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1
Introduction

Xillybus was designed to present the Linux host with a simple and well-known inter-
face, having a natural and expected behavior. The host driver generates device files
that behave like named pipes. They are opened, read from and written to just like
any file, but behave much like pipes between processes or TCP/IP streams. To the
program running on the host, the difference is that the other side of the stream is not
another process (over the network or on the same computer), but a FIFO in the FPGA.
Just like a TCP/IP stream, the Xillybus stream is designed to work well with high-rate
data transfers as well single bytes arriving or sent occasionally.

Since the interface with Xillybus is all through device files that are accessed like just
any file, any practical programming language can be used, with no need for a special
module, extension or any other adaption. If a file can be opened with the chosen
language, it can be used to access the FPGA through Xillybus.

One driver binary supports any Xillybus IP core configuration: The streams and their
attributes are auto-detected by the driver as initializes the device, and device files are
created accordingly. These device files are accessed as /dev/xillybus_something
(or /dev/xillyusb_something with XillyUSB).

During operation, a handshake protocol between the FPGA and host makes an illusion
of a continuous data stream. Behind the scenes, the driver’s buffers are filled and
processed. Techniques similar to those used for TCP/IP streaming are used to ensure
an efficient utilization of the buffers, while maintaining responsiveness for small pieces
of data.

Since Xillybus I/O is carried out just like any device file I/O in Linux, there is appar-
ently no need for a programming guide, as common programming practices can be
employed.

Xillybus host application programming guide for Linux 4
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Even so, communication with FPGA often involves tasks that are not typical to file
I/O. This guide suggests methods to implementing common FPGA-related assign-
ments, as well as how to achieve optimal performance. Experienced programmers
may choose different methods with equal success.

Much of this guide is no more than an outline of how robust and efficient I/O is imple-
mented in UNIX systems. Those familiar with such techniques may find several parts
in this guide redundant, and indeed they are; Xillybus was designed not to invent any
new API, but rather behave like experienced programmers would expect it to.

The examples in this guide are given in plain C, for clarity and because it has a set
of functions that are known to be closely related to low-level system calls. The tech-
niques described can be implemented in several other languages, including script lan-
guages such as Perl and Python, in particular when the requirements for performance
and synchronization between host and FPGA actions are less strict.

Some file I/O can even be done with shell scripts and one-liners.

Xillybus host application programming guide for Linux 5
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2
Synchronous vs. asynchronous streams

2.1 Overview

Each Xillybus stream has a flag, which determines whether it behaves synchronously
or asynchronously. This flag’s value is fixed in the FPGA’s logic.

When a stream is marked asynchronous, it’s allowed to communicate data between
the FPGA and the host’s kernel level software without the user space software’s in-
volvement, as long as the respective device file is open.

Asynchronous streams have better performance, in particular when the data flow is
continuous. Synchronous streams are easier to handle, and are the preferred choice
when tight synchronization is needed between the host program’s actions and what
happens in the FPGA.

In custom IP cores that are generated in the IP Core Factory, the selection between
making each stream synchronous or asynchronous is automatically based upon the
information about the stream’s intended use, as declared by the tool’s user when
“autoset internals” is enabled. If the autoset option is turned off, the user makes this
choice explicitly.

Either way, the “readme” file, included in the bundle that is downloaded from the IP
Core Factory, specifies synchronous or asynchronous flag for each stream (among
other attributes).

In all demo bundles, the xillybus read * and xillybus write * streams are asynchronous.
xillybus mem 8 is seekable and therefore synchronous. When XillyUSB is used, the
same applies to the respective xillyusb * files.

Xillybus host application programming guide for Linux 6
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2.2 Motivation for asynchronous streams

Multitasking operating systems such as Linux and Microsoft Windows are based upon
CPU time sharing: Processes get time slices of the CPU, with some scheduling algo-
rithm deciding which process gets the CPU at any given moment.

Even though there’s a possibility to set priorities for processes, there is no guaran-
tee that a process will run continuously or that the preemption periods have a lim-
ited duration, not even on a multiprocessor computer. The underlying assumption of
the operating system is that any process can accept any period of CPU starvation.
Real-time orientated applications (e.g. sound applications and video players) have no
definite solution to this problem. Instead, they rely on a certain de-facto behavior of
the operating system, and make up for the preemption periods with I/O buffering.

Asynchronous streams address this issue by allowing a “background” flow of data
while the application is either preempted or busy with other tasks. The exact signifi-
cance of this for streams in either direction is discussed next.

2.3 FPGA to host streams

In the upstream direction (FPGA to host), an asynchronous stream fills the host
driver’s buffers whenever possible. That is, when the file is open, data is available
and there is free space in those buffers.

On the other hand, if the stream is synchronous, the IP core’s logic in the FPGA
will not fetch data from the user application logic unless the user application has an
outstanding request to read that data from the file descriptor.

Synchronous streams should be avoided in high-bandwidth applications, mainly for
these two reasons:

• The data flow is interrupted while the application is preempted or doing some-
thing else, so the physical channel remains unutilized during certain time peri-
ods. In most cases, this leads to a significant bandwidth performance hit.

• The FIFO between the application logic and the IP core’s logic in the FPGA may
overflow during these time gaps. For example, if its fill rate is 100 MB/sec, a typ-
ical 2 kByte FPGA FIFO goes from empty to full in around 0.02 ms. Practically,
this means that any preemption of the user space program can potentially make
the FPGA’s FIFO overflow.

Despite these drawbacks, synchronous streams are useful when the time at which

Xillybus host application programming guide for Linux 7
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the data was collected at the FPGA is important. In particular, memory-like interfaces
require a synchronous interface.

Data that has been received by the Xillybus FPGA IP core is available for reading
immediately by the host’s user space application, regardless of whether the stream is
synchronous or asynchronous.

2.4 Host to FPGA streams

In the downstream direction (host to FPGA), a stream being asynchronous means that
the host application’s calls will return immediately most of the time. More precisely,
the calls to functions writing to the device file will return immediately if the data can be
stored entirely in the driver’s buffers. The data is then transmitted to the FPGA at the
rate requested by the user application logic at the FPGA, with no involvement of the
host application.

Regarding when the data is sent to the FPGA on behalf of an asynchronous streams
to the FPGA, there is a slight difference between XillyUSB and the other Xillybus IP
cores.

For the non-XillyUSB variants (PCIe and AXI), data is sent to the FPGA only when
one of these happen:

• The current DMA buffer is full (there are several buffers for each stream).

• The file descriptor is explicitly flushed (see paragraph 3.4)

• The file descriptor is closed.

• A timer expires, forcing an automatic flush if nothing has been written to the
stream for a specific amount of time (typically 10 ms).

With a XillyUSB stream, the data is sent virtually immediately. More precisely, the
driver attempts to queue USB transfers of a fixed size (typically 64 kB), but a smaller
transfer is queued if there is data for transmission, and there’s no other transfer
queued for the related stream. Therefore, for each stream, there is never more than
one queued transfer with less than the fixed size, but there is always at least one trans-
fer in progress as long as there is data for transmission. This results in an efficient
use of USB transfers as well as quick response to short data segments.

All in all, asynchronous streams on XillyUSB and non-XillyUSB IP cores behave
roughly the same, with XillyUSB having a quicker response time on short segments
of data (no 10 ms delay).

Xillybus host application programming guide for Linux 8

http://xillybus.com/


Xillybus Ltd. www.xillybus.com

On the other hand, if the stream is synchronous, a call to the low-level function writing
to the device file will not return until all data has reached the user application’s logic
in the FPGA. In a typical application, the return of this low-level function indicates that
the data has arrived to the FIFO in the FPGA, which is connected by the user to the
IP core.

IMPORTANT:

Higher-level I/O functions, such as fwrite(), involve a buffer layer created by the
library functions. Hence fwrite() and similar functions may return before the data
has arrived at the FPGA, even for synchronous streams.

Synchronous streams should be avoided in in high-bandwidth applications, mainly for
these two reasons:

• The data flow is interrupted while the application is preempted or doing some-
thing else, so the physical channel remains unutilized during certain time seg-
ments. In most cases, this leads to a significant bandwidth performance hit.

• The FIFO between application logic and IP core’s logic in the FPGA may un-
derflow during these time gaps. For example, if its drain rate is 100 MB/sec, a
typical 2 kByte FPGA FIFO goes from full to empty in around 0.02 ms. Practi-
cally, this means that any preemption of the user space program can potentially
make the FPGA’s FIFO underflow.

Despite these drawbacks, synchronous streams are useful when it’s important for the
application to know that the data has arrived to the FPGA. This is the case when
the stream is used to transmit commands that must be executed before some other
operation takes place (e.g. configuration of the hardware).

2.5 Latency vs. uncertainty

A common mistake it to require a low latency on asynchronous streams for the sake
of synchronization between data. For example, if the application is a modem, there is
usually a natural need to synchronize between received and transmitted samples.

This often leads to a misconceived design, based upon the notion the uncertainty in
the synchronization is necessarily smaller than the total latency. To keep the uncer-
tainty low, the latency, and hence buffering, is made as small as possible, leading to
an overall system with tough realtime requirements.
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With Xillybus, the synchronization is easily made perfect (at the level of a single sam-
ple), as explained in paragraph 6.2. The limitation on latency is therefore derived from
the need to close loops, if there is such a need.

For a modem, the maximal latency has an impact on how quickly the underlying data
source responds to data sent to it. In a camera application, the host may program the
camera to adjust the shutter speed to compensate for changing light conditions. Data
arriving with latency slows down this control loop. These are the real considerations
that need to be taken, and still, they are usually significantly less stringent than those
derived from mixing timing uncertainty with latency.

Xillybus host application programming guide for Linux 10
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3
I/O programming practices

3.1 Overview

Xillybus works properly with any programming language which is able to access files,
and any file access API is suitable.

In this guide there’s an emphasis on the low-level API set, based upon functions such
as open(), read(), write() and close(). This set is chosen over other well-known sets
(e.g. fopen(), fwrite(), fprintf() etc.) because the low-level API’s functions have no
extra layer of buffers. These buffers can have a positive effect on performance, but
they also detach the timing and amounts of actual I/O operations from the function
calls issued by the program.

This is less important when data is streaming constantly and no direct relation is
expected between software operations and hardware I/O.

An extra buffer layer can also cause confusion, making it look like there’s a software
bug where there isn’t. For example, a call to fwrite() can merely store the data in a
RAM buffer without performing any I/O operation until the file is closed. A developer
not aware of this may be mislead to think that the fwrite() failed because nothing
happened on the FPGA side, when in fact the data is waiting in the buffer.

This section describes the recommended UNIX programming practices, using the low-
level C run-time library functions. This elaboration in given here for the sake of com-
pleteness, as there is nothing specific to Xillybus about any of these practices.

The code snippets are taken from the demo applications described in Getting started
with Xillybus on a Linux host. The device file names in these examples are those of
the Xillybus IP core for PCIe and AXI. For XillyUSB, the prefix is xillyusb 00 * instead
of xillybus *.
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3.2 Guidelines for reading data

Assuming that the variables have been declared as follows,

int fd, rc;

unsigned char *buf;

the device file is opened with the low-level open (the file descriptor is in integer format):

fd = open("/dev/xillybus_ourdevice", O_RDONLY);

if (fd < 0) {

perror("Failed to open devfile");

exit(1);

}

A “Device or resource busy” (errno = EBUSY) error will be issued if the device file is
already opened for read by another process (non-exclusive file opening is available
on request). If “No such device” (errno = ENODEV) occurs, it’s most likely an attempt
to open a write-only stream.

With the file opened successfully and buf pointing at an allocated buffer in memory,
data is read with

while (1) {

rc = read(fd, buf, numbytes);

where numbytes is the maximal number of bytes to read.

The returned value, rc, contains the number of bytes actually read (or a negative
value if the call completed abnormally).

IMPORTANT:

There is no guarantee that all requested bytes were read from the file, even on a
successful return of read(). It’s the caller’s responsibility to call read() again if the
completed amount was unsatisfactory.

The call to read() should be followed by checking its return value as shown below
(“continue” and “break” statements assume a while-loop context):

Xillybus host application programming guide for Linux 12
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if ((rc < 0) && (errno == EINTR))

continue;

if (rc < 0) {

perror("read() failed");

break;

}

if (rc == 0) {

fprintf(stderr, "Reached read EOF.\n");

break;

}

// do something with "rc" bytes of data

}

The first if-statement checks if read() returned prematurely because of an interrupt.
This is a result of the process receiving a signal from the operating system.

This is not an error really, but a condition forcing the I/O driver to return control to the
application immediately. The use of the EINTR error number is just a way to tell the
caller that there was no data read. The program responds with a “continue” statement,
resulting in a renewed attempt to call read() with the same parameters.

If there is some data in the buffer when the interrupt arrives, the driver will return the
number of bytes already read in rc. The application will not know an interrupt has
arrived, and according to UNIX programming convention, it has no reason to care: If
the signal requires action (e.g. SIGINT resulting from a CTRL-C on keyboard), either
the operating system or a registered signal handler will respond as necessary.

Note that some signals shouldn’t have any effect on the execution flow, so if interrupts
aren’t detected as shown above, the program may suddenly report an error for no
apparent reason.

Handling the EINTR case is also necessary to allow the process to be stopped (as
with CTRL-Z) and resumed properly.

The second if-statement terminates the loop if a real error has occurred after reporting
a user-readable error message.

The third if-statement detects if end of file has been reached, which is indicated by
a zero read byte count. When reading from a Xillybus device file, this can only hap-
pen as a result of the application logic raising the stream’s eof pin on the IP core’s
interface.
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3.3 Guidelines for writing data

Assuming that the variables have been declared as follows,

int fd, rc;

unsigned char *buf;

the device file is opened with the low-level open (the file descriptor is in integer format):

fd = open("/dev/xillybus_ourdevice", O_WRONLY);

if (fd < 0) {

perror("Failed to open devfile");

exit(1);

}

A “Device or resource busy” (errno = EBUSY) error will be issued if the device file is
already opened for write by another process (non-exclusive file opening is available
on request). If “No such device” (errno = ENODEV) occurs, it’s most likely an attempt
to open a write-only stream.

With the file opened successfully and buf pointing at an allocated buffer in memory,
data is written with

while (1) {

rc = write(fd, buf, numbytes);

where numbytes is the maximal number of bytes to be written.

The returned value, rc, contains the number of bytes actually written (or a negative
value if the call completed abnormally).

IMPORTANT:

There is no guarantee that all requested bytes were written to the file, even on a
successful return of write(). It’s the caller’s responsibility to call write() again if the
completed amount was unsatisfactory.

The call to write() should be followed by checking its return value as shown below
(“continue” and “break” statements assume a while-loop context):
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if ((rc < 0) && (errno == EINTR))

continue;

if (rc < 0) {

perror("write() failed");

break;

}

if (rc == 0) {

fprintf(stderr, "Reached write EOF (?!)\n");

break;

}

// do something with "rc" bytes of data

}

The first if-statement checks if write() returned prematurely because of an interrupt.
This is a result of the process receiving a signal from the operating system.

This is not an error really, but a condition forcing the I/O driver to return control to
the application immediately. The use of the EINTR error number is just a way to tell
the caller that there was no data written. The program responds with a “continue”
statement, resulting in a renewed attempt to call write() with the same parameters.

If some data was written before the interrupt arrived, the driver will return the number
of bytes already written in rc. The application will not know an interrupt has arrived,
and according to UNIX programming convention, it has no reason to care: If the
signal requires action (e.g. SIGINT resulting from a CTRL-C on keyboard), either
the operating system or a registered signal handler will respond as necessary.

Note that some signals shouldn’t have any effect on the execution flow, so if interrupts
aren’t detected as shown above, the program may suddenly report an error for no
apparent reason.

Handling the EINTR case is also necessary to allow the process to be stopped (as
with CTRL-Z) and resumed properly.

The second if-statement terminates the loop if a real error has occurred after reporting
a user-writable error message.

The third if-statement detects if the end of file has been reached, which is indicated
by the a zero write byte count. When writing to a Xillybus device file, this should never
happen
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3.4 Flushing asynchronous downstreams

As mentioned in paragraph 2.4, data written to an asynchronous stream on an PCIe
or AXI IP core is not necessarily sent immediately to the FPGA, unless a DMA buffer
is full (there are several DMA buffers). This behavior improves performance by making
sure that the allocated buffer space is utilized. This also improves the efficiency of the
packets sent on the PCI Express or AXI bus.

Also mentioned, XillyUSB IP cores send the data virtually right away, even when the
stream is asynchronous, as there’s an efficient arrangement for that with the USB in-
terface. Hence flushing has a significance with XillyUSB IP cores only when it involves
waiting for the transmission to complete.

Streams to the FPGA are automatically flushed when the file descriptor is closed. The
call to close() is delayed until all data has arrived at the FPGA in a manner similar to
the way write() calls are delayed on synchronous streams. The significant difference
is that close() waits up to one second for the flush to complete. If the flush isn’t
completed by then, close() returns anyhow, and issues a warning message in the
system log.

It’s also possible to flush an asynchronous stream explicitly, by calling write() with a
zero-length buffer, i.e.

while (1) {

rc = write(fd, NULL, 0);

if ((rc < 0) && (errno == EINTR))

continue; // Interrupted. Try again.

if (rc < 0) {

perror("flushing failed");

break;

}

break; // Flush successful

}

Please note the following:

• Unlike close(), a zero-count write() returns immediately, regardless of when the
data is consumed on the FPGA.

• Because of this, a zero-count write() on a XillyUSB driver has nothing to do, and
indeed does nothing: The data is sent virtually immediately anyhow, and the
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zero-count write() call doesn’t wait.

• Since no data is read from the buffer, the buffer argument in the write() call can
take any value, including NULL, as demonstrated above.

• The UNIX manual page doesn’t define what write() with a zero count should do,
leaving the choice to each device driver. This method for flushing is Xillybus-
specific.

• Using higher-level API with a zero buffer may not have any effect at all. For
example, calling fwrite() to write zero bytes may simply return with nothing done,
since what this function usually does is adding the data to a buffer created by
the C run-time library.

• fflush() is irrelevant: It flushes the higher-level buffer, but doesn’t send a flush
command to the low-level driver.

• There is no need to flush streams in the other direction (from FPGA to host)
since these streams are automatically flushed when a host’s attempt to read
data is about to block.

3.5 Nonblocking I/O and select()

Even though not recommended, the Xillybus driver for Linux supports nonblocking
calls and the select() function. Note that the Windows driver doesn’t support any-
thing similar, so using this functionality makes the application harder to port if neces-
sary. The recommended way to handle multiple sources is with multiple threads (and
preferably RAM FIFOs) as demonstrated in the fifo.c example program, discussed in
paragraph 4.4.

Calls to select(), pselect() and poll() can be used like any UNIX file descriptor, for read
and write alike.

Nonblocking calls and select() are not enabled in FPGA’s IP cores that have been set
up for Windows only in the IP Core Factory.

For the sake of completeness, we shall revisit the code outline for reading data in para-
graph 3.2, using nonblocking reads. This code merely demonstrates the conventional
flow for any nonblocking read from a file in UNIX.

The file is opened with the O NONBLOCK flag:
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fd = open("/dev/xillybus_ourdevice", O_RDONLY | O_NONBLOCK);

if (fd < 0) {

perror("Failed to open devfile");

exit(1);

}

There is no difference in how the file is read, the arguments or the meaning of the
return value:

while (1) {

rc = read(fd, buf, numbytes);

But there is now another check on the return values: If rc is negative and EAGAIN is
given as the error code, this means there was nothing to read (more precisely, there
is no data in the driver’s buffers, and the FIFO connected to the IP core in the FPGA
is empty).

if ((rc < 0) && (errno == EINTR))

continue;

if ((rc < 0) && (errno == EAGAIN)) {

// do something else

continue;

}

if (rc < 0) {

perror("read() failed");

break;

}

if (rc == 0) {

fprintf(stderr, "Reached read EOF.\n");

break;

}

// do something with "rc" bytes of data

}

Note that the code above doesn’t make sense unless something meaningful is done
when the call returns with an EAGAIN. Otherwise it just wastes CPU time by spinning
in the while loop, instead of blocking when there is no data to read.
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For nonblocking writing, make the respective changes in the example in paragraph
3.3.

3.6 Monitoring the amount of data in driver’s buffers

This topic is discussed in Xillybus FPGA designer’s guide, in the section named “Mon-
itoring the amount of buffered data”.
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4
Continuous high rate I/O

4.1 The basics

There are four practices that are nearly essential to achieve a high-rate continuous
data flow between the host and the FPGA:

• Using asynchronous streams

• Making sure the driver’s buffers are large enough to compensate for time gaps
between the user space application’s I/O operations

• Having the user space application read data from the device file as soon as
there is data available, or write data to it as soon as there is buffering space
available (depending on the direction).

• Never closing and reopening the device files while the FPGA keeps pumping or
draining data.

Monitoring how much data is held in the driver’s buffers at any given time is discussed
in Xillybus FPGA designer’s guide, in the section named “Monitoring the amount of
buffered data”.

The first practice of using asynchronous streams is discussed in section 2. The sec-
ond and third are discussed in the remainder of this section.

To understand the the fourth item, recall that the advantage of asynchronous streams
is that data runs between the FPGA and host without the user space application’s
intervention. This flow is stopped when the file is closed.

On a stream to the FPGA, the data is flushed and then the file closed, so the FIFO on
the FPGA will be drained until the file is reopened and written to again.
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As for streams from the FPGA, closing the file leads to loss of any data in the pipe
going from the application logic in the FPGA to the user space application in the host
(i.e. the FPGA’s FIFO and driver’s buffers on the host). The only way to avoid this loss
is draining this pipe of data, and thus losing the buffering capabilities it has.

A common mistake is to use the EOF capability to mark data chunks (e.g. complete
video frames) by forcing the host to close and reopen the device file at known bound-
aries, but this significanly increases the risk for data overflows at the FPGA.

It’s important to keep in mind that the operating system may preempt a user space
application at any given moment, so time gaps of several, and sometimes tens of
milliseconds can occur between subsequent function calls in a program.

4.2 Large driver’s buffers

One of the greatest challenges in transferring data at a high rate between the FPGA
and host is to maintain a continuous flow. In applications involving data acquisition
and playback, an overflow or shortage of data renders the system nonfunctional. To
avoid this, the driver allocates large RAM buffers on the host for its own use. These
buffers compensate for the gaps in time, during which the application isn’t available to
handle data transfers.

Xillybus allows allocation of huge driver’s buffers, but this memory must be allocated
from the pool of the operating system’s kernel RAM. On some systems (32-bit systems
in particular) the addressing space of such memory is limited to 1 GB by the Linux
operating system, even if the total RAM available is significantly larger. In systems
with a total of less than 1 GB RAM, (embedded Linux in particular), all memory may
be used for driver’s buffers.

Except for with XillyUSB, the driver’s buffers are allocated when the Xillybus driver
is loaded (typically early in the boot process) and is freed only when the driver is
unloaded from the kernel (usually during system shutdown). When the buffers are
huge, this usually means that a significant part of the kernel’s RAM pool is occupied
by the driver’s buffers. It’s a fairly reasonable setting, since the application using these
buffers is likely to be the main purpose of the machine it’s running on.

A potential problem with huge buffers is tha they occupy continuous segments of phys-
ical RAM. This is contrary to a buffer allocated in a userspace program, which is
continuous in virtual address space, but can be spread all over the physical address
space, or even not occupy any physical RAM at all.

The pool of available memory becomes fragmented as the operating systems runs.
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This is why the Xillybus driver allocates its buffers as soon as possible, and retains
them even when the not actively used. Attempting to unload the driver and reload it at
a later stage may fail for the same reason.

XillyUSB has a different approach to memory allocation, which is more tolerant to
physical memory fragmentation. This is one of the reasons that its driver allocates
RAM for its buffers when a device file is opened, and releases it when the file is
closed.

Precautions should however be taken to avoid a shortage of kernel RAM. Xillybus’
IP Core Factory’s automatic memory allocation (“autoset internals”) algorithm is de-
signed not to consume more than 50% of the relevant memory pool, e.g. 512 MB for
a PC-oriented target, based upon the assumption that a modern PC has more than
1 GB of RAM installed. It’s probably safe to go as high as 75% as well, which can be
done by setting the buffer sizes manually.

Overallocation of buffers may lead to system instability. In particular, the operating
system is likely to kill processes apparently randomly, whenever it fails to allocate
RAM from the kernel pool.

4.3 User space RAM buffer

For applications that require buffers larger than 512 MB, it’s recommended to do some
of the buffering in user space RAM.

It may seem counterintuitive that the problem of I/O continuity can be solved by allo-
cating a huge buffer in the userspace application. Indeed, this solution doesn’t help
when the OS starves the application of CPU time. But if the scheduler is fairly well
designed and the priorities are set right, a user space application will get its CPU slice
often enough, even on a loaded computer. Certain Linux kernels have had problems
with this, in particular under heavy disk load, but this was considered a bug, which
has been solved in recent kernels.

It’s important to pay attention to the first fill of the buffer: Modern operating systems
don’t allocate any physical RAM when a user application requests memory. Instead,
they just set up the memory page tables to reflect the memory allocation. Actual
physical memory is allocated only when the application attempts to use it. This is
a brilliant method for saving resources, but can have a disastrous impact on a data
acquisition application: For example, consider what happens when data begins to
rush in from a data source. The application writes the data to the buffer just allocated,
but each time a new memory page is accessed, the operating system needs to get a
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new physical memory page. If there happens to be free physical RAM, or if there is a
quick way to release physical memory (e.g. disk buffers which are already in sync with
the disk), this memory juggling can go by unnoticed. But in the absence of immediate
sources of physical RAM, disk operations may have to take place (RAM swapping to
disk or flushing disk buffers), which can halt the application for too long.

The really bad news is that the ability to take the initial load of data depends on
the overall system’s state. Hence a program that usually works may suddenly fail,
because some other program just did something data intensive on the same computer.

The natural solution is memory locking: mlock() tells the operating system that a cer-
tain chunk of (virtual) memory must be held in physical RAM. This forces allocation of
physical memory immediately, so if disk operations are needed to complete the call, it
may take some time to return.

The operating system is reluctant to lock large chunks of RAM, as this impacts the
overall OS’ performance. In most cases, there’s a need to raise some limit in the shell
or set up configuration files.

4.4 The fifo.c demo application overview

Among the demo applications, which can be downloaded for Linux and Windows,
there’s one called “fifo.c” (for more about the demo applications, see Getting started
with Xillybus on a Linux host). It’s an example of how to implement a RAM FIFO using
two threads, and has been compiled and tested as 32-bit and 64-bit executables.

The purpose of this program is to test fast streams, where a RAM FIFO is necessary
to maintain a buffer larger than the 512 MB, that can be allocated as driver’s buffers.

It can also form a basis for modification and adoption in custom target applications.
It’s designed with no mutexes, so no thread ever goes to sleep just because another
thread holds the lock. Threads will sleep, of course, when the FIFO’s state requires
blocking (e.g. a read is requested from an empty FIFO). This mutex-less design re-
quires careful use of the API functions, as they’re not reentrant. This is however no
issue in a simple writer-reader thread setting.

To run it for acquisition of data from a device file into a disk file with a 128 MB buffer,
type something like (Linux):

$ ./fifo 134217728 /dev/xillybus_async > dumpfile

or in Windows:

Xillybus host application programming guide for Linux 23

http://xillybus.com/
http://xillybus.com/downloads/doc/xillybus_getting_started_linux.pdf
http://xillybus.com/downloads/doc/xillybus_getting_started_linux.pdf


Xillybus Ltd. www.xillybus.com

> fifo 134217728 \\.\xillybus_async > dumpfile

If no file name is given as the second argument, the program reads from standard
input.

There’s probably a need to lift the limit on locked memory, using ’limit -l’ on shell
prompt, with root privileges (possibly use su - your-username as root to drop your
privileges back and retain the relaxed limit). For a constant change in the limit, refer
to your Linux distribution’s docs.

The program creates three threads:

• read thread() reads from standard input (or the file given in the command line)
and writes the data into the FIFO

• write thread() reads from the FIFO and writes to standard output

• status thread() prints a status line to standard error recurrently

The third thread has no functional significance, and can be eliminated. It’s also possi-
ble to have one of the read/write functionalities running in the main thread. For exam-
ple, in a data acquisition application, it may be natural to launch only read thread() to
move data from the file descriptor to the FIFO, but consume the data from the FIFO in
the main application thread.

4.5 fifo.c hacking notes

If you want to modify the program, here are a few things to keep in mind:

• The fifo * functions are not reentrant. It’s safe to use them in separate threads
when each thread has its exclusive set of functions (which is a natural use).

• fifo init() can take time to return, and should be called before an asynchronous
Xillybus file stream is opened.

• The read and write threads in the applications always attempt the maximal num-
ber of bytes allowed in their I/O requests. This can be problematic in some
cases, e.g. when the I/O source is /dev/zero and the sink is /dev/null. Both will
complete the entire request in one go, so the FIFO will go from completely empty
to completely full and over again. In such cases, it’s more sensible to limit the
requested byte count in calls to I/O functions.
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4.6 RAM FIFO functions

Except for hacking the fifo.c example, it’s possible to adopt a group of functions from
the source code.

A section of FIFO API functions is clearly distinct in the fifo.c file. These functions can
be used in custom applications, following the example and according to the functions’
description below.

IMPORTANT:

Even though the fifo * functions are intended for use in a multi-threaded environ-
ment, these functions are not reentrant . This means that one thread should call
functions related to reading from the FIFO, and another thread should do writes,
so each thread calls its separate set of functions.

Except for an initializer, destroyer and a thread join helper, the API has four functions
for reading and writing, two for each direction. Neither of these functions actually
access the data in the FIFO; they merely maintain the FIFO’s state and supply the
information necessary to perform reads, writes, memory copies etc.

The intended workflow: The thread reading from the FIFO calls fifo request drain(),
which returns information about how many bytes can be read, and a pointer from
which data can be read. If the FIFO is empty, the thread will sleep until data arrives.

The user application then makes whatever use it needs with the data pointed to. After
finishing to consume some or all of the data (write to a file, copy data, run some
algorithm etc.), it calls fifo drained() to inform the FIFO API how many bytes were
actually consumed. The API releases the relevant portion of memory in the FIFO. If
the writing user application thread was blocking because the FIFO was full, it is woken
up.

Note that the user application doesn’t ask for a specific number of bytes. Rather,
fifo request drain() tells the application how many bytes can be consumed, and the
application reports back how many it chose to consume in fifo drained().

As for the opposite direction, a similar approach is taken: The writing thread calls
fifo request write(), which returns the number of bytes that can be written to the FIFO,
or blocks if the FIFO is full. The user application writes to the address it got from
fifo request write() as many bytes it needs to write (but not more than fifo request write()
allowed it to) and then reports back what it did to fifo wrote().

We’ll now go through each of these functions in detail.
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4.6.1 fifo init()

fifo init(struct xillyfifo *fifo, unsigned int size) – This function initializes the FIFO infor-
mation structure and allocates memory for the FIFO as well. It also attempts to lock
the FIFO’s virtual memory to physical RAM, making it ready for immediate fast writing
and preventing it from being swapped to disk.

fifo init() allocates memory for a buffer of size bytes. size can be any integer (i.e.
doesn’t have to be a power of two) but a multiple of what the system considers int is
recommended.

Note that this function can take several seconds to return: The request for a large
portion of physical RAM may force the operating system to swap other processes’
RAM pages to disk, or force disk cache flushing. In both cases, fifo init() may have to
wait for many megabytes of data written to disk before returning.

Returns zero on success, nonzero otherwise.

4.6.2 fifo destroy()

Frees the FIFO’s memory after unlocking it, and releases thread synchronization re-
sources. This function should be called when the main program exits, because even
though the thread synchronization resources are released automatically in current
implementations of Linux, their API doesn’t guarantee this.

This function is of void type (hence returns nothing).

4.6.3 fifo request drain()

fifo request drain(struct xillyfifo *fifo, struct xillyinfo *info) – Supplies a pointer to read
data from the FIFO as info->addr, and informs how many bytes can be read, beginning
from that pointer, in info->bytes.

The info structure must not be the same used for calls to fifo request write(). A
thread local variable is the straightforward choice.

IMPORTANT:

The number of bytes returned does not indicate how much data is left for reading
in the FIFO: It may also reflect the number of bytes left until the end of the FIFO’s
memory buffer, so a significantly lower byte count is possible as the pointer ap-
proaches its wrap to the beginning of the buffer.
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The function also sets fifo->position to indicate the FIFO’s current read position as a
value between 0 and size-1, size as given in fifo init(). A nonzero fifo->slept indicates
that the FIFO was empty upon invocation.

Returns the number of bytes allowed for write (same as info->taken), or zero if fifo done()
has been called and the FIFO is empty.

4.6.4 fifo drained()

fifo drained(struct xillyfifo *fifo, unsigned int req bytes) – This function changes the
FIFO’s state to reflect the consumption of req bytes bytes. If fifo request write() was
blocking because the FIFO was full, it will we woken up.

IMPORTANT:

There is no sanity check on req bytes. It’s the user application’s responsibility to
make sure that req bytes is not larger than info->bytes returned by the last call to
fifo request drain().

This function is of void type (hence returns nothing).

4.6.5 fifo request write()

fifo request write(struct xillyfifo *fifo, struct xillyinfo *info) – Supplies a pointer to write
data to the FIFO as info->addr, and informs how many bytes can be written, beginning
from that pointer, in info->bytes.

The info structure must not be the same used for calls to fifo request drain(). A
thread local variable is the straightforward choice.

IMPORTANT:

The number of bytes returned does not indicate how much data is left for writing
in the FIFO: It may also reflect the number of bytes left until the end of the FIFO’s
memory buffer, so a significantly lower byte count is possible as the pointer ap-
proaches its wrap to the beginning of the buffer.

The function also sets fifo->position to indicate the FIFO’s current write position as a
value between 0 and size-1, size as given in fifo init(). A nonzero fifo->slept indicates
that the FIFO was full upon invocation.
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Returns the number of bytes allowed for write (same as info->taken), or zero if fifo done()
has been called, even if the FIFO is not full: There is no point writing data into a FIFO
that will never be read.

4.6.6 fifo wrote()

fifo wrote(struct xillyfifo *fifo, unsigned int req bytes) – This function changes the FIFO’s
state to reflect the insertion of req bytes bytes. If fifo request drain() was blocking be-
cause the FIFO was empty, it will we woken up.

IMPORTANT:

There is no sanity check on req bytes. It’s the user application’s responsibility to
make sure that req bytes is not larger than info->bytes returned by the last call to
fifo request write().

This function is of void type (hence returns nothing).

4.6.7 fifo done()

This function is optional for use, and helps the application to quit gracefully if either
of the read or write threads has finished. It merely sets a flag in the FIFO’s structure
and wakes up both threads if they were sleeping. By doing so, the fifo request drain()
will return zero rather than blocking if the FIFO is empty, and fifo request write() will
return zero regardless.

Call this function when the data source feeding the pipe has ended (e.g. EOF reached)
or when the data sink is no longer receptive (e.g. a broken pipe).

4.6.8 The FIFO BACKOFF define variable

Sometimes it’s not desirable to let the FIFO get full to the last byte. Even though there
is no apparent reason avoiding that, buggy I/O drivers may clutter the bytes sharing
the 32-bit boundary of the last byte written to. Just to have this clear, the Xillybus
drivers do not have such bug.

To avoid this rare but possible problem, FIFO BACKOFF can be set to 8, so the last
byte written to the FIFO never shares a 64-bit word with the first valid byte for read.
This is a rather far-fetched precaution, but comes at the low price of 8 bytes of memory.
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5
Cyclic frame buffers

5.1 Introduction

In applications such as video camera image frame grabbers or raw video playback,
it’s desirable to manage a number of frame buffers with a fixed size. The advantage of
this setting is that frames can be skipped or replayed more than once if the data flow
becomes jammed on the other side.

In a frame grabbing application, some input images can be dropped if the data sink
momentarily stops receiving data. In a live view application, this can be the case when
the viewing window is moved or resized. Dropping the overflowing images prevents
the disruption of the continuous data flow from the video source, while maintaining a
small latency from source to sink.

In a frame replay application (e.g. driving a live output screen), any output image is
repeated until a fresh one arrives. This resolves situations where the source (e.g.
a disk) momentarily stalls, causing the displayed image to freeze for a short while.
While not completely graceful, it’s better than having the stream going out of sync.
In many cases, the image repetition mechanism, although somewhat bulky, works
well for overcoming frame rate differences, in particular when the output frame rate is
considerably higher than the input frame rate (e.g. 30 fps to 60 fps).

5.2 Adapting the FIFO example code

There are similarities between maintaining a circular set of frame buffers and a FIFO.
In fact, if each byte in the FIFO represents a frame buffer, the readiness to read or
write a certain byte in the FIFO is equivalent to the readiness to read or write an entire
frame buffer.
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For example, suppose a frame grabbing application, where four frame buffers are
allocated for containing the received image data. Suppose further that a FIFO of four
bytes is set up to help managing these four frame buffers as follows:

The software thread receiving the data starts from the first frame buffer, and continues
to the next ones in a cyclic manner. Before starting to write to a new frame buffer, this
thread checks that the four-byte FIFO isn’t full. After it has completed a frame buffer,
it writes a byte into the FIFO and goes to the next one if the FIFO isn’t full.

The software thread consuming the image data cycles through the frame buffer in the
same order. Before attempting to read from a new frame buffer, it checks that the
four-byte FIFO isn’t empty. When it has finished with a frame buffer and is ready to go
to the next, it reads a byte from the FIFO.

By sticking to this convention, it’s guaranteed that the thread receiving the data will
never overrun a frame buffer that hasn’t been consumed, and that the consuming
thread will never attempt to read from a frame buffer that contains invalid data. As a
matter of fact, the number of bytes in the FIFO represents the number of valid frame
buffers in the set.

Note that the values of the bytes written and read make no difference, so there’s no
actual need to allocate these four bytes of memory and store data in them. Only the
FIFO’s handshake mechanism plays a role.

Hence, the FIFO API outlined in paragraph 4.6 can be adopted as is:

• Call fifo init() with the size parameter as the number of frame buffers (recall
that size can be any integer). fifo init() will allocate and lock memory for the
FIFO, which will never be used (since each bytes just symbolizes a frame buffer).
This waste of memory is negligible, but the relevant portions in the code can be
removed to avoid future confusion.

• Call fifo request drain() to get a frame buffer to read from. info->position will
contain the index to the frame buffer to use (numbering starts at 0). If no frame
buffer is ready, fifo request drain() will block until there is.

• After reading from the buffer, call fifo drained() with bytes req=1.

• fifo request write() and fifo wrote() are called in the same way by the thread
writing to the frame buffers.

• FIFO BACKOFF should be set to zero. There is no point to backoff with frame
buffers.
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• If the request * routines return more than 1, skipping buffers may be desirable.
This isn’t a sufficient solution for the other end being temporarily jammed, as
explained next.

5.3 Frame dropping and repetition

Let’s take the case of a continuous image frame source which must never overflow,
but with an output sink which may not collect the data all the time.

The idea is to prevent blocking on the thread, which transports data from the data
source to the frame buffers. To achieve this, the following sequence should be looped
on for each incoming frame:

• Call fifo request write() to find out which frame buffer to write to

• Write to the frame buffer pointed at by info->position

• When done writing, call fifo request write() again. This call will surely not block,
because no buffer has been reported as written to since the previous call.

• If fifo request write() just returned a value larger than 1, call fifo wrote() (with
req bytes=1, of course). A subsequent call to fifo request write() will surely not
block, because there were more than one buffer to spare, and only one was
consumed. In fact, the next call to fifo request write() can be substituted by just
picking the next frame buffer.

• On the other hand, if fifo request write() returns just 1, don’t call fifo wrote().
Instead, use the current buffer again on the next loop executing for accepting
incoming data, or just drain a whole frame from the data source to no particular
destination.

Since this usage prevents blocking, it’s possible to delete the while() loop in the im-
plementation of fifo request write(), as it is never invoked. Further code reduction is
possible by removing the relevant semaphore, as well as its initialization and destruc-
tion code. Leaving them in the code has a minimal effect, so this optimization is better
done at a late stage.

A similar approach can be taken to repeat frames on the thread writing from the FIFO:
Call fifo request drain() again just before calling fifo drained(), and repeat the current
frame if it returns less than 2.
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6
Specific programming techniques

6.1 Seekable streams

A synchronous Xillybus stream can be configured (in FPGA logic) to be seekable.
The stream’s position is presented to the logic in the FPGA in separate wires as an
address, so interfacing memory arrays or registers in the FPGA is straightforward, as
shown in the demo FPGA bundle and example code.

This feature is useful in particular for setting up control registers in the FPGA. The
synchronous nature of the stream ensures that the register in the FPGA is set before
the low-level I/O function returns.

The following code snippet demonstrates how to write len bytes of data to address
address in the memory or register space in the FPGA, assuming that these two
integers are previously set.
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int rc, sent;

if (lseek(fd, address, SEEK_SET) < 0) {

perror("Failed to seek");

exit(1);

}

for (sent = 0; sent < len;) {

rc = write(fd, buf + sent, len - sent);

if ((rc < 0) && (errno == EINTR))

continue;

if (rc <= 0) {

perror("Failed to write");

exit(1);

}

sent += rc;

}

fd is also assumed to be the value returned from a call to open(), where the file was
opened for write or read-write, and buf pointing to the buffer containing data to be
written.

This example is an extension of the example shown in paragraph 3.3.

The only special thing in this code is the call to lseek(), which sets the address. Only
the SEEK SET call should be used.

Subsequent calls update the address in accordance with the I/O stream’s position, so
there is no limitation on making multiple sequential writes after seeking.

For streams which are accessed as 16-bit or 32-bit words in the FPGA, the address
given to lseek() must be a multiple of 2 or 4, respectively. The address presented to
the application logic in the FPGA is maintained at all times as the stream’s I/O position
(initially as given to lseek() ) divided by 2 or 4, respectively. For wider words, the same
logarithmic rule applies.

The tell() function may return a correct position in the stream (i.e. the current address),
but it’s not a reliable source for this information. If in doubt, call lseek() again.

Seekable reading works in the same manner. See memwrite.c and memread.c in the
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demo application bundle (and their descriptions in Getting started with Xillybus on a
Linux host).

6.2 Synchronizing streams in both directions

In certain applications, there’s a need to synchronize several streams, possibly in
opposite directions. For example, a radio transmission system may be implemented
on the host, receiving samples from an A/D converter connected to an RF receiver
and sending samples to an D/A converter, connected to an RF transmitter. In cases
like this, it’s often needed to produce the samples for transmission so their actual air
transmission takes place at a defined time. Likewise, it may be significant to know the
timing of a received signal.

Luckily, this is quite simple to implement with simple FPGA logic. One such solution is
to drop reception samples until the first sample for transmission arrives to the FPGA:

The host starts with opening the stream for reading samples from the FPGA. This
stream is idle at this stage, because the FPGA drops its reception samples. Then the
host opens the stream for writing samples for transmission to the FPGA, and begins
writing data to it. As the first sample arrives to the FPGA, it stops dropping receptions
samples and starts sending them towards the host.

As a result, the first sample that will be read from the FPGA will match the first sample
written to the FPGA. The host application can therefore match the timing of any sam-
ple for transmission with any sample received just by matching their position in the
respective streams. A slight correction may be needed to compensate for latencies in
the FPGA and analog conversion, but these latencies are known given the electronics.

The streams have to be kept continuous at all times. How to achieve this was dis-
cussed in section 4.

This solution is satisfactory if maintaining a relative timing relationship between trans-
mission and reception is enough. When the timing needs to be synchronized with an
external event, the FPGA can refrain from reading data from the host until that event
has occurred. The principle of dropping received samples may apply, depending on
the application.

Monitoring how much data is held in the driver’s buffers at any given time is discussed
in Xillybus FPGA designer’s guide, in the section named “Monitoring the amount of
buffered data”.
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6.3 Packet communication

Some applications require dividing the data stream into packets with varying length.
The suggested solution uses two separate streams, and doesn’t require the sender of
the data to know the length of the packet at the time it starts to submit the packet itself
through the channel.

The trivial case of packets with a fixed and known length is solved simply by trans-
mitting them one after the other on one single stream. The receiver at the other side
merely reads that fixed number of words for each packet. This is the typical solution
in a video frame grabbing or replaying application.

For the case of varying length packets, let’s look at an upstream application, where
the FPGA sends packets to the host. Let’s also assume that the FPGA receives the
packets as a byte stream, with a signal on the first and last byte. In other words, the
FPGA knows the length of the packet only when the last byte arrives.

The implementation on the FPGA’s (the sender’s) side is as follows:

• The FPGA writes every byte it receives to the first Xillybus stream, from the one
marked as the first one to the one marked as last.

• The FPGA resets a byte counter when a byte marked as first arrives, and counts
the other bytes arriving.

• When a byte marked as last arrives, the FPGA sends the counter’s value on the
second Xillybus stream.

An important quality of this solution is that the FPGA doesn’t need to store the entire
packet before sending it. It merely passes on the data as it arrives.

The user application at the host runs a loop as follows:

• Read one word from the second stream, containing the number of bytes in the
next packet.

• Allocate memory for a buffer of the requested size if necessary.

• Read the given number of bytes into the buffer dedicated to the packet.

Note that the host fetches the number of bytes to read before accessing the data,
but the FPGA wrote these to the streams in the reverse order. The use of separate
Xillybus streams allows this reversal.
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A similar arrangement applies when the packets are sent from the host to the FPGA.
The principle of using two streams, one for data and one for byte count remains. The
FPGA’s application logic now gains the possibility to read the number of bytes from
one stream before fetching the data.

This arrangement is also extensible to passing other metadata in the non-data stream,
e.g. the packet’s routing (which is sometimes not known when the first bytes arrive).

6.4 Emulating hardware interrupts

In small microcontroller projects, it’s common to use hardware interrupts to alert the
software that something has happened, and that the software needs to take some
action. When the software runs as a userspace process in Linux, hardware interrupts
are out of the question, and even software interrupts, like any asynchronous event,
are not so pleasant to handle.

The suggested solution for a Xillybus-based system is to allocate a special stream for
carrying messages. In its simplest form, a hardware interrupt is emulated by sending
one single byte on that dedicated stream.

On the host side, the userspace application attempts to read data from the stream.
The result is that when no “interrupt” is signaled, the application blocks (sleeps) until a
byte arrives and wakes it up. The application handles the event, and then attempts to
read another byte from the dedicated stream, hence going to sleep again if necessary,
and so on.

To achieve a main application versus interrupt routine setting, this dedicated stream
can be read by a separate software thread or process. With this arrangement, the
main code flows regardless of the thread reading from the dedicated message stream,
and the latter sleeps and wakes up, depending on messages sent.

A variant on this method uses the transmitted byte’s value to pass information about
the nature of the emulated interrupt. Also, each message can be longer than a single
byte, if that makes sense in the implementation.

This method may appear to be a waste of logic resources, but Xillybus was origi-
nally designed not to consume much logic for each stream added, in order to make
solutions like this sensible.
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6.5 Timeout

In certain applications, there’s a wish to limit the time an I/O operation may block, in
particular when there’s a chance of some hardware failure leading to the data flow
being stopped.

Xillybus itself has been tested extensively to verify that it’s never the source of data
being stopped this way, but data sources and sinks can stop for various reasons.

The less preferred way to tackle this is using select() or pselect() functions. They are
intended when waiting for multiple file descriptors is needed, but also have a timeout
functionality. It’s not recommended to use these functions as their non-trivial interface
may be a source of bugs, in particular in those special cases which a timeout is there
to catch.

A more natural method is using Linux’ alarm mechanism: It’s a per-process timeout
clock, which sends a software interrupt to the process when it expires. Please recall
that a software interrupt forces a blocked read() or write() call to return control immedi-
ately (see paragraphs 3.2 and 3.3). These functions return with a negative value and
errno set to EINTR. In the previous examples, such interrupts were just something to
keep out of the way, but they are going to be useful now.

Any process can receive several interrupts which are unrelated to its functionality.
Receiving an interrupt is not an indication of a timeout condition in itself. There are
several ways to tell, but the safest way is not to depend on that question at all: If the
I/O operation took more than a certain amount of time, it’s a timeout. So the most
straightforward strategy is to measure time, as in the example shown next, which is
based upon the one calling read() from paragraph 3.2.

The typical list of include files for this example is a bit long:

#include <stdio.h>

#include <signal.h>

#include <unistd.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <time.h>

Specific to this example, the following declarations are needed:
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struct timespec before, after;

double elapsed;

The while-loop for reading data now starts as follows:

while (1) {

if (clock_gettime(CLOCK_MONOTONIC, &before)) {

perror("Failed to get time");

exit(1);

}

alarm(2);

rc = read(fd, buf, numbytes);

if (clock_gettime(CLOCK_MONOTONIC, &after)) {

perror("Failed to get time");

exit(1);

}

The time is measured before and after calling read() with clock gettime(). This is the
preferred function for measuring time differences, since it has access to a monotonic
clock (as opposed to the system clock, which is modified by system utilities). Note that
this function may require the -lrt flag on compilations to load the necessary library.

The call to alarm() requests a software interrupt after two seconds (the argument is
the number of seconds). There is only one alarm timer for each process, so care
must be taken not to override another use of the same timer, e.g. sleep() in some
Linux implementations.

This code follows:

elapsed = (after.tv_sec - before.tv_sec);

elapsed += (after.tv_nsec - before.tv_nsec) / 1000000000.0;

if (elapsed >= 2.0) {

fprintf(stderr, "Timed out\n");

exit(1);

}

The time difference is calculated and stored in elapsed. It’s a double-precision float-
ing point variable to avoid word length portability issues in this simple example. But
this can be done with integers as well.

The condition is simple: If two seconds or more have elapsed between the time mea-
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surements, it’s a timeout. The reason read() returned isn’t checked. It may be an
interrupt or data arrived eventually, but too late. In either case, it’s an error.

Note that the call to alarm() was made after the first time measurement took place, so
a timeout is guaranteed to make the time differences at least two seconds long.

The while loop continues just like before:

if ((rc < 0) && (errno == EINTR))

continue;

if (rc < 0) {

perror("read() failed");

exit(1);

}

if (rc == 0) {

fprintf(stderr, "Reached read EOF.\n");

exit(0);

}

}

As seen above, interrupts are still ignored. If the timer woke the process up, the time
difference should reveal the timeout condition and exit.

Note that this method of implementing timeouts is based upon a UNIX signal, which
becomes a complicated issue in a multithreaded environment. If multiple threads are
deployed, it’s easiest to make one of them the watchdog for the others.

For higher precision of the timeout interval, consider using setitimer() instead.

6.6 Coprocessing / Hardware acceleration

Coprocessing (also known as hardware accelerated) applications take advantage of
the logic fabric’s flexibility to perform certain operations faster, cheaper, with a lower
energy consumption or otherwise more efficient than a given processor. Whatever the
motivation is, an efficient data transmission flow is crucial to make the coprocessing
an eligible solution.

It’s important to realize that the data flow in a coprocessing application is fundamen-
tally different from the common programming data flow. To illustrate this difference,
let’s take, for example, a C program that needs to calculate the square root of a floating
point number.

The programmer’s straightforward way is to pass the number as an argument to sqrt(),
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call it, and wait until the function returns.

Suppose that it’s desired to calculate the square root in the FPGA’s logic fabric in-
stead. A common mistake is to replace sqrt() with a special function that sends the
value for calculation to the FPGA, waits for it to complete, and then returns with the
result. Even though this is indeed a simple drop-in replacement for sqrt(), it’s most
likely going to be slower and otherwise less efficient than the original sqrt(): The time
it takes for the data to travel across the bus fabric in both directions, plus the time it
takes for the FPGA to make the calculation, is probably considerably longer than the
processor cycles needed by sqrt(). Having said that, calculating the square root on
the FPGA can be much faster, if the data flow is designed correctly.

In order to overcome the latencies imposed by the bus and the processing logic itself,
there’s a need to reorganize the software. In particular, the tasks in a single-threaded
program need to be split into two or more threads (or processes). If multiple threads
are not possible or desirable, certain programming techniques can be utilized to mimic
the behavior of multi-threading, but the programming paradigm is nevertheless multi-
threaded.

Returning to the example of sqrt(), the call to this functions is divided into two threads:
The first thread sends the data for square root calculations to the hardware (or some
other form of data structure representing the request for operation). The second
thread receives the results from the hardware and continues the processing from that
point in the algorithm.

This doesn’t seem to make much sense when looking at a single piece of data, but
the motivation for coprocessing implies that there are many data items to handle. So
the first thread sends a flow of data for calculation, and the second thread receives a
flow of results.

This pipelined technique minimizes the hardware’s latencies, since neither of the
threads is effectively waiting the latency time. Instead, the latency influences the min-
imal gap of processing items between the both threads – but the throughput depends
only on the processing capabilities of the two threads and the FPGA logic.

The following conceptual drawing summarizes the idea.
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The acceleration of sqrt() is a relatively simple example, but it covers much of the chal-
lenge in utilizing coprocessing techniques. Almost always, large parts of the computer
program needs to be rewritten so that the everything is driven by the pipelined data
flow.

Another issue to be aware of, is that since Xillybus is based upon read() and write()
calls, it’s possibly beneficial to group several data items for calculation before writing
them to the stream towards the FPGA. Likewise, attempting to read more than one
result item in each read() call may improve performance. The rationale behind this is
that read() and write() are system calls with a certain overhead. If the data elements
are small and transmitted at a high rate, these system call’s overhead can be sub-
stantial. The sqrt() acceleration is a good example for this: A double float is typically
8 bytes long. I/O system calls of this length are quite inefficient, so concatenating
several double floats for a single I/O call will make a difference.

It’s also worth to mention, that not all applications involve data chunks of constant
lenghts. For example, using FPGA coprocessing for obtaining hashes (e.g. SHA1) of
arbitrary strings is likely to involve data elements for processing with different lengths.
Section 6.3 suggest a solution for this.
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A
Internals: How streams are implemented

A.1 Introduction

Even though using Xillybus doesn’t require any understanding of its implementation
details, some designers prefer knowing what happens under the hood, whether for
curiosity or for verifying the eligibility of a certain solution.

This section outlines the main techniques implemented for creating continuous streams
based upon DMA buffers. It applies to Xillybus for PCIe and AXI, but not to XillyUSB,
which uses another buffering mechanism.

The goal of this design is to make the underlying buffers transparent to the user, and
to a large extent they are. Please keep this in mind when going down to the technical
details below, as they are very likely to be unnecessary for using Xillybus. This part is
more about how it works, and less about things the user needs to know.

There are two main sections below, one for the upstream flow, and one for the down-
stream. As similar techniques are employed in both directions, much of one section is
a repetition of the other.

For the sake of simplicity, the descriptions focus on asynchronous streams, except
where comments on synchronous streams are given explicitly. The end-of-file signal
as well as the option for non-blocking I/O are not covered either.

A.2 “Classic” DMA vs. Xillybus

Traditionally, data transport between hardware and software takes the form of a num-
ber of buffers with a fixed size. The data is organized into buffers with a fixed length,
but may or may not be filled completely. Each time a buffer is ready, some sort of
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signal is sent to the other side. For example, if the hardware has finished writing to
a buffer, it may send an interrupt to the processor to inform the software that data
is ready for processing. The software consumes the data, and informs the hardware
that the buffer can be written to again, typically by writing to some memory-mapped
register. Typically, both the sides access the buffers in a round-robin manner.

Xillybus presents a continuous stream transport to the user interface, both on the
FPGA and the software side. Under the hood, Xillybus uses the traditional round-
robin paradigm with a set of DMA buffers.

However the techniques described below are employed to create an illusion of a
continuous stream, so that the user can ignore the existence of the underlying data
transport. In particular, even if the application consists of sending data in fixed-sized
chunks, there is no need to match the DMA buffers’ size to the application data, as
explained below.

A.3 FPGA to host (upstream)

A.3.1 Overview

The figure below depicts the flow in the FPGA to host (upstream) direction. The
shaded ares represent unconsumed data in the respective storage elements.

In this example, four DMA buffers are shown, even though the number can be config-
ured in the IP Core Factory.

Leg #1 Leg #2 Leg #3

User application
logic

Xillybus IP Core +
bus master interface

Xillybus host driver
(software)

FPGA
FIFO

DMA
buffers

User application
buffer

The data flows towards the host in three legs, as detailed next.
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A.3.2 Leg #1: Application logic to intermediate FIFO

The user application logic in the FPGA pushes data elements into the FIFO connecting
between the user application logic and the Xillybus IP core. There is no requirement
on when or how much data is pushed, except respecting the FIFO’s “full” signal to
avoid overflow.

A.3.3 Leg #2: Intermediate FIFO to DMA buffer

In this leg, the Xillybus IP core copies the data from the FIFO to a DMA buffer in
the host’s RAM space. To accomplish this, the core uses some bus master inter-
face (PCIe, AXI4 etc) to write data directly to the host’s memory, without the host’s
processor’s intervention.

A pool of DMA buffers is allocated in the host’s RAM memory. The lifecycle of each
DMA buffer is like in many similar settings: In the beginning, all DMA buffers are empty
and conceptually belong to the hardware. The hardware writes data to the buffers in
a round-robin manner: When it has finished writing to a certain buffer, it informs the
host that the buffer is ready for use (the buffer is “handed over to the host”), after which
it continues to write on the following buffer. The host may then consume the data in
the buffer handed over to it, after which it informs the hardware that the buffer can be
written to again (the host “returns the buffer to the hardware”).

Leg #2’s data flow is controlled by the FIFO’s “empty” signal and by the availability
of space in the pool of DMA buffers: When the Xillybus IP core senses a deasserted
FIFO’s “empty” signal, and there’s is space left in some DMA buffer, it fetches data
from the FIFO and writes it into a DMA buffer. When the FIFO becomes empty again,
or there is no space in any DMA buffer, the IP core’s internal state machine stops
fetching data momentarily, and then continues from where it left off in the DMA buffer.

While the data flow is stalled, the IP core might be busy with other activities, for ex-
ample copying data on some other stream’s behalf (i.e. draining another intermediate
FIFO). As a result, there might be a random delay between the deassertion of the
“empty” signal by the FIFO and the resumption of fetching data from it. This delay
varies, but the overall design guarantees that a FIFO of 512 words will not overflow
(as long as the average rate is within limit).

Each DMA buffer may be filled completely before handing it over to the host, or may
be submitted to the host partially filled. The conditions for handing over a partially
filled buffer are detailed later (section A.3.5), as they require some understanding of
the software’s behavior.
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The case of synchronous streams is quite similar, except that the Xillybus IP core
waits for an explicit request for a certain amount of data before fetching data from the
intermediate FIFO.

A.3.4 Leg #3: DMA buffer to user software application

This leg is implemented on Xillybus’ driver on the host by responding to read() system
calls (or the counterpart IRPs on Windows). According to the well-established API,
the read() call request includes a buffer that is supplied by the user application, as well
as the size of the buffer, which is also the maximal number of bytes to read. The call
may return after reading the maximal number of bytes (complete fulfillment) or less.

The driver starts by checking the DMA buffers that are handed over to it, determining
whether there is enough unconsumed data in the DMA buffers for a complete fulfill-
ment, and if so, it copies the data to the user buffer, possibly returning DMA buffers to
the hardware, and returns.

Otherwise, the API for a read() call allows the driver to either return with less than
the number of requested bytes, or wait (sleep) for any period of time. The driver is
designed not to return too often with little data (which may cause a lot of read() calls
with little data each, hence wasting CPU cycles), but also avoid unnecessary latency.
The dilemma is what to do if there is less data in the DMA buffer(s) than required by
the read() call: To return with a partial fulfillment or wait (and how much to wait).

The chosen strategy is to wait for up to 10 ms for more data, and then return with
whatever was available (or wait possibly forever if no data is available, per API). This
results in a fairly responsive return time, but limits the overhead to 100 read() calls per
second, if the read() caller requests more than the data available all the time.

This is not to say that there is necessarily a 10 ms latency on read() calls: If the user
space application knows in advance how many bytes should be ready, it may request
no more than that number, and ensure a latency measured in microseconds.

There is however a tricky part: The host knows about the DMA buffers that have
been handed over to it, but there may be a partially filled DMA buffer, which the host
isn’t aware of. So it might be, that there actually is enough data to fulfill a read() call
completely, if the partially filled DMA buffer is counted in.

In order to handle this case properly, the driver checks whether the missing number
of bytes would fit into a partially filled buffer. If this is indeed the case, it informs
the hardware how many data elements would be enough. This gives the hardware
a chance to send a partially filled buffer, if it indeed allows completing the read() call
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entirely. The driver then starts the 10 ms wait.

If and when the partially filled buffer reaches the necessary amount (possibly right
away), the hardware hands it over to the host, which then completes the read() call
immediately.

When the 10 ms period is over, the driver returns with as much data it has available. If
there is no data at all, the driver sends a request to the hardware to pass any partially
filled buffer it has. The purpose is to return as soon as there is any data, since the 10
ms period is already over.

In all situations, when a DMA buffer has been consumed completely, the driver returns
it to the hardware (i.e. informs the hardware so it can be written to again).

A few words on synchronous streams: The flow is the same in principle, except that
data is never available in the DMA buffers when the read() call is invoked, since the
hardware isn’t allowed to copy data from the FPGA’s FIFO unless instructed to. Ac-
cordingly, the read() call for synchronous streams involves informing the hardware on
the amount of data it should copy. The waiting mechanism remains the same: First
10 ms, and then require any partially filled buffer.

A.3.5 Conditions for handing over partially filled buffers

The cases for handing over partially filled buffers can be deduced from the above, and
are listed here for convenience.

The general rule is that a partial buffer is handed over to the host if the hardware has
been informed that such early submission will result in an immediate return of the
read() call, which happens in either of three conditions:

• The host is currently handling a read() call, which will be fulfilled completely
when the current partially filled buffer is handed over.

• A read() call stands at zero bytes, and has reached the time limit (typically 10
ms).

• On synchronous streams only: When the hardware has completed fetching the
amount requested by the host.

Note that the FIFO becoming empty is not a reason for a DMA buffer submission by
itself.
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A.3.6 Examples

Let’s consider the following simple case of an 8-bit asynchronous stream. Suppose
that a stream starts from fresh, after which the FIFO is filled with a single element
(that is, one byte). The application program on the host then calls read() requesting
one byte. This is a possible chain of events:

• The Xillybus IP core detects the low “empty” signal, and hence fetches a single
byte from the FIFO, after which it becomes empty again.

• The byte is written, with DMA, to the first position in the DMA buffer. The host
isn’t notified, as the buffer isn’t (nearly) full.

• A read() call is invoked on the host, requesting one byte.

• The driver has no DMA buffer to take data from: The only DMA buffer containing
data (one byte) is only known to the hardware.

• The driver detects that the amount of data it needs is less than a DMA buffer’s
size, and therefore tells the hardware to hand over a partially filled buffer, if it
has at least one byte.

• The driver starts a 10 ms sleep, waiting for something to happen.

• The hardware responds immediately with handing over the partially filled buffer
to the host.

• The driver wakes immediately, copies the one byte requested into the read() call
buffer, and returns.

This simple example demonstrates how a read() call returns virtually immediately,
even though the data’s size was significantly smaller than the DMA buffer.

Let’s look at the example again, with one small difference: The read() call requests
two bytes, even though only one is written to the FIFO. The sequence is as follows.

• The Xillybus IP core detects the low “empty” signal, and hence fetches a single
byte from the FIFO, after which it becomes empty again.

• The byte is written, with DMA, to the first position in the DMA buffer. The host
isn’t notified, as the buffer isn’t (nearly) full.

• A read() call is invoked on the host, requested two bytes.
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• The driver has no DMA buffer to take data from: The only DMA buffer containing
data (one byte) is only known to the hardware.

• The driver detects that the amount of data it needs is less than a DMA buffer’s
size, and therefore tells the hardware to hand over a partially filled buffer, if it
has at least two bytes.

• The driver starts a 10 ms sleep, waiting for something to happen.

• The hardware does nothing, as it has only one byte in the DMA buffer, but two
were requested.

• The driver wakes after 10 ms, having nothing. It sends a request to the hardware
to hand over a partially filled buffer as soon as possible, unless it’s empty.

• The hardware responds immediately with handing over the partially filled buffer
to the host.

• The driver wakes immediately, copies the one byte requested into the caller’s
buffer, and returns.

This second example shows the consequence of asking for two bytes when there was
actually only one: The call returns only after 10 ms, with the same one byte. Note
however that the read() call is still fairly responsive.

A.3.7 Practical conclusions

• Even if the application-level data always consists of chunks of N bytes, there
is no reason to adapt the DMA buffer size in any way: The user application
software just needs to make sure to make the read() calls request data amounts
exactly as needed, and the partial buffer mechanism will make sure that the call
returns when the data has been pushed into the FPGA’s FIFO, with a latency
measured in microseconds.

• Even for continuous streams of data, latency can be reduced by making read()
calls with small buffers, at the cost of additional operating system’s overhead.
Regardless of the DMA buffers’ size, the latency depends only on the data rate
and the byte count size given on the read() calls. Reducing the DMA buffer size
won’t help, since the read() call will continue waiting up to 10 ms if it can’t fulfill
the read() call completely.
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• If 10 ms is an acceptable latency, there is no point in optimizing, as the read()
call is guaranteed to return after this time period, unless there is no data at all to
return with.

A.4 Host to FPGA (downstream)

A.4.1 Overview

The figure below depicts the flow in the host to FPGA (downstream) direction. The
shaded ares represent unconsumed data in the respective storage elements.

In this example, four DMA buffers are shown, even though the number can be config-
ured in the IP Core Factory.
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As before, the data flows from the host to the FPGA in three legs, as detailed next.

A.4.2 Leg #1: User software application to DMA buffer

This leg is implemented on Xillybus’ driver on the host by responding to write() system
calls (or the counterpart IRPs on Windows). According to the well-established API,
the write() call request includes a buffer that is supplied by the user application, as
well as the size of the buffer, which is also the maximal number of bytes to write. The
call may return after writing the maximal number of bytes (complete fulfillment) or less.

A pool of DMA buffers is allocated in the host’s RAM memory. The lifecycle of each
DMA buffer is like in many similar settings: In the beginning, all DMA buffers are empty
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and conceptually belong to the host. The host writes data to the buffers in a round-
robin manner: When it has finished writing to a certain buffer, it informs the hardware
that the buffer is ready for use (the buffer is “handed over to the hardware”), after
which it continues to write on the following buffer. The hardware may then consume
the data in the buffer, after which it informs the host that the buffer can be written to
again (the host “returns the buffer to the host”).

Xillybus’ driver responds to write() calls by attempting to copy as much data as possi-
ble into the DMA buffers. When any DMA buffer is filled completely, it’s handed over
to the hardware, i.e. the host informs the hardware that the buffer can be consumed,
and guarantees not to write to it again before the hardware returns the buffer to the
host.

If the driver managed to write at least one byte before running out of DMA buffer
space, the write() call returns with the number of bytes written. Otherwise is waits
(”blocks” by sleeping), possibly indefinitely, until a DMA buffer is made available for
writing, at which it writes as much data as possible into the DMA buffer and returns.

Note that if a DMA buffer is partially filled, it’s not handed over to the hardware at the
end of the write() call, so there may be data in one DMA buffer, which the hardware
isn’t aware of. A “flush” operation hands over a partially filled buffer, and it takes place
in any of the following four cases:

• An explicit flush, caused by making a write() call with the required byte count set
to zero. The write() call returns immediately (i.e. it doesn’t wait for the data to
be consumed by the FPGA).

• An automatic flush is initiated 10 ms after the last write() call.

• When the file is closed, a flush occurs, and the close() call waits for up to one
second for the data to be consumed by the FPGA before returning.

• On synchronous streams, every call to write() ends with a flush(), which waits
indefinitely until the data is consumed by the FPGA.

Note that a zero-count write() call forces an explicit flush, making sure that all data
that has been written is available to the FPGA. However it doesn’t give the application
software an indication on when the data is consumed by the FPGA. If such synchro-
nization is required, a synchronous stream should be applied.
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A.4.3 Leg #2: DMA buffer to Intermediate FIFO

In this leg, the Xillybus IP core copies the data from the DMA buffers in the host’s RAM
space to the FIFO in the FPGA. To accomplish this, the core uses some bus master
interface (PCIe, AXI4 etc) to read data directly from the host’s memory, without the
host’s processor’s intervention.

Leg #2’s data flow is controlled by the FIFO’s “full” signal and by the availability of
data in the pool of DMA buffers belonging to the FPGA: When the Xillybus IP core
senses a deasserted FIFO’s “full” signal, and there’s is data ready in some DMA
buffer, it fetches data from the DMA buffer and writes it into the FIFO. When the FIFO
becomes full again, or the DMA buffers are exhausted, the IP core’s internal state
machine stops fetching data momentarily, and then continues from where it left off in
the DMA buffer pool.

While the data flow is stalled, the IP core might be busy with other activities, for exam-
ple copying data on some other stream’s behalf (i.e.filling another intermediate FIFO).
As a result, there might be a random delay between the deassertion of the “full” signal
by the FIFO and the resumption of data copying. This delay varies, but the overall
design guarantees that a FIFO of 512 words is deep enough.

The hardware is of course aware of partially filled DMA buffers, and keeps track of
how much data each is filled with.

A.4.4 Leg #3: Intermediate FIFO to application logic

The user application logic in the FPGA fetches data elements from the FIFO connect-
ing between the user application logic and the Xillybus IP core. There is no require-
ment on when or how much data is fetched, except respecting the FIFO’s “empty”
signal to avoid underflow.

A.4.5 An example

Let’s consider the following simple case of an 8-bit asynchronous stream. Suppose
that a stream starts from fresh, after which the host application writes a single byte to
the device file.

• The driver’s write() call is invoked with a request to write one byte.

• As the stream is fresh, clearly there’s space in the DMA buffers. Hence the
driver copies the byte into the first DMA buffer and returns.
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• Nothing happens for 10 ms.

• The autoflush mechanism is triggered after 10 ms, causing the driver to hand
over the DMA buffer to the hardware with the information that it contains one
byte.

• The Xillybus IP core reads the byte from the DMA buffer and writes it into the
intermediate FIFO.

• The application logic may read the byte from the FIFO at will.

A.4.6 Practical conclusions

• Even if the application-level data always consists of chunks of N bytes, there
is no reason to adapt the DMA buffer size in any way: The user application
software just needs to flush the data with a zero-count write at the end of each
chunk to obtain a latency measured in microseconds.

• Even for continuous streams of data, latency can be reduced by making write()
calls with small buffers, followed by a zero-count write() flush, at the cost of
additional operating system’s overhead. Regardless of the DMA buffers’ size,
the latency depends only on the data rate and the byte count size given on the
write() calls.

• It can make sense to reduce the DMA buffer size if it’s know in advance that a
flush always occurs after a given chunk of data, and hence no DMA buffer is
ever filled beyond a certain level. However the only advantage of doing so is
saving some RAM at the host, which is unlikely to be significant.

• If 10 ms is an acceptable latency, there is no point in optimizing, as the auto-
flushing mechanism kicks in after 10 ms of idling.
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