

BO@TSTRAP

www.bootstrapworld.org

Workbook v1. 2

Brought to you by the Bootstrap team:

- Emmanuel Schanzer
- Kathi Fisler
- Shriram Krishnamurthi
- Ed Campos
- Emma Youndtsmith
- Sam Dooman

Bootstrap is licensed under a Creative Commons 3.0 Unported License. Based on a work from www.BootstrapWorld.org. Permissions beyond the scope of this license may be available at schanzer@BootstrapWorld.org.

Unit 1

Many important questions ("what's the best restaurant in town?", "is this law good for citizens?", etc.) are answered with data. Data Scientists try and answer these questions, by writing programs that ask questions of data.

Data of all types can be organized into Tables

- Every Table has a header row, and some number of data rows
- Quantitative data is data - usually numeric - that measures quantity, such as a person's height, a score on test, a measure of distance, etc. A list of quantitative data can be ordered from smallest to largest.
- Categorical data is data that specifies categories, such as eye color, country of origin, etc. A list of categorical data has no notion of "smallest" or "largest", and cannot be ordered.

Programming languages involves different datatypes, such as Numbers, Strings, Booleans and Images.

- Operators (like,,+- , $<$, etc.) are written between values. For example: $4+2$
- We can use functions (like triangle, star, string-repeat, etc.) by writing the function name first, followed by a list of arguments in parentheses. For example: star(50, "solid", "red")
- Methods are special functions that are attached to pieces of data. We use them to manipulate Tables. They are different from functions in several ways:
- Their names can't be used alone: they can only be used as part of data, separated by a dot. (For example, shapes. row-n(2))
- Their contracts are different: they include the type of the data as part of their names. (eg, <table>. row-n :: (index :: Number) \rightarrow Row)
- They have a "secret" argument, which is the data they are attached to
- In this course, we will use three Table Methods to manipulate our datasets:
- <Table>. order-by - order the rows of a table based on a column
- <Table>.filter - create a subset of the data, with only certain rows
- <Table>.build-column - use the columns of a table to make a new one

Numbers and Strings

Make sure you've loaded the Unit 1 Starter File, and clicked "Run".

1. Try typing 42 into the Interactions Area and hitting "Enter". What happens?
2. Try typing in other Numbers. What happens if you try a decimal like 0.5? A fraction like 1/3? Try really big Numbers, and really small ones.
3. String values are always in quotes. Try typing your name (in quotes!). What happens when you hit "Enter"?
4. Try typing your name with the opening quote, but without the closing quote. What happens? Now try typing it without any quotes.
5. Is 42 the same as " 42 "? Why or why not? Write your answer below:

Operators

6. Just like in math, Pyret has operators like + and -. Try typing in $4+2$, and then $4+2$ (without the spaces). What can you conclude from this? Write your answer below:
7. Typing in the following expressions, one at a time: $4+2+6,4+2 * 6$, and $4+(2$ * 6$)$. What do you notice? Write your answer below:
8. Try typing in 4 + "cat", and then "dog" + "cat". What can you conclude from this? Write your answer below:

Booleans

Boolean expressions are yes-or-no questions, and will always evaluate to either true ("yes") or false ("no"). What will each of the expressions below evaluate to? Write down the result in the blanks provided, and type them into Pyret if you're not sure.

$3<=4$	"a" > "b"
$3=-2$	"a" <> "b"
$2<>4$	"a" == "b"
$3<>3$	"a" <> "a"

Boolean Operators

Pyret also has operators that work on Booleans. For each expression below, write down your guess about what it will evaluate to. Then type them in and see if you were right!
$(3<=4)$ and $(3==2)$ \qquad
("a" == "b") and (3 <> 4)
($3<=4$) or $(3==2)$ \qquad
("a" == "b") or (3 <> 4) \qquad

1. How many different Number values are there in Pyret? \qquad
2. How many different String values are there in Pyret? \qquad
3. How many different Boolean values are there in Pyret? \qquad

Lookups

The table below represents four shapes in a table:
shapes

name	corners	is-round
"triangle"	3	false
"square"	4	false
"rectangle"	4	false
"circle"	0	true

1. Match each Pyret expression (left) to the description of what it looks up(right).

shapes.row-n(3)	Evaluates to 4
shapes.row-n(0)	Evaluates to the last row in the table

shapes.row-n(1)["corners"]	Evaluates to "square"
shapes.row-n(2)["is-round"]	Evaluates to true
shapes.row-n(1)["name"]	Evaluates to 12
shapes.row-n(0)["corners"]	Evaluates to false
.row-n(3)["name"]=="circle"	Evaluates to 3
Evaluates to the first row in the table	

2. Fill in the blanks (left) with the Pyret lookup code that will produce the value (right).
a. shapes.row-n(2)["name"]
"rectangle"
b.
c.
d.
e.
"triangle"

4

0
true

Answering Questions from Data can take many forms. Here are a few types of questions, each requiring a different kind of analysis:

- Lookup Questions can be answered just by finding the right row and column a table. (e.g. - "How old is Toggle?")
- Compute Questions can be answered by computing over a single row or column. (e.g. - "What is the heaviest animal at the shelter?")
- Analyze Questions require looking for trends across multiple rows or columns. (e.g. - "Do cats tend to be adopted sooner than dogs?")

We can define our own functions, using a technique called the Design Recipe.

- We use the Design Recipe to help us define functions without making mistakes.
- The first step is to write a Contract and Purpose Statement for the function, which specify the Name, Domain and Range of the function and give a summary of what it does.
- The second step is to write at least two examples, which show how the function should work for specific inputs. These examples help us see patterns, and we express those patterns by circling and labeling what changes.
- The final step is to define the function, which generalizes our examples.

The Animals Dataset

1. This dataset is Animals from an animal shelter, which contains _31_ data rows.
2. Some of the columns are:
i. \qquad , which contains \qquad data, and is of type String . Some example values from this column are: "Toggle", "Fritz", and "Nori".
ii. \qquad which contains \qquad data, and is of type
\qquad . Some example values from this column are: \qquad _.
iii. \qquad , which contains \qquad data, and is of type
\qquad . Some example values from this column are: \qquad .
iv. \qquad which contains \qquad data, and is of type
\qquad . Some example values from this column are: \qquad .
3. Some questions I have about this dataset:

My question is...	Lookup, Compute or Analyze?

Practicing Lookups

The table below represents four pets at an animal shelter, and four value definitions for rows in that table:
animals-table

name	gender	age	Weight
"Toggle"	"female"	3	48
"Fritz"	"male"	4	92
"Nori"	"female"	6	35.3
"Maple"	"female"	3	51.6

animalA $=$ animals-table.row $-\mathrm{n}(0)$
animalB $=$ animals-table.row $-\mathrm{n}(1)$
animalC $=$ animals-table.row $-\mathrm{n}(2)$
animald $=$ animals-table.row $-\mathrm{n}(3)$
v. Match each Pyret expression (left) to the description of what it looks up(right).

animalB["gender"]	Evaluates to "male"
animalC["age"]	Evaluates to "Toggle"
animalB["weight"]	Evaluates to 92
animalA["name"]	Evaluates to 6
animalD["weight"]	Evaluates to "female"
animalc["gender"]	Evaluates to the first row in the table

vi. Fill in the blanks (left) with the Pyret lookup code that will produce the value (right).
animalD["name"]

[^0]
The Design Recipe

For the word problems below, assume you have animala and animalB defined in your code.
Define a function called is-fixed, which looks up whether or not an animal is fixed
\# $\frac{\text { is-fixed }}{\text { name }}:: \frac{\text { (animal }:: \text { Row) }}{\text { domain }}$
\# Consumes an animal, and looks up the value in the fixed column examples:
\qquad (\qquad) is \qquad
end \qquad (\qquad) is \qquad
fun \qquad (\qquad) : \qquad end

Define a function called gender, which consumes a Row of the animals table and looks up the gender of that animal

The Design Recipe

For the word problems below, assume you have animalA and animalB defined in your code.
Define a function called is-cat, which consumes a Row of the animals table and computes whether the animal is a cat.
\# $\frac{i s \text {-cat }}{\text { name }}:: \frac{\text { (animal }:: \text { Row) }}{\text { domain }} \rightarrow \frac{\text { Boolean }}{\text { range }}$
$\#$ Consumes an animal, look up the species column, and computer if species $=$ "cat"
examples :

Define a function called is-young, which consumes a Row of the animals table and computes whether it is less than four years old.

examples:
\qquad
\qquad) is \qquad
\qquad
\qquad) is
\qquad
end
fun \qquad (\qquad) : \qquad
end

Unit 3

Functions can contain value definitions
We use Table Plans to help us use table methods correctly, without making mistakes:

- Like functions, we start with a Contract and Purpose Statement
- But instead of writing programmed examples, we sketch out Sample Tables and Results, based on the Contract and Purpose.
- Then we define the function based on our Sample Table and Result. Every function includes both the table definition (using methods) and a table expression.

Design Recipe

For the word problems below, assume you have animalA and animalB defined in your code.
Define a function called birth-year, which consumes a Row of the animals table and produces the year that animal was born.
examples:
\qquad
\qquad
\qquad
end
fun \qquad
\qquad) : \qquad
end

Define a function called nametag, prints out each animal's name in big red letters.
\# $\frac{\text { nametag }}{\text { name }}:: \frac{\text { (animal }:: \text { Row) }}{\text { domain }} \rightarrow \frac{\text { Image }}{\text { range }}$
\# Consumes an animal, and produces an image of their name in big, red letters

Playing with Methods

You have the following functions defined below (read them carefully!):

fun is-fixed(animal): animal["fixed"]	end
fun is-young(animal): animal["age"] <4	end
fun nametag(animal): text(animal["name"], 20, "red") end	

The table \mathbf{t} below represents four animals at the shelter:

name	gender	age	fixed	weight
"Toggle"	"female"	3	true	48
"Fritz"	"male"	4	true	92
"Nori"	"female"	6	true	35.3
"Maple"	"female"	3	true	51.6

Match each Pyret expression (left) to the description of what it does (right).
t.order-by("age", true)
t.filter(is-fixed)
t.build-column("sticker", nametag)
t.filter(is-young)
t.order-by("age", false)
t.filter(is-young)
.order-by("weight", false)
t.order-by("age", true)
.build-column("label", nametag)

Produces a table containing only
Toggle and Maple

Produces a table, sorted oldest-toyoungest.

Produces a table, sorted youngest-tooldest

Produces a table with an extra column, named "sticker"

Produces a table containing Maple and Toggle, in that order.

Produces a table containing the same four animals.

Produces a table with an extra "label" column, sorted youngest-to-oldest

Table Plan

The shelter wants to print up bar charts showing young animal's ages, in alphabetical order. Sometimes they want to do this for every animal, but sometimes they just need it for the cats, or for animals that are fixed.
Define a function sorted-age-bar, which takes in a table of animals and computes a bar-chart showing their ages (in alphabetical order), for only the young animals.

Table Plan

The shelter wants to see if there's a relationship between how old an animal is, and how long it takes them to be adopted. Sometimes they want to do this for every animal, but sometimes they just need it for the cats, or for animals that are young. Define a function age-adopted-scatter, which takes in a table of animals and computes a scatter-plot showing only the fixed animals, with their ages on the x-axis and weeks to be adopted on the y-axis.

Unit 4

Bar charts show the absolute quantity of each row in a dataset. The larger the quantity, the longer the bar. Bar charts provide a visual representation of values in a dataset.

Pie charts show the relative quantity of each row in a dataset. The greater the percentage, the larger the pie slice. Pie charts provide a visual representation of proportions in a dataset.

Choosing a Sample Table is important when coming up with small examples for Table Plans. A good sample table has:

- At least all the relevant columns
- Enough rows to accurately represent the dataset
- Rows that are randomly-ordered

Quantity Charts in the Animals Dataset

Below are two quantity charts made from subsets of the animals table

What do you NOTICE about these charts?	What do you WONDER about these charts?

Why are some questions easier to answer with one kind of chart or another?

Bad Sample Tables!

For each word problem, a Sample Table must have (1) all the columns that matter, (2) a representative sample of the rows, and be in (3) random order. For each problem below, check the boxes if the Sample Table meets those criteria.

1. The shelter wants to a scafter plot showing the age of the cats v . their weight

name	species	age	fixed	legs	pounds	weeks
Sasha	cat	1	FALSE	4	6.5	3
Mittens	cat	2	TRUE	4	7.4	5
Sunflower	cat	5	TRUE	4	8.1	10

Relevant columns
Representative sample of rows
Random order

2. The shelter wants a pie chart showing all the dogs' weight

name	species	age
Fritz	dog	4
Wade	cat	2
Nibblet	rabbit	6
Daisy	dog	5

Relevant columns
Representative sample of rows
Random order
3. Sort all the animals alphabetically by name

name	species	age	fixed	legs	pounds	weeks
Ada	dog	2	TRUE	4	32	3
Bo	dog	4	TRUE	4	76.1	10
Boo-boo	dog	11	TRUE	4	123	10

Relevant columns
Representative sample of rows Random order

4. Make a bar chart for all the fixed animals

name	species	age	fixed	legs	pounds	weeks
Sasha	cat	1	FALSE	4	6.5	3

Relevant columns
Representative sample of rows Random order

Table Plan

Define a function pie-pounds-young, which takes in a Table of animals and creates a pie chart of the animals' weight, but only for animals that are young.

Contract and Purpose
\# consumes a table of animals, filters to show only young animals, and produces a pie
Whart of their weight
Where I start, what I type, and what I get back
sample-table to start with:

My Dataset

1. This dataset is \qquad , which contains \qquad data rows.
2. Some of the columns are:
i. \qquad , which contains \qquad data, and is of type
\qquad . Some example values from this column are: \qquad _.
ii. \qquad which contains \qquad data, and is of type
\qquad . Some example values from this column are: \qquad .
iii. \qquad which contains \qquad data, and is of type
\qquad . Some example values from this column are: \qquad ـ.
iv. \qquad , which contains \qquad data, and is of type
\qquad . Some example values from this column are: \qquad —.
3. Some questions I have about this dataset:

My question is...	Lookup, Compute or Analyze?

My Dataset

What are two ways you might want to order this dataset? 1)
2)

What are two subsets into which you might filter this dataset?
1)
2)

What are two new columns you might want to build from this dataset?
1)
2)

Design Recipes - Filtering Rows

What are two criteria you might want to filter by? Write your own word problems below, and solve them using the Design Recipe.

Define a function called \qquad , which consumes a Row of the
table and \qquad

\#			$\rightarrow \xrightarrow[\text { range }]{ }$
	name	domain	
\#			

examples:
\qquad
\qquad) is \qquad
end \qquad (__)
) is \qquad
fun \qquad (\qquad) : \qquad end

examples:

Design Recipes - Building Columns

What are two columns you might want to build for your dataset? Write your own word problems below, and solve them using the Design Recipe.

examples:
\qquad
\qquad (__)
) is \qquad
end
fun \qquad () : \qquad
end

Quantity Charts in My Datase†

Describe two of the pie or bar charts you made from your dataset.

1) I made a \qquad chart, showing the \qquad your subset (for example, "fixed dogs at the shelter")
2) I made a \qquad chart, showing the \qquad for
\qquad

What do you NOTICE about these charts?	What do you WONDER about these charts?

Unit 5

- There are three ways to measure the "center" of a dataset, to talk about a whole column of data using just one number:
- The mean of a dataset is the average of all the numbers
- The median of a dataset is a value that is smaller than half the dataset, and larger than the other half
- The modes of a dataset are the numbers that appear the most often.
- Data Scientists can also measure the "variation" of a dataset using a five number summary:
- The minimum - the smallest value in the dataset
- The first, or "lower" quartile (Q1) - the median value that separates the first quarter of the values in the dataset from the second quarter
- The second quartile (Q2) - the median value which separates the entire dataset into "top" and "bottom" halves.
- The third, or "upper" quartile (Q3) - the median value that separates the third quarter of the values in the dataset from the fourth quarter
- The maximum - the largest value in the datase t
- The five number summary can be used to draw a box-and-whisker plot.

Summarizing Columns in Animals

1) The column I choose to measure is \qquad

Measures of Center
The three measures for this column are:

Mean (Average)	Median	Mode(s)

2) Since the mean is \qquad than the median, this suggests that there may [higher/lower] be outliers repesenting \qquad .
[explain your outliers!]

Measures of Variation

My five-number summary is:

Minimum	Q1	Q2 (Median)	Q3	Maximum

A box plot can be drawn from this summary on the number line below:

From this summary and box-plot, I conclude:

Interpreting Variation

Consider the following dataset, representing the annual income of ten people:
$\$ 65 \mathrm{k}, ~ \$ 12 \mathrm{k}, ~ \$ 14 \mathrm{k}, ~ \$ 280 \mathrm{k}, ~ \$ 15 \mathrm{k}, ~ \$ 22 \mathrm{k}, \quad \$ 45 \mathrm{k}, \quad \$ 34 \mathrm{k}, \quad \$ 45 \mathrm{k}, \quad \$ 175 \mathrm{k}$

1. In the space below, rewrite this dataset in sorted order.
2. In the table below, compute the measures of center for this dataset.

Mean (Average)	Median	Mode(s)

3. In the table below, compute the five number summary of this dataset.

Minimum	Q1	Q2 (Median)	Q3	Maximum

4. On the number line below, draw a box plot for this dataset.
5. The following statements are correct...but misleading. Write down the reason why.

Statement	Why it's misleading
"They're rich! The average person makes more than $\$ 70$ dollars!"	
"It's a middle-income	
list: the most common	
salary is \$45k/yr!"	
"This group is really diverse, with people making as little as 12k and as much as $\$ 280 k!"$	

Table Plan

The Animal Shelter Bureau would like to study the distribution of weeks-until-adoption for fixed animals housed at shelters around the country. They need a function that consumes a table of animals, filters to show only the fixed animals, and produces a box-plot for the weeks column. Define a function called fixed-weeks-box below.
Contract and Purpose

Summarizing a Column in My Datase†

The column I choose to measure is \qquad
Measures of Center
The three measures for this column are:

Mean (Average)	Median	Mode(s)

3) Since the mean is \qquad than the median, this suggests that there may [higher/lower] be outliers repesenting \qquad .
[explain your outliers!]

Measures of Variation

My five-number summary is:

Minimum	Q1	Q2 (Median)	Q3	Maximum

A box plot can be drawn from this summary on the number line below:

From this summary and box-plot, I conclude:
\qquad
\qquad
\qquad
\qquad

Frequency Bar charts show the number of rows belonging to a given category. The more rows in each category, the longer the bar.

- Frequency bar charts provide a visual representation of the frequency of values in a categorical column.
- Since categorical data cannot be ordered, there is no strict ordering of bars in a frequency bar chart.

Histograms show the number of rows that fall within certain ranges, or "bins" of a dataset. The more rows that that fall within a particular "bin", the longer the bar.

- Histograms provide a visual representation of the frequency of values in a quantitative column.
- Quantitative data can be ordered, so the bars of a histogram are always sorted.
- When dealing with histograms, it's important to select a good bin size. If the bins are too small or too large, it is difficult to see the distribution in the dataset.

Frequency Charts in the Animals Dataset

name	species	age	pounds
"Sasha"	"cat"	1	6.5
"Boo-boo"	"dog"	11	123
"Felix"	"cat"	16	9.2
"Nori"	"dog"	6	35.3
"Wade"	"cat"	1	3.2
"Nibblet"	"rabbit"	6	4.3
"Maple"	"dog"	3	51.6

1. How many cats are there? \qquad
2. How many dogs are there? \qquad
3. How many animals are between 3-6 years old? \qquad
4. How many animals weigh between 0-5 pounds? \qquad
5. Are there more animals weighing 0-5 than $6-10$ pounds? \qquad
6. The charts below are based on the Sample Table above. What is each one measuring? Write down your guess underneath each one.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Table Plan

Define a function freq-bar-gender, which takes in a Table of animals and creates a frequency bar chart showing how many fixed animals are male v. female.

Table Plan

Define a function histogram-cats-adoption, which takes in a Table of animals and creates a histogram showing how long it took for cats in the dataset to get adopted

Visualizing My Datase†

Describe two of the histograms or frequency bar charts you made from your dataset.

1) I made a \qquad showing the \qquad for
\qquad your subset (for example, "fixed dogs at the shelter"
2) I made a \qquad , showing the \qquad for
\qquad

What do you NOTICE about these charts?	What do you WONDER about these charts?

Matching Charts to Questions

For each of the questions below, draw a line to the chart that will best answer it. (You may find that more than one question is best answered by the same chart!)

1. Are there more of the animals at the shelter fixed or unfixed?
2. How many weeks did each cat wait to be adopted?
3. How many male v. female dogs are there?
4. How many animals have 4 legs? 8? 3?
5. What percent of the total weight at the shelter is made up by Boo-boo?

Bar Chart
Pie Chart

Frequency Bar Chart
6. What is the distribution of weights across all the animals older than 3 ?
7. How many animals are there of each species?
8. Who waited the longest to be adopted?

Unit 7

- Scatter Plots show the relationship between two quantitative columns. Each row in the dataset is represented by a point, with one column providing the x-value and the other providing the y-value. The resulting "point cloud" makes it possible to look for a relationship between those two columns.
- If the points in a scatter plot appear to follow a pattern, it is possible that a relationship - or correlation - exists between those two columns.
- If there is a pattern to the points in a scatter plot, points that are far away from the pattern are called outliers.
- We can express this correlation by drawing line through the data cloud, so that the distance between the line and each of the points is as small as possible. This line is called the line of best fit - or predictor function - and allows us to make predictions based on the dataset.

(Dis)Proving a Claim

"Younger animals are cuter, so they get adopted faster."

Do you agree? If so, why?
I hypothesize...
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What would you look for in the dataset to see if you are right?

Creating a Scatter Plo†

name	species	age	weeks
"Sasha"	"cat"	1	3
"Boo-boo"	"dog"	11	5
"Felix"	"cat"	16	4
"Buddy"	"lizard"	2	24
"Nori"	"dog"	6	9
"Wade"	"cat"	1	2
"Nibblet"	"rabbit"	6	12
"Maple"	"dog"	3	2

1. For each row in the Sample Table on the left, add a point to the scatter plot on the right. The first 3 rows have been completed for you. Use the values from the age column for the x-axis, and values from the weeks column for the y-axis.
2. Do you see a pattern? Do the points seem to shift up or down as age increases? Draw a line on the scatter plot to show this pattern.
3. Does the line slope upwards or downwards? \qquad
4. Are the points close to the line? Spread out? \qquad

Table Plan

Define a function cats-age-weeks, which takes in a Table of animals and creates a scatter plot of all the cats, tracking their age on the x-axis and the number of weeks it took for them to be adopted on the y-axis.

Drawing Predictors

For each of the scatter plots below, draw a predictor line that fits best.

Correlations in My Datase \dagger

1) There may be a correlation between \qquad and
column
. I think it is a \qquad , \qquad
correlation, because \qquad
\qquad . It might be stronger if I looked at \qquad a subset or extension of my data
2) There may be a correlation between \qquad and
column -
\qquad
\qquad . I think it is a \qquad pos \qquad
correlation, because \qquad
\qquad . It might be stronger if I looked
at \qquad .
3) There may be a correlation between \qquad and
column I think it is a \qquad 'positive / negative correlation, because \qquad
\qquad . It might be stronger if I looked at \qquad .
[^1]
Unit 8

- Given a predictor function and a scatter plot, we can compute the error by adding the squares of all the distances between the function and each point in the plot. The error is called the \mathbf{r}^{2} statistic, which tells us how much of the variation in the y-axis can be explained by the x-axis.
- A strong correlation will have a large r^{2}. A weak correlation will have a small r^{2}.
- A positive correlation means the slope of the line of best fit is positive. A negative correlation means the slope is negative.
- Linear Regression is a way of computing the line of best fit, by taking a scatter plot and deriving the slope and y-intercept for a line that has the smallest possible r^{2}.
- Correlation is not causation! Correlation only suggests that two measures are related, but does not tell us if one causes the other. For example, hot days are correlated with people running their air conditioners, air conditioners do not cause hot days!

Grading Predictors

Below are the scatter plots for data sets A-D, with two different lines predictor lines drawn on top. For plots A-D:

1. Circle the plot with the line that fits better
2. Give the plot you circled a grade between 0 (no correlation) and 1 (perfect correlation)

Regression Analysis in the animals Dataset

I performed a linear regression on \qquad and
dataset or subset
found \qquad correlation between a strong/weak ($r^{2}=$ __), positive/negative
\qquad and \qquad . From this, I
[x-axis]
[y-axis]
conclude that \qquad
$r^{2} \%$ of the variation in [y-axis] is explained by [x-axis]
\qquad . I would predict that a 1 \qquad increase in
[x-axis units]
\qquad is associated with a \qquad in \qquad

Regression Analysis in My Datase†

I performed a linear regression on \qquad and
dataset or subset

Unit 9

Threats to Validity can undermine a conclusion, even if the analysis was done correctly. Some examples of threats are:

- Selection bias - identifying the favorite food of the rabbits won't tell us anything reliable about what all the animals eat.
- Sample size - averaging the age of only three animals won't tell us anything reliable about the age of animals at the shelter!
- Sample error - surveying dogs when they are puppies won't tell us anything reliable about overall dog behavior, since their behavior changes as they age.
- Confounding variables - if they person surveying the animals has a piece of bacon in their pocket, they will incorrectly find that all dogs are friendly!

Threats to Validity

Some volunteers from the animal shelter surveyed a group of pet owners at a local dog park. They found that almost all of the owners were there with their dogs, and from this survey they concluded that dogs are the most popular pet in the region.

What are some possible threats to the validity of this conclusion?

The animal shelter noticed a large increase in pet adoptions between Christmas and Valentines Day. They conclude that at the current rate, there will be a huge demand for pets this Spring.

What are some possible threats to the validity of this conclusion?

Threats to Validity

The animal shelter wanted to find out what kind of food to buy for their animals. They took a random sample of two animals and the food they eat, and found that spider and rabbit food was by far the most popular cuisine!

What are some possible threats to the validity of this conclusion?

A volunteer opens the shelter in the morning and walks all the dogs. At mid-day, another volunteer feeds all the dogs and walks them again. In the evening, a third volunteer walks the dogs a final time, and closes the shelter. The volunteers report that the dogs are much friendlier and more active at mid-day, so the shelter staff assume the second volunteer must be better with animals then the others.

What are some possible threats to the validity of this conclusion?

Fake News!

Every claim below is wrong! Your job is to figure out why, by looking at the data.

	Data	Claim	Why it's wrong
1	The average player on a basketball team is $6^{\prime} 1$ ".	"Most of the players on the team are taller than 6'."	
2	After performing linear regression on census data, a positive correlation ($\mathrm{r}^{2}=0.18$) was found between people's height and salary.	"Taller people get paid more."	
3		"According to the predictor function indicated here, the value on the x-axis is will predict the value on the y-axis 63.6% of the time."	
4		"According to this bar chart, Felix makes up a little more than 15% of the total ages of all the animals in the dataset."	
5		"According to this histogram, most animals weigh between 40 and 60 pounds."	
6	After performing linear regression, a negative correlation ($\mathrm{r}^{2}=0.91$) was found between the number of hairs on a person's head and their likelihood of owning a wig.	"Owning wigs causes people to go bald."	

Blank Recipes, Table Plans, and References

Design Recipes

examples:

fun \qquad (__) : end

Design Recipes

examples:
\qquad
end
fun \qquad (___) : \qquad
end

examples:

end
fun \qquad (__) : end

Design Recipes

examples:
\qquad
end
fun \qquad (___) : \qquad
end

examples:

end
fun \qquad (__) : end

Table Plan

Table Plan

Table Plan

Contract and Purpose

Contracts

Contracts tell us how to use a function. For example: num-sqr :: (n :: Number) \rightarrow Number tells us that the name of the function is num-sqr, that it takes one input (a number), and that it evaluates to a number. From the contract, we know num-sqr (4) will evaluate to a Number.

Name	Domain		Range
triangle	:: (side-length :: Number, style :: String, color :: String)	\rightarrow	Image
circle	:: (radius :: Number, style :: String, color :: String)	\rightarrow	Image
star	:: (radius :: Number, style :: String, color :: String)	\rightarrow	Image
rectangle	:: (width :: Num, height : Num, style :: Str, color : Str)	\rightarrow	Image
ellipse	:: (width :: Num, height : Num, style :: Str, color : S Str)	\rightarrow	Image
square	:: (size-length :: Number, style :: String, color : S String)	\rightarrow	Image
text	: (str :: String, size :: Number, color :: String)	\rightarrow	Image
overlay	:: (img1 :: Image, img2 :: Image)	\rightarrow	Image
rotate	:: (degree :: Number, img :: Image)	\rightarrow	Image
scale	:: (factor : N Number, img :: Image)	\rightarrow	Image
string-repeat	:: (text :: String, repeat :: Number)	\rightarrow	String
string-contains	:: (text :: String, search-for : String)	\rightarrow	Boolean
num-sqr	:: (n : : Number)	\rightarrow	Number
num-sqrt	:: (n : : Number)	\rightarrow	Number
num-min	:: (a :: Number, b: Number)	\rightarrow	Number
num-max	:: (a :: Number, b: Number)	\rightarrow	Number

Contracts

Contracts tell us how to use a function. For example: <Table>. filter :: (test :: (Row \rightarrow Boolean) \rightarrow Row tells us that the name of the function is. filter and that it is a Table method. The domain says it one input (a function that comsumes Rows and produces Booleans), and that the method evaluates to a Table. From the contract, we know animals-table.filter (is-cat) will evaluate to a Table.

Name	Domain		Range
<Table>.row-n	:: (n : : Number)	\rightarrow	Row
<Table>. order-by	:: (col :: String, increasing :: Boolean)	\rightarrow	Table
<Table>.filter	$::($ test : $:($ Row \rightarrow Boolean))	\rightarrow	Table
<Table>.build-column	:: (col :: String, builder :: (Row \rightarrow Value))	\rightarrow	Table
mean	:: (t :: Table, col :: String)	\rightarrow	Number
median	:: (t :: Table, col :: String)	\rightarrow	Number
modes	:: (t :: Table, col :: String)	\rightarrow	List<Number>
bar-chart	:: (t :: Table, labels :: String, values :: String)	\rightarrow	Image
pie-chart	:: (t :: Table, labels :: String, values :: String)	\rightarrow	Image
box-plot	:: (t :: Table, col:: String)	\rightarrow	Image
freq-bar-chart	:: (t :: Table, values : String)	\rightarrow	Image
histogram	:: (t :: Table, values :: String, bin-width :: Number)	\rightarrow	Image
scatter-plot	:: (t :: Table, labels :: String, xs :: String, ys :: String)	\rightarrow	Image
lr-plot	:: (t :: Table, labels :: String, xs :: String, ys :: String)	\rightarrow	Image

[^0]: "Nori"

[^1]: a subset or extension of my data

