
SECTION = "examples"
LICENSE = "GPLv3"

SRC_URI = "${GNU_MIRROR}/hello/hello-${PV}.tar.gz"
SRC_URI[md5sum] = "67607d2616a0faaf5bc94c59dca7c3cb"
SRC_URI[sha256sum] = "ecbb7a2214196c57ff9340aa71458e1559abd38f6d8d169666846935df191ea7"
LIC_FILES_CHKSUM = "file://COPYING;md5=d32239bcb673463ab874e80d47fae504"

inherit autotools

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 129/296

The useradd class

▶ This class helps to add users to the resulting image.
▶ Adding custom users is required by many services to avoid running them as root.
▶ USERADD_PACKAGES must be defined when the useradd class is inherited. Defines

the list of packages which needs the user.
▶ Users and groups will be created before the packages using it perform their

do_install.
▶ At least one of the two following variables must be set:

• USERADD_PARAM: parameters to pass to useradd.
• GROUPADD_PARAM: parameters to pass to groupadd.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 130/296

Example: use the useradd class

DESCRIPTION = "useradd class usage example"
PRIORITY = "optional"
SECTION = "examples"
LICENSE = "MIT"

SRC_URI = "file://file0"
LIC_FILES_CHKSUM = "file://${COREBASE}/meta/files/common-licenses/MIT;md5=0835ade698e0bc..."

inherit useradd

USERADD_PACKAGES = "${PN}"
USERADD_PARAM = "-u 1000 -d /home/user0 -s /bin/bash user0"

do_install() {
install -m 644 file0 ${D}/home/user0/
chown user0:user0 ${D}/home/user0/file0

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 131/296

Writing recipes - advanced

Binary packages

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 132/296

Specifics for binary packages

▶ It is possible to install binaries into the generated root filesystem.
▶ Set the LICENSE to CLOSED.
▶ Use the do_install task to copy the binaries into the root file system.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 133/296

Writing recipes - advanced

BitBake file inclusions

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 134/296

Locate files in the build system

▶ Metadata can be shared using included files.
▶ BitBake uses the BBPATH to find the files to be included. It also looks into the

current directory.
▶ Three keywords can be used to include files from recipes, classes or other

configuration files:
• inherit
• include
• require

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 135/296

The inherit keyword

▶ inherit can be used in recipes or classes, to inherit the functionalities of a class.
▶ To inherit the functionalities of the kernel class, use: inherit kernel

▶ inherit looks for files ending in .bbclass, in classes directories found in
BBPATH.

▶ It is possible to include a class conditionally using a variable: inherit ${FOO}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 136/296

The include and require keywords

▶ include and require can be used in all files, to insert the content of another file
at that location.

▶ If the path specified on the include (or require) path is relative, BitBake will
insert the first file found in BBPATH.

▶ include does not produce an error when a file cannot be found, whereas require
raises a parsing error.

▶ To include a local file: include ninvaders.inc

▶ To include a file from another location (which could be in another layer):
include path/to/file.inc

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 137/296

Writing recipes - advanced

Debugging recipes

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 138/296

Debugging recipes

▶ For each task, logs are available in the temp directory in the work folder of a
recipe. This includes both the actual tasks code that ran and the output of the
task.

▶ bitbake can dump the whole environment, including the variable values and how
they were set:

$ bitbake -e ninvaders
$DEPENDS [4 operations]
set /yocto-labs/poky/meta/conf/bitbake.conf:268
""
set /yocto-labs/poky/meta/conf/documentation.conf:130
[doc] "Lists a recipe's build-time dependencies (i.e. other recipe files)."
_prepend /yocto-training/yocto-labs/poky/meta/classes/base.bbclass:74
"${BASEDEPENDS} "
set /yocto-labs/meta-bootlinlabs/recipes-games/ninvaders/ninvaders.inc:11
"ncurses"
pre-expansion value:
"${BASEDEPENDS} ncurses"
DEPENDS="virtual/arm-poky-linux-gnueabi-gcc virtual/arm-poky-linux-gnueabi-compilerlibs virtual/libc ncurses"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 139/296

Debugging recipes

▶ A development shell, exporting the full environment can be used to debug build
failures:

$ bitbake -c devshell <recipe>

▶ To understand what a change in a recipe implies, you can activate build history in
local.conf:

INHERIT += "buildhistory"
BUILDHISTORY_COMMIT = "1"

Then use the buildhistory-diff tool to examine differences between two builds.

• ./scripts/buildhistory-diff

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 140/296

Writing recipes - advanced

Network usage

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 141/296

Source fetching

▶ BitBake will look for files to retrieve at the following locations, in order:
1. DL_DIR (the local download directory).
2. The PREMIRRORS locations.
3. The upstream source, as defined in SRC_URI.
4. The MIRRORS locations.

▶ If all the mirrors fail, the build will fail.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 142/296

Mirror configuration in Poky

PREMIRRORS ??= "\
bzr://.*/.* http://downloads.yoctoproject.org/mirror/sources/ \n \
cvs://.*/.* http://downloads.yoctoproject.org/mirror/sources/ \n \
git://.*/.* http://downloads.yoctoproject.org/mirror/sources/ \n \
hg://.*/.* http://downloads.yoctoproject.org/mirror/sources/ \n \
osc://.*/.* http://downloads.yoctoproject.org/mirror/sources/ \n \
p4://.*/.* http://downloads.yoctoproject.org/mirror/sources/ \n \
svk://.*/.* http://downloads.yoctoproject.org/mirror/sources/ \n \
svn://.*/.* http://downloads.yoctoproject.org/mirror/sources/ \n"

MIRRORS =+ "\
ftp://.*/.* http://downloads.yoctoproject.org/mirror/sources/ \n \
http://.*/.* http://downloads.yoctoproject.org/mirror/sources/ \n \
https://.*/.* http://downloads.yoctoproject.org/mirror/sources/ \n"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 143/296

Configuring the mirrors

▶ It’s possible to prepend custom mirrors, using the PREMIRRORS variable:

PREMIRRORS_prepend = "\
git://.*/.* http://www.yoctoproject.org/sources/ \n \
ftp://.*/.* http://www.yoctoproject.org/sources/ \n \
http://.*/.* http://www.yoctoproject.org/sources/ \n \
https://.*/.* http://www.yoctoproject.org/sources/ \n"

▶ Another solution is to use the own-mirrors class:

INHERIT += "own-mirrors"
SOURCE_MIRROR_URL = "http://example.com/my-source-mirror"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 144/296

Forbidding network access

▶ You can use BB_GENERATE_MIRROR_TARBALLS = "1" to generate tarballs of the git
repositories in DL_DIR

▶ You can also completely disable network access using BB_NO_NETWORK = "1"

▶ Or restrict BitBake to only download files from the PREMIRRORS, using
BB_FETCH_PREMIRRORONLY = "1"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 145/296

Layers

Layers

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 146/296

Layers

Introduction to layers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 147/296

Layers’ principles

▶ The OpenEmbedded build system manipulates metadata.
▶ Layers allow to isolate and organize the metadata.

• A layer is a collection of recipes.
▶ It is a good practice to begin a layer name with the prefix meta-.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 148/296

Layers in Poky

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 149/296

Layers in Poky

▶ The Poky reference system is a set of basic common layers:
• meta
• meta-skeleton
• meta-poky
• meta-yocto-bsp

▶ Poky is not a final set of layers. It is the common base.
▶ Layers are added when needed.
▶ When making modifications to the existing recipes or when adding new ones, it is

a good practice not to modify Poky. Instead you can create your own layers!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 150/296

Third party layers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 151/296

Integrate and use a layer 1/3

▶ A list of existing and maintained layers can be found at
https://layers.openembedded.org/layerindex/branch/master/layers/

▶ Instead of redeveloping layers, always check the work hasn’t been done by others.
▶ It takes less time to download a layer providing a package you need and to add an

append file if some modifications are needed than to do it from scratch.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 152/296

https://layers.openembedded.org/layerindex/branch/master/layers/

Integrate and use a layer 2/3

▶ The location where a layer is saved on the disk doesn’t matter.
• But a good practice is to save it where all others layers are stored.

▶ The only requirement is to let BitBake know about the new layer:
• The list of layers BitBake uses is defined in $BUILDDIR/conf/bblayers.conf
• To include a new layer, add its absolute path to the BBLAYERS variable.
• BitBake parses each layer specified in BBLAYERS and adds the recipes, configurations

files and classes it contains.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 153/296

Integrate and use a layer 3/3

▶ The bitbake-layers tool is provided alongside bitbake.
▶ It can be used to inspect the layers and to manage

$BUILDDIR/conf/bblayers.conf:
• bitbake-layers show-layers
• bitbake-layers add-layer meta-custom
• bitbake-layers remove-layer meta-qt5

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 154/296

Some useful layers

▶ Many SoC specific layers are available, providing support for the boards using
these SoCs. Some examples: meta-ti, meta-freescale and meta-raspberrypi.

▶ Other layers offer to support applications not available in the Poky reference
system:

• meta-browser: web browsers (Chromium, Firefox).
• meta-filesystems: support for additional filesystems.
• meta-gstreamer10: support for GStreamer 1.0.
• meta-java and meta-oracle-java: Java support.
• meta-linaro-toolchain: Linaro toolchain recipes.
• meta-qt5: QT5 modules.
• meta-realtime: real time tools and test programs.
• meta-telephony and many more…

Notice that some of these layers do not come with all the Yocto branches. The
meta-browser did not have a krogoth branch, for example.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 155/296

Layers

Creating a layer

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 156/296

Custom layer

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 157/296

Create a custom layer 1/2

▶ A layer is a set of files and directories and can be created by hand.
▶ However, the bitbake-layers create-layer command helps us create new

layers and ensures this is done right.
▶ bitbake-layers create-layer -p <PRIORITY> <layer>

▶ The priority is used to elect which recipe to use when multiple layers contains the
same recipe

▶ The recipe priority takes precedence over the version number ordering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 158/296

Create a custom layer 2/2

▶ The layer created will be pre-filled with the following files:
conf/layer.conf The layer’s configuration. Holds its priority and generic

information. No need to modify it in many cases.
COPYING.MIT The license under which a layer is released. By default MIT.

README A basic description of the layer. Contains a contact e-mail to update.
▶ By default, all metadata matching ./recipes-*/*/*.bb will be parsed by the

BitBake build engine.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 159/296

Use a layer: best practices

▶ Do not copy and modify existing recipes from other layers. Instead use append
files.

▶ Avoid duplicating files. Use append files or explicitly use a path relative to other
layers.

▶ Save the layer alongside other layers, in OEROOT.
▶ Use LAYERDEPENDS to explicitly define layer dependencies.
▶ Use LAYERSERIES_COMPAT to define the Yocto version(s) with which the layer is

compatible.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 160/296

Practical lab - Create a custom layer

▶ Create a layer from scratch
▶ Add recipes to the new layer
▶ Integrate it to the build

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 161/296

Practical lab - Extend a recipe

▶ Apply patches to an existing recipe
▶ Use a custom configuration file for an existing

recipe
▶ Extend a recipe to fit your needs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 162/296

BSP Layers

BSP Layers

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 163/296

BSP Layers

Introduction to BSP layers in the Yocto Project

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 164/296

BSP layers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 165/296

Overview

▶ BSP layers are device specific layers. They hold metadata with the purpose of
supporting specific hardware devices.

▶ BSP layers describe the hardware features and often provide a custom kernel and
bootloader with the required modules and drivers.

▶ BSP layers can also provide additional software, designed to take advantage of the
hardware features.

▶ As a layer, it is integrated into the build system as we previously saw.
▶ A good practice is to name it meta-<bsp_name>.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 166/296

BSP layers Specifics

▶ BSP layers are a subset of the layers.
▶ In addition to package recipes and build tasks, they often provide:

• Hardware configuration files (machines).
• Bootloader, kernel and display support and configuration.
• Pre-built user binaries.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 167/296

BSP Layers

Hardware configuration files

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 168/296

Overview 1/2

▶ A layer provides one machine file (hardware configuration file) per machine it
supports.

▶ These configuration files are stored under
meta-<bsp_name>/conf/machine/*.conf

▶ The file names correspond to the values set in the MACHINE configuration variable.
• meta-ti/conf/machine/beaglebone.conf
• MACHINE = "beaglebone"

▶ Each machine should be described in the README file of the BSP.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 169/296

Overview 2/2

▶ The hardware configuration file contains configuration variables related to the
architecture and to the machine features.

▶ Some other variables help customize the kernel image or the filesystems used.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 170/296

Machine configuration

TARGET_ARCH The architecture of the device being built.
PREFERRED_PROVIDER_virtual/kernel The default kernel.
MACHINE_FEATURES List of hardware features provided by the machine, e.g.

usbgadget usbhost screen wifi

SERIAL_CONSOLES Speed and device for the serial console to attach. Used to
configure getty, e.g. 115200;ttyS0

KERNEL_IMAGETYPE The type of kernel image to build, e.g. zImage

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 171/296

MACHINE_FEATURES

▶ Lists the hardware features provided by the machine.
▶ These features are used by package recipes to enable or disable functionalities.
▶ Some packages are automatically added to the resulting root filesystem depending

on the feature list.
▶ The feature bluetooth:

• Asks the bluez daemon to be built and added to the image.
• Enables bluetooth support in ConnMan.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 172/296

conf/machine/include/cfa10036.inc

Common definitions for cfa-10036 boards
include conf/machine/include/imx-base.inc
include conf/machine/include/tune-arm926ejs.inc

SOC_FAMILY = "mxs:mx28:cfa10036"

PREFERRED_PROVIDER_virtual/kernel ?= "linux-cfa"
PREFERRED_PROVIDER_virtual/bootloader ?= "barebox"
IMAGE_BOOTLOADER = "barebox"
BAREBOX_BINARY = "barebox"
IMAGE_FSTYPES_mxs = "tar.bz2 barebox.mxsboot-sdcard sdcard.gz"
IMXBOOTLETS_MACHINE = "cfa10036"

KERNEL_IMAGETYPE = "zImage"
KERNEL_DEVICETREE = "imx28-cfa10036.dtb"
we need the kernel to be installed in the final image
IMAGE_INSTALL_append = " kernel-image kernel-devicetree"
SDCARD_ROOTFS ?= "${DEPLOY_DIR_IMAGE}/${IMAGE_NAME}.rootfs.ext3"
SERIAL_CONSOLE = "115200 ttyAMA0"
MACHINE_FEATURES = "usbgadget usbhost vfat"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 173/296

conf/machine/cfa10057.conf

#@TYPE: Machine
#@NAME: Crystalfontz CFA-10057
#@SOC: i.MX28
#@DESCRIPTION: Machine configuration for CFA-10057, also called CFA-920
#@MAINTAINER: Alexandre Belloni <alexandre.belloni@bootlin.com>

include conf/machine/include/cfa10036.inc

KERNEL_DEVICETREE += "imx28-cfa10057.dtb"

MACHINE_FEATURES += "touchscreen"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 174/296

BSP Layers

Bootloader

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 175/296

Default bootloader 1/2

▶ By default the bootloader used is the mainline version of U-Boot, with a fixed
version (per Poky release).

▶ All the magic is done in meta/recipes-bsp/u-boot/u-boot.inc

▶ Some configuration variables used by the U-Boot recipe can be customized, in the
machine file.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 176/296

Default bootloader 2/2

SPL_BINARY If an SPL is built, describes the name of the output binary. Defaults to
an empty string.

UBOOT_SUFFIX bin (default) or img.
UBOOT_MACHINE The target used to build the configuration.
UBOOT_ENTRYPOINT The bootloader entry point.
UBOOT_LOADADDRESS The bootloader load address.
UBOOT_MAKE_TARGET Make target when building the bootloader. Defaults to

all.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 177/296

Customize the bootloader

▶ It is possible to support a custom U-Boot by creating an extended recipe and to
append extra metadata to the original one.

▶ This works well when using a mainline version of U-Boot.
▶ Otherwise it is possible to create a custom recipe.

• Try to still use meta/recipes-bsp/u-boot/u-boot.inc

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 178/296

BSP Layers

Kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 179/296

Linux kernel recipes in Yocto

▶ There are basically two ways of compiling a kernel in the Yocto Project:
• By using the linux-yocto packages, provided in Poky.
• By using a fully custom kernel recipe.

▶ The kernel used is selected in the machine file thanks to:
PREFERRED_PROVIDER_virtual/kernel

▶ Its version is defined with: PREFERRED_VERSION_<kernel_provider>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 180/296

Linux Yocto 1/4

▶ linux-yocto is a generic set of recipes for building mainline Linux kernel images.
▶ PREFERRED_PROVIDER_virtual/kernel = "linux-yocto"

▶ PREFERRED_VERSION_linux-yocto = "5.14%"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 181/296

Linux Yocto 2/4

▶ Like other appended recipes, patches can be added by filling SRC_URI with .patch
and/or .diff files.

▶ The kernel configuration must also be provided, and the file containing it must be
called defconfig.

• This can be generated from a Linux source tree, by using make savedefconfig
• The configuration can be split in several files, by using the .cfg extension. It is the

best practice when adding new features:

SRC_URI += "file://defconfig \
file://nand-support.cfg \
file://ethernet-support.cfg"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 182/296

Linux Yocto 3/4

▶ Configuration fragments can be generated directly with the bitbake command:
1. Configure the kernel following its recipe instructions:

bitbake -c kernel_configme linux-yocto
2. Edit the configuration: bitbake -c menuconfig linux-yocto
3. Save the configuration differences: bitbake -c diffconfig linux-yocto

The differences will be saved at $WORKDIR/fragment.cfg

▶ After integrating configuration fragments into the appended recipe, you can check
everything is fine by running:
bitbake -c kernel_configcheck -f linux-yocto

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 183/296

Linux Yocto 4/4

▶ Another way of configuring linux-yocto is by using Advanced Metadata.
▶ It is a powerful way of splitting the configuration and the patches into several

pieces.
▶ It is designed to provide a very configurable kernel.
▶ The full documentation can be found at

https://docs.yoctoproject.org/kernel-dev/advanced.html#working-with-
advanced-metadata-yocto-kernel-cache

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 184/296

https://docs.yoctoproject.org/kernel-dev/advanced.html#working-with-advanced-metadata-yocto-kernel-cache
https://docs.yoctoproject.org/kernel-dev/advanced.html#working-with-advanced-metadata-yocto-kernel-cache

Linux Yocto: Kernel Metadata 1/4

▶ Kernel Metadata is a way to organize and to split the kernel configuration and
patches in little pieces each providing support for one feature.

▶ Two main configuration variables help taking advantage of this:
LINUX_KERNEL_TYPE standard (default), tiny or preempt-rt

• standard: generic Linux kernel policy.
• tiny: bare minimum configuration, for small kernels.
• preempt-rt: applies the PREEMPT_RT patch.

KERNEL_FEATURES List of features to enable. Features are sets of patches and
configuration fragments.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 185/296

Linux Yocto: Kernel Metadata 2/4

▶ Kernel Metadata can be stored in the linux-yocto recipe space.
▶ It must be under $FILESEXTRAPATHS. A best practice is to follow this directory

hierarchy:
bsp/
cfg/

features/
ktypes/
patches/

▶ Kernel Metadata are divided into 3 file types:
• Description files, ending in .scc
• Configuration fragments
• Patches

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 186/296

Linux Yocto: Kernel Metadata 3/4

▶ Kernel Metadata description files have their own syntax, used to describe the
feature provided and which patches and configuration fragments to use.

▶ Simple example, features/smp.scc

define KFEATURE_DESCRIPTION "Enable SMP"

kconf hardware smp.cfg
patch smp-support.patch

▶ To integrate the feature into the kernel image:
KERNEL_FEATURES += "features/smp.scc"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 187/296

Linux Yocto: Kernel Metadata 4/4

▶ .scc syntax description:
branch <ref> Create a new branch relative to the current one.

define Defines variables.
include <scc file> Include another description file. Parsed inline.
kconf [hardware|non-hardware] <cfg file> Queues a configuration

fragment, to merge it into Linux’s .config
git merge <branch> Merge branch into the current git branch.
patch <patch file> Applies patch file to the current git branch.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 188/296

Practical lab - Create a custom machine configuration

▶ Write a machine configuration
▶ Understand how the target architecture is

chosen

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 189/296

Distro Layers

Distro Layers

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 190/296

Distro Layers

Distro Layers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 191/296

Distro layers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 192/296

Distro layers

▶ You can create a new distribution by using a Distro layer.
▶ This allows to change the defaults that are used by Poky.
▶ It is useful to distribute changes that have been made in local.conf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 193/296

Best practice

▶ A distro layer is used to provide policy configurations for a custom distribution.
▶ It is a best practice to separate the distro layer from the custom layers you may

create and use.
▶ It often contains:

• Configuration files.
• Specific classes.
• Distribution specific recipes: initialization scripts, splash screen…

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 194/296

Creating a Distro layer

▶ The configuration file for the distro layer is conf/distro/<distro>.conf
▶ This file must define the DISTRO variable.
▶ It is possible to inherit configuration from an existing distro layer.
▶ You can also use all the DISTRO_* variables.
▶ Use DISTRO = "<distro>" in local.conf to use your distro configuration.

require conf/distro/poky.conf

DISTRO = "distro"
DISTRO_NAME = "distro description"
DISTRO_VERSION = "1.0"

MAINTAINER = "..."

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 195/296

DISTRO_FEATURES

▶ Lists the features the distribution will provide.
▶ As for MACHINE_FEATURES, this is used by package recipes to enable or disable

functionalities.
▶ COMBINED_FEATURES provides the list of features that are enabled in both

MACHINE_FEATURES and DISTRO_FEATURES.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 196/296

Toolchain selection

▶ The toolchain selection is controlled by the TCMODE variable.
▶ It defaults to "default".
▶ The conf/distro/include/tcmode-${TCMODE}.inc file is included.

• This configures the toolchain to use by defining preferred providers and versions for
recipes such as gcc, binutils, *libc…

▶ The providers’ recipes define how to compile or/and install the toolchain.
▶ Toolchains can be built by the build system or external.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 197/296

Sample files

▶ A distro layer often contains sample files, used as templates to build key
configurations files.

▶ Example of sample files:
• bblayers.conf.sample
• local.conf.sample

▶ In Poky, they are in meta-poky/conf/.
▶ The TEMPLATECONF variable controls where to find the samples.
▶ It is set in ${OEROOT}/.templateconf.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 198/296

Distro Layers

Release management

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 199/296

Release management

There are multiple tasks that OE/bitbake based projects let you do on your own to
ensure build reproducibility:
▶ Code distribution and project setup.
▶ Release tagging

A separate tool is needed for that, usual solutions are:
▶ combo-layer, as done by Poky:

https://wiki.yoctoproject.org/wiki/Combo-layer

▶ git submodules + setup script. Great example in YOE:
https://github.com/YoeDistro/yoe-distro

▶ repo and templateconf or setup script
▶ kas

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 200/296

https://wiki.yoctoproject.org/wiki/Combo-layer
https://github.com/YoeDistro/yoe-distro

Distribute the distribution

▶ A good way to distribute a distribution (Poky, custom layers, BSP,
.templateconf…) is to use Google’s repo.

▶ Repo is used in Android to distribute its source code, which is split into many git
repositories. It’s a wrapper to handle several git repositories at once.

▶ The only requirement is to use git.
▶ The repo configuration is stored in manifest file, usually available in its own git

repository.
▶ It could also be in a specific branch of your custom layer.
▶ It only handles fetching code, handling local.conf and bblayers.conf is done

separately

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 201/296

Manifest example

<?xml version="1.0" encoding="UTF-8"?>
<manifest>

<remote name="yocto-project" fetch="git.yoctoproject.org" />
<remote name="private" fetch="git.example.net" />

<default revision="dunfell" remote="private" />

<project name="poky" remote="yocto-project" />
<project name="meta-ti" remote="yocto-project" />
<project name="meta-custom" />
<project name="meta-custom-bsp" />
<project path="meta-custom-distro" name="distro">
<copyfile src="templateconf" dest="poky/.templateconf" />

</project>
</manifest>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 202/296

Retrieve the project using repo

$ mkdir my-project; cd my-project
$ repo init -u https://git.example.net/manifest.git
$ repo sync -j4

▶ repo init uses the default.xml manifest in the repository, unless specified
otherwise.

▶ You can see the full repo documentation at
https://source.android.com/source/using-repo.html.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 203/296

https://source.android.com/source/using-repo.html

repo: release

To tag a release, a few steps have to be taken:
▶ Optionally tag the custom layers
▶ For each project entry in the manifest, set the revision parameter to either a tag

or a commit hash.
▶ Commit and tag this version of the manifest.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 204/296

kas

▶ Specific tool developed by Siemens for OpenEmbedded:
https://github.com/siemens/kas

▶ Will fetch layers and build the image in a single command
▶ Uses a single JSON or YAML configuration file part of the custom layer
▶ Can generate and run inside a Docker container
▶ Can setup local.conf and bblayers.conf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 205/296

https://github.com/siemens/kas

kas configuration

header:
version: 8

machine: mymachine
distro: mydistro
target:

- myimage

repos:
meta-custom:

bitbake:
url: "https://git.openembedded.org/bitbake"
refspec: "1.46"
layers:

.: excluded

openembedded-core:
url: "https://git.openembedded.org/openembedded-core"
refspec: dunfell
layers:

meta:

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 206/296

kas configuration

meta-freescale:
url: "https://github.com/Freescale/meta-freescale"
refspec: dunfell

meta-openembedded:
url: https://git.openembedded.org/meta-openembedded
refspec: dunfell
layers:

meta-oe:
meta-python:
meta-networking:

▶ Then a single command will build all the listed target for the machine:
$ kas build meta-custom/mymachine.yaml

▶ Or, alternatively, invoke bitbake commands:
$ kas shell /path/to/kas-project.yml -c 'bitbake dosfsutils-native'

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 207/296

Images

Images

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 208/296

Images

Introduction to images

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 209/296

Overview 1/3

▶ An image is the top level recipe and is used alongside the machine definition.
▶ Whereas the machine describes the hardware used and its capabilities, the image

is architecture agnostic and defines how the root filesystem is built, with what
packages.

▶ By default, several images are provided in Poky:
• meta*/recipes*/images/*.bb

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 210/296

Overview 2/3

▶ Common images are:
core-image-base Console-only image, with full support of the hardware.
core-image-minimal Small image, capable of booting a device.
core-image-minimal-dev Small image with extra tools, suitable for development.
core-image-x11 Image with basic X11 support.
core-image-rt core-image-minimal with real time tools and test suite.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 211/296

Overview 3/3

▶ An image is no more than a recipe.
▶ It has a description, a license and inherits the core-image class.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 212/296

Organization of an image recipe

▶ Some special configuration variables are used to describe an image:
IMAGE_BASENAME The name of the output image files. Defaults to ${PN}.
IMAGE_INSTALL List of packages and package groups to install in the

generated image.
IMAGE_ROOTFS_SIZE The final root filesystem size.
IMAGE_FEATURES List of features to enable in the image.
IMAGE_FSTYPES List of formats the OpenEmbedded build system will use to

create images.
IMAGE_LINGUAS List of the locales to be supported in the image.
IMAGE_PKGTYPE Package type used by the build system. One of deb, rpm,

ipk and tar.
IMAGE_POSTPROCESS_COMMAND Shell commands to run at post process.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 213/296

Example of an image

require recipes-core/images/core-image-minimal.bb

DESCRIPTION = "Example image"

IMAGE_INSTALL += "ninvaders"

LICENSE = "MIT"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 214/296

Images

Image types

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 215/296

IMAGE_FSTYPES

▶ Configures the resulting root filesystem image format.
▶ If more than one format is specified, one image per format will be generated.
▶ Image formats instructions are delivered in Poky, thanks to

meta/classes/image_types.bbclass

▶ Common image formats are: ext2, ext3, ext4, squashfs, squashfs-xz, cpio, jffs2,
ubifs, tar.bz2, tar.gz…

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 216/296

Creating an image type

▶ If you have a particular layout on your storage (for example bootloader location on
an SD card), you may want to create your own image type.

▶ This is done through a class that inherits from image_types.
▶ It has to define a function named IMAGE_CMD_<type>.
▶ Append it to IMAGE_TYPES

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 217/296

Creating an image conversion type

▶ Common conversion types are: gz, bz2, sha256sum, bmap…
▶ This is done through a class that inherits from image_types.
▶ It has to define a function named CONVERSION_CMD_<type>.
▶ Append it to CONVERSIONTYPES

▶ Append valid combinations to IMAGE_TYPES

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 218/296

wic

▶ wic is a tool that can create a flashable image from the compiled packages and
artifacts.

▶ It can create partitions.
▶ It can select which files are located in which partition through the use of plugins.
▶ The final image layout is described in a .wks or .wks.in file.
▶ It can be extended in any layer.
▶ Usage example:

WKS_FILE = "imx-uboot-custom.wks.in"
IMAGE_FSTYPES = "wic.bmap wic"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 219/296

imx-uboot-custom.wks.in

part u-boot --source rawcopy --sourceparams="file=imx-boot" --ondisk sda --no-table --align ${IMX_BOOT_SEEK}
part /boot --source bootimg-partition --ondisk sda --fstype=vfat --label boot --active --align 8192 --size 64
part / --source rootfs --ondisk sda --fstype=ext4 --label root --exclude-path=home/ --exclude-path=opt/ --align 8192
part /home --source rootfs --rootfs-dir=${IMAGE_ROOTFS}/home --ondisk sda --fstype=ext4 --label home --align 8192
part /opt --source rootfs --rootfs-dir=${IMAGE_ROOTFS}/opt --ondisk sda --fstype=ext4 --label opt --align 8192

bootloader --ptable msdos

▶ Copies imx-boot from $DEPLOY_DIR in the image, aligned on (and so at that
offset) ${IMX_BOOT_SEEK}.

▶ Creates a first partition, formatted in FAT32, with the files listed in the
IMAGE_BOOT_FILES variable.

▶ Creates an ext4 partition with the contents on the root filesystem, excluding the
content of /home and /opt

▶ Creates two ext4 partitions, one with the content of /home, the other one with
the content of /opt, from the image root filesystem.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 220/296

Images

Package groups

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 221/296

Overview

▶ Package groups are a way to group packages by functionality or common
purpose.

▶ Package groups are used in image recipes to help building the list of packages to
install.

▶ They can be found under meta*/recipes-core/packagegroups/
▶ A package group is yet another recipe.
▶ The prefix packagegroup- is always used.
▶ Be careful about the PACKAGE_ARCH value:

• Set to the value all by default,
• Must be explicitly set to ${MACHINE_ARCH} when there is a machine dependency.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 222/296

Common package groups

▶ packagegroup-core-boot
▶ packagegroup-core-buildessential
▶ packagegroup-core-nfs-client
▶ packagegroup-core-nfs-server
▶ packagegroup-core-tools-debug
▶ packagegroup-core-tools-profile

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 223/296

Example

./meta/recipes-core/packagegroups/packagegroup-core-tools-debug.bb:

SUMMARY = "Debugging tools"
LICENSE = "MIT"

inherit packagegroup

RDEPENDS_${PN} = "\
gdb \
gdbserver \
strace"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 224/296

Practical lab - Create a custom image

▶ Write an image recipe
▶ Choose the packages to install

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 225/296

Licensing

Licensing

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 226/296

Licensing

Managing licenses

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 227/296

Tracking license changes

▶ The license of an external project may change at some point.
▶ The LIC_FILES_CHKSUM tracks changes in the license files.
▶ If the license’s checksum changes, the build will fail.

• The recipe needs to be updated.

LIC_FILES_CHKSUM = " \
file://COPYING;md5=... \
file://src/file.c;beginline=3;endline=21;md5=..."

▶ LIC_FILES_CHKSUM is mandatory in every recipe, unless LICENSE is set to CLOSED.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 228/296

Package exclusion

▶ We may not want some packages due to their licenses.
▶ To exclude a specific license, use INCOMPATIBLE_LICENSE

▶ To exclude all GPLv3 packages:

INCOMPATIBLE_LICENSE = "GPLv3"

▶ License names are the ones used in the LICENSE variable.
▶ The meta-gplv2 layer provides recipes for software where upstream has moved to

GPLv3 licenses.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 229/296

Commercial licenses

▶ By default the build system does not include commercial components.
▶ Packages with a commercial component define:

LICENSE_FLAGS = "commercial"

▶ To build a package with a commercial component, the package must be in the
LICENSE_FLAGS_WHITELIST variable.

▶ Example, gst-plugins-ugly:

LICENSE_FLAGS_WHITELIST = "commercial_gst-plugins-ugly"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 230/296

Listing licenses

OpenEmbbedded will generate a manifest of all the licenses of the software present on
the target image in $BUILDDIR/tmp/deploy/licenses/<image>/license.manifest

PACKAGE NAME: busybox
PACKAGE VERSION: 1.31.1
RECIPE NAME: busybox
LICENSE: GPLv2 & bzip2-1.0.6

PACKAGE NAME: dropbear
PACKAGE VERSION: 2019.78
RECIPE NAME: dropbear
LICENSE: MIT & BSD-3-Clause & BSD-2-Clause & PD

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 231/296

Providing license text

To include the license text in the root filesystem either:
▶ Use COPY_LIC_DIRS = "1" and COPY_LIC_MANIFEST = "1"

▶ or use LICENSE_CREATE_PACKAGE = "1" to generate packages including the
license and install the required license packages.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 232/296

Providing sources

OpenEmbbedded provides the archiver class to generate tarballs of the source code:
▶ Use INHERIT += "archiver"

▶ Set the ARCHIVER_MODE variable, the default is to provide patched sources. To
provide configured sources:

ARCHIVER_MODE[src] = "configured"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 233/296

Writing recipes - going further

Writing recipes - going
further

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 234/296

Writing recipes - going further

Packages features

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 235/296

Benefits

▶ Features can be built depending on the needs.
▶ This allows to avoid compiling all features in a software component when only a

few are required.
▶ A good example is ConnMan: Bluetooth support is built only if there is Bluetooth

on the target.
▶ The PACKAGECONFIG variable is used to configure the build on a per feature

granularity, for packages.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 236/296

PACKAGECONFIG

▶ PACKAGECONFIG takes the list of features to enable.
▶ PACKAGECONFIG[feature] takes up to six arguments, separated by commas:

1. Argument used by the configuration task if the feature is enabled (EXTRA_OECONF).
2. Argument added to EXTRA_OECONF if the feature is disabled.
3. Additional build dependency (DEPENDS), if enabled.
4. Additional runtime dependency (RDEPENDS), if enabled.
5. Additional runtime recommendations (RRECOMMENDS), if enabled.
6. Any conflicting PACKAGECONFIG settings for this feature.

▶ Unused arguments can be omitted or left blank.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 237/296

Example: from ConnMan

PACKAGECONFIG ??= "wifi openvpn"

PACKAGECONFIG[wifi] = "--enable-wifi, \
--disable-wifi, \
wpa-supplicant, \
wpa-supplicant"

PACKAGECONFIG[bluez] = "--enable-bluetooth, \
--disable-bluetooth, \
bluez5, \
bluez5"

PACKAGECONFIG[openvpn] = "--enable-openvpn, \
--disable-openvpn, \
, \
openvpn"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 238/296

Writing recipes - going further

Conditional features

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 239/296

Conditional features

▶ Some values can be set dynamically, thanks to a set of functions:
▶ bb.utils.contains(variable, checkval, trueval, falseval, d): if

checkval is found in variable, trueval is returned; otherwise falseval is used.
▶ bb.utils.filter(variable, checkvalues, d): returns all the words in the

variable that are present in the checkvalues.
▶ Example:

PACKAGECONFIG ??= "wispr iptables client\
${@bb.utils.filter('DISTRO_FEATURES', '3g systemd wifi', d)} \
${@bb.utils.contains('DISTRO_FEATURES', 'bluetooth', 'bluez', '', d)} \

"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 240/296

Writing recipes - going further

Python tasks

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 241/296

Tasks in Python

▶ Tasks can be written in Python when using the keyword python.
▶ The d variable is accessible, and represents the BitBake datastore (where variables

are stored).
▶ Two modules are automatically imported:

• bb: to access BitBake’s internal functions.
• os: Python’s operating system interfaces.

▶ You can import other modules using the keyword import.
▶ Anonymous Python functions are executed during parsing.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 242/296

Accessing the datastore with Python

▶ The d variable is accessible within Python tasks.

d.getVar("X", expand=False) Returns the value of X.
d.setVar("X", "value") Set X.
d.appendVar("X", "value") Append value to X.
d.prependVar("X", "value") Prepend value to X.
d.expand(expression) Expand variables in expression.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 243/296

Python task example

Anonymous function
python __anonymous() {

if d.getVar("FOO", True) == "example":
d.setVar("BAR", "Hello, World.")

}

Task
python do_settime() {

import time

d.setVar("TIME", time.strftime('%Y%m%d', time.gmtime()))
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 244/296

Writing recipes - going further

Variable flags

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 245/296

Variable flags

▶ Variable flags are used to store extra information on tasks and variables.
▶ They are used to control task functionalities.
▶ A number of these flags are already used by BitBake:

• dirs: directories that should be created before the task runs. The last one becomes
the work directory for the task.

• noexec: disable the execution of the task.
• nostamp: do not create a stamp file when running the task. The task will always be

executed.
• doc: task documentation displayed by listtasks.

do_settime[noexec] = "1"
do_compile[nostamp] = "1"
do_settime[doc] = "Set the current time in ${TIME}"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 246/296

Writing recipes - going further

Root filesystem creation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 247/296

Files and directories selection
▶ The FILES variable controls the list of files and directories to be placed into

packages.
▶ It must be package specific (e.g. with _${PN}).
▶ In Poky, defaults to:

FILES_${PN} = \
"${bindir}/* ${sbindir}/* ${libexecdir}/* ${libdir}/lib*${SOLIBS} \
${sysconfdir} ${sharedstatedir} ${localstatedir} \
${base_bindir}/* ${base_sbindir}/* \
${base_libdir}/*${SOLIBS} \
${base_prefix}/lib/udev/rules.d ${prefix}/lib/udev/rules.d \
${datadir}/${BPN} ${libdir}/${BPN}/* \
${datadir}/pixmaps ${datadir}/applications \
${datadir}/idl ${datadir}/omf ${datadir}/sounds \
${libdir}/bonobo/servers"

▶ To prevent configuration files to be overwritten during the Package Management
System update process, use CONFFILES.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 248/296

Root filesystem generation

▶ Image generation overview:
1. The rootfs is created using packages.
2. One or more images files are created, depending on the IMAGE_FSTYPES value.

▶ The rootfs creation is specific to the IMAGE_PKGTYPE value. It should be defined
in the image recipe, otherwise the first valid package type defined in
PACKAGE_CLASSES is used.

▶ All the magic is done in meta/classes/rootfs_${IMAGE_PKGTYPE}.bbclass

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 249/296

Example: rootfs creation with .deb packages

rootfs_deb_do_rootfs () {
[...]

export INSTALL_ROOTFS_DEB="${IMAGE_ROOTFS}"

[...]

apt update
apt ${APT_ARGS} install ${package_to_install} \

--force-yes --allow-unauthenticated

[...]
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 250/296

Writing recipes - going further

Splitting packages

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 251/296

Benefits

▶ Packages can be split.
▶ Useful when a single remote repository provides multiple binaries or libraries.
▶ The list of packages to provide is defined by the PACKAGES variable.
▶ The FILES variable is often used to split the output into packages.
▶ PACKAGE_BEFORE_PN allows to pick files normally included in the default package

in another.
▶ PACKAGES_DYNAMIC allows to check dependencies with optional packages are

satisfied.
▶ ALLOW_EMPTY allows to produce a package even if it is empty.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 252/296

Example

▶ The kexec tools provides kexec and kdump:

require kexec-tools.inc
export LDFLAGS = "-L${STAGING_LIBDIR}"
EXTRA_OECONF = " --with-zlib=yes"

SRC_URI[md5sum] = \
"b9f2a3ba0ba9c78625ee7a50532500d8"

SRC_URI[sha256sum] = "..."

PACKAGES =+ "kexec kdump"

FILES_kexec = "${sbindir}/kexec"
FILES_kdump = "${sbindir}/kdump"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 253/296

Default packages

▶ By default several packages are produced automatically:

PACKAGES = "${PN}-src ${PN}-dbg ${PN}-staticdev ${PN}-dev \
${PN}-doc ${PN}-locale ${PACKAGE_BEFORE_PN} ${PN}"

▶ For each of these packages a FILES variable is defined in
meta/conf/bitbake.conf:

FILES_${PN}-dev = \
"${includedir} ${FILES_SOLIBSDEV} ${libdir}/*.la \
${libdir}/*.o ${libdir}/pkgconfig ${datadir}/pkgconfig \
${datadir}/aclocal ${base_libdir}/*.o \
${libdir}/${BPN}/*.la ${base_libdir}/*.la \
${libdir}/cmake ${datadir}/cmake"

FILES_${PN}-dbg = \
"/usr/lib/debug /usr/lib/debug-static \
/usr/src/debug"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 254/296

Inspecting packages
oe-pkgdata-util is a tool that can help inspecting packages:
▶ Which package is shipping a file:

$ oe-pkgdata-util find-path /bin/busybox
busybox: /bin/busybox

▶ Which files are shipped by a package:
$ oe-pkgdata-util list-pkg-files busybox
busybox:

/bin/busybox
/bin/busybox.nosuid
/bin/busybox.suid
/bin/sh

▶ Which recipe is creating a package:
$ oe-pkgdata-util lookup-recipe kdump
kexec-tools
$ oe-pkgdata-util lookup-recipe libtinfo5
ncurses

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 255/296

Application development workflow

Application
development workflow

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 256/296

Recommended workflows

▶ Different development workflows are possible given the needs:
• Low-level application development (bootloader, kernel).
• Application development.
• Temporary modifications on an external project (bug fixes, security fixes).

▶ Three workflows exists for theses needs: the SDK, devtool and quilt.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 257/296

Application development workflow

The Yocto Project SDK

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 258/296

Overview

▶ An SDK (Software Development Kit) is a set of tools allowing the development of
applications for a given target (operating system, platform, environment…).

▶ It generally provides a set of tools including:
• Compilers or cross-compilers.
• Linkers.
• Library headers.
• Debuggers.
• Custom utilities.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 259/296

The Yocto Project SDK

▶ The Poky reference system is used to generate images, by building many
applications and doing a lot of configuration work.

• When developing an application, we only care about the application itself.
• We want to be able to develop, test and debug easily.

▶ The Yocto Project SDK is an application development SDK, which can be
generated to provide a full environment compatible with the target.

▶ It includes a toolchain, libraries headers and all the needed tools.
▶ This SDK can be installed on any computer and is self-contained. The presence of

Poky is not required for the SDK to fully work.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 260/296

Available SDKs

▶ Two different SDKs can be generated:
• A generic SDK, including:

A toolchain.
Common tools.
A collection of basic libraries.

• An image-based SDK, including:
The generic SDK.
The sysroot matching the target root filesystem.
Its toolchain is self-contained (linked to an SDK embedded libc).

▶ The SDKs generated with Poky are distributed in the form of a shell script.
▶ Executing this script extracts the tools and sets up the environment.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 261/296

The generic SDK

▶ Mainly used for low-level development, where only the toolchain is needed:
• Bootloader development.
• Kernel development.

▶ The recipe meta-toolchain generates this SDK:
• bitbake meta-toolchain

▶ The generated script, containing all the tools for this SDK, is in:
• $BUILDDIR/tmp/deploy/sdk
• Example:

poky-glibc-x86_64-meta-toolchain-cortexa8hf-neon-toolchain-2.5.sh

▶ The SDK will be configured to be compatible with the specified MACHINE.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 262/296

The image-based SDK

▶ Used to develop applications running on the target.
▶ One task is dedicated to the process. The task behavior can vary between the

images.
• populate_sdk

▶ To generate an SDK for core-image-minimal:
• bitbake -c populate_sdk core-image-minimal

▶ The generated script, containing all the tools for this SDK, is in:
• $BUILDDIR/tmp/deploy/sdk
• Example:

poky-glibc-x86_64-core-image-minimal-cortexa8hf-neon-toolchain-2.5.sh

▶ The SDK will be configured to be compatible with the specified MACHINE.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 263/296

SDK format

▶ Both SDKs are distributed as bash scripts.
▶ These scripts self extract themselves to install the toolchains and the files they

provide.
▶ To install an SDK, retrieve the generated script and execute it.

• The script asks where to install the SDK. Defaults to /opt/poky/<version>
• Example: /opt/poky/2.5

$./poky-glibc-x86_64-meta-toolchain-cortexa8hf-neon-toolchain-2.5.sh
Poky (Yocto Project Reference Distro) SDK installer version 2.5
===
Enter target directory for SDK (default: /opt/poky/2.5):
You are about to install the SDK to "/opt/poky/2.5". Proceed[Y/n]?
Extracting SDK.................done
Setting it up...done
SDK has been successfully set up and is ready to be used.
Each time you wish to use the SDK in a new shell session, you need to source
the environment setup script e.g.
$. /opt/poky/2.5/environment-setup-cortexa8hf-neon-poky-linux-gnueabi

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 264/296

Use the SDK

▶ To use the SDK, a script is available to set up the environment:

$ cd /opt/poky/2.5
$ source ./environment-setup-cortexa8hf-neon-poky-linux-gnueabi

▶ The PATH is updated to take into account the binaries installed alongside the SDK.
▶ Environment variables are exported to help using the tools.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 265/296

SDK installation

environment-setup-cortexa8hf-neon-poky-linux-gnueabi Exports environment variables.
site-config-cortexa8hf-neon-poky-linux-gnueabi Variables used during the toolchain

creation
sysroots SDK binaries, headers and libraries. Contains one directory for the host

and one for the target.
version-cortexa8hf-neon-poky-linux-gnueabi Version information.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 266/296

SDK environment variables

CC Full path to the C compiler binary.
CFLAGS C flags, used by the C compiler.

CXX C++ compiler.
CXXFLAGS C++ flags, used by CPP

LD Linker.
LDFLAGS Link flags, used by the linker.

ARCH For kernel compilation.
CROSS_COMPILE For kernel compilation.

GDB SDK GNU Debugger.
OBJDUMP SDK objdump.

▶ To see the full list, open the environment script.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 267/296

Examples

▶ To build an application for the target:

$ $CC -o example example.c

▶ The LDFLAGS variables is set to be used with the C compiler (gcc).
• When building the Linux kernel, unset this variable.

$ unset LDFLAGS
$ make menuconfig
$ make

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 268/296

Application development workflow

Devtool

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 269/296

Overview

▶ Devtool is a set of utilities to ease the integration and the development of
OpenEmbedded recipes.

▶ It can be used to:
• Generate a recipe for a given upstream application.
• Modify an existing recipe and its associated sources.
• Upgrade an existing recipe to use a newer upstream application.

▶ Devtool adds a new layer, automatically managed, in $BUILDDIR/workspace/.
▶ It then adds or appends recipes to this layer so that the recipes point to a local

path for their sources. In $BUILDDIR/workspace/sources/.
• Local sources are managed by git.
• All modifications made locally should be commited.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 270/296

devtool usage 1/3

There are three ways of creating a new devtool project:
▶ To create a new recipe: devtool add <recipe> <fetchuri>

• Where recipe is the recipe’s name.
• fetchuri can be a local path or a remote uri.

▶ To modify the source for an existing recipe: devtool modify <recipe>
▶ To upgrade a given recipe: devtool upgrade -V <version> <recipe>

• Where version is the new version of the upstream application.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 271/296

devtool usage 2/3

Once a devtool project is started, commands can be issued:
▶ devtool edit-recipe <recipe>: edit recipe in a text editor (as defined by the

EDITOR environment variable).
▶ devtool build <recipe>: build the given recipe.
▶ devtool build-image <image>: build image with the additional devtool

recipes’ packages.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 272/296

devtool usage 3/3

▶ devtool deploy-target <recipe> <target>: upload the recipe’s packages on
target, which is a live running target with an SSH server running
(user@address).

▶ devtool update-recipe <recipe>: generate patches from git commits made
locally.

▶ devtool reset <recipe>: remove recipe from the control of devtool.
Standard layers and remote sources are used again as usual.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 273/296

Application development workflow

Quilt

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 274/296

Overview

▶ Quilt is a utility to manage patches which can be used without having a clean
source tree.

▶ It can be used to create patches for recipes already available in the build system.
▶ Be careful when using this workflow: the modifications won’t persist across builds!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 275/296

Using Quilt

1. Find the recipe working directory in $BUILDDIR/tmp/work/.
2. Create a new Quilt patch: $ quilt new topic.patch

3. Add files to this patch: $ quilt add file0.c file1.c

4. Make the modifications by editing the files.
5. Test the modifications: $ bitbake -c compile -f recipe

6. Generate the patch file: $ quilt refresh

7. Move the generated patch into the recipe’s directory.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 276/296

Practical lab - Create and use a Poky SDK

▶ Generate an SDK
▶ Compile an application for the target in the

SDK

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 277/296

Runtime Package Management

Runtime Package
Management

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 278/296

Introduction

▶ BitBake always builds packages selected in IMAGE_INSTALL.
▶ The packages are used to generate the root filesystem.
▶ It is also possible to update the system at runtime using these packages, for many

use cases:
• In-field security updates.
• System updates over the wire.
• System, packages or configuration customization at runtime.
• Remote debugging.

▶ Using the Runtime Package Management is an optional feature.
▶ We’ll use the IPK package format as an example in the following slides.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 279/296

Requirements

▶ First of all, you need a server to serve the packages to a private subnet or over the
Internet. Packages are typically served over https or http.

▶ Specific tools are also required on the target, and must be shipped on the
product. They should be included into the images generated by the build system.

▶ These tools will be specific to the package type used.
• This is similar to Linux distributions: Debian is using .deb related tools (dpkg,

apt…) while Fedora uses .rpm related ones (rpm, dnf).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 280/296

Runtime Package Management

Build configuration

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 281/296

Build configuration 1/2

▶ The PACKAGE_CLASSES variable controls which package format to use. More than
one can be used.

▶ Valid values are package_rpm, package_deb, package_ipk.
▶ By default Poky uses the RPM format, while OpenEmbedded-Core uses the IPK

one.
▶ Example:

• PACKAGE_CLASSES = "package_ipk"
• PACKAGE_CLASSES = "package_rpm package_deb"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 282/296

Build configuration 2/2

To install the required tools on the target, there are two possible solutions:
▶ By adding package-management to the images features.

• The required tool will be installed on the target.
• The package database corresponding to the build will be installed as well.

▶ Or by manually adding the required tools in IMAGE_INSTALL. For example, to use
the IPK format we need opkg.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 283/296

Build considerations

▶ The Runtime Package Management uses package databases to store information
about available packages and their version.

▶ Whenever a build generates a new package or modifies an existing one, the
package database must be updated.

▶ $ bitbake package-index
▶ Be careful: BitBake does not properly schedule the package-index target. You

must use this target alone to have a consistent package database.
• $ bitbake ninvaders package-index won’t necessarily generate an updated

package database.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 284/296

Runtime Package Management

Package server configuration

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 285/296

Apache2 example setup

Apache2 HTTP setup for IPK packages. This should go in
/etc/apache2/sites-enabled/package-server.conf.

<VirtualHost *:80>
ServerName packages.example.net

DocumentRoot /path/to/build/tmp/deploy/ipk
<Directory /path/to/build/tmp/deploy/ipk>

Options +Indexes
Options Indexes FollowSymLinks
Order allow,deny
allow from all
AllowOverride None
Require all granted

</Directory>
</VirtualHost>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 286/296

Runtime Package Management

Target configuration

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 287/296

The IPK runtime management software

▶ The IPK runtime management software is opkg.
▶ It can be configured using configurations files ending in .conf in /etc/opkg/.
▶ This configuration helps opkg to find the package databases you want to use.
▶ For example, with our previously configured package server:

src/gz all http://packages.example.net/all
src/gz armv7a http://packages.example.net/armv7a
src/gz beaglebone http://packages.example.net/beaglebone

▶ This can be automatically generated by defining the PACKAGE_FEED_URIS,
PACKAGE_FEED_BASE_PATHS and PACKAGE_FEED_ARCHS variables

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 288/296

opkg usage

▶ opkg update: fetch and update the package databases, from the remote package
servers.

▶ opkg list: list available packages.
▶ opkg upgrade: upgrade all installed packages.
▶ opkg upgrade <package>: upgrade one package explicitly.
▶ opkg install <package>: install a specific package.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 289/296

opkg upgrade over an unstable network

▶ To avoid upgrade issues when downloading packages from a remote package
server using an unstable connection, you can first download the packages and
then proceed with the upgrade.

▶ To do this we must use a cache, which can be defined in the opkg configuration
with: option cache /tmp/opkg-cache.

opkg update
opkg --download-only upgrade
opkg upgrade

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 290/296

Yocto Project Resources

Yocto Project Resources

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 291/296

Yocto Project documentation

▶ https://docs.yoctoproject.org/

▶ Wiki: https://wiki.yoctoproject.org/wiki/Main_Page
▶ https://layers.openembedded.org/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 292/296

https://docs.yoctoproject.org/
https://wiki.yoctoproject.org/wiki/Main_Page
https://layers.openembedded.org/

Useful Reading (1)

Embedded Linux Development with Yocto Project - Second
Edition, Nov 2017
▶ https://www.packtpub.com/virtualization-and-

cloud/embedded-linux-development-using-yocto-
projects-second-edition

▶ By Otavio Salvador and Daiane Angolini
▶ From basic to advanced usage, helps writing better,

more flexible recipes. A good reference to jumpstart
your Yocto Project development.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 293/296

https://www.packtpub.com/virtualization-and-cloud/embedded-linux-development-using-yocto-projects-second-edition
https://www.packtpub.com/virtualization-and-cloud/embedded-linux-development-using-yocto-projects-second-edition
https://www.packtpub.com/virtualization-and-cloud/embedded-linux-development-using-yocto-projects-second-edition

Useful Reading (2)

Embedded Linux Projects Using Yocto Project Cookbook -
Second Edition, January 2018
▶ https://www.packtpub.com/virtualization-and-

cloud/embedded-linux-development-using-yocto-
project-cookbook-second-edition

▶ By Alex González
▶ A set of recipes that you can refer to and solve your

immediate problems instead of reading it from cover to
cover.

See our review: https://bit.ly/1GgVmCB

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 294/296

https://www.packtpub.com/virtualization-and-cloud/embedded-linux-development-using-yocto-project-cookbook-second-edition
https://www.packtpub.com/virtualization-and-cloud/embedded-linux-development-using-yocto-project-cookbook-second-edition
https://www.packtpub.com/virtualization-and-cloud/embedded-linux-development-using-yocto-project-cookbook-second-edition
https://bit.ly/1GgVmCB

Last slides

Last slides

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 295/296

Last slide

Thank you!
And may the Source be with you

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 296/296

	Generic course information
	Introduction to Embedded Linux
	Yocto Project and Poky reference system overview
	The Yocto Project overview
	The Poky reference system overview

	Using Yocto Project - basics
	Environment setup
	Configuring the build system
	Building an image

	Using Yocto Project - advanced usage
	Advanced configuration
	Packages variants
	Packages
	The power of BitBake

	Writing recipes - basics
	Recipes: overview
	Organization of a recipe
	Applying patches
	Example of a recipe
	Example of a recipe with a version agnostic part

	Writing recipes - advanced
	Extending a recipe
	Append file example
	Advanced recipe configuration
	Classes
	Binary packages
	BitBake file inclusions
	Debugging recipes
	Network usage

	Layers
	Introduction to layers
	Creating a layer

	BSP Layers
	Introduction to BSP layers in the Yocto Project
	Hardware configuration files
	Bootloader
	Kernel

	Distro Layers
	Distro Layers
	Release management

	Images
	Introduction to images
	Image types
	Package groups

	Licensing
	Managing licenses

	Writing recipes - going further
	Packages features
	Conditional features
	Python tasks
	Variable flags
	Root filesystem creation
	Splitting packages

	Application development workflow
	The Yocto Project SDK
	Devtool
	Quilt

	Runtime Package Management
	Build configuration
	Package server configuration
	Target configuration

	Yocto Project Resources
	Last slides

