
I N T H I S C H A P T E R

Working with Multiple-
Table Queries 3

Most database applications (and all well-designed
database applications) store their information in
multiple tables. Although most of these tables have
nothing to do with each other (for example, tables
of customer information and employee payroll
data), it’s likely that at least some of the tables do
contain related information (such as tables of cus-
tomer information and customer orders).

Working with multiple, related tables in a query
presents you with two challenges: You need to
design your database so that the related data is
accessible, and you need to set up links between the
tables so that the related information can be
retrieved and worked with quickly and easily in the
query design window. This chapter tackles both
challenges and shows you how to exploit the full
multiple-table powers of Access.

Relational Database Fundamentals
Why do you need to worry about multiple tables,
anyway? Isn’t it easier to work with one large table
instead of two or three medium-sized ones? To
answer these questions and demonstrate the prob-
lems that arise when you ignore relational database
models, take a look at a simple example: a table of
sales leads.

The Pitfalls of a Nonrelational Design
Table 3.1 outlines a structure of a simple table
(named Leads) that stores data on sales leads.

Relational Database Fundamentals 65

Types of Relational Models 70

Enforcing Referential Integrity 72

Establishing Table Relationships 72

Working with Multiple Tables in a Query 76

Creating Other Types of Joins 80

Creating a Unique Values Query 86

Case Study .88

05 0789731525 CH03 7/13/04 10:56 AM Page 65

Table 3.1 A Structure of a Simple Sales Leads Table (Leads)

Field Description

LeadID The primary key.

FirstName The contact’s first name.

LastName The contact’s last name.

Company The company that the contact works for.

Address The company’s address.

City The company’s city.

State The company’s state.

Zip The company’s ZIP code.

Phone The contact’s phone number.

Fax The contact’s fax number.

Source Where the lead came from.

Notes Notes or comments related to the sales lead.

This structure works fine until you need to add two or more leads from the same company
(a not-uncommon occurrence). In this case, you end up with repeating information in the
Company, Address, City, and State fields. (The Zip field also repeats, as do, in some cases,
the Phone, Fax, and Source fields.)

All this repetition makes the table unnecessarily large, which is bad enough, but it also cre-
ates two major problems:

■ During data entry, the repeated information must be entered for each lead from the
same company.

■ If any of the repeated information changes (such as the company’s name or address),
each corresponding record must be changed.

One way to eliminate the repetition and solve the data entry and maintenance inefficiencies
is to change the table’s focus. As it stands, each record in the table identifies a specific con-
tact in a company. But it’s the company information that repeats, so it makes some sense
to allow only one record per company. You can then include separate fields for each sales
lead within the company. The new structure might look something like the one shown in
Table 3.2.

3

Chapter 3 Working with Multiple-Table Queries66

05 0789731525 CH03 7/13/04 10:56 AM Page 66

67Relational Database Fundamentals

Table 3.2 A Revised, Company-Centered Structure of the Sales Leads Table

Field Description

LeadID The primary key.

Company The company’s name.

Address The company’s address.

City The company’s city.

State The company’s state.

Zip The company’s ZIP code.

Phone The company’s phone number.

Fax The company’s fax number.

First_1 The first name of contact #1.

Last_1 The last name of contact #1.

Source_1 Where the lead for contact #1 came from.

Notes_1 Notes or comments related to contact #1.

First_2 The first name of contact #2.

Last_2 The last name of contact #2.

Source_2 Where the lead for contact #2 came from.

Notes_2 Notes or comments related to contact #2.

First_3 The first name of contact #3.

Last_3 The last name of contact #3.

Source_3 Where the lead for contact #3 came from.

Notes_3 Notes or comments related to contact #3.

In this setup, the company information appears only once, and the contact-specific data (I’m
assuming this involves only the first name, last name, source, and notes) appears in separate
field groups (for example, First_1, Last_1, Source_1, and Notes_1). This solves the earlier
problems, but at the cost of a new dilemma: The structure as it stands will hold only three
sales leads per company. Of course, it’s entirely conceivable that a large firm might have
more than three contacts—perhaps even dozens. This raises two unpleasant difficulties:

■ If you run out of repeating groups of contact fields, new ones must be added. Although
this might not be a problem for the database designer, most data-entry clerks generally
don’t have access to the table design (nor should they).

■ Empty fields take up as much disk real estate as full ones, so making room for, say, a
dozen contacts from one company means that all the records that have only one or two
contacts have huge amounts of wasted space.

3

05 0789731525 CH03 7/13/04 10:56 AM Page 67

How a Relational Design Can Help
To solve the twin problems of repetition between records and repeated field groups within
records, you need to turn to the relational database model. This model was developed by
Dr. Edgar Codd of IBM in the early 1970s. It was based on a complex relational algebra
theory, so the pure form of the rules and requirements for a true relational database setup is
quite complicated and decidedly impractical for business applications. The next few sections
look at a simplified version of the model.

Step 1: Separate the Data
After you know which fields you need to include in your database application, the first step
in setting up a relational database is to divide these fields into separate tables where the
“theme” of each table is unique. In technical terms, each table must be composed of only
entities (that is, records) from a single entity class.

For example, the table of sales leads you saw earlier dealt with data that had two entity
classes: the contacts and the companies they worked for. Every one of the problems encoun-
tered with that table can be traced to the fact that we were trying to combine two entity
classes into a single table. So the first step toward a relational solution is to create separate
tables for each class of data. Table 3.3 shows the table structure of the contact data (the
Contacts table) and Table 3.4 shows the structure of the company information (the
Companies table). Note, in particular, that both tables include a primary key field.

Table 3.3 The Structure of the Contacts Table

Field Description

ContactID The primary key.

FirstName The contact’s first name.

LastName The contact’s last name.

Phone The contact’s phone number.

Fax The contact’s fax number.

Source Where the lead came from.

Notes Notes or comments related to the sales lead.

Table 3.4 The Structure of the Companies Table

Field Description

CompanyID The primary key.

CompanyName The company’s name.

Address The company’s address.

City The company’s city.

3

Chapter 3 Working with Multiple-Table Queries68

05 0789731525 CH03 7/13/04 10:56 AM Page 68

69Relational Database Fundamentals

State The company’s state.

Zip The company’s ZIP code.

Phone The company’s phone number (main switchboard).

Step 2: Add Foreign Keys to the Tables
At first glance, separating the tables seems self-defeating because, if you’ve done the job
properly, the two tables will have nothing in common. So the second step in this relational
design is to define the commonality between the tables.

In the sales leads example, what is the common ground between the Contacts and
Companies tables? It’s that every one of the leads in the Contacts table works for a specific
firm in the Companies table. So what’s needed is some way of relating the appropriate infor-
mation in Companies to each record in Contacts (without, of course, the inefficiency of sim-
ply cramming all the data into a single table, as we tried earlier).

The way you do this in relational database design is to establish a field that is common to
both tables. You can then use this common field to set up a link between the two tables. The
field you use must satisfy three conditions:

■ It must not have the same name as an existing field in the other table.

■ It must uniquely identify each record in the other table.

■ To save space and reduce data entry errors, it must be the smallest field that satisfies the
two preceding conditions.

In the sales leads example, a field needs to be added to the Contacts table that establishes a
link to the appropriate record in the Companies table. The CompanyName field uniquely
identifies each firm, but it’s too large to be of use. The Phone field is also a unique identifier
and is smaller, but the Contacts table already has a Phone field. The best solution is to use
CompanyID, the Companies table’s primary key field. Table 3.5 shows the revised structure
of the Contacts table that includes the CompanyID field.

Table 3.5 The Final Structure of the Contacts Table

Field Description

ContactID The primary key.

CompanyID The Companies table foreign key.

FirstName The contact’s first name.

LastName The contact’s last name.

Phone The contact’s phone number.

3

Table 3.4 Continued

Field Description

05 0789731525 CH03 7/13/04 10:56 AM Page 69

Fax The contact’s fax number.

Source Where the lead came from.

Notes Notes or comments related to the sales lead.

When a table includes a primary key field from a related database, the field is called a foreign
key. Foreign keys are the secret to successful relational database design.

Step 3: Establish a Link Between the Related Tables
After you have your foreign keys inserted into your tables, the final step in designing your
relational model is to establish a link between the two tables. This step is covered in detail
later in this chapter (see “Establishing Table Relationships”).

Types of Relational Models
Depending on the data you’re working with, you can set up one of several relational data-
base models. In each of these models, however, you need to differentiate between a child
table (also called a dependent table or a controlled table) and a parent table (also called a pri-
mary table or a controlling table). The child table is the one that is dependent on the parent
table to fill in the definition of its records. The Contacts table, for example, is a child table
because it is dependent on the Companies table for the company information associated
with each person.

The One-To-Many Model
The most common relational model is one where a single record in the parent table relates
to multiple records in the child table. This is called a one-to-many relationship. The sales
leads example is a one-to-many relationship because one record in the Companies table can
relate to many records in the Contacts table (in other words, you can have multiple sales
contacts from the same firm). In these models, the “many” table is the one where you add
the foreign key.

Another example of a one-to-many relationship is an application that tracks accounts-
receivable invoices. You need one table for the invoice data (Invoices) and another for the
customer data (Customers). In this case, one customer can place many orders, so Customers
is the parent table, Invoices is the child table, and the common field is the Customer table’s
primary key.

The One-to-One Model
If your data requires that one record in the parent table be related to only one record in the
child table, you have a one-to-one model. The most common use of one-to-one relations is to

3

Chapter 3 Working with Multiple-Table Queries70

Table 3.5 Continued

Field Description

05 0789731525 CH03 7/13/04 10:56 AM Page 70

71Types of Relational Models

create separate entity classes to enhance security. In a hospital, for example, each patient’s
data is a single entity class, but it makes sense to create separate tables for the patient’s basic
information (such as the name, address, and so on) and his or her medical history. This
enables you to add extra levels of security to the confidential medical data (such as a pass-
word). The two tables then become related based on a common “PatientID” key field.

Another example of a one-to-one model is employee data. You separate the less-sensitive
information such as job title and startup date into one table, and restricted information such
as salary and commissions into a second table. If each employee has a unique identification
number, you use that number to set up a relationship between the two tables.

Note that in a one-to-one model, the concepts of child and parent tables are interchangeable.
Each table relies on the other to form the complete picture of each patient or employee.

The Many-to-Many Model
In some cases, you might have data in which many records in one table can relate to many
records in another table. This is called a many-to-many relationship. In this case, there is no
direct way to establish a common field between the two tables. To see why, let’s look at an
example from a pared-down accounts-receivable application.

Table 3.6 shows a simplified structure of an Invoices table. It includes a primary key—
InvoiceID—as well as a foreign key—CustomerID—from a separate table of customer infor-
mation (which I ignore in this example).

Table 3.6 The Structure of an Invoices Table

Field Description

InvoiceID The primary key.

CustomerID The foreign key from a table of customer data.

Table 3.7 shows a stripped-down structure of a table of product information. It includes a
primary key field—ProductID—and a description field—Product.

Table 3.7 The Structure of a Products Table

Field Description

ProductID The primary key.

Product The product description.

The idea here is that a given product can appear in many invoices, and any given invoice can
contain many products. This is a many-to-many relationship, and it implies that both tables
are parents (or, to put it another way, neither table is directly dependent on the other). But
relational theory says that a child table is needed to establish a common field. In this case,
the solution is to set up a third table—called a relation table—that is the child of both the

3

05 0789731525 CH03 7/13/04 10:56 AM Page 71

original tables. In the ongoing example, the relation table contains the detail data for each
invoice. Table 3.8 shows the structure of such a table. As you can see, the table includes for-
eign keys from both Invoices (InvoiceID) and Products (ProductID), as well as a Quantity
field.

Table 3.8 The Structure of a Table of Invoice Detail Data

Field Description

InvoiceID The foreign key from the Invoices table.

ProductID The foreign key from the Products table.

Quantity The quantity ordered.

Enforcing Referential Integrity
Database applications that work with multiple, related tables need to worry about enforcing
referential integrity rules. These rules ensure that related tables remain in a consistent state
relative to each other. In the sales leads application, for example, suppose the Companies
table includes an entry for “ACME Coyote Supplies” and that the Contacts table contains
three leads who work for ACME. What would happen if you deleted the ACME Coyote
Supplies record from the Companies table? Well, the three records in the Contacts table
would no longer be related to any record in the Companies table. Child records without
corresponding records in the parent table are called, appropriately enough, orphans. This sit-
uation leaves your tables in an inconsistent state, which can have unpredictable conse-
quences.

Preventing orphaned records is what is meant by enforcing referential integrity. You need to
watch out for two situations:

■ Deleting a parent table record that has related records in a child table.

■ Adding a child table record that isn’t related to a record in the parent table (either
because the common field contains no value or because it contains a value that doesn’t
correspond to any record in the parent table).

Establishing Table Relationships
Now that you know the theory behind the relational model, you can turn your attention to
creating and working with related tables in queries. The first step, however, is to establish
the relationship between the two tables, which is what this section is all about.

To get started, choose Tools, Relationships (or click the Relationships button on the
Database toolbar). You’ll see the Relationships window, shown in Figure 3.1. (Note that
you’ll see this view of the window only if you’re working with the Northwind sample
database.)

3

Chapter 3 Working with Multiple-Table Queries72

05 0789731525 CH03 7/13/04 10:56 AM Page 72

73Establishing Table Relationships

Understanding Join Lines
Because the Northwind sample database is well-designed, all the tables are related to each
other in one way or another. You can tell this by observing the lines that connect each table
in the Relationships window. These lines are called join lines. As you can see in Figure 3.1,
the join line connects the two fields that contain the related information. For example, the
Suppliers and Products tables are joined on the common SupplierID field. In this case,
SupplierID is the primary key field for the Suppliers table, and it appears as a foreign key in
the Products table. This lets you relate any product to its corresponding supplier data.

The symbols attached to the join lines tell you the type of relation. In the join between the
Suppliers and Products tables, for example, the Suppliers side of the join line has a 1, and
the Products side of the line has an infinity symbol (8). This stands for “many,” so you inter-
pret this join as a one-to-many relation.

Types of Joins
Access lets you set up four kinds of joins:

Inner join—An inner join includes only those records in which the related fields in the
two tables match each other exactly (which is why this type of join is often called an
equijoin). This is the most common type of join.

Outer join—An outer join includes every record from one of the tables and only those
records from the other table in which the related fields match each other exactly. In
your sales leads example, it’s possible that there might be companies for which no con-
tacts have yet been established. Creating an inner join between the Company and
Contacts table shows you only those firms that have existing contacts. However, set-
ting up an outer join shows all the records in the Companies table, including those in
which there is no corresponding record in the Contacts table.

3

Show Table

Figure 3.1
You use the
Relationships window to
establish relations
between tables.

05 0789731525 CH03 7/13/04 10:56 AM Page 73

Self-join—A self-join is a join on a second copy of the same table. Self-joins are handy
for tables that include different fields with the same type of information. For example,
the Northwind Employees table has an EmployeeID field that lists the identification
number of each employee. The same table also includes a ReportsTo field that lists the
identification number of the employee’s manager. To display the name of each
employee’s manager, you use a second copy of the Employees table and join the
EmployeeID and ReportsTo fields.

Theta join—A theta join is created when the data in two fields from two tables is
related via some comparison operator other than equals (=). For example, a not-equal
join relates data using the not equal operator (<>). For example, suppose you want to
compare the unit price data in Northwind’s Order Details table with the unit price
data in the Products table. Specifically, you want to see those orders where the unit
price of the order differs from the unit price of the product. In this case, you look for
records where the [Order Details].UnitPrice field is not equal to the
[Products].UnitPrice field.

Adding Tables to the Relationships Window
If you need to establish a new relationship between two tables, your first order of business is
to add the tables to the Relationships window. Here are the steps to follow:

1. Choose Relationships, Show Table (or click the Show Table button on the toolbar).
Access displays the Show Table dialog box, shown in Figure 3.2.

3

Chapter 3 Working with Multiple-Table Queries74

An outer join is also called a left-outer join.To see why, consider a one-to-many relation. Here, the
“left” side is the “one,” table and the “right” side is the “many” table. So this type of join includes
every record from the “one” (left) side and only those matching records from the “many” (right) side.

You use the term left-outer join when you need to differentiate it from a right-outer join. In a one-
to-many relation, this type of join includes every record from the “many” (right) side and only those
matching records from the “one” (left) side.

N
O

T
E

Figure 3.2
Use this dialog box to
add tables to the
Relationships window.

05 0789731525 CH03 7/13/04 10:56 AM Page 74

75Establishing Table Relationships

2. Click the table you want to add.

3. Click Add. Access adds the table to the Relationships window.

4. Repeat steps 2 and 3 to add more tables.

5. Click Close to return to the Relationships window.

Joining Tables
To create a join between two tables (or a self-join between two copies of the same table), use
the mouse to click and drag one of the related fields and drop it on the other. Here are the
specific steps:

1. Add the tables you want to join.

2. Arrange the table boxes so that in each box you can see the fields you want to use for
the join.

3. Click and drag the related field from one table and drop it on the related field in the
other table. Access displays the Edit Relationships dialog box, shown in Figure 3.3.

3

Figure 3.3
Access displays the Edit
Relationships dialog box
when you click and drag
a related field from one
table and drop it on
another.

4. The grid should show the names of the fields in each table that you want to relate. If
not, use the drop-down list in one or both cells to click the correct field or fields.

5. If you want Access to enforce referential integrity rules on this relation, click the
Enforce Referential Integrity check box. If you do this, two other check boxes become
active:

Cascade Update Related Fields—If you click this check box and then make changes to
a primary key value in the parent table, Access updates the new key value for all related
records in all child tables. For example, if you change a CompanyID value in the
Companies table, all related records in the Contacts table have their CompanyID fields
updated automatically.

Cascade Delete Related Fields—If you activate this check box and then delete a record
from the parent table, all related records in all child tables are also deleted. For exam-
ple, if you delete a record from the Companies table, all records in the Contacts table
that have the same CompanyID as the deleted record are also deleted.

05 0789731525 CH03 7/13/04 10:56 AM Page 75

6. To set the type of join, choose Join Type to display the Join Properties dialog box,
shown in Figure 3.4. Here, option 1 corresponds to an inner join, option 2 corresponds
to a left-outer join, and option 3 corresponds to a right-outer join. When you’ve clicked
the option you want, click OK to return to the Relationships dialog box.

3

Chapter 3 Working with Multiple-Table Queries76

Figure 3.4
Use the Join Properties
dialog box to establish
the type of join.

7. Click Create. Access establishes the relationship and displays a join line between the
two fields.

Editing a Relationship
If you need to make changes to a relationship, Access lets you edit the relation parameters
from within the Relationships window. For the relation you want to adjust, click the join
line for the two fields and then choose Relationships, Edit Relationship (you can also right-
click the join line and choose Edit Relationship from the shortcut menu). Access displays
the Edit Relationships dialog box so that you can make your changes.

Removing a Join
If you no longer need a join, you can remove it by clicking the join line and choosing Edit,
Delete (or by pressing Delete). When Access asks you to confirm the deletion, choose Yes.

Working with Multiple Tables in a Query
With a properly constructed relational database model, you’ll end up with fields that don’t
make much sense by themselves. For example, the Northwind database has an Order
Details table that includes a ProductID field—a foreign key from the Products table. This
field contains only numbers and therefore by itself is meaningless to an observer.

The idea behind a multiple-table query is to join related tables and by doing so create a
dynaset that replaces meaningless data (such as a product ID) with meaningful data (such as
a product name).

The good news is that after you’ve established a relationship between two tables, Access
handles everything else behind the scenes, so working with multiple tables isn’t much
harder than working with single tables.

05 0789731525 CH03 7/13/04 10:56 AM Page 76

77Working with Multiple Tables in a Query

Adding Multiple Tables to a Query
To add multiple tables to a query, follow these steps:

1. Display the Show Table dialog box. You have two choices:

• If you’re starting a new query without highlighting a table in advance, wait until
you see the Show Table dialog box onscreen.

• If you’re already in the query design window, choose Query, Show Table (or click
the toolbar’s Show Table button).

2. Click the table name and then choose Add.

3. Repeat step 2 to add other tables, as necessary.

4. Click Close.

As you can see in Figure 3.5, Access displays join lines between related tables.

3
Figure 3.5
When you add multiple,
related tables to the
query design window,
Access automatically dis-
plays the join lines for
the related fields.

Adding Fields from Multiple Tables
With your tables added to the query design window, adding fields to the query is only
slightly different than adding them for a single-table query:

■ You can still add any field by clicking and dragging it from the table pane to one of the
Field cells in the design grid.

■ When you choose a field directly from a Field drop-down list, note that the field
names are preceded by the table name (for example, Products.SupplierID).

■ To lessen the clutter in the Field cells, first use the Table cell to choose the table that
contains the field you want. After you do this, the list in the corresponding Field cell
will display only the fields from the selected table.

From here, you can set up the query criteria, sorting, top N values, and calculated columns
exactly as you can with a single-table query. Figure 3.6 shows a query based on the
Products, Order Details, and Orders tables. The query shows the SupplierID,
ProductName, and UnitsInStock (from Products), the Quantity (from Order Details), and
OrderDate (from Orders), and a Left In Stock calculated column that subtracts the

05 0789731525 CH03 7/13/04 10:56 AM Page 77

Quantity from the UnitsInStock. The dynaset will contain just those orders from May 6,
1998 and is sorted on the LeftInStock calculated column. Figure 3.7 shows the resulting
dynaset.

3

Chapter 3 Working with Multiple-Table Queries78

Figure 3.6
A query with three
related tables that
includes fields from all
the tables.

Figure 3.7
The dynaset returned by
the multiple-table query
shown in Figure 3.6.

In the query shown in Figure 3.6, the Products and Orders table are said to have an indirect relation-
ship.That is, they’re related to each other, but only via the Order Details table. Note that it’s possible
to construct a query that only includes fields from Products and Orders, but you must still include
the Order Details table in the query design to allow Access to set up the indirect relationship.

N
O

T
E

The only thing you have to watch out for is dealing with tables that each have a field with
the same name. For example, both the Order Details table and the Products table have a
UnitPrice field. To differentiate between them in, say, an expression for a calculated col-
umn, you need to preface the field name with the table name, like so:

[Table Name].[FieldName]

For example, consider the formula that calculates the ExtendedPrice field in the Order
Details Extended query. The idea behind this formula is to multiply the unit price times the
quantity ordered and subtract the discount. Here’s the formula:

[Order Details].[UnitPrice]*[Quantity]*(1-[Discount])

05 0789731525 CH03 7/13/04 10:56 AM Page 78

79Working with Multiple Tables in a Query

To differentiate between the UnitPrice field in the Order Details table and the UnitPrice
field in the Products table, the formula uses the term [Order Details].[UnitPrice], as shown
in Figure 3.8.

3

Figure 3.8
When the tables in a
multiple-table query
share a common field
name, precede the field
name with the table
name in an expression.

Nesting Queries Within Queries
In the previous section I showed you how to add multiple tables to a query, but there’s no
reason why you can’t also add other queries to the table pane. After all, the Show Table dia-
log box has a Queries tab that lists all your saved queries, so you can add them to the query
design as easily as you add a table. When you nest one query inside another, Access runs the
nested query first, and then uses the resulting dynaset to produce the rest of the query.

For example, in the Orders for May 6, 1998 query from the previous section, the Left In
Stock calculated column returned the number of units each product had left in stock after
subtracting the order quantity. Suppose you then wanted a new query that checked for
those products with a negative Left In Stock value and returned the appropriate supplier
data so that the product could be reordered.

To do this, you begin by adding both the Suppliers table and the Orders for May 6, 1998
query to the query design window. As you can see in Figure 3.9, Access automatically sets
up a temporary relation between the common SupplierID fields (because SuppliersID is the
primary key of the Suppliers table). The rest of the query is created in the usual way, and
the result is shown in Figure 3.10.

Figure 3.9
You can nest one query
inside another and
Access will set up a tem-
porary relation based on
a common field.

05 0789731525 CH03 7/13/04 10:56 AM Page 79

Joining Tables Within the Query Design Window
As you’ve seen, Access recognizes existing relationships in multiple-table queries, and will
also set up a temporary relationship if the common field is a primary key in one of the
tables.

In other cases, you can have fields with common or similar data, but there’s no existing rela-
tionship and Access doesn’t set up a temporary relationship. For example, both Northwind’s
Customers and Suppliers tables have a City field. How can you create an inner join on this
common field (to, for example, see which customers and suppliers are located in the same
city)?

You can do this by creating a temporary relationship. After you’ve added the tables to the
query design window’s table pane, click and drag the field from one table and drop it on the
related field in the other table. Access displays a temporary join line between the fields, as
shown in Figure 3.11.

3

Chapter 3 Working with Multiple-Table Queries80

Figure 3.10
The dynaset produced by
the query in Figure 3.9.

Figure 3.11
To create a temporary
relationship by hand,
click and drag the field
from one table and drop
it on the related field in
the other table.

Creating Other Types of Joins
So far you’ve worked only with inner joins, which is as it should be because inner joins are
by far the most common, particularly in a business environment. However, the three other
types of joins—outer, self, and theta—can also come in handy and are discussed in the next
three sections.

Creating Outer Joins
An outer join is one where all the records in one table are included in the dynaset regardless
of whether there are matching records in the other table. For example, suppose you’re deal-
ing with Northwind’s Customers and Orders tables, which are related on the common
CustomerID field. An inner join between these tables shows only those customers who have

05 0789731525 CH03 7/13/04 10:56 AM Page 80

81Creating Other Types of Joins

placed orders. By contrast, an outer join on the Customers table displays all the records
from that table, even customers who have never placed an order.

There are two types of outer joins:

Left outer join—This join displays all the records from the “left” table. For example,
in tables with a one-to-many relationship, the left outer join displays all the records
from the “one” table.

Right outer join—This join displays all the records from the “right” table. For exam-
ple, in tables with a one-to-many relationship, the left outer join displays all the
records from the “many” table.

To set the type of outer join, follow these steps:

1. Add the tables to the query design window.

2. Create the relationship between the tables, if one doesn’t exist.

3. Choose View, Join Properties. Access displays the Join Properties dialog box, shown in
Figure 3.12.

3

Figure 3.12
Use the Join Properties
dialog box to select the
type of join you want.

4. Option 1 creates an inner join. To change to an outer join, click either 2 (for a left
outer join) or 3 (for a right outer join).

5. Click OK.

Using Outer Joins to Find Records Without Matching Records in a Related Table
The most common use for outer joins is to look for records in one table that don’t have a
matching record in some related table. For example, you can look for records in the
Customers table that have no corresponding records in the Orders table; this tells you
which customers have not yet placed orders. Similarly, you can look for records in the
Products table that have no corresponding records in the Categories table; this tells you
that you have a data entry problem because all products should have a category.

05 0789731525 CH03 7/13/04 10:56 AM Page 81

As a general rule, to see only those records without matching records in a related table, do
one of the following:

■ To see records in the parent table without matching records in the child table, create a
left outer join and filter the dynaset by adding Is Null as the criteria for the common
field in the child table.

■ To see orphan records in the child table (that is, records in the child table without any
corresponding records in the parent table), create a right outer join and filter the
dynaset by adding Is Null as the criteria for the common field in the parent table.

The next two sections take you through examples of these techniques.

Finding Customers Without Matching Orders
For example, suppose you want to see a list of customers who haven’t yet placed an order.
This means you want to join the Customers table and the Order table, which are related on
the CustomerID field. You start by displaying all the Customers. This means, because
Customers is the parent of Orders, you need to create a left outer join. Figure 3.13 shows
the query setup, including the fact that option 2 (left outer join) is chosen in the Join
Properties dialog box. Figure 3.14 shows the resulting dynaset.

3

Chapter 3 Working with Multiple-Table Queries82

Figure 3.13
A query set up for a left
outer join between the
Customers and Orders
tables.

In Figure 3.14, notice that the first two records in the Custom field is blank. This tells you
that these are the records in Customers that have no matching records in Orders, meaning
they haven’t yet placed any orders. Therefore, rather than displaying all the records, filter
the dynaset to show only those where the CustomerID field of the Orders table is equal to
Null. Figure 3.15 shows the revised query that adds this criterion.

05 0789731525 CH03 7/13/04 10:56 AM Page 82

83Creating Other Types of Joins

Finding Products Without an Assigned Category
In the Products table, each record should have been assigned an item from the Categories
table. To make sure, you can build a query that looks for those Products without a matching
category. This requires joining the Products table and the Categories table, which are
related via the CategoryID field. Because Products is a child of Categories, you need to cre-
ate a right outer join. You then add the CategoryID field from the Categories table and fil-
ter it using the Is Null criterion, as shown in Figure 3.16.

3

Figure 3.14
The dynaset created by
the query in Figure 3.13.

Figure 3.15
To see only those cus-
tomer without matching
orders, add the expres-
sion Is Null to the
Orders.CustomerID field.

Figure 3.16
To find those products
without an assigned cat-
egory, create a right
outer join and filter the
Categories.CategoryID
field using the Is
Null expression.

05 0789731525 CH03 7/13/04 10:56 AM Page 83

Creating Self-Joins
Database tables are sometimes self-referential, which means they contain a field with data
that points to another field in the same table. A good example is the Northwind Employees
table, which includes an EmployeeID field, the primary key that contains the employee
identification numbers. Employees also contains the ReportsTo field, which contains the
identification number of the person each employee reports to. In other words, each value in
the ReportsTo field will have a corresponding value in the EmployeeID field.

If you want to know, for example, which employees have people reporting to them, you
need to create a self-join—a table joined to itself—on the Employees table. Creating a self-
join involves the following steps:

1. Start a new query and add the table (Employees in this case) twice.

2. Create a temporary join by clicking and dragging the field that contains the data
(EmployeeID) to the field that contains the subset of the data (ReportsTo).

3. Add the fields you want to use for the query to the design grid and then set up your cri-
teria, sorting, and other query elements.

4. For a self-join to work properly, you need to tell Access to return only unique values in
the query. To do this, click an empty spot inside the query design window and then
choose View, Properties (or press Alt+Enter). In the Query Properties window, click Yes
in the Unique Values list and then close the window.

➔ For more about the Unique Values property, see “Creating a Unique Values Query,” p. 86.

Figure 3.17 shows a self-join on the Employees table, and Figure 3.18 shows the resulting
dynaset, which displays the employees who have people reporting to them.

3

Chapter 3 Working with Multiple-Table Queries84

Figure 3.17
A query set up for a self-
join on the Employees
table.

Figure 3.18
The dynaset created by
the query in Figure 3.17.

05 0789731525 CH03 7/13/04 10:56 AM Page 84

85Creating Other Types of Joins

Creating Theta Joins
The joins you’ve seen so far have all worked on the premise that the join is based on the
equality between two fields. In an inner join, for example, you only see records where the
joined fields from both tables are equal; similarly, in an outer join, you see all the records
from one table, but only those records from the second table where the joined fields are
equal.

In business, however, it’s sometimes the case that you need a join that’s based on fields that
are unequal. For example, Northwind’s Customers table has a CompanyName field, and its
Orders table has a ShipName field. In most cases, these values should be the same; that is, if
a customer places an order, that order should be sent to that company. If the shipping name
isn’t the same as the customer name, it might mean either that the order was sent to the
wrong company or that the company name is wrong in one table or the other. (It’s also pos-
sible that the order is correct and that the customer asked for the shipment to be sent to a
different ship address.)

To check into this type of scenario, you need a not-equal join that joins two tables and shows
only those records where the joined fields from both tables are not equal; for example, join-
ing the Customers and Orders tables based on whether the CompanyName and ShipName
fields are not equal.

Here’s the procedure to follow to create a not-equal join:

1. Start a new query and add the tables you want to work with (such as Customers and
Orders).

2. If no relation exists between the tables, create a temporary join by clicking and dragging
the appropriate field from one table and dropping it on the related field in the other
table.

3. Add the fields you want to use for the query to the design grid and then set up your cri-
teria, sorting, and other query elements. Be sure to include the fields on which the not-
equal join will be based (such as CompanyName from the Customers table and
ShipName from the Orders table).

4. In the Criteria cell of the field for which you want to check for not-equal values (such
as the Orders table’s ShipName field), enter a comparison formula using the following
general form:
<>[RelatedTable].[JoinedField]

Here, RelatedTable is the name of the other table in the query, and JoinedField is the
field from the other table that is joined to the current field. Here’s an example for the
Orders.ShipName field:
<>[Customers].[CompanyName]

Figure 3.19 shows a not-equal join between the Customers table and the Orders table, with
the not-equal criterion added for the Orders.ShipName field. Figure 3.20 shows the

3

05 0789731525 CH03 7/13/04 10:56 AM Page 85

resulting dynaset, which displays the orders where the shipping name is different from the
customer name. Notice that query has caught two subtle errors:

■ For the customer “Galeria del gastrónomo,” the accent is in the wrong place in the
ShipName field (“Galeria del gastronómo”).

■ For the customer “Wolski Zajazd,” the CompanyName field has two spaces between
“Wolski” and “Zajazd.”

3

Chapter 3 Working with Multiple-Table Queries86

Figure 3.19
A query set up for a not-
equal join on the
Customers and Orders
table to look for orders
where the ShipName is
not equal to the
CompanyName.

Figure 3.20
The dynaset created by
the query in Figure 3.19.

Creating a Unique Values Query
Most business data—dealing as it does with unique customers, suppliers, products, shippers,
and employees—is stored in tables that are designed to prevent duplicate records. In most
cases, preventing duplicates is a straightforward matter of adding a primary key field (such
as a customer account number or employee ID number), which, by definition, does not
allow duplicate values. You can also add an index to any field and specify the Yes (No
Duplicates) option in the table design window’s Indexed property.

However, some tables are set up to allow duplicate values. For example, consider a simple
table that contains only employee names and the dates on which they took customer orders.

05 0789731525 CH03 7/13/04 10:56 AM Page 86

87Creating a Unique Values Query

A single employee can take more than one order on a given day, so that table will have mul-
tiple records with the same data.

It’s also not unusual for a query to return a dynaset that contains duplicate data. For exam-
ple, suppose you put together a multiple-table query using Northwind’s Employees, Orders,
and Shippers tables. If you include the Orders table’s OrderID in the query, there will be no
duplicate records in the dynaset because OrderID is the primary key of the Orders table.
However, if you don’t include the OrderID field, the dynaset will have duplicate records.
Figure 3.21 shows such a dynaset, and you can see that the two highlighted records are the
same.

3

Figure 3.21
This query combines the
Employees, Orders, and
Shippers tables and,
because the OrderID pri-
mary key is not part of
the dynaset, the result
contains duplicate
records.

If your multiple-table dynaset is returning what appear to be duplicate records, or if you’re
working with a single table that contains duplicate records, you can tell Access to include
only unique records in the result. You do this by specifying that Access first examine the
dynaset data to look for records that have the same values in all the dynaset fields, and then
display only the first of those records. Because the determination whether a record is a
duplicate is based on the field values, Access calls this a unique values query.

Follow these steps to create a unique values query:

1. Start a new query and add the tables you want to work with.

2. Add the fields you want to use for the query to the design grid and then set up your
criteria, sorting, and other query elements.

3. Click an empty spot inside the query design window and then choose View, Properties
(or press Alt+Enter). In the Query Properties window, click Yes in the Unique Values
list and then close the window.

When you run the query, Access will display only unique records in the dynaset. In Figure
3.22, for example, you can see that only one of the duplicate records highlighted in Figure
3.21 appears in this unique values version of the query.

05 0789731525 CH03 7/13/04 10:56 AM Page 87

C A S E S T U D Y

Drilling Down to the Order Details
You might know that Access 2003 has the welcome capability to view data contained in another, related table from within
the table datasheet. In Figure 3.23, for example, you can see that the Customers table also includes a column of plus signs
(+) on the left. Clicking a plus sign displays a new datasheet—called a subdatasheet—that, in this case, contains that
customer’s data from the Orders table (see Figure 3.24).

Chapter 3 Working with Multiple-Table Queries88

Figure 3.22
This is the same query as
the one in Figure 3.21,
except that the Unique
Values property has
been set to Yes, thus
eliminating the dupli-
cate records in the
dynaset.

What about the Unique Records property in the Query Properties dialog box? This setting isn’t all
that useful because it applies only to a very limited case. Suppose you have two tables that are
joined via a one-to-many relationship. By definition, data from the “one” table can appear multiple
times in the “many” table. So if you then set up a query that uses both tables but includes only
fields from the “one” table, there’s a good chance the dynaset will display duplicate records.

(Why might you add two tables to a query and then not include any fields from one of the tables in
the dynaset? The most common reason is that you’re using one or more fields from the second table
to enter the criteria for the query, but you don’t need to see those fields in the result.)

To suppress the display of duplicate records from the “one” table, change the value of the Unique
Records property to Yes.

N
O

T
E

Figure 3.23
When you view certain
tables in the datasheet
view, the leftmost col-
umn will contain a plus
sign (+) for each record.

05 0789731525 CH03 7/13/04 10:56 AM Page 88

89Case Study

Access sets up this subdatasheet capability whenever you establish a relationship between two tables.The Customers and
Orders tables have a one-to-many relationship on the CustomerID field, so clicking a customer’s plus sign displays the
related records from the Orders table.

Notice, too, that the Orders subdatasheet also has a column of plus signs. Orders has a one-to-many relation with the
Order Details table on the OrderID field. So clicking the plus sign beside an order displays the related details, as shown in
Figure 3.25.

Figure 3.24
Clicking a plus sign dis-
plays a subdatasheet
showing the related data
from another table.

Figure 3.25
Clicking a plus sign in
the Orders subdatasheet
displays another sub-
datasheet that contains
the related order details.

The subdatasheet is a great feature, but it suffers from the same problems inherent in all table-based datasheet views:
the subdatasheet might show more fields than you need to see, and it might not show fields you want to see (such as the
extended price in the order details).

You can solve these problems by using query-based subdatasheets. Because the subdatasheets display data from a query
dynaset, you can configure the query to display the data any way you want, and even include calculated columns.

To demonstrate the power and flexibility of query-based subdatasheets, this case study remakes the Customers-Orders-
Order Details example to create a more useful way of drilling down into a customer’s order details.

05 0789731525 CH03 7/13/04 10:56 AM Page 89

Adding a Subdatasheet to a Query
Before getting to the details of the case study, you need to know how to add a subdatasheet to a query. Datasheets and
subdatasheets have the same parent-to-child relationship as linked tables. Here are the steps to follow:

1. In the query design window, click an empty spot and then choose View, Properties (or press Alt+Enter). Access dis-
plays the Query Properties dialog box.

2. In the Subdatasheet Name list, click the name of the table or query you want to use as the basis for the sub-
datasheet.

3. In the Link Child Fields box, enter the name of a field from the child table or query (the object you chose in the
Subdatasheet Name list).This must be the field that will be related to a field in the parent (which is, in this case, the
dynaset created by the query).

4. In the Link Master Fields box, enter the name of a field from the parent query.This must be the field that will be
related to the field you entered in step 3.

5. (Optional) Use the Subdatasheet Height box to enter the maximum height, in inches of the subdatasheet. If you
enter 0, Access displays all the records in the subdatasheet.

6. When the Subdatasheet Expanded property is set to No, Access hides all the subdatasheets and you need to click the
plus signs (+) to see them; if you prefer that Access display all the subdatasheets automatically, change this prop-
erty to Yes. Figure 3.26 shows an example of the Query Properties dialog box with these fields filled in.

7. Close the window.

Chapter 3 Working with Multiple-Table Queries90

Figure 3.26
To add a subdatasheet to
a query, fill in the
Subdatasheet Name,
Link Child Fields, and
Link Master Fields prop-
erties.

Working with Query Subdatasheets
The secret to working with query-based subdatasheets is to work from the bottom up.That is, you begin with the lowest
level of data and create a query that displays the data in exactly the way you want.Then you move up to the next level,
which will be a query based on a table that has a common field (or, at least, a relatable field) with the first table. Repeat
this until you get to the topmost query.

05 0789731525 CH03 7/13/04 10:56 AM Page 90

91Case Study

For example, in the Customers-Orders-Order Details case, you proceed as follows:

1. Create a query based on the Order Details table. In this case study, I created a query named Order Details With
Extended Prices that shows not only the details such as product, price, quantity, and discount, but also the
extended price for each product, which is given by a calculated column based on the following expression, as shown
in Figure 3.27:
[UnitPrice] * [Quantity] * (1 - [Discount])

Figure 3.27
The query from the low-
est level of the drill-
down: the Order Details
with an Extended Price
calculated column.

2. Create a query based on the Orders table and include the Order Details With Extended Prices query as a sub-
datasheet (as described in the previous section) related on the OrderID field. For the case study, I named this new
query Orders With Extended Order Details.

3. Create a query based on the Customers table and include the Orders With Extended Order Details query as a sub-
datasheet related on the CustomerID field, as shown in Figure 3.28.

Figure 3.28
The query based on the
Customers table also has
a subdatasheet that
used the Orders With
Extended Order Details
query.

Figure 3.29 shows the resulting Customers query with displayed subdatasheets for the Orders With Extended Order
Details query and the Order Details With Extended Prices query.

05 0789731525 CH03 7/13/04 10:56 AM Page 91

From Here
■ For more about a query’s Unique Values property, see “Creating a Unique Values

Query,” p. 86.

■ For the details on creating multiple-table queries using SQL, see “Using SQL with
Multiple-Table Queries,” p. 153.

■ To learn how to use multiple tables in a form, see “Creating a Multiple-Table Form,”
p. 249.

■ To learn how to use multiple tables in a report, see “Creating a Multiple-Table
Report,” p. 341.

Chapter 3 Working with Multiple-Table Queries92

Figure 3.29
Drilling down from the
Customers-based query
to the Orders With
Extended Order Details
query and to the Order
Details With Extended
Prices query.

05 0789731525 CH03 7/13/04 10:56 AM Page 92

I N T H I S C H A P T E R

Creating Advanced
Queries 4

The query techniques you studied in the first three
chapters of this book add powerful new weapons to
your Access arsenal. From expressions to functions
to multiple-table setups, you’ve seen that you can
perform some sophisticated and powerful querying.
So when I tell you that this chapter covers
“advanced” queries, am I talking about obscure fea-
tures that will be rarely used in a business environ-
ment? Are these complex techniques that require a
math degree to comprehend? The answer is a firm
“No” on both counts. The queries you’ll see in this
chapter are “advanced” only in the sense that they’ll
advance your knowledge of how to get the most out
of Access querying for your business needs.

Creating a Totals Query
A totals query includes a column that performs an
aggregate operation—such as summing or
averaging—on the values of a particular field. A
totals query derives either a single value for the
entire dynaset or several values for the records that
have been grouped within in the dynaset. Table 4.1
outlines the aggregate operations you can use for
your totals queries.

Creating a Totals Query 93

Creating Queries That Make Decisions 103

Case Study .106

Running Parameter Queries 108

Running Action Queries110

06 0789731525 CH04 7/13/04 11:00 AM Page 93

