
XML Schema Evolution 9-1

9
XML Schema Evolution

This chapter describes how you can update your XML schema after you have 
registered it with Oracle XML DB. XML schema evolution is the process of updating 
your registered XML schema.

This chapter contains these topics:

■ Overview of XML Schema Evolution

■ Using Copy-Based Schema Evolution

■ Using In-Place XML Schema Evolution

Oracle XML DB supports the W3C XML Schema recommendation. XML instance 
documents that conform to an XML schema can be stored and retrieved using SQL 
and protocols such as FTP, HTTP(S), and WebDAV. In addition to specifying the 
structure of XML documents, XML schemas determine the mapping between XML 
and object-relational storage. 

Overview of XML Schema Evolution
A major challenge for developers using an XML schema with Oracle XML DB is how 
to deal with changes in the content or structure of XML documents. In some 
environments, the need for changes may be frequent or extensive, arising from new 
regulations, internal needs, or external opportunities. For example, new elements or 
attributes may need to be added to an XML schema definition, a data type may need 
to be modified, or certain minimum and maximum occurrence requirements may need 
to be relaxed or tightened.

In such cases, you need to "evolve" the XML schema so that new requirements are 
accommodated, while any existing instance documents (the data) remain valid (or can 
be made valid), and existing applications can continue to run. 

If you do not care about any existing documents, you can of course simply drop the 
XMLType tables that are dependent on the XML schema, delete the old XML schema, 
and register the new XML schema at the same URL. In most cases, however, you need 
to keep the existing documents, possibly transforming them to accommodate the new 
XML schema.

Oracle XML DB supports two kinds of schema evolution:

■ Copy-based schema evolution, in which all instance documents that conform to 
the schema are copied to a temporary location in the database, the old schema is 
deleted, the modified schema is registered, and the instance documents are 
inserted into their new locations from the temporary area

See Also: Chapter 6, "XML Schema Storage and Query: Basic"



Using Copy-Based Schema Evolution

9-2 Oracle XML DB Developer's Guide

■ In-place schema evolution, which does not require copying, deleting, and 
inserting existing data and thus is much faster than copy-based evolution, but 
which has restrictions that do not apply to copy-based evolution

In general, in-place evolution is permitted if you are not changing the storage 
model and if the changes do not invalidate existing documents (that is, if existing 
documents are conformant with the new schema or can be made conformant with 
it). A more detailed explanation of restrictions and guidelines is presented in 
"Using In-Place XML Schema Evolution" on page 9-15.

Each approach has its own PL/SQL procedure: DBMS_XMLSCHEMA.copyEvolve for 
copy-based evolution and DBMS_XMLSCHEMA.inPlaceEvolve for in-place 
evolution. Separate sections in this chapter explain the use of each procedure, as well 
as guidelines for using its associated approach to schema evolution.

Using Copy-Based Schema Evolution
You perform copy-based XML schema evolution using procedure copyEvolve of 
PL/SQL package DBMS_XMLSCHEMA. Procedure copyEvolve copies existing instance 
documents to temporary XMLType tables to back them up, drops the old version of the 
XML schema (which also deletes the associated instance documents), registers the new 
version, and copies the backed-up instance documents to new XMLType tables. In case 
of a problem, the backup copies are restored—see "Rollback When Procedure DBMS_
XMLSCHEMA.COPYEVOLVE Raises an Error" on page 9-9.

With procedure copyEvolve you can evolve your registered XML schema in such a 
way that existing XML instance documents continue to be valid.

Scenario for Copy-Based Evolution
Example 9–1 shows a partial listing of a revised version of the purchase-order XML 
schema of Example 3–8. See Example A–2 on page A-29 for the complete revised 
schema listing. Text that is in bold here is new or different from that in the original 
schema.

Example 9–1 Revised Purchase-Order XML Schema

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
           xmlns:xdb="http://xmlns.oracle.com/xdb"
           version="1.0">
  <xs:element
    name="PurchaseOrder" type="PurchaseOrderType"
    xdb:defaultTable="PURCHASEORDER"
    xdb:columnProps=
      "CONSTRAINT purchaseorder_pkey PRIMARY KEY (XMLDATA.reference),
       CONSTRAINT valid_email_address FOREIGN KEY (XMLDATA.userid)
         REFERENCES hr.employees (EMAIL)"
    xdb:tableProps=
      "VARRAY XMLDATA.ACTIONS.ACTION STORE AS TABLE ACTION_TABLE
        ((CONSTRAINT action_pkey PRIMARY KEY (NESTED_TABLE_ID, SYS_NC_ARRAY_INDEX$)))
       VARRAY XMLDATA.LINEITEMS.LINEITEM STORE AS TABLE LINEITEM_TABLE
        ((constraint LINEITEM_PKEY primary key (NESTED_TABLE_ID, SYS_NC_ARRAY_INDEX$)))
       lob (XMLDATA.NOTES) STORE AS (ENABLE STORAGE IN ROW STORAGE(INITIAL 4K NEXT 32K))"/>
  <xs:complexType name="PurchaseOrderType" xdb:SQLType="PURCHASEORDER_T">
    <xs:sequence>
      <xs:element name="Actions" type="ActionsType" xdb:SQLName="ACTIONS"/>
      <xs:element name="Reject" type="RejectionType" minOccurs="0" xdb:SQLName="REJECTION"/>
      <xs:element name="Requestor" type="RequestorType" xdb:SQLName="REQUESTOR"/>
      <xs:element name="User" type="UserType" xdb:SQLName="USERID"/>
      <xs:element name="CostCenter" type="CostCenterType" xdb:SQLName="COST_CENTER"/> 
      <xs:element name="BillingAddress" type="AddressType" minOccurs="0"



Using Copy-Based Schema Evolution

XML Schema Evolution 9-3

                  xdb:SQLName="BILLING_ADDRESS"/> 
      <xs:element name="ShippingInstructions" type="ShippingInstructionsType"
                  xdb:SQLName="SHIPPING_INSTRUCTIONS"/> 
      <xs:element name="SpecialInstructions" type="SpecialInstructionsType"
                  xdb:SQLName="SPECIAL_INSTRUCTIONS"/> 
      <xs:element name="LineItems" type="LineItemsType" xdb:SQLName="LINEITEMS"/>
      <xs:element name="Notes" type="NotesType" minOccurs="0" xdb:SQLType="CLOB"
                  xdb:SQLName="NOTES"/> 
    </xs:sequence>
    <xs:attribute name="Reference" type="ReferenceType" use="required" xdb:SQLName="REFERENCE"/>
    <xs:attribute name="DateCreated" type="xs:dateTime" use="required"
                  xdb:SQLType="TIMESTAMP WITH TIME ZONE"/>
  </xs:complexType>
  <xs:complexType name="LineItemsType" xdb:SQLType="LINEITEMS_T">
    <xs:sequence>
      <xs:element name="LineItem" type="LineItemType" maxOccurs="unbounded" xdb:SQLName="LINEITEM"
                  xdb:SQLCollType="LINEITEM_V"/>  
    </xs:sequence>
  </xs:complexType>
  <xs:complexType name="LineItemType" xdb:SQLType="LINEITEM_T">
    <xs:sequence>
      <xs:element name="Part" type="PartType" xdb:SQLName="PART"/>
      <xs:element name="Quantity" type="quantityType"/>
    </xs:sequence>
    <xs:attribute name="ItemNumber" type="xs:integer" xdb:SQLName="ITEMNUMBER"
                  xdb:SQLType="NUMBER"/> 
  </xs:complexType>
  <xs:complexType name="PartType" xdb:SQLType="PART_T">
    <xs:simpleContent>
      <xs:extension base="UPCCodeType">
        <xs:attribute name="Description" type="DescriptionType" use="required"
                      xdb:SQLName="DESCRIPTION"/> 
        <xs:attribute name="UnitCost" type="moneyType" use="required"/>
      </xs:extension>
    </xs:simpleContent>
  </xs:complexType>
  <xs:simpleType name="ReferenceType">
    <xs:restriction base="xs:string">
      <xs:minLength value="18"/>
      <xs:maxLength value="30"/>
    </xs:restriction>
  </xs:simpleType>

. . .

  <xs:complexType name="RejectionType" xdb:SQLType="REJECTION_T">
    <xs:all>
      <xs:element name="User" type="UserType" minOccurs="0" xdb:SQLName="REJECTED_BY"/>
      <xs:element name="Date" type="DateType" minOccurs="0" xdb:SQLName="DATE_REJECTED"/>
      <xs:element name="Comments" type="CommentsType" minOccurs="0" xdb:SQLName="REASON_REJECTED"/>
    </xs:all>
  </xs:complexType>
  <xs:complexType name="ShippingInstructionsType" xdb:SQLType="SHIPPING_INSTRUCTIONS_T">
    <xs:sequence>
      <xs:element name="name" type="NameType" minOccurs="0" xdb:SQLName="SHIP_TO_NAME"/>
      <xs:choice>
        <xs:element name="address" type="AddressType" minOccurs="0"/>
        <xs:element name="fullAddress" type="FullAddressType" minOccurs="0"
                    xdb:SQLName="SHIP_TO_ADDRESS"/> 
      </xs:choice>
      <xs:element name="telephone" type="TelephoneType" minOccurs="0" xdb:SQLName="SHIP_TO_PHONE"/>
    </xs:sequence>
  </xs:complexType>

. . .



Using Copy-Based Schema Evolution

9-4 Oracle XML DB Developer's Guide

  <xs:simpleType name="NameType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="20"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="FullAddressType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="256"/>
    </xs:restriction>
  </xs:simpleType>

. . .

  <xs:simpleType name="DescriptionType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="256"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:complexType name="AddressType" xdb:SQLType="ADDRESS_T">
    <xs:sequence>
      <xs:element name="StreetLine1" type="StreetType"/>
      <xs:element name="StreetLine2" type="StreetType" minOccurs="0"/>
      <xs:element name="City" type="CityType"/>
      <xs:choice>
        <xs:sequence>
          <xs:element name="State" type="StateType"/>
          <xs:element name="ZipCode" type="ZipCodeType"/>
        </xs:sequence>
        <xs:sequence>
          <xs:element name="Province" type="ProvinceType"/>
          <xs:element name="PostCode" type="PostCodeType"/>
        </xs:sequence>
        <xs:sequence>
          <xs:element name="County" type="CountyType"/>
          <xs:element name="Postcode" type="PostCodeType"/>
        </xs:sequence>
      </xs:choice>
      <xs:element name="Country" type="CountryType"/>
    </xs:sequence>
  </xs:complexType>
  <xs:simpleType name="StreetType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="128"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="CityType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="64"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="StateType">
    <xs:restriction base="xs:string">
      <xs:minLength value="2"/>
      <xs:maxLength value="2"/>
      <xs:enumeration value="AK"/>
      <xs:enumeration value="AL"/>
      <xs:enumeration value="AR"/>

 . . . -- A value for each US state abbreviation

      <xs:enumeration value="WY"/>



Using Copy-Based Schema Evolution

XML Schema Evolution 9-5

    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="ZipCodeType">
    <xs:restriction base="xs:string">
      <xs:pattern value="\d{5}"/>
      <xs:pattern value="\d{5}-\d{4}"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="CountryType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="64"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="CountyType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="32"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="PostCodeType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="12"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="ProvinceType">
    <xs:restriction base="xs:string">
      <xs:minLength value="2"/>
      <xs:maxLength value="2"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="NotesType">
    <xs:restriction base="xs:string">
      <xs:maxLength value="32767"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="UPCCodeType">
    <xs:restriction base="xs:string">
      <xs:minLength value="11"/>
      <xs:maxLength value="14"/>
      <xs:pattern value="\d{11}"/>
      <xs:pattern value="\d{12}"/>
      <xs:pattern value="\d{13}"/>
      <xs:pattern value="\d{14}"/>
    </xs:restriction>
  </xs:simpleType>
</xs:schema>

copyEvolve Parameters and Errors
This is the signature of procedure DBMS_XMLSCHEMA.copyEvolve:

procedure copyEvolve(schemaURLs       IN XDB$STRING_LIST_T,
                     newSchemas       IN XMLSequenceType,
                     transforms       IN XMLSequenceType := NULL,
                     preserveOldDocs  IN BOOLEAN := FALSE,
                     mapTabName       IN VARCHAR2 := NULL,
                     generateTables   IN BOOLEAN := TRUE,
                     force            IN BOOLEAN := FALSE,
                     schemaOwners     IN XDB$STRING_LIST_T := NULL
                     parallelDegree   IN PLS_INTEGER := 0,
                     options          IN PLS_INTEGER := 0);



Using Copy-Based Schema Evolution

9-6 Oracle XML DB Developer's Guide

Table 9–1 describes the individual parameters. Table 9–2 describes the errors 
associated with the procedure.

Table 9–1 Parameters of Procedure DBMS_XMLSCHEMA.COPYEVOLVE

Parameter Description

schemaURLs Varray of URLs of XML schemas to be evolved (varray of 
VARCHAR2(4000). This should include the dependent 
schemas as well. Unless the force parameter is TRUE, the URLs 
should be in the dependency order, that is, if URL A comes 
before URL B in the varray, then schema A should not be 
dependent on schema B but schema B may be dependent on 
schema A.

newSchemas Varray of new XML schema documents (XMLType instances). 
Specify this in exactly the same order as the corresponding 
URLs. If no change is necessary in an XML schema, provide the 
unchanged schema.

transforms Varray of XSL documents (XMLType instances) that will be 
applied to XML schema based documents to make them 
conform to the new schemas. Specify these in exactly the same 
order as the corresponding URLs. If no transformations are 
required, this parameter need not be specified.

preserveOldDocs If this is TRUE, then the temporary tables holding old data are 
not dropped at the end of schema evolution. See also 
"Guidelines for Using copyEvolve".

mapTabName Specifies the name of table that maps old XMLType table or 
column names to names of corresponding temporary tables.

generateTables By default this parameter is TRUE; if this is FALSE, XMLType 
tables or columns will not be generated after registering new 
schemas. If this is FALSE, preserveOldDocs must be TRUE 
and mapTabName must not be NULL.

force If this is TRUE, then errors during the registration of new 
schemas are ignored. If there are circular dependencies among 
the schemas, set this flag to TRUE to ensure that each schema is 
stored even though there may be errors in registration.

schemaOwners Varray of names of schema owners. Specify these in exactly the 
same order as the corresponding URLs.

parallelDegree Specifies the degree of parallelism to be used in a PARALLEL 
hint during the data-copy stage. If this is 0 (default value), a 
PARALLEL hint is absent from the data-copy statements.

options Miscellaneous options. The only option is COPYEVOLVE_
BINARY_XML, which means to register the new XML schemas 
for binary XML data and create the new tables or columns with 
binary XML as the storage model.

Table 9–2 Errors Associated with Procedure DBMS_XMLSCHEMA.COPYEVOLVE

Error Number and 
Message Cause Action

30942 XML Schema 
Evolution error for 
schema '<schema_url>' 
table "<owner_
name>.<table_name>" 
column '<column_
name>'

The given XMLType table or 
column that conforms to the 
given schema had errors 
during evolution. In the case of 
a table the column name will 
be empty. See also the more 
specific error that follows this.

Based on the schema, table, 
and column information in this 
error and the more specific 
error that follows, take 
corrective action.



Using Copy-Based Schema Evolution

XML Schema Evolution 9-7

Limitations When Using copyEvolve
Keep in mind the following limitations when you use procedure DBMS_
XMLSCHEMA.copyEvolve:

■ Indexes, triggers, constraints, row-level security (RLS) policies, and other 
metadata related to the XMLType tables that are dependent on the schemas are not 
preserved. These must be re-created after evolution. 

■ If top-level element names are changed, additional steps are required after 
copyEvolve finishes executing. See "Top-Level Element Name Changes" on 
page 9-8.

■ Copy-based evolution cannot be used if there is a table with an object-type column 
that has an XMLType attribute that is dependent on any of the schemas to be 
evolved. For example, consider this table:

CREATE TYPE t1 AS OBJECT (n NUMBER, x XMLType);
CREATE TABLE tab1 (e NUMBER, o t1) XMLType 
 COLUMN o.x XMLSchema "s1.xsd" ELEMENT "Employee";

This assumes that an XML schema with a top-level element Employee has been 
registered under URL s1.xsd. It is not possible to evolve this XML schema, 
because table tab1 with column o with XMLType attribute x is dependent on the 
XML schema. Note that although copyEvolve does not handle XMLType object 
attributes, it does raise an error in such cases.

30943 XML Schema 
'<schema_url>' is 
dependent on XML 
schema '<schema_url>'

Not all dependent XML 
schemas were specified or the 
schemas were not specified in 
dependency order, that is, if 
schema S1 is dependent on 
schema S, S must appear before 
S1.

Include the previously 
unspecified schema in the list 
of schemas or correct the order 
in which the schemas are 
specified. Then retry the 
operation.

30944 Error during 
rollback for XML schema 
'<schema_url>' table 
"<owner_name>.<table_
name>" column 
'<column_name>'

The given XMLType table or 
column that conforms to the 
given schema had errors 
during a rollback of XML 
schema evolution. For a table 
the column name will be 
empty. See also the more 
specific error that follows this.

Based on the schema, table, 
and column information in this 
error and the more specific 
error that follows, take 
corrective action.

30945   Could not create 
mapping table '<table_
name>'

A mapping table could not be 
created during XML schema 
evolution. See also the more 
specific error that follows this.

Ensure that a table with the 
given name does not exist and 
retry the operation.

30946 XML Schema 
Evolution warning: 
temporary tables not 
cleaned up

An error occurred after the 
schema was evolved while 
cleaning up temporary tables. 
The schema evolution was 
successful.

If you need to remove the 
temporary tables, use the 
mapping table to get the 
temporary table names and 
drop them.

Table 9–2 (Cont.) Errors Associated with Procedure DBMS_XMLSCHEMA.COPYEVOLVE

Error Number and 
Message Cause Action



Using Copy-Based Schema Evolution

9-8 Oracle XML DB Developer's Guide

Guidelines for Using copyEvolve
The following general guideline applies to using procedure DBMS_
XMLSCHEMA.copyEvolve. The rest of this section describes specific guidelines that 
can also be appropriate in particular contexts.

1. Turn off the recycle bin, to prevent dropped tables from being copied to it:

ALTER SESSION SET RECYCLEBIN=off;

2. Identify the XML schemas that are dependent on the XML schema that is to be 
evolved. You can acquire the URLs of the dependent XML schemas using the 
following query, where schema_to_be_evolved is the schema to be evolved, 
and owner_of_schema_to_be_evolved is its owner (database user).

SELECT dxs.SCHEMA_URL, dxs.OWNER
    FROM DBA_DEPENDENCIES dd, DBA_XML_SCHEMAS dxs
    WHERE dd.REFERENCED_NAME = (SELECT INT_OBJNAME
                                  FROM DBA_XML_SCHEMAS
                                  WHERE SCHEMA_URL = schema_to_be_evolved
                                    AND OWNER = owner_of_schema_to_be_evolved)
      AND dxs.INT_OBJNAME = dd.NAME;

In many cases, no changes are needed in the dependent XML schemas. But if the 
dependent XML schemas need to be changed, you must also prepare new versions 
of those XML schemas.

3. If the existing instance documents do not conform to the new XML schema, then 
you must provide an XSL style sheet that, when applied to an instance document, 
transforms it to conform to the new schema. You must do this for each XML 
schema identified in Step 2. The transformation must handle documents that 
conform to all top-level elements in the new XML schema.

4. Call procedure DBMS_XMLSCHEMA.copyEvolve, specifying the XML schema 
URLs, new schemas, and transformation style sheet.

Top-Level Element Name Changes
Procedure DBMS_XMLSCHEMA.copyEvolve assumes that top-level elements have not 
been dropped and that their names have not been changed in the new XML schemas. 
If there are such changes in your new XML schemas, then you can call procedure 
copyEvolve with parameter generateTables set to FALSE and parameter 
preserveOldDocs set to TRUE. In this way, new tables are not generated, and the 
temporary tables holding the old documents (backup copies) are not dropped at the 
end of the procedure. You can then store the old documents in whatever form is 
appropriate and drop the temporary tables. See "copyEvolve Parameters and Errors" 
on page 9-5 for more details on using these parameters.

User-Created Virtual Columns of Tables Other Than Default Tables
For tables that are not default tables, any virtual columns that you create are not 
re-created during copy-based evolution. If the columns are needed, then set parameter 
preserveOldDocs to TRUE, create the tables, and copy the old documents after 
procedure copyEvolve has finished. 

Ensure that the XML Schema and Dependents Are Not Used by Concurrent 
Sessions
Ensure that the XML schema and its dependents are not used by any concurrent 
session during the XML schema evolution process. If other, concurrent sessions have 



Using Copy-Based Schema Evolution

XML Schema Evolution 9-9

shared locks on this schema at the beginning of the evolution process, then procedure 
DBMS_XMLSCHEMA.copyEvolve waits for these sessions to release the locks so that it 
can acquire an exclusive lock. However, this lock is released immediately to allow the 
rest of the process to continue.

Rollback When Procedure DBMS_XMLSCHEMA.COPYEVOLVE Raises an Error
Procedure DBMS_XMLSCHEMA.copyEvolve either completely succeeds or raises an 
error, in which case it attempts to roll back as much of the operation as possible. 
Evolving an XML schema involves many database DDL statements. When an error 
occurs, compensating DDL statements are executed to undo the effect of all steps 
executed to that point. If the old tables or schemas have been dropped, they are 
re-created, but any table, column, and storage properties and any auxiliary structures 
(such as indexes, triggers, constraints, and RLS policies) associated with the tables and 
columns are lost. 

Failed Rollback From Insufficient Privileges
In certain cases you cannot roll back the copy-based evolution operation. For example, 
if table creation fails due to reasons not related to the new XML schema, then there is 
no way to roll back. An example is failure due to insufficient privileges. The temporary 
tables are not deleted even if preserveOldDocs is FALSE, so the data can be 
recovered. If the mapTabName parameter is null, the mapping table name is 
XDB$MAPTAB followed by a sequence number. The exact table name can be found 
using a query such as the following:

SELECT TABLE_NAME FROM USER_TABLES WHERE TABLE_NAME LIKE 'XDB$MAPTAB%';

Privileges Needed for XML Schema Evolution
Copy-based XML schema evolution may involve dropping or creating data types. 
Hence, you need type-related privileges such as DROP TYPE, CREATE TYPE, and 
ALTER TYPE.

You need privileges to delete and register the XML schemas involved in the evolution. 
You need all privileges on XMLType tables that conform to the schemas being evolved. 
For XMLType columns, the ALTER TABLE privilege is needed on corresponding 
tables. If there are schema-based XMLType tables or columns in other database 
schemas, you need privileges such as the following:

■ CREATE ANY TABLE

■ CREATE ANY INDEX

■ SELECT ANY TABLE

■ UPDATE ANY TABLE

■ INSERT ANY TABLE

■ DELETE ANY TABLE

■ DROP ANY TABLE

■ ALTER ANY TABLE

■ DROP ANY INDEX

To avoid needing to grant all these privileges to the database- schema owner, Oracle 
recommends that a DBA perform the evolution if there are XML schema-based 
XMLType table or columns belonging to other database schemas.



Using Copy-Based Schema Evolution

9-10 Oracle XML DB Developer's Guide

Using a Style Sheet to Update Existing Instance Documents
After you modify a registered XML schema, you must update any existing XML 
instance documents that use the schema. You do this by applying an XSLT style sheet 
to each of the instance documents. The style sheet represents the difference between 
the old and new schemas.

Example 9–2 is a style sheet, in file evolvePurchaseOrder.xsl, that transforms 
existing purchase-order documents that use the old schema, so they will use the new 
schema instead.

Example 9–2 evolvePurchaseOrder.xsl: Style Sheet to Update Instance Documents

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet 
  version="1.0" 
  xmlns:xsl="http://www.w3.org/1999/XSL/Transform" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <xsl:output method="xml" encoding="UTF-8"/>
  <xsl:template match="/PurchaseOrder">
    <PurchaseOrder>
      <xsl:attribute name="xsi:noNamespaceSchemaLocation">
        http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd
      </xsl:attribute>
      <xsl:for-each select="Reference">
        <xsl:attribute name="Reference">
          <xsl:value-of select="."/>
        </xsl:attribute>
      </xsl:for-each>
      <xsl:variable name="V264_394" select="'2004-01-01T12:00:00.000000-08:00'"/>
      <xsl:attribute name="DateCreated">
        <xsl:value-of select="$V264_394"/>
      </xsl:attribute>
      <xsl:for-each select="Actions">
        <Actions>
          <xsl:for-each select="Action">
            <Action>
              <xsl:for-each select="User">
                <User>
                  <xsl:value-of select="."/>
                </User>
              </xsl:for-each>
              <xsl:for-each select="Date">
                <Date>
                  <xsl:value-of select="."/>
                </Date>
              </xsl:for-each>
            </Action>
          </xsl:for-each>
        </Actions>
      </xsl:for-each>
      <xsl:for-each select="Reject">
        <Reject>
          <xsl:for-each select="User">
            <User>
              <xsl:value-of select="."/>
            </User>
          </xsl:for-each>
          <xsl:for-each select="Date">
            <Date>
              <xsl:value-of select="."/>
            </Date>
          </xsl:for-each>
          <xsl:for-each select="Comments">
            <Comments>



Using Copy-Based Schema Evolution

XML Schema Evolution 9-11

              <xsl:value-of select="."/>
            </Comments>
          </xsl:for-each>
        </Reject>
      </xsl:for-each>
      <xsl:for-each select="Requestor">
        <Requestor>
          <xsl:value-of select="."/>
        </Requestor>
      </xsl:for-each>
      <xsl:for-each select="User">
        <User>
          <xsl:value-of select="."/>
        </User>
      </xsl:for-each>
      <xsl:for-each select="CostCenter">
        <CostCenter>
          <xsl:value-of select="."/>
        </CostCenter>
      </xsl:for-each>
      <ShippingInstructions>
        <xsl:for-each select="ShippingInstructions">
          <xsl:for-each select="name">
            <name>
              <xsl:value-of select="."/>
            </name>
          </xsl:for-each>
        </xsl:for-each>
        <xsl:for-each select="ShippingInstructions">
          <xsl:for-each select="address">
            <fullAddress>
              <xsl:value-of select="."/>
            </fullAddress>
          </xsl:for-each>
        </xsl:for-each>
        <xsl:for-each select="ShippingInstructions">
          <xsl:for-each select="telephone">
            <telephone>
              <xsl:value-of select="."/>
            </telephone>
          </xsl:for-each>
        </xsl:for-each>
      </ShippingInstructions>
      <xsl:for-each select="SpecialInstructions">
        <SpecialInstructions>
          <xsl:value-of select="."/>
        </SpecialInstructions>
      </xsl:for-each>
      <xsl:for-each select="LineItems">
        <LineItems>
          <xsl:for-each select="LineItem">
            <xsl:variable name="V22" select="."/>
            <LineItem>
              <xsl:for-each select="@ItemNumber">
                <xsl:attribute name="ItemNumber">
                  <xsl:value-of select="."/>
                </xsl:attribute>
              </xsl:for-each>
              <xsl:for-each select="$V22/Part">
                <xsl:variable name="V24" select="."/>
                <xsl:for-each select="@Id">
                  <Part>
                    <xsl:for-each select="$V22/Description">
                      <xsl:attribute name="Description">
                        <xsl:value-of select="."/>
                      </xsl:attribute>



Using Copy-Based Schema Evolution

9-12 Oracle XML DB Developer's Guide

                    </xsl:for-each>
                    <xsl:for-each select="$V24/@UnitPrice">
                      <xsl:attribute name="UnitCost">
                        <xsl:value-of select="."/>
                      </xsl:attribute>
                    </xsl:for-each>
                    <xsl:value-of select="."/>
                  </Part>
                </xsl:for-each>
              </xsl:for-each>
              <xsl:for-each select="$V22/Part">
                <xsl:for-each select="@Quantity">
                  <Quantity>
                    <xsl:value-of select="."/>
                  </Quantity>
                </xsl:for-each>
              </xsl:for-each>
            </LineItem>
          </xsl:for-each>
        </LineItems>
      </xsl:for-each>
    </PurchaseOrder>
  </xsl:template>
</xsl:stylesheet>

Examples of Using Procedure copyEvolve
Example 9–3 loads a revised XML schema and evolution XSL style sheet into Oracle 
XML DB Repository.

Example 9–3 Loading Revised XML Schema and XSL Style Sheet

DECLARE
  res BOOLEAN;
BEGIN
  res := DBMS_XDB.createResource(               -- Load revised XML schema
           '/source/schemas/poSource/revisedPurchaseOrder.xsd',
           bfilename('XMLDIR', 'revisedPurchaseOrder.xsd'),
           nls_charset_id('AL32UTF8'));
  res := DBMS_XDB.createResource(               -- Load revised XSL style sheet
           '/source/schemas/poSource/evolvePurchaseOrder.xsl',
           bfilename('XMLDIR', 'evolvePurchaseOrder.xsl'),
           nls_charset_id('AL32UTF8'));
END;
/

Example 9–4 shows how to use procedure DBMS_XMLSCHEMA.copyEvolve to evolve 
the XML schema purchaseOrder.xsd to revisedPurchaseOrder.xsd using the 
XSL style sheet evolvePurchaseOrder.xsl. 

Example 9–4 Using DBMS_XMLSCHEMA.COPYEVOLVE to Update an XML Schema

BEGIN
  DBMS_XMLSCHEMA.copyEvolve(
    xdb$string_list_t('http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd'),
    XMLSequenceType(XDBURIType('/source/schemas/poSource/revisedPurchaseOrder.xsd').getXML()),
    XMLSequenceType(XDBURIType('/source/schemas/poSource/evolvePurchaseOrder.xsl').getXML()));
END;

SELECT extract(object_value, '/PurchaseOrder/LineItems/LineItem[1]') LINE_ITEM
  FROM purchaseorder
  WHERE existsNode(object_value, '/PurchaseOrder[@Reference="SBELL-2003030912333601PDT"]') = 1



Using Copy-Based Schema Evolution

XML Schema Evolution 9-13

/
 
LINE_ITEM
------------------------------------------------------------------------------
<LineItem ItemNumber="1">
  <Part Description="A Night to Remember" UnitCost="39.95">715515009058</Part>
  <Quantity>2</Quantity>
</LineItem>

The same query would have produced the following result before the schema 
evolution:

LINE_ITEM
----------------------------------------------------------
<LineItem ItemNumber="1">
  <Description>A Night to Remember</Description>
  <Part Id="715515009058" UnitPrice="39.95" Quantity="2"/>
</LineItem>

Procedure DBMS_XMLSCHEMA.copyEvolve evolves registered XML schemas in such 
a way that existing instance documents continue to remain valid. 

First, procedure copyEvolve copies the data in XML schema-based XMLType tables 
and columns to temporary tables. It then drops the original tables and columns, and 
deletes the old XML schemas. After registering the new XML schemas, it creates 
XMLType tables and columns and populates them with data (unless parameter 
GENTABLES is FALSE) but it does not create any auxiliary structures such as indexes, 
constraints, triggers, and row-level security (RLS) policies. Procedure copyEvolve 
creates the tables and columns as follows:

■ It creates default tables while registering the new schemas.

■ It creates tables that are not default tables using a statement of the following form:

CREATE TABLE <TABLE_NAME> OF XMLType OID '<OID>'
   XMLSCHEMA <SCHEMA_URL> ELEMENT <ELEMENT_NAME>

where <OID> is the original OID of the table, before it was dropped.

■ It adds XMLType columns using a statement of the following form:

ALTER TABLE <Table_Name> ADD (<Column_Name> XMLType) XMLType column
  <Column_Name> xmlschema <Schema_Url> ELEMENT <Element_Name>

When a new XML schema is registered, types are generated if the registration of the 
corresponding old schema had generated types. If an XML schema was global before 
the evolution, then it will also be global after the evolution. Similarly, if an XML 
schema was local before the evolution, then it will also be local (owned by the same 
user) after the evolution.

You have the option to preserve the temporary tables that contain the old documents, 
by setting parameter preserveOldDocs to TRUE. All temporary tables are created in 

Caution: Before executing procedure DBMS_
XMLSCHEMA.copyEvolve, always back up all registered XML 
schemas and all XML documents that conform to them. Procedure 
copyEvolve deletes all documents that conform to registered XML 
schemas.



Using Copy-Based Schema Evolution

9-14 Oracle XML DB Developer's Guide

the database schema of the current user. For XMLType tables, the temporary table has 
the columns shown in Table 9–3.

For XMLType columns, the temporary table has the columns shown in Table 9–4.

Procedure copyEvolve stores information about the mapping from the old table or 
column name to the corresponding temporary table name in a separate table specified 
by parameter mapTabName. If preserveOldDocs is TRUE, then the mapTabName 
parameter must not be NULL, and it must not be the name of any existing table in the 
current database schema. Each row in the mapping table has information about one of 
the old tables/columns. Table 9–5 shows the mapping table columns.

You can avoid generating any tables or columns after registering the new XML schema 
by setting parameter GENTABLES to FALSE. If GENTABLES is FALSE, parameter 
PRESERVEOLDDOCS must be TRUE and parameter MAPTABNAME must not be NULL. 

Table 9–3 XML Schema Evolution: XMLType Table Temporary Table Columns 

Name Type Comment

Data CLOB XML document from the old table, in CLOB 
format.

OID RAW(16) OID of the corresponding row in the old table.

ACLOID RAW(16) This column is present only if the old table is 
hierarchy enabled. ACLOID of corresponding 
row in old table.

OWNERID RAW(16) This column is present only if old table is 
hierarchy enabled. OWNERID of corresponding 
row in old table.

Table 9–4 XML Schema Evolution: XMLType Column Temporary Table Columns

Name Type Comment

Data CLOB XML document from the old column, in CLOB 
format.

RID ROWID ROWID of the corresponding row in the table 
containing this column.

Table 9–5 Procedure copyEvolve Mapping Table 

Column Name Column Type Comment

SCHEMA_URL VARCHAR2(700) URL of the schema to which this table 
or column conforms.

SCHEMA_OWNER VARCHAR2(30) Owner of the schema.

ELEMENT_NAME VARCHAR2(256) Element to which this table or column 
conforms.

TABLE_NAME VARCHAR2(65) Qualified name of the table (<owner_
name>.<table_name>).

TABLE_OID RAW(16) OID of table.

COLUMN_NAME VARCHAR2(4000) Name of the column (NULL for 
XMLType tables).

TEMP_TABNAME VARCHAR2(30) Name of temporary table that holds 
the data for this table or column.



Using In-Place XML Schema Evolution

XML Schema Evolution 9-15

This ensures that the data in the old tables is not lost. This is useful if you do not want 
the tables to be created by the procedure, as described in section "copyEvolve 
Parameters and Errors" on page 9-5.

By default, it is assumed that all XML schemas are owned by the current user. If this is 
not true, then you must specify the owner of each XML schema in the schemaOwners 
parameter.

Using In-Place XML Schema Evolution
In-place XML schema evolution makes changes to an XML schema without requiring 
that existing data be copied, deleted, and reinserted. In-place evolution is thus much 
faster than copy-based evolution. However, in-place evolution also has several 
restrictions that do not apply to copy-based evolution.

You use procedure DBMS_XMLSCHEMA.inPlaceEvolve to perform in-place 
evolution. Using this procedure, you identify the changes to be made to an existing 
XML schema by specifying an XML schema-differences document, and you optionally 
specify flags to be applied to the evolution process.

In-place evolution constructs a new version of an XML schema by applying changes 
specified in a diffXML document, validates that new XML schema (against the XML 
schema for XML schemas), constructs DDL statements to evolve the disk structures 
used to store the XML instance documents associated with the XML schema, executes 
these DDL statements, and replaces the old version of the XML schema with the new, 
in that order. If the new version of the XML schema is not a valid schema, then 
in-place evolution fails.

Restrictions for In-Place XML Schema Evolution
Because in-place XML schema evolution avoids copying data, it does not permit 
arbitrary changes to an XML schema. This section describes why certain changes are 
not permitted. It does not list the supported XML schema changes; for that, see 
"Supported Operations for In-Place XML Schema Evolution" on page 9-17.

The primary restriction on using in-place evolution can be stated generally as a 
requirement that a given XML schema can be evolved in place in only a 
backward-compatible way. This means that any possible instance document that 
would validate against a given XML schema must also validate against a later 
(evolved) version of that XML schema. Note that this applies not only to existing 
instance documents; it applies to all possible conforming instance documents. For XML 
data that is stored as binary XML, backward compatibility also means that any XML 
schema annotations that affect binary XML treatment must not change during 
evolution. Backward compatibility is described in section "Backward-Compatibility 
Restrictions" on page 9-15.

In addition to this general backward-compatibility restriction, there are some other 
restrictions for in-place evolution. These are described in section "Other Restrictions on 
In-Place Evolution" on page 9-17.

Backward-Compatibility Restrictions
The restrictions described in this section ensure backward compatibility of an evolved 
XML schema, so that any possible instance documents that satisfy the old XML 
schema also satisfy the new schema.

See Also: Oracle Database SQL Language Reference for the complete 
description of ALTER TABLE



Using In-Place XML Schema Evolution

9-16 Oracle XML DB Developer's Guide

Changes in On-Disk Data Layout  Certain changes to an XML schema alter the layout of 
the associated instance documents on disk, and are therefore not permitted. This 
situation is more common when the storage layer is tightly integrated with 
information derived from the XML schema, as is the case for object-relational storage.

One such example is an XML schema, registered for object-relational storage mapping, 
that is evolved by splitting a complex type into two complex types. In Example 9–5, 
complex type ShippingInstructionsType is split into two complex types, 
Person-Name and Contact-Info, and the ShippingInstructionsType 
complex type is deleted. 

Example 9–5 Splitting a Complex Type into Two Complex Types

These code excerpts show the definitions of the original 
ShippingInstructionsType type and the new Person-Name and 
Contact-Info types.

<complexType name="ShippingInstructionsType"> 
    <sequence> 
        <element name="name"   type="NameType" minOccurs="0"/> 
        <element name="address" type="AddressType" minOccurs="0"/> 
        <element name="telephone" type="TelephoneType" minOccurs="0"/> 
    </sequence> 
</complexType> 
 
<complexType name="Person-Name"> 
    <sequence> 
        <element name="name" type="NameType" minOccurs="0"/> 
    </sequence>
</complexType>
 
<complexType name="Contact-Info">
    <sequence>
        <element name="address" type="AddressType" minOccurs="0"/> 
        <element name="telephone" type="TelephoneType" minOccurs="0"/> 
    </sequence> 
</complexType>

Even if this XML schema has no associated instance documents, and therefore no data 
copy is required, a change in the layout of existing tables is required to accommodate 
future instance documents.

Reordering of XML Schema Constructs  You cannot use in-place evolution to reorder 
schema elements in a way that affects the DOM fidelity of instance documents. For 
example, you cannot change the order of elements within a <sequence> element in a 
complex type definition. As an example, if a complex type named 
ShippingInstructionsType requires that its child elements name, address, and 
telephone be in that order, you cannot use in-place evolution to change the order to 
name, telephone, and address.

Changes from a Collection to a Non-Collection  You cannot use in-place evolution to change 
a collection to a non-collection. An example would be changing from a maxOccurs 
value greater than one to a maxOccurs value of one. You cannot use in-place 
evolution to delete an element from a complex type if the deletion requires that a 
collection be evolved to a non-collection.



Using In-Place XML Schema Evolution

XML Schema Evolution 9-17

Other Restrictions on In-Place Evolution
The restrictions on in-place XML schema evolution that are described in this section 
are necessary for reasons other than backward compatibility of the evolved XML 
schema.

Changes to Attributes in Namespace xdb  Except for attribute xdb:defaultTable, you 
cannot use in-place evolution to modify any attributes in namespace 
http://xmlns.oracle.com/xdb (which has the predefined prefix xdb).

Changes from a Non-Collection to a Collection  When XML data is stored object-relationally, 
you cannot use in-place evolution to change a non-collection object type to a collection 
object type. An example would be adding an element to a complex type with the 
element name matching the name of an element already present in the type (or in 
another type that is related to the first type through inheritance).

Supported Operations for In-Place XML Schema Evolution
This section describes operations that are supported for in-place schema evolution. 
This list of supported operations is not necessarily exhaustive. Some of the operations 
listed here are not permitted in specific contexts; these contexts are specified. In 
particular, some of the operations described here are not permitted for XML schemas 
that are used with binary XML.

■ Add an optional element to a complex type or group: Always permitted. An 
example is the addition of the optional element shipmethod in the following 
complex type definition:

<xs:complexType name="ShippingInstructionsType">
    <xs:sequence>
        <xs:element name="name" type="NameType" minOccurs="0"/>
        <xs:element name="address" type="AddressType" minOccurs="0"/>
        <xs:element name="telephone" type="TelephoneType" minOccurs="0"/>
        <xs:element name = "shipmethod" type = "xs:string" minOccurs = "0"/>
    </xs:sequence>
</xs:complexType>

■ Add an optional attribute to a complex type or attribute group: Always 
permitted. An example is the addition of the optional attribute shipbydate in the 
following complex type definition:

<xs:complexType name="ShippingInstructionsType">
    <xs:sequence>
        <xs:element name="name" type="NameType" minOccurs="0"/>
        <xs:element name="address" type="AddressType" minOccurs="0"/>
        <xs:element name="telephone" type="TelephoneType" minOccurs="0"/>
    </xs:sequence>
    <xs:attribute name="shipbydate" type="DateType" use="optional"/>
</xs:complexType>

■ Convert an element from simple type to complex type with simple content: 
Supported only if the storage model is binary XML.

■ Modify the value attribute of an existing maxLength element: Always permitted. 
The value can only be increased, not decreased. 

■ Add an enumeration value: You can add a new enumeration value only to the end 
of an enumeration list. 



Using In-Place XML Schema Evolution

9-18 Oracle XML DB Developer's Guide

■ Add a global element: Always permitted. An example is the addition of the global 
element PurchaseOrderComment in the following schema definition:

<xs:schema ...> 
... 
    <xs:element name="PurchaseOrderComment" type="string" xdb:defaultTable=""/> 
.. 
</xs:schema>

■ Add a global attribute: Always permitted. 

■ Add or delete a global complex type: Always permitted. An example is the 
addition of the global complex type ComplexAddressType in the following 
schema definition:

<xs:schema ...> 
.... 
    <xs:complexType name="ComplexAddressType"> 
        <xs:sequence> 
            <xs:element name="street" type="string"/> 
            <xs:element name="city" type="string"/> 
            <xs:element ref="zip" type="positiveInteger"/> 
            <xs:element name="country"  type="string"/> 
        </xs:sequence> 
     </xs:complexType> 
... 
</xs:schema>

■ Add or delete a global simple type: Always permitted. 

■ Change the minOccurs attribute value: The value of minOccurs can only be 
decreased.

■ Change the maxOccurs attribute value: The value of maxOccurs can only be 
increased, and this is only possible for data stored as binary XML. That is, you 
cannot make any change to the maxOccurs attribute for data stored 
object-relationally.

■ Add or delete a global group or attributeGroup: Always permitted. An example 
is the addition of an Instructions group in the following type definition:

<xsd:schema ...> 
... 
  <xsd:group name="Instructions"> 
    <xsd:sequence> 
     <xsd:element name="ShippingInstructions" type="ShippingInstructionsType"/> 
     <xsd:element name="SpecialInstructions" type=" SpecialInstructionsType"/> 
    </xsd:sequence> 
  </xsd:group> 
... 
</xsd:schema>

■ Change the xdb:defaultTable attribute value: Always permitted. Changes are not 
permitted to any other attributes in the xdb namespace.

■ Add, modify, or delete a comment or processing instruction: Always permitted. 

Guidelines for Using In-Place XML Schema Evolution
The following guidelines apply to in-place XML-schema evolution:

■ Before you perform an in-place XML-schema evolution:



Using In-Place XML Schema Evolution

XML Schema Evolution 9-19

■ Back up all existing data (instance documents) for the XML schema that will be 
evolved.

■ Perform a dry run using trace only, that is, without actually evolving the XML 
schema or updating any instance documents, produce a trace of the update 
operations that would be performed during evolution. To do this, set the flag 
parameter value to only INPLACE_TRACE. Do not also use INPLACE_
EVOLVE.

After performing the dry run, examine the trace file, verifying that the listed 
DDL operations are in fact those that you intend.

■ After you perform an in-place XML-schema evolution:

If you are accessing the database using a client that caches data, or if you are not 
sure whether this is the case, then restart your client. Otherwise, the pre-evolution 
version of the XML schema might continue to be used locally, with unpredictable 
results.

inPlaceEvolve Parameters
This is the signature of procedure DBMS_XMLSCHEMA.inPlaceEvolve:

procedure inPlaceEvolve(schemaURL IN VARCHAR2,
                        diffXML   IN XMLType, 
                        flags     IN NUMBER);

Table 9–6 describes the individual parameters.

Caution: Make sure that you back up your data before performing 
in-place XML schema evolution, in case the result is not what you 
intended. There is no rollback possible after an in-place evolution. If 
any errors occur during evolution, or if you make a major mistake and 
need to redo the entire operation, you must be able to go back to the 
backup copy of your original data.

See Also: Oracle Database Administrator's Guide for information 
about using trace files

Table 9–6 Parameters of Procedure DBMS_XMLSCHEMA.INPLACEEVOLVE

Parameter Description

schemaURL URL of the XML schema to be evolved (VARCHAR2).

diffXML XML document (XMLType instance) that conforms to the xdiff XML schema, 
and that specifies the changes to apply and the locations in the XML schema 
where the changes are to be applied. For information about how to create the 
document for this parameter, see "Creating the Document for the diffXML 
Parameter" on page 9-20.



Using In-Place XML Schema Evolution

9-20 Oracle XML DB Developer's Guide

Procedure DBMS_XMLSCHEMA.inPlaceEvolve raises an error in the following cases:

■ An XPath expression is invalid, or is syntactically correct but does not target a 
node in the XML schema.

■ The diffXML document does not conform to the xdiff XML schema.

■ The change makes the XML schema invalid or not well formed.

■ A generated DDL statement (CREATE TYPE, ALTER TYPE, and so on) causes a 
problem when it is executed.

Creating the Document for the diffXML Parameter
The value of the diffXML parameter to procedure DBMS_
XMLSCHEMA.inPlaceEvolve is an XML document (as an XMLType instance) that 
specifies the changes to be applied to an XML schema for in-place evolution. This 
diffXML document contains a sequence of operations that describe the changes 
between the old XML schema and the new (the intended evolution result). The 
changes specified by the diffXML document are applied in order. 

You must create the XML document to be used for the diffXML parameter. To do this, 
you can use any of the following methods:

■ The XMLDiff JavaBean (oracle.xml.differ.XMLDiff)

■ The xmldiff command-line utility

■ SQL function XMLDiff

The diffXML parameter document must conform to the xdiff XML schema.

The rest of this section presents examples of some operations in a document that 
conforms to the xdiff XML schema.

flags A bit mask that controls the behavior of the procedure. You can set the 
following bit values in this mask independently, summing them to define the 
overall effect. The default flags value is 1 (bit 1 on, bit 2 off), meaning that 
in-place evolution is performed and no trace is written.

■ INPLACE_EVOLVE (value 1, meaning that bit 1 is on) – Perform in-place 
XML schema evolution: construct a new XML schema and validate it 
(against the XML schema for XML schemas); construct the DDL 
statements needed to evolve the instance-document disk structures, 
execute the DDL statements, and replace the old XML schema with the 
new.

■ INPLACE_TRACE (value 2, meaning that bit 2 is on) – Perform all steps 
necessary for in-place evolution, except executing the DDL statements and 
overwriting the old XML schema with the new, then write both the DDL 
statements and the new XML schema to a trace file.

That is, each of the bits constructs the new XML schema, validates it, and 
determines the steps needed to evolve the disk structures underlying the 
instance documents. In addition:

■ Bit INPLACE_EVOLVE carries out those evolution steps and replaces the 
old XML schema with the new.

■ Bit INPLACE_TRACE saves the evolution steps and the new XML schema 
in a trace file (it does not carry out the evolution steps).

Table 9–6 (Cont.) Parameters of Procedure DBMS_XMLSCHEMA.INPLACEEVOLVE

Parameter Description



Using In-Place XML Schema Evolution

XML Schema Evolution 9-21

diffXML Operations and Examples
This section describes some operations that can be specified in the document for the 
diffXML document supplied to procedure DBMS_XMLSCHEMA.inPlaceEvolve. It 
presents an example XML document that conforms to the xdiff XML schema.

The <append-node> element is used for most of the supported changes, such as 
adding a new attribute to a complex type or appending a new element to a group.

The <insert-node-before> element specifies that a node of the given type should 
be inserted before the specified node. The xpath attribute specifies the location of the 
specified node and the node-type attribute specifies the type of node to be inserted. 
The node to be inserted is specified by the <content> child element. The 
<insert-node-before> element is mainly used for inserting comments and 
processing instructions, and for changing and adding add annotation elements.

The <delete-node> element specifies that the node with the given XPath (specified 
by the xpath attribute) should be deleted along with all its children. For example, you 
can use this element to delete comments and annotation elements. You can also use 
this element, in conjunction with <append-node> or <insert-node-before>, to 
make changes to an existing node.

Example 9–6 shows an XML document for the diffXML parameter that specifies the 
following changes:

■ Delete complex type PartType.

■ Add complex type PartType with a maximum length of 28.

■ Add a comment before element ShippingInstructions.

■ Add a required element shipmethod to element ShippingInstructions.

Example 9–6 diffXML Parameter Document

<xd:xdiff  xmlns="http://www.w3c.org/2001/XMLSchema" 
           xmlns:xd="http://xmlns.oracle.com/xdb/xdiff.xsd" 
           xmlns:xsi="http://www.w3c.org/2001/XMLSchema-Instance" 
           xsi:schemaLocation="http://xmlns.oracle.com/xdb/xdiff.xsd
           http://xmlns.oracle.com/xdb/xdiff.xsd"> 
 <xd:delete-node xpath="/schema/complexType[@name=&quote;PartType&quote;]//maxLength/> 
 <xd:append-node
  parent-xpath = "/schema/complexType[@name=&quote;PartType&quote;]//restriction"
  node-type = "element"> 
  <xd:content> 
    <xs:maxLength value = "28"/>
  </xd:content> 
 </xd:append-node> 
 <xd:insert-node-before 

See Also:

■ "xdiff.xsd: XML Schema for Comparing Schemas for In-Place 
Evolution" on page A-24

■ Oracle XML Developer's Kit Programmer's Guide for information 
on using the XMLDiff JavaBean

■ Oracle XML Developer's Kit Programmer's Guide for information 
on command-line utility xmldiff

■ Oracle Database SQL Language Reference for information on SQL 
function XMLDiff 



Using In-Place XML Schema Evolution

9-22 Oracle XML DB Developer's Guide

  xpath="/schema/complexType[@name =&quote;ShippingInstructionsType&quote;]/sequence" 
  node-type="comment"> 
  <xd:content> 
    <!-- A type representing instructions for shipping --> 
  </xd:content> 
 </xd:insert-node-before> 
 <xd:append-node 
  parent-xpath="/schema/complexType[@name=&quote;ShippingInstructionsType&quote;]/sequence" 
  node-type="element"> 
  <xd:content> 
   <xs:element name = "shipmethod" type = "xs:string" minOccurs = "1"/> 
  </xd:content> 
 </xd:append-node> 
</xd:xdiff>


