
EE201L - Introduction to Digital Cirtuals Testbenches & Modelsim Experiment

ee201_testbench.fm [Revised: 3/8/10] 1/19

Writing a Testbench in Veri log & Using Models im to Test

1. Synopsis:

In this lab we are going through various techniques of writing testbenches. Writing efficient test-
benches to help verify the functionality of the circuit is non-trivial, and it is very helpful later on
with more complicated designs. The purpose of this lab is to get you familiarized with testbench
writing techniques, which ultimately help you verify your final project design efficiently and
effectively. You will also learn scripting DO files to control simulation in modelsim and to facili-
tate quick repeated simulations during debugging.

2. Importance of Testing:

Most of the exercises that you have done in this course so far are to design the core system.
Whether it is a state machine or some combinational logic, this is the most challenging part. In
real life, however, testing a system is often equally as challenging and important as building the
core design. This is because in hardware design, the cost of making a mistake can be extremely
high. Since (non-FPGA-based) hardware cannot be “updated” like software can be, often times,
the only way to fix an error in the hardware is to replace the part, and replacement can be a very
expensive proposition.

Consider, for example, the case of the infamous FDIV bug that was found in Intel Pentium proces-
sors in the mid-90s. In late 1994, a mathematics professor at Lynchburg College in Virginia found
that the Intel Pentium processor in his computer was consistently producing wrong result when
certain two numbers were divided. The bug was so hard to find that, if you randomly tried to
divide two numbers, there was only one in a 9 billion chance that you will encounter the case for
which the division operation produced a wrong result. Yet, the story about this bug became a mar-
keting nightmare for Intel, and despite all efforts, Intel had to recall all the defective processors. It
has been reported that the final cost of the recall was $475 million!! Don’t you think Intel wished
it could just release a “security update” that Tuesday and get it over with?

Testing a design comprehensively and efficiently is a major challenge in a complex design. In this
lab you are learning the Verilog syntaxes and coding techniques that can assist in writing efficient
testbenches. Furthermore, in this lab Modelsim simulator will be used in standalone mode. That
is, instead of creating our project in Xilinx ISE and launching Modelsim from the Project Naviga-
tor, you will use Modelsim’s graphical user interface (GUI) to simulate the code. Since the focus
of this lab is on writing testbenches, we will re-use the GCD design from previous lab and write a
new, advanced testbench for it. Notice that this is a simulation-only exercise.

3. GCD Review:

The GCD state machine takes two 8-bit unsigned numbers as inputs, Ain and Bin. The values of
Ain and Bin are accepted by the state machine when start goes high. Once start is received
by the state machine, using the simple four-state mealy state machine, as shown below, the GCD
of these numbers is computed. Upon the completion of the computation, the state machine enters
the DONE state and stays there until the acknowledgement signal (ack) is asserted. When ack is
received, the state machine enters the INITIAL state again and waits for the start to go active.

EE201L - Introduction to Digital Cirtuals Testbenches & Modelsim Experiment

ee201_testbench.fm [Revised: 3/8/10] 2/19

4. Using Modelsim Only (without Xilinx ISE) for simulation and verification

Unlike Xilinx ISE, Modelsim cannot synthesize/implement the design into real hardware, but it
can compile and simulate HDL-based design, and display graphical and text information to facili-
tate debugging. The main advantages of using Modelsim standalone are convenience and speed.
That is, instead of editing your code in the Project Navigator editor and re-invoking Modelsim
every time a small change is made (like we have been doing so far), by using Modelsim stand-
alone you can edit the code, re-compile it and re-simulate it -- all without closing the applications.
The procedure to simulate a design in Modelsim is simple:

1. Create a new Modelsim project.

2. Add existing source files to the project or create new Verilog source files.

3. Compile all source files.

4. Start simulation.

5. Run the simulation for the desired length of time.

If you find some errors, whether they are compilation errors (syntax errors that are reported dur-
ing compilation), or functional errors (you notice after simulating and observing waveforms), you
can edit the code and repeat steps 3-5 to re-simulate the design. More details on each of the five
steps are give in the Procedure section. Steps 3 to 5 can be automated using a DO file (with .do
extension).

INIT

DONE

MULT
SUB

START

START

ACK
ACK

RESET

a <= ain;
b <= bin;
i <= 0;

EE201L - Introduction to Digital Cirtuals Testbenches & Modelsim Experiment

ee201_testbench.fm [Revised: 3/8/10] 3/19

5. Writing Testbench

The function of a testbench is to apply stimulus (inputs) to the design under test (DUT), sometimes
called the unit under test (UUT), and report the outputs in a readable and user-friendly format. In this
section, we discuss how an efficient testbench can be written. Procedure steps requiring you to write
the testbench for the GCD design directly refer to elements of the testbench discussed in this section.
Note: Many of the coding techniques used in testbenches (such as file I/O, the initial block, etc) are
not suitable for synthesis.

5.1 Defining the timescale

Before the module definition of the testbench module begins, Modelsim requires a compiler directive
that defines the time unit and the precision level at which the simulation runs. Defining the time unit
is necessary so that the simulator knows whether, say, #10; means wait for 10ns or 10ps or 10us. The
syntax for this directive and a typical/recommended example is given below:

All compiler directives begin with the ‘ (accent grave character). Recall the ‘define directive that
we used in our state machine designs to create a macro for substituting the text with the macro name.

5.2 Instantiating the Design Under Test (DUT)

Every testbench must instantiate the design that it is expected to test. This design is usually referred to
as the “design under test” (DUT) or “unit under test” (UUT). Before the DUT is instantiated, each of
its inputs and outputs must be declared in the testbench. Inputs to the DUT are declared as reg and
outputs are declared as wire. Note that the outputs of the DUT are inputs to the testbench. Remember
that any input must be a wire. The inputs to DUT are the stimuli generated in testbench. Stimuli are
usually generated in an initial or an always procedural block in the testbench. As you know, any
object assigned inside an initial or an always procedural block shall be a register type object, reg
or integer or real or time. (Note: We know that the register type object does not mean a hardware register
unless it is assigned in a clocked always statement sensitive to posedge clk or negedge clk. The Verilog
2001 replaces the term “register” with the more intuitive term “variable” to avoid this common confusion
among learners. Refer http://www.sutherland-hdl.com/papers/2000-HDLCon-paper_Verilog-2000.pdf). We
are not using register types real or time in this course. We use reg in synthesizable designs
(though we can use integer or real also in synthesizable designs) and use mostly reg and occasionally
integer in testbenches.
Example: integer clk_cnt, start_Clk_cnt, clocks_taken;

Syntax Example

 ‘timescale <unit>/<precision> ‘timescale 1ns/1ns

Testbench
DUT

wire wirereg
(or wire)

reg
(or wire)

Any input is driven constantly and must be a wire.

EE201L - Introduction to Digital Cirtuals Testbenches & Modelsim Experiment

ee201_testbench.fm [Revised: 3/8/10] 4/19

Notice that there are usually no ports for the testbench itself. Ex: module ee201_GCD_tb_Part1;
There are usually two methods for the testbench to interact with the DUT as shown below. We use
the first method where the testbench contains the DUT and does not require any ports. In the sec-
ond method, a higher module needs to instantiate the testbench and the DUT to tie them together,
and the testbench module has ports.

Instantiation of the DUT can be made using ‘positional’ association or ‘named’ association. In
positional (or implicit) association the order in which signals are listed in the instantiation deter-
mines how they are connected to the ports of the DUT. In named (or explicit) association, each
DUT port signal is explicitly associated to a testbench signal. Named association is the preferred
method of instantiating a DUT. The syntax for the two types of associations is shown below.

Given below is the example code for instantiating the GCD design using both named and posi-
tional associations. For readability, it is preferred that the signal names in the testbench are simply
the port names with the suffix “_tb”. For example, the port “Clk” has its corresponding signal in
the testbench with the name “Clk_tb”.

Named Instantiation Positional Instantiation

module_name instance_name (
.port_name_1 (tb_signal_name_1),
.port_name_2 (tb_signal_name_2)
);

module_name instance_name (
tb_signal_name_1,
tb_signal_name_2
);

Named Instantiation Positional Instantiation

module ee201_GCD_tb_Part1;

// Declaring inputs
reg Clk_tb;
reg reset_tb;
reg start_tb;
reg ack_tb;
reg [7:0] Ain_tb;
reg [7:0] Bin_tb;

// Declaring outputs
wire [7:0] AB_GCD_tb;
wire q_I_tb;
wire q_Sub_tb;
wire q_Mult_tb;
wire q_Done_tb;

// Instantiating the DUT

ee201_GCD dut (
.Clk(Clk_tb),
.reset(reset_tb),
.start(start_tb),
.ack(ack_tb),
.Ain(Ain_tb),
.Bin(Bin_tb),
.AB_GCD(AB_GCD_tb),
.q_I(q_I_tb),
.q_Sub(q_Sub_tb),
.q_Mult(q_Mult_tb),
.q_Done(q_Done_tb)
);

module ee201_GCD_tb_Part1;

// Instantiating the DUT

ee201_GCD dut (
 Clk_tb,
 reset_tb,
 start_tb,
 ack_tb,
 Ain_tb,
 Bin_tb,
 AB_GCD_tb,
 q_I_tb,
 q_Sub_tb,
 q_Mult_tb,
 q_Done_tb
);

Testbench

DUT
#1 Testbench

DUT
#2

W
e f

oll
ow

 th
is

me
tho

d.

I/O declarations are the same

EE201L - Introduction to Digital Cirtuals Testbenches & Modelsim Experiment

ee201_testbench.fm [Revised: 3/8/10] 5/19

5.3 Generating Clock

All sequential DUTs require a clock signal. To generate a clock signal, many different Verilog
constructs can be used. Given below are two example constructs. Method 1 is preferred because
the entire clock generation code is neatly encapsulated in one initial block.

5.4 Applying Stimulus and Timing Control

In addition to the clock, the testbench has to produce various other signals that are used as inputs
to the DUT. These signals, also called “stimulus”, have to be applied with specific values at spe-
cific times. For instance, reset has to be asserted at the start of the simulation. Only after reset
has been de-asserted, should other inputs be applied.

Before discussing the various ways to control the timing of a signal in the testbench, two rules for
stimulus timing are worth noting:

• Rule # 1: All inputs should be applied with a small delay consequent to the clock edge.
For example, the start signal should be asserted a little (say, 1 time unit) after the clock edge.
Note that a little after the current clock edge means long before the next edge. The “little after” is
to satisfy the hold-time requirements of the flip-flops and the “long before” is for satisfying the
setup time of the flip-flops and any next state logic.

• Rule # 2: All outputs should be read somewhere in the middle of the clock (or in the later
half of the clock or towards the end of the clock) at which time they are expected to be valid and
stable.

Verilog provides three ways to control timing of signals in the testbench.

Delay Control (#): The simplest way to control the timing of a signal is to use the delay control
operator “#” followed by the time for which the value is held. This simple method was used in all
of our testbenches up to this point. The disadvantage of using delay control, however, is that the
timing cannot be defined relative to other activity in the system. Therefore, the exact timing of
each stimulus signal has to be determined a priori. In a design like the GCD, the length of time
spent on computing the results is dependent upon the input data values. In this case, tedious man-
ual calculations of timing of the acknowledgment signal are required for each set of inputs. There-
fore, in this (and subsequent) testbenches, it is highly recommended that delay control be used
only for trivial timing control or where it is the only option (such as in the clock and reset signal
generation).

Clock Generation Method # 1 Clock Generation Method # 2

 initial
 begin: CLOCK_GENERATOR
 Clk_tb=0;
 forever
 begin
 #5 Clk_tb = ~ Clk_tb;
 end
 end

 initial
 begin: CLOCK_INITIALIZATION
 Clk_tb = 0;
 end
 always
 begin: CLOCK_GENERATOR
 #5 Clk_tb = ~ Clk_tb;
 end

EE201L - Introduction to Digital Cirtuals Testbenches & Modelsim Experiment

ee201_testbench.fm [Revised: 3/8/10] 6/19

Level Sensitive Control (wait): If a signal has to be asserted consequent to a DUT output going
active, level sensitive timing control “wait” can be used. Consider the example of the ack signal in
the GCD design. ack goes active consequent to the state machine entering the DONE state which is
indicated by q_done going high.

Since ack has to be asserted only after q_done has gone high, instead of computing the time when
q_done goes high, the above code implements a simple wait for the signal q_done to go high and
assert ack consequent to it with a small delay (in accordance with Rule # 1 mentioned above).

Event Control (@): Level sensitive control can be used to wait for signals to go high or low. How-
ever, certain inputs have to be applied consequent to a specific edge (the two may be interchangeable
in some instances). To do so, event control operator “@” has to be used.

Consider the example of the start signal in the GCD design. Suppose, it was required that start be
asserted two clock cycles after the state machine enters the INITIAL state. Following code can be
used to accomplish this. Note: The level-sensitive wait statements wait(Clk_tb) in the wrong code
below do not help here, as right after the q_I is a “1”, Clk_tb is already high and the two wait state-
ments pass without any waiting.

5.5 String variable display in the waveform

The state vector displayed in binary (in the modelsim waveforms) perhaps does not let us quickly
understand the sequence of states our design went through. We end up looking up the state coding and
state assignments. It is easy to display the state as an ascii string variable in the modelsim waveforms.

Code Explanation

wait (q_done); wait for q_done to be high

1; after a small delay

ack = 1; assert ack

Code wrong code Explanation

wait (q_I); wait (q_I); wait for q_I to be high

@ (posedge Clk_tb); wait(Clk_tb); wait for one clock (after q_I goes high)

@ (posedge Clk_tb); wait(Clk_tb); wait for another clock

1; #1; after a small delay

start = 1; start = 1; assert start

reg [5*8:1] state_string; // 5-character string for symbolic display of state
always @(*)

case ({q_I, q_Sub, q_Mult, q_Done}) // Note the concatenation operator {}
4'b1000: state_string = "q_I ";
4'b0100: state_string = "q_Sub ";
4'b0010: state_string = "q_Mult";
4'b0001: state_string = "q_Done";

endcase

Extract from the
GCD testbench

EE201L - Introduction to Digital Cirtuals Testbenches & Modelsim Experiment

ee201_testbench.fm [Revised: 3/8/10] 7/19

5.6 Displaying Outputs as Text

Reading the value of signals using the waveform is often times extremely useful in debugging the
design. The waveforms allow designers to observe not only the values of the signals but also their rel-
ative timing (e.g., values “before” the clock edge and “after” the clock edge). However, once the
designer has reasonable confidence in the correct timing of the design, it may be desirable to observe
the value of a few signals in text form. For example, in a rigorous test of the GCD design where sev-
eral sets of inputs are applied, it may be easier to read the final GCD values for each input set in a text
form than to trace the final output values in a very long waveform.

Verilog provides several system tasks to display values of a signal. The simplest of them is the $dis-
play task, which can be used to print the values of signals in various formats. In Modelsim, these val-
ues are printed in the Transcript window (they appear as blue-color text). The syntax and an example
of $display usage is given below.

5.7 Useful system tasks

• $display, $strobe, $monitor: share the same syntax, and display values as text on the screen
during simulation. However, $display and $strobe display once every time they are executed,
whereas $monitor displays every time one of its parameters changes. The difference between $dis-
play and $strobe is that $strobe displays the parameters at the very end of the current simulation
time unit (after all the delta_Ts are over for the current simulation time). The format string is like that
in C/C++, and may contain format characters. Format characters include %d (decimal), %h (hexa-
decimal), %b (binary), %c (character), %s (string) and %t (time). Append b, h, o to the task name
to change default format to binary, octal or hexadecimal.

Example: $displayh (var); // displayed in hexadecimal
$monitor (“At time=%t, d=%h”, $time, var);

• $write: the difference between $write (, $writeb, $writeo, $writeh) and the $display (,
$displayb, $displayo, $displayh) is the absence (for $write) or presence (for $display) of the
carriage-return and new-line characters at the end of the current line. If you want to “compose” a
long line, whose segments depend on variables in the testbench, then you can use $write for all seg-
ments except for the las segment for which you would use $display.

• $time, $stime, $realtime: these system functions return the current simulation time as a 64-
bit integer, a 32-bit integer, and a real number, respectively. Note: these are called functions and not
tasks as they return values.

Syntax Example

$display (
“formatted_string”,
signal_list
);

$display (
“Ain=%d, Bin=%d”,
Ain, Bin
);

EE201L - Introduction to Digital Cirtuals Testbenches & Modelsim Experiment

ee201_testbench.fm [Revised: 3/8/10] 8/19

• $reset, $stop, $finish: $reset resets the simulation back to time 0; $stop halts the simula-
tor and puts it in the interactive mode where the user can enter commands; $finish exits the simu-
lator back to the operating system.

• $deposit: sets a net to a particular value.

Syntax: $deposit (net_name, value);

• $random: this function generates (and returns) a random integer every time it is called. If
the random sequence is to be repeatable, the first time one invokes random give it a numerical
argument (a seed). Otherwise the seed is derived from the computer clock.

Syntax: var = $random[(integer_seed)]; // integer_seed is an optional argument

5.8 Using Tasks

Very often in testbenches, the same piece of code is repeated several times. This is often the case
when different sets of inputs are applied. In the GCD design, for example, for every pair of Ain
and Bin values, the same piece of code is repeated for applying start and ack. To simplify the
coding of the testbench, such re-usable code can be put in a user-defined “task” which can be
called with an appropriate set of input arguments. Task can contain any type of timing control
statement (#, wait or @) and system tasks (e.g. $display). In effect, virtually any piece of code
that can be written in-line (meaning without containing it in a task) can be put in a task for re-
usability. A task can have zero or more input and/or output (and/or inout) arguments but it does
not return values like a function. The body of the task must be enclosed in begin-end. Tasks are
defined outside procedural blocks (i.e., outside initial and always blocks) but can be called
from within a procedural block. Finally, while in this exercise tasks are proposed only for test-
benches, they can be used in synthesizable code provided they do not contain non-synthesizable
constructs (such as timing controls) in them. An example task that asserts acknowledge signal
(ack) in the GCD design at an appropriate time is shown below (Note that this task does not spec-
ify any arguments). Note that variables such as Ack_tb, which are visible at the line of the task
call, are also visible to the task.

task SEND_ACKNOWLEDGE; // semicolon needed
begin // begin-end necessary

// Send an acknowledge
Ack_tb = 1;
@(posedge Clk_tb);
1;
Ack_tb = 0;
@(posedge Clk_tb);
1;

 end // begin-end necessary
endtask // no semicolon

EE201L - Introduction to Digital Cirtuals Testbenches & Modelsim Experiment

ee201_testbench.fm [Revised: 3/8/10] 9/19

5.9 FOR loop

When using a FOR loop in Verilog, the loop index must be declared as an integer. FOR loops can
be used inside an always or initial block. An example of a for loop (in a testbench) is:

integer i;
initial

for (i=0; i<10; i = i+1)
begin
@(posedge Clk)
#1;
A_reg = i;
end

5.10 File I/O in Verilog

Thorough testbenches need to process significant amounts of relevant data to ensure the correct-
ness of a design. Often that data may be complex to produce and/or to analyze. In such cases, the
use of domain-specific or otherwise appropriate tools assists the designer in producing useful test
data and analyzing the output of a system. In order to incorporate other tools into a testing strat-
egy, we need a way of transferring the necessary data. File I/O operations allow us to use standard
files to do this. Other software tools used within specific domains can be useful for creating test
stimulus (i.e. Matlab). Verilog-2001 provides extensive file I/O capability directly in the Verilog
language. The following operations are supported:

• C or C++ type file operations (example c = $fgetc (fd) returns a -1 in c if end of file is encountered).

• Reading characters from file from a fixed location.

• Reading a formatted lines in file.

• Writing a formatted lines into file.

To open a file:

file_descriptor_ID = $fopen("filename","r"); // r = For reading
file_descriptor_ID = $fopen("filename","w"); // w = For writing

Note: file_descriptor_ID is the logical name (example: my_gcd_file) you use in your
code in the system tasks such as $fdisplay and $fwrite whereas the filename is the phys-
ical name of the file on your hard-disc (example: ee201_gcd_Part3_output.txt).

To close a file

$fclose(file_descriptor_ID);

To read variables from a file

EE201L - Introduction to Digital Cirtuals Testbenches & Modelsim Experiment

ee201_testbench.fm [Revised: 3/8/10] 10/19

$fscanf(file_descriptor_ID, “formatted_string”, [arguments]);

To write to a file

$fdisplay(file_descriptor_ID, “formatted_string”[, arguments]);
$fwrite(file_descriptor_ID, “formatted_string”[, arguments]);

$fdisplay includes a carriage-return and a new-line character at the end of the current line where as
$fwrite does not.

Verilog 2001 has several tasks to operate on strings: $sscanf, $swrite, .. (similar to $fscanf,
$fwrite, ..).

Please check the manuals or online help for more details on file I/O operations in Verilog.
Also please read the testbenches with file I/O provided to you for other labs/exercises.

An extract from the copy_array_to_array_tb.v

The above task produced display on the side:
“Growing” a string as shown in the line marked
with an arrow above:

EE201L - Introduction to Digital Cirtuals Testbenches & Modelsim Experiment

ee201_testbench.fm [Revised: 3/8/10] 11/19

6. Procedure

Before you can start writing the testbench, you must create a new Modelsim project and include
the GCD design and the testbench file to it.

6.1 Create a project directory
“ee201l_gcd_testbench” under
C:\ModelSim_projects.

6.2 Copy the GCD design file (ee201_gcd.v) from previous lab to this directory. Your TA
may provide you with a complete working GCD design if you could not finish your previous lab.

6.3 Open Modelsim and create a new project by
clicking: File -> New -> Project. In the Create
Project dialogue box, type the Project Name:
ee201l_gcd_testbench and choose the project direc-
tory that you created above
(C:\ModelSim_projects\ee201l_gcd_testben
ch) as the Project Location . Leave the other
options unchanged. Click OK to continue.

6.4 Click on .

Browse and select the GCD design file (ee201_gcd.v).
This adds our GCD design file to the project with a

 sign in front of it (indicating that is has not been
compiled yet). Do not close the Add Items to the Project dialogue box yet.

6.5 Next, select in the dia-
logue box. When prompted, give it the name ee201_gcd_tb_part1.v
and choose the type as Verilog. This new (blank) testbench file gets
added to the project.

6.6 Double click on the
ee201_gcd_tb_part1.v file in the Workspace
to open it. This will open the file in a text editor
(the file is blank, of course). Now, its time to

EE201L - Introduction to Digital Cirtuals Testbenches & Modelsim Experiment

ee201_testbench.fm [Revised: 3/8/10] 12/19

write the testbench code!

If you prefer you may use Notepad++ for editing Verilog files.

Part 1: Writing a simple testbench

In this first part of the lab, you will write a simple testbench that applies two sets of inputs to the
GCD core design. Use the example code snippets provided in this handout for help.

6.7 In the blank testbench file (ee201_gcd_tb_part1.v) add the code for: (1) defining the
time units and precision, (2) module definition of the testbench module (along with the corre-
sponding endmodule), and (3) instantiation of the GCD design. Use the sample code segments
provided in Section 5 of this handout.

6.8 Using the recommended methods for coding the clock generator, write the code that gen-
erates Clk_tb.

6.9 Using #, wait and @ to control the timing of signals, write the code that applies the stimu-
lus to the GCD design. Use two sets of values for Ain and Bin: (24 & 36) and (5 & 15). The code
you write must generate reset_tb, Ain_tb, Bin_tb, start_tb and ack_tb with the timing
shown in the waveform (Part I, attached). Make sure that the timing of each signal is defined rela-
tive to the activity in the system. Use delay control only to add a small delay after a signal goes
high or after the clock edge.

6.10 Add code to print the values of Ain, Bin and GCD
when the computation of GCD for each set of inputs is com-
pleted.

6.11 Finally, write code for a free-running clock counter. This counter helps in computing the
number of clocks it takes the state machine to compute the GCD of a given input set. Look at the
following waveform for more ideas about when to record start_clk_count and how to compute
clocks_taken. You may want to declare three data objects of integer data type as shown below:

integer clk_cnt, start_Clk_cnt, clocks_taken;

6.12 Once the code is complete, compile the code by
selecting “ -> . The compilation
order can be changed by -> .
Note: make sure that the order of compilation is from
innermost to outermost. If no compilation errors are
reported, proceed to start the simulation.

Clocks taken: C - B = 13 -5 = 8 A B C

clocks_taken = clk_cnt - start_clk_cnt;

start_clk_cnt = clk_cnt;

EE201L - Introduction to Digital Cirtuals Testbenches & Modelsim Experiment

ee201_testbench.fm [Revised: 3/8/10] 13/19

6.13 To begin simulating the design, select Simulate -
> Start Simulation. Click the “+” next to “work” in
the Start Simulation dialog. This will reveal your
compiled designs. Select “ee201_GCD_tb_Part1” and
click “OK”.

6.14 Add all top-level signals to the waveform window. To do
this, right click on any object, select .
If the waveform window is not available, select View -> Wave to
make it viewable.

6.15 Type “log -r *” to tell ModelSim to log all signals whether they are cur-
rently added to the wave display or not. To run simulations for a fixed length of (simulation) time
(250ns in this example), type “run 250ns” at the VSIM> prompt in the Transcript window. Simu-
lation data will appear as waveform and values of Ain, Bin, and GCD should appear as text in the
transcript window. The transcript window should show the following:

6.16 In the waveform, you may want to change the radix of
signals, Ain_tb, Bin_tb, and AB_GCD_tb, to unsigned. Prac-
tice using the zoom and cursor controls shown on the side.

Note: steps 6.12 through 6.16 should be repeated every time a change is made to the code. You
need to end the current simulation by Simulate -> End Simulation. Or do step 6.12 as needed and
type “restart -f” to restart the simulation. This will avoid the repetition of 6.13 to 6.16.

6.17 .do files in ModelSim: While “restart -f” helps multiple runs in the same “sitting”, if
we want to repeat the tests after a couple of days, we need a method to automate
steps 6.12 to 6.15. The modelsim .do file is a “batch” file to execute a series of commands one
after another. Basically, we want to compile the verilog codes, start simulation, add the desired
signals to the waveform, change some signal display radices, simulate for certain length of time.

VSIM4> run 250ns
Ain: 36 Bin: 24 GCD: 12
It took 8 clock(s) to compute the GCD
Ain: 5 Bin: 15 GCD: 5
It took 4 clock(s) to compute the GCD

ee201_gcd_tb_Part1.do
vlib work
vlog +acc "ee201_gcd.v"
vlog +acc "ee201_gcd_tb_Part1.v"
vsim -t 1ps -lib work ee201_gcd_tb_Part1
view objects
view wave
do {ee201_gcd_tb_Part1_wave.do}
log -r *
run 300ns

Some explanation of commands:
vlib : Specifies a project directory
vlog : verilog compiler invocation
(vcom for VHDL compilation)
vsim : simulator invocation
view : specifies a tool window for view
do : executes a .do file such as wave.do
log -r * : logs all signal activity
 whether you added or not
 some signals
run 300ns

"quit -sim" lets you quit from simulation mode (and receive vsim> prompt), where as
 "quit" will quit from ModelSim altogether. So after you revise some of your design or test-
bench, you should "quit -sim" to ModelSim> prompt, and then run the DO file you just com-
posed. The goal is to avoid bring up and down the ModelSim.

EE201L - Introduction to Digital Cirtuals Testbenches & Modelsim Experiment

ee201_testbench.fm [Revised: 3/8/10] 14/19

Go to the waveform window display (displaying the needed signals in the desired order and radices),
and save file: File => Save. Accept the default name wave.do (or choose to name it something like
ee201l_gcd_tb_Part1_wave.do). It creates C:/ModelSim_projects/ee201l_gcd_testbench/
ee201l_gcd_tb_Part1_wave.do Then create a text file, with name, say,
ee201l_gcd_tb_Part1.do using word pad or note pad to include the commands shown in the inset.
Make sure that the extension is not changed to .txt. If needed, you can rename the file. Next time, you
want to simulate, you double-click on ee201l_gcd_testbench.mpf and at the VSIM> prompt, you type
do {ee201l_gcd_tb_Part1.do} or just do ee201l_gcd_tb_Part1.do

In the above waveform, you see signal names shown (in the left-most
pane) with complete hierarchical path names. This is the default behav-
ior. If you want simple signal name with no hierarchical path, then go to
Tools menu on the waveform window and open Window prefer-
ences .
Change the default 0 to 1 to get simple names for signals.

Part 2: User-defined Tasks in Testbenches

In this second part of the lab, you will use a user-defined task to re-use the code that applies the stim-
ulus. Furthermore, you will write the testbench code necessary to test the GCD state machine exhaus-
tively for all values of Ain and Bin between 2 and 63. Like in Part 1, your testbench should report the
two inputs and the number of cycles it took the state machine to compute the GCD for each input pair.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 36 5

0 24 15

3 6 12 5

0 5 16

0 8 4

/ee201_GCD_tb_Part1/Clk_tb

/ee201_GCD_tb_Part1/clk_cnt 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

/ee201_GCD_tb_Part1/reset_tb

/ee201_GCD_tb_Part1/start_tb

/ee201_GCD_tb_Part1/ack_tb

/ee201_GCD_tb_Part1/Ain_tb 0 36 5

/ee201_GCD_tb_Part1/Bin_tb 0 24 15

/ee201_GCD_tb_Part1/AB_GCD_tb 3 6 12 5

/ee201_GCD_tb_Part1/q_I_tb

/ee201_GCD_tb_Part1/q_Sub_tb

/ee201_GCD_tb_Part1/q_Mult_tb

/ee201_GCD_tb_Part1/q_Done_tb

/ee201_GCD_tb_Part1/start_clk_cnt 0 5 16

/ee201_GCD_tb_Part1/clocks_taken 0 8 4

Waveform for Part 1

EE201L - Introduction to Digital Cirtuals Testbenches & Modelsim Experiment

ee201_testbench.fm [Revised: 3/8/10] 15/19

6.18 Make a copy of the testbench file ee201_GCD_tb_Part1.v and name it as
ee201_GCD_tb_Part2.v . Change the module name to ee201_GCD_tb_Part2 .

6.19 Start coding a task APPLY_STIMULUS.
 task APPLY_STIMULUS;
 input [7:0] Ain_value;
 input [7:0] Bin_value;
 begin
Move the replicated code for applying the stimulus to this task. The two inputs of the task will be
the values of the formal parameters Ain_value and Bin_value and the task will apply these stim-
ulus along with start and ack signals with necessary timing control.

6.20 First test your task by invoking the task for fixed pairs of values.
APPLY_STIMULUS (36,24);
APPLY_STIMULUS (5,15);

6.21 After making sure that the task works properly for the above pair, write the code to apply
the inputs Ain and Bin over the range of 2...63. A nested for-loop (a for-loop within another for-
loop) is one of the simplest ways to accomplish this. An example of a nested for loop is given
below:

 integer hr, min;

for (hr = 0; hr <= 23; hr = hr+1)
 for (min = 0; min <= 59; min = min+1)
 // do whatever needs to be done with hr & min

6.22 The output (in the transcript window) of your testbench should look like this:
Ain: 2 Bin: 2 GCD: 2
It took 1 clock(s) to compute the GCD
Ain: 2 Bin: 3 GCD: 1
It took 5 clock(s) to compute the GCD
Ain: 2 Bin: 4 GCD: 2
It took 5 clock(s) to compute the GCD
Ain: 2 Bin: 5 GCD: 1
It took 6 clock(s) to compute the GCD

Attached is the waveform view of the first 1us of simulation.

Part 3: File Output

In this third part of the lab, you are required to output the results (for Ain and Bin over the range
of 2...63) to a text file named “ee201_gcd_Part3_output.txt” instead of the Transcript win-
dow. The format of the text is similar to Part 2. Make a copy of the testbench file
ee201_GCD_tb_Part2.v and name it as ee201_GCD_tb_Part3.v . Change the module name to
ee201_GCD_tb_Part3 .

EE201L - Introduction to Digital Cirtuals Testbenches & Modelsim Experiment

ee201_testbench.fm [Revised: 3/8/10] 16/19

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

65
66

67
68

69
70

71
72

73
74

75
76

77
78

79
80

81
82

83
84

85
86

87
88

89
90

91
92

93
94

95
96

97
98

99

0
2

0
2

3
4

5
6

7
8

9
10

11
12

2
1

2
1

2
1

2
1

2
1

0
5

9
17

25
34

43
53

62
72

82
93

0
1

5
6

7
6

7
8

22
3

4
5

6
7

8
9

10
11

12

0
200000

400000
600000

800000
1000000

/ee201_G
C

D
_tb_P

art2/C
lk_tb

/ee201_G
C

D
_tb_P

art2/clk_cnt
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

32
33

34
35

36
37

38
39

40
41

42
43

44
45

46
47

48
49

50
51

52
53

54
55

56
57

58
59

60
61

62
63

64
65

66
67

68
69

70
71

72
73

74
75

76
77

78
79

80
81

82
83

84
85

86
87

88
89

90
91

92
93

94
95

96
97

98
99

/ee201_G
C

D
_tb_P

art2/reset_tb

/ee201_G
C

D
_tb_P

art2/start_tb

/ee201_G
C

D
_tb_P

art2/ack_tb

/ee201_G
C

D
_tb_P

art2/A
in_tb

0
2

/ee201_G
C

D
_tb_P

art2/B
in_tb

0
2

3
4

5
6

7
8

9
10

11
12

/ee201_G
C

D
_tb_P

art2/A
B

_G
C

D
_tb

2
1

2
1

2
1

2
1

2
1

/ee201_G
C

D
_tb_P

art2/q_I_tb

/ee201_G
C

D
_tb_P

art2/q_S
ub_tb

/ee201_G
C

D
_tb_P

art2/q_M
ult_tb

/ee201_G
C

D
_tb_P

art2/q_D
one_tb

/ee201_G
C

D
_tb_P

art2/start_clk_cnt
0

5
9

17
25

34
43

53
62

72
82

93

/ee201_G
C

D
_tb_P

art2/clocks_taken
0

1
5

6
7

6
7

8

/ee201_G
C

D
_tb_P

art2/A
_loop

2

/ee201_G
C

D
_tb_P

art2/B
_loop

2
3

4
5

6
7

8
9

10
11

12

E
ntity:ee201

G
C

D
tb

P
art2

A
rchitecture:

D
ate:W

ed
M

ar12
5:20:19

A
M

P
acific

D
aylightTim

e
2008

R
ow

:1
P

age:1

W
aveform

 Part 2

EE201L - Introduction to Digital Cirtuals Testbenches & Modelsim Experiment

ee201_testbench.fm [Revised: 3/8/10] 17/19

7. Lab Report:

Q 7. 1: Submit online the following 4 Verilog testbench files and one text output file.
ee201_gcd_tb_Part1.v, ee201_gcd_tb_Part2.v,
ee201_gcd_tb_Part3.v, ee201_gcd_Part3_output.txt, names.txt
Submit hardcopy (paper) for waveform from part 1.

Q 7. 2: (5 pts) What should the signals that connect to the inputs and outputs of the DUT be
declared as in the testbench (check one or more):

a. Inputs to DUT as wire, outputs as reg b. Inputs as reg, output as wires

c. Both as wires d. Both as reg

Q 7. 3: (2 pts) Which of the two methods of instantiating the DUT is preferred?

positional association named association

Q 7. 4: (5 pts) What is the frequency of the clock defined in the clock generator example
codes in sec. 5.3) in this handout? Use the time scale definition from Sec. 5.1

Q 7. 5: (10 pts) Suppose that you are asked to generate a clock of period 30ns but the duty
cycle is 33.33% (one-third). Write the corresponding Verilog code.

Q 7. 6: (3 pts) Do you instantiate the DUT (or UUT) in the initial procedural block or in the
always procedural block? Miss Bruin says that it shall be in the initial procedural
block as it should be instantiated only once.

(a) initial procedural block (b) always procedural block (c) neither

Name:_________________________ Date: _________________________
Lab Session: ___________________ TA’s Signature: __________________

For TAs: 3-part Implementation (15+20+15): _____ Report (out of 50): ___

Comments:

EE201L - Introduction to Digital Cirtuals Testbenches & Modelsim Experiment

ee201_testbench.fm [Revised: 3/8/10] 18/19

Q 7. 7: (4 + 6 = 10 pts) Compare the following codes. The intent is to keep the start signal
active for 1 clock, wait for two clocks, activate the ack for 1 clock. Which of the fol-
lowing work? (4 pts) Select one or more as appropriate.

a. Code A b. Code B c. Code C

Hint: One of the following is level-sensitive and the other is edge-sensitive.
@(posedge clk); wait (clk);

If you’re not sure, just simulate the codes and see what happens!

Explain your reasoning/analysis of the above 3 code segments. (6 pts)
__
__
__
__
__
__
__
__
__

 Code A Code B Code C

@(posedge clk);
#1;
start <= 1;

@(posedge clk);
#1;
start <= 0;

@(posedge clk);
@(posedge clk);
#1;
ack <= 1;

@(posedge clk);
#1;
ack <= 0;

wait (clk);
#1;
start <= 1;

wait (clk);
#1;
start <= 0;

wait (clk);
wait (clk);
#1;
ack <= 1;

wait (clk);
#1;
ack <= 0;

wait (~clk);
wait (clk);
#1;
start <= 1;

wait (~clk);
wait (clk);
#1;
start <= 0;

wait (~clk);
wait (clk);
wait (~clk);
wait (clk);
#1;
ack <= 1;

wait (~clk);
wait (clk);
#1;
ack <= 0;

EE201L - Introduction to Digital Cirtuals Testbenches & Modelsim Experiment

ee201_testbench.fm [Revised: 3/8/10] 19/19

Q 7. 8: (15 pts) Suppose the core design (some other core design other than the GCD) has two
sub-systems each having their own state machines. However, they share the same
START and ACK signals. They both start when START is given (by the testbench or the
top design). Each can take different number of clocks and the number of clocks is data
dependent like in GCD. So sometimes SS1 (sub-system #1) can finish first and some-
times SS2. Or sometimes both may finish in the same clock! When a sub-system fin-
ishes, it produces a done signal just for 1 clock. SS1 produces a one-clock wide
DONE_1 and SS2 produces one-clock wide DONE_2.

Your job in the testbench, so far as sending ACK is concerned, is to
-- wait for both DONE_1 and DONE_2 to arrive
-- wait for one clock and then
-- issue a one-clock wide acknowledge ACK and
-- of course get ready for the next test iteration.

Write a code segment to do the above to send ACK correctly Include declarations of
any new variables (objects). Pay attention to blocking and non blocking assignments.

____________________________________ _______________________________________
____________________________________ _______________________________________
____________________________________ _______________________________________
____________________________________ _______________________________________
____________________________________ _______________________________________
____________________________________ _______________________________________
____________________________________ _______________________________________
____________________________________ _______________________________________
____________________________________ _______________________________________
____________________________________ _______________________________________
____________________________________ _______________________________________
____________________________________ _______________________________________
____________________________________ _______________________________________

INI_1 COM_1 WAIT_1DONE_S1
DONE_1
activated

START

ACKSTART

ACK

COND_1

COND_1

R
E

SE
T

SUB-SYSTEM #1

INI_2 COM_2 WAIT_2DONE_S2
DONE_2
activated

START

ACKSTART

ACK

COND_2

COND_2

R
E

SE
T

SUB-SYSTEM #2

