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ABSTRACT 
In [13] we reported the genome sequences of S. paradoxus, S. 
mikatae and S. bayanus and compared these three yeast species to 
their close relative, S. cerevisiae.  Genome-wide comparative 
analysis allowed the identification of functionally important 
sequences, both coding and non-coding. In this companion paper 
we describe the mathematical and algorithmic results 
underpinning the analysis of these genomes.  
We developed methods for the automatic comparative annotation 
of the four species and the determination of orthologous genes 
and intergenic regions.  The algorithms enabled the automatic 
identification of orthologs for more than 90% of genes despite the 
large number of duplicated genes in the yeast genome, and the 
discovery of recent gene family expansions and genome 
rearrangements.  We also developed a test to validate 
computationally predicted protein-coding genes based on their 
patterns of nucleotide conservation.  The method has high 
specificity and sensitivity, and enabled us to revisit the current 
annotation of S.cerevisiae with important biological implications.  
We developed statistical methods for the systematic de-novo 
identification of regulatory motifs.  Without making use of co-
regulated gene sets, we discovered virtually all previously known 
DNA regulatory motifs as well as several noteworthy novel 
motifs.  With the additional use of gene ontology information, 
expression clusters and transcription factor binding profiles, we 
assigned candidate functions to the novel motifs discovered.  
Our results demonstrate that entirely automatic genome-wide 
annotation, gene validation, and discovery of regulatory motifs is 
possible.  Our findings are validated by the extensive 
experimental knowledge in yeast, confirming their applicability to 
other genomes. 

Categories and Subject Descriptors 
J.3 [Life and medical sciences]: Biology and Genetics 

General Terms: Algorithms. 

Keywords: Computational biology, Comparative genomics, 
Genome annotation, Regulatory motif discovery.  

1. INTRODUCTION 
With the availability of complete sequences for a number of 
model organisms, comparative analysis becomes an invaluable 
tool for understanding genomes.  Complete genomes allow for 
global views and multiple genomes increase predictive power.   

In [13] we used a comparative genomics approach to 
systematically discover the full set of conserved genes and 
regulatory elements in yeast.  We sequenced and assembled three 
novel yeast species, S.paradoxus, S.mikatae and S.bayanus and 
compared them to their close relative S. cerevisiae.  The work 
represented the first genome-wide comparison of four complete 
eukaryotic genomes.  This paper focuses on the mathematical and 
algorithmic developments underpinning the work.  

First, we describe our methods for resolving the gene 
correspondence between each of the newly sequenced species and 
S. cerevisiae to identify orthologous regions and validate 
predicted protein-coding genes.  We then describe our methods to 
identify conserved intergenic sequence elements within these 
regions and to cluster them into a small number of regulatory 
motifs.   

The gene correspondence method presented here was used for the 
automatic annotation of the three newly sequenced species, and 
correctly identified unambiguous orthologs for more than 90% of 
protein coding genes.  It also correctly identified the evolutionary 
events that separate the four species, discerning segmental 
duplications and gene loss, while correctly resolving genes that 
duplicated before the divergence of the species compared.  

The methods for regulatory motif discovery presented here do not 
rely on previous knowledge of co-regulated sets of genes, and in 
that way differ from the current literature on computational motif 
discovery.  The motifs discovered include most previously 
published regulatory motifs, adding confidence to our method.  
Moreover, a number of novel motifs are discovered that appear 
near functionally related genes.  We have used the extensive 
experimental knowledge in yeast to validate our results, thus 
confirming that the methods presented here are applicable to other 
species.  

1.1 Comparative annotation: graph 
separation 
The first issue in comparative genomics is determining the correct 
correspondence of functional elements across the species 
compared.  We decided to use predicted protein coding genes as 
genomic anchors in order to align and compare the species.  
Resolving the correspondence between ~6000 predicted genes in 
each species requires an algorithm for comparative annotation that 
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accounts for gene duplication and loss, and ensures that the 1:1 
matches established are true orthologs.   

Previously described algorithms for comparing gene sets have 
been widely used for various purposes, but they were not 
applicable to the problem at hand.  Best Bidirectional Hits (BBH) 
[6, 7] looks for gene pairs that are best matches of each other and 
marks them as orthologs.  In the case of a recent gene duplication, 
only one of the duplicated genes will be marked as the ortholog 
without signaling the presence of additional homologs.  Clusters 
of Orthologous Genes (COG) [22, 23] goes a step further and 
allows many-to-many orthologous matches. It is able to capture 
gene duplication events when both copies of a duplicated gene 
have the same best hit in two other species that are themselves 
orthologous.  It still suffers though from having slight changes in 
similarity influence a hard decision of a single best match.  
Moreover, since Saccharomyces underwent a whole-genome 
duplication event [14] before the divergence of the species 
compared, individual COGs currently contain both copies of each 
duplicated pair of genes in a single cluster of orthology, and hence 
was not applicable in our pairwise comparative annotation.   

The comparative annotation algorithm we developed has features 
that make it useful in many applications.  It compares two 
genomes at a time, and hence can be applied at any range of 
evolutionary distances, without requiring a balanced phylogenetic 
tree.  Moreover, at its core, it represents the best match of every 
gene as a set of genes instead of a single best hit, which makes it 
more robust to slight differences in sequence similarity.  Also, it 
groups the genes into progressively smaller subsets, retaining 
ambiguities until later in the pipeline when more information 
becomes available.  It progressively refines the synteny map of 
conserved gene order while resolving ambiguities, one task 
helping the other.  When it terminates, it returns the one-to-one 
orthologous pairs resolved, as well as sets of genes whose 
correspondence remains ambiguous in a small number of 
homology groups.  

We applied this algorithm to automatically annotate the 
assemblies of the three species of yeast.  Our Python 
implementation terminated within minutes for any of the pairwise 
comparisons.  It successfully resolved the graph of sequence 
similarities between the four species, and found important 
biological implications in the resulting graph structure.  More than 
90% of genes were connected in a one-to-one correspondence, 
and groups of homologous proteins were isolated in small 
subgraphs.  These contain expanding gene families that are often 
found in rapidly recombining regions near the telomeres, and 
genes involved in environmental adaptation, such as sugar 
transport and cell surface adhesion [13]. Not surprisingly, 
transposon proteins formed the largest homology groups.  

This algorithm has also been applied to species at much larger 
evolutionary distances, with very successful results (Kamvysselis 
and Lander, unpublished).  Despite hundreds of rearrangements 
and duplicated genes separating S.cerevisiae and K.yarowii, it 
successfully uncovered the correct gene correspondence between 
the two species that are more than 100 million years apart.   

Finally, the algorithm works well with unfinished genomes.  By 
working with sets of genes instead of one-to-one matches, this 
algorithm correctly groups in a single orthologous set all portions 
of genes that are interrupted by sequence gaps and split in two or 
multiple contigs.  A best bi-directional hit would match only the 

longest portion and leave part of a gene unmatched.  Finally, since 
synteny blocks are only built on one-to-one unambiguous 
matches, the algorithm is robust to sequence contamination.  A 
contaminating contig will have no unambiguous matches (since 
all features will also be present in genuine contigs from the 
species), and hence will never be used to build a synteny block.  
This has allowed the true orthologs to be determined and the 
contaminating sequences to be marked as paralogs.  

This algorithm provides a good solution to comparative genome 
annotation, works well at a range of evolutionary distances, and is 
robust to sequencing artifacts of unfinished genomes.  

1.2 Motif discovery: signal from noise 
Having accounted for the evolutionary events that gave rise to the 
gene sets in each species, we can align orthologous genes and 
intergenic regions and use the multiple alignments to discover 
conserved features, and in particular regulatory motifs.  This 
amounts to extracting small sequence signals hidden within 
largely non-functional intergenic sequences.  This problem is 
difficult in a single genome where the signal-to-noise ratio is very 
small.  

Traditional methods for regulatory motif discovery have 
addressed the signal-to-noise problem by focusing on small 
subsets of co-regulated genes whose promoter regions are 
enriched in regulatory motifs.  A number of elegant algorithms 
have been developed to search for subtle sequence signals within 
unaligned sequences, pioneered by Lawrence and coworkers [15], 
and made popular in programs such as AlignACE [11, 20, 24], 
MEME [10] or BioProspector [17].  More recent work has 
presented additional statistical methods for motif discovery using 
phylogenetic footprinting [3, 12, 18, 26]. Computational methods 
have also been developed for finding groups of possibly co-
regulated genes that share similar expression profiles in a number 
of experimental conditions [8].  Additional experimental methods 
to find co-regulated genes include genome-wide discovery of 
promoter regions bound by a tagged transcription factor in 
chromatin IP experiments [16, 21], proteins found in the same 
protein complex obtained by MS [9] and proteins involved in the 
same genetically defined pathway [19].  Together, these 
experiments have allowed the elucidation of a large number of 
regulatory motifs in yeast [28] that have been categorized in 
promoter databases [27, 29].   

Known regulatory motifs are short and sometimes degenerate, and 
hence appear frequently throughout the genome, often by chance 
alone, other times with a functional role.  Phylogenetic 
footprinting has been used to distinguish between functional and 
non-functional instances, by observing alignments of orthologous 
promoters across multiple genomes [4].  The functional sites are 
constrained to contain the motifs since their change disrupts 
regulation which is detrimental to the organism, whereas non-
functional sites are free to change and accumulate mutations.   

The use of comparative information thus provides additional 
information that can help us separate signal from noise. This, 
together with a genome-wide view of the complete set of aligned 
orthologous intergenic regions,  allows us to approach motif 
discovery at the genome-wide level.  We are no longer 
constrained to observing subsets of co-regulated genes, but can 
search for regulatory motifs in all 6000 intergenic regions 
simultaneously for those sequences that are preferentially 
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conserved.  We can then provide a global view of regulatory 
sequences that is not constrained by the experimental conditions 
generated in the laboratory, but instead captures the entire 
evolutionary history since the divergence of the species compared.  

Our motif discovery strategy consists of an exhaustive 
enumeration and testing of short sequence patterns to find 
unusually conserved motif cores, followed by a motif refinement 
and collapsing step that ultimately produces a small number of 
full motifs.  We used three different genome-wide statistics of 
non-random conservation to select motif cores from a large 
exhaustive set of short sequence patterns.  We extended these 
cores with correlated surrounding bases that are frequently 
conserved, and collapsed them hierarchically based on sequence 
similarity and genome-wide co-occurrence.  The final list of 72 
genome-wide motifs includes most previously published 
regulatory motifs, as well as additional motifs that correlate 
strongly with experimental data.   

Our results provide a global view of functionally important 
regulatory motifs,  and provides an important link between protein 
interaction networks, clusters of gene expression, and 
transcription binding profiles towards understanding the dynamic 
nature of the cell and the complexity of regulatory interactions.  

2. COMPARATIVE ANNOTATION 
The first step to comparative genomics is understanding the 
correspondence between genes and other functional features 
across the species compared.  Each species is under selective 
pressure to conserve the sequence of functionally important 
regions.  We can begin to understand these pressures by observing 
the patterns of change in the sequence of orthologous regions.   

In presence of gene duplication however, some of the 
evolutionary constraints a region is under are relieved, and 
uniform models of evolution no longer capture the underlying 
selection for these sites.  Hence, before any type of motif 
discovery, we needed to identify unambiguously all orthologous 
sequences across the four genomes as a guide to our subsequent 
work.  

We used genes as discrete genomic anchors to construct a large-
scale alignment.  The anchors were then used to construct a 
nucleotide-level alignment of genes and flanking intergenic 
regions. With the full assemblies of the yeast species available, 
we predicted all Open Reading Frames (ORFs) of at least 50 
amino acids in each of the newly sequenced species, and 
compared the predicted proteins to the annotated proteins of S. 
cerevisiae using protein BLAST [1].  Since every predicted 
protein typically matched multiple S.cerevisiae genes, we first had 
to resolve the resulting ambiguities.   

We formulated the problem of genome-wide gene correspondence 
in a graph-theoretic framework.  We represented the similarities 
between the genes as a bipartite graph connecting genes between 
two species (Figure 1).  We weighted every edge connecting two 
genes by the sequence similarity between the two genes, and the 
overall length of the match.  We separated this graph into 
progressively smaller subgraphs until the only remaining matches 
connected true orthologs.  To achieve this separation, we 
eliminated edges that are sub-optimal in a series of steps.  As a 
pre-processing step, we eliminated all edges that are not within 
20% of the maximum-weight edge incident to each node.  We 
then separated the resulting graph into connected components, and 

built blocks of conserved gene order (synteny) when neighboring 
genes in one species had one-to-one matches to neighboring genes 
in the other species.  We used these blocks of conserved synteny 
to resolve additional ambiguities by preferentially keeping 
syntenic edges incident to a node, and eliminating its non-syntenic 
edges.  We finally separated out subgraphs that were connected to 
the remaining edges by solely non-maximal edges as described in 
the Best Unambiguous Subsets (BUS) algorithm.  When the set of 
edges for each node was no further reducible, we output the 
connected components of the final graph as the orthology groups 
between the two species.  We finally marked the isolated genes as 
paralogs of their best match.  

2.1. Initial pruning of sub-optimal matches 
Let G be a weighted bipartite graph describing the similarities 
between two sets of genes X and Y in the two species compared 
(Figure 1, top left panel).  Every edge e=(x,y) in E that connects 
nodes x ∈ X and y ∈ Y was weighted by the total number of 
amino acid similarities in BLAST hits between genes x and y.  
When multiple BLAST hits connected x to y, we summed the 
non-overlapping portions of these hits to obtain the total weight of 
the corresponding edge.  We constructed graph M as the directed 
version of G by replacing every undirected edge e=(x,y) by two 
directed edges (x,y) and (y,x) with the same weight as e in the 
undirected graph (Figure 1, top right panel).  This allowed us to 
rank edges incident from a node, and construct subsets of M that 
contain only the top matches out of every node.   

This step drastically reduced the overall graph connectivity by 
simply eliminating all out-edges that are not near optimal for the 
node they are incident from. We defined M80 as the subset of M 
containing for every node only the outgoing edges that are at least 
80% of the best outgoing edge.  This was mainly a preprocessing 

Figure 1. Overview of graph separation.  We construct a
bipartite graph based on the blast hits.  We consider both
forward and reverse matches for near-optimality based on
synteny and sequence similarity. Sub-optimal matches are
progressively eliminated simplifying the graph.  We return the
connected components of the undirected simplified graph. 
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step that eliminated matches that were clearly non-optimal.  
Virtually all matches eliminated at this stage were due to protein 
domain similarity between distantly related proteins of the same 
super-family or proteins of similar function but whose separation 
well-precedes the divergence of the species. Selecting a match 
threshold relative to the best edge ensured that the algorithm 
performs at a range of evolutionary distances.  After each stage, 
we separated the resulting subgraph into connected components of 
the undirected graph (Figure 1, bottom right panel).   

2.2. Blocks of conserved synteny 
The initial pruning step created numerous two-cycle subgraphs 
(unambiguous one-to-one matches) between proteins that do not 
have closely related paralogs.  We used these to construct blocks 
of conserved synteny based on the physical distance between 
consecutive matched genes, and preferentially kept edges that 
connect additional genes within the block of conserved gene 
order.  Edges connecting these genes to genes outside the blocks 
were then ignored, as unlikely to represent orthologous 
relationships.  Without imposing an ordering on the scaffolds or 
the chromosomes, we associated every gene x with a fixed 
position (s, start) within the assembly, and every gene y with a 
fixed position (chromosome, start) within S. cerevisiae.  If two 
one-to-one unambiguous matches (x1, y1) and (x2, y2) were such 
that x1 was physically near x2, and y1 was physically near y2, we 
constructed a synteny block B=({x1, x2},{y1,y2}).  Thereafter, 
for a gene x3 that was proximal to {x1, x2}, if an outgoing edge 
(x3, y3) existed such that y3 was proximal to {y1,y2}, we ignored 
other outgoing edges (x3, y’) if y’ was not proximal to {y1,y2}.  

Without this step, duplicated genes in the yeast species compared 
remained in two-by-two homology groups, especially for the large 
number of ribosomal genes that are nearly identical to one 
another.  We found this step to play a greater role as evolutionary 
distances between the species compared became larger, and 
sequence similarity was no longer sufficient to resolve all the 

ambiguities. We only considered synteny blocks that had a 
minimum of three genes before using them for resolving 
ambiguities, to prevent being misled by rearrangements of 
isolated genes. We set the maximum distance d for considering 
two neighboring genes as proximal to 20kb, which corresponds to 
roughly 10 genes.  This parameter should match the estimated 
density of syntenic anchors.  If many genomic rearrangements 
have occurred since the separation of the species, or if the 
scaffolds of the assembly are short, the syntenic segments will be 
shorter and setting d to larger values might hurt the performance.  
On the other hand if the number of unambiguous genes is too 
small at the beginning of this step, the genes used as anchors will 
be sparse, and no synteny blocks will be possible for small values 
of d.  

2.3.  Best Unambiguous Subsets (BUS) 
To resolve additional orthologs, we extended the notion of a best 
bi-directional hit for sets of genes instead of individual genes.  
Moreover, we only constructed such a best subset when no gene 
outside the subset had its best match within the subset, hence 
when the best bi-directional subset was unambiguous.  We 
defined a Best Unambiguous Subset (BUS) of the nodes of X∪S, 
to be a subset S of genes, such that ∀x: x∈S ⇔ best(x) ⊆ S, 
where best(x) are the nodes incident to the maximum weight 
edges from x.  We then constructed M100, following the notation 
above, namely the subset of M that contains only best matches out 
of a node.  Note that multiple best matches were possible based on 
our definition. To construct a BUS, we started with the subset of 
nodes in any cycle in M100.  We augmented the subset by 
following forward and reverse best edges, that is including 
additional nodes if their best match was within the subset, or if 
they were the best match of a node in the subset. This ensured that 
separating a subgroup did not leave any node orphan, and did not 
remove the strictly best match of any node.  When no additional 
nodes needed to be added, the BUS condition was met.   

Figure 2 shows a toy example of a similarity matrix.  Genes A, B, 
and C in one genome are connected in a complete bipartite graph 
to genes 1, 2 and 3 in another genome (ignoring for now synteny 
information).  The sequence similarity between each pair is given 
in the matrix, and corresponds to the edge weight connecting the 
two genes in the bipartite graph.  The set (A,1,2) forms a BUS, 
since the best matches of A, 1, and 2 are all within the set, and 
none of them represents the best match of a gene outside the set.  
Hence, the edges connecting (A,1,2) can be isolated as a subgraph 
without removing any orthologous relationships, and edges (B,1), 
(B,2), (C,1), (C,2), (A,3) can be ignored as non-orthologous.  
Similarly (B,C,3) forms a BUS.  The resulting bipartite graph is 
shown.  A BUS can be alternatively defined as a connected 
component of the undirected version of M100 (Figure 1, bottom 
panels).  

This part of the algorithm allowed us to resolve the remaining 
orthologs, mostly due to subtelomeric gene family expansions, 
small duplications, and other genes that did not benefit from 
synteny information.  In genomes with many rearrangements, or 
assemblies with low sequence coverage, which do not allow long-
range synteny to be established, this part of the algorithm will 
play a crucial role.  We have experimented running only BUS 
without the original pruning and synteny steps, and the results 
were satisfactory.  More than 80% of ambiguities were resolved, 
and the remaining matches corresponded to duplicated ribosomal 

Figure 2. Best Unambiguous Subsets (BUS). A BUS is a set
of genes that can be isolated from a homology group while
preserving all potentially orthologous matches.  Given the
similarity matrix above and no synteny information, two such
sets are (A,1,2) and (B,C,3).  
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proteins and other gene pairs that are virtually unchanged since 
their duplication.  The algorithm was slower, due to the large 
initial connectivity of the graph, but a large overall separation was 
obtained.  Figure 3 compares the dotplot of S. paradoxus and 
S.cerevisiae with and without the use of synteny.  Every point 
represents a match, the x coordinate denoting the position in the 
S.paradoxus assembly, and the y coordinate denoting the position 
in the S.cerevisiae genome, with all chromosomes put end-to-end.  
Lighter dots represent homology containing more than 15 genes 
(typically transposable elements) and circles represent smaller 
homology groups (rapidly changing protein families that are often 
found near the telomeres).  The darker dots represent 
unambiguous 1-to-1 matches, and the boxes represent synteny 
blocks.  

2.4. Validating predicted protein-coding genes 
Once we have resolved the pairwise species comparisons to 
S.cerevisiae, we build multiple alignments of both genes and 
flanking intergenic regions using CLUSTALW [25]. We can then 

observe the different patterns of nucleotide change in genes and 
intergenic regions.  We find radically different types of 
conservation.  Intergenic regions typically show short stretches 
between 8 and 10 bases of near-perfect conservation, surrounded 
by non-conserved bases, rich in isolated gaps.  Protein-coding 
genes on the other hand are much more uniform in their 
conservation, and typically differ in the largely-degenerate third-
codon position. Importantly, gaps are rare and when they do 
occur, they either happen in multiples of three, or are 
compensated by proximal gaps that restore the reading frame.  
This pressure for reading frame conservation can be used to 
discriminate protein-coding from intergenic regions, simply based 
on the pattern of gaps in the alignment.  

To measure frame conservation between two aligned sequences, 
we label each non-gap nucleotide of the first sequence as 1, 2 or 3 
cycling in order and starting at 1.  We label the second sequence 
similarly, but once for every starting frame offset.  We then 
simply count the percentage of aligned nucleotides that contain 
the same label for each of the three offsets.  The offset with the 
maximum number of in-frame nucleotides is selected.  To 
evaluate the frame conservation of a complete ORF, we average 
the percentages obtained in overlapping windows of 100bp.  We 
obtain an average of 44% for intergenic regions (we should expect 
33% at random), and an average of more than 99% for protein-
coding genes.  We applied a simple cutoff for each species, and 
tested all named S.cerevisiae ORFs, and as a control three 
hundred intergenic regions.  We found that only 1% of intergenic 
regions pass the test, and less than 0.5% of named ORFs are 
rejected.  The rejected ORFs show weak biological evidence and 
probably do not correspond to real genes [13].   

Hence, comparative analysis can complement the primary 
sequence of a species and provide general rules for gene 
discovery that do not rely solely on known splicing signals for 
gene discovery.  In the availability of comparative sequence 
information, this test provides a nice complement to programs 
such as GENSCAN that only look for signals in primary 
sequence, judging the predictions in the eye of evolution.  The test 
presented can be used to test the validity of predicted genes in a 
wide range of sequenced species, even in absence of biological 
experimentation or known splicing signals.  Even in well-studied 
species, this test can be used to discover additional genes that may 
not follow the typical rules of translation due to non-standard 
splicing signals, stop-codon read-through, post-transcriptional 
RNA editing, varying codon composition, or simply sequencing 
errors.  

Thus, in a fully automated fashion, we have used comparative 
genomics to discover orthologs for virtually all protein-coding 
ORFs, and construct multiple alignments across the entire 
genome.  We have used these alignments to judge the validity of 
protein coding genes.  We now turn to the discovery of conserved 
regulatory motifs within the aligned intergenic regions.  

3. REGULATORY MOTIF DISCOVERY 
The traditional method for computational discovery of regulatory 
motifs has been to search within sets of co-regulated genes for 
enriched intergenic sequence patterns.  We have undertaken a 
genome-wide discovery approach that should be applicable 
without previous knowledge of co-regulated sets.  This approach 
is possible because the signal-to-noise ratio can be increased by 
comparing multiple species.  Since mutations in transcription 

Figure 3. The effect of using synteny.  Blocks of conserved
gene order (blue squares) help resolve additional ambiguities.   
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factor binding sites may disrupt regulation, we expect regulatory 
motifs to be more strongly conserved than non-functional 
sequences that are free to diverge.  Indeed, in four-way 
alignments of orthologous intergenic regions we observe that 
experimentally determined transcription factor binding sites 
correlate strongly with islands of sequence conservation.  
Moreover, the sequences of known regulatory motifs show a 
stronger genome-wide conservation as summed over all intergenic 
regions, as compared to random control patterns of the same 
degeneracy.  Motivated by these results, we will search for motifs 
that show a strong genome-wide conservation.  

We first exhaustively enumerated and tested the conservation of 
short sequence patterns to find unusually conserved motif cores.  
We then refine and combine these cores to construct full motifs.  

3.1. Discovery of motif cores 
We first enumerated all motif sequences of length 6, separated by 
a central gap between 0 and 21 nucleotides (mini-motifs).  Each 
gap size consists of 2080 motifs, considering a motif and its 
reverse palindrome as the same motif.  This results in a total of 
45760 distinct mini-motifs.  We assume that the large majority of 
these show a random conservation.  We then look for those 
sequences that are unusually conserved as compared to a random 
population of mini-motifs. We use three different conservation 
tests.  

3.1.1:  Intergenic conservation (INT) 
We first searched for motifs that show a significant conservation 
in all intergenic regions.  For every mini-motif, we counted the 

number of perfectly conserved intergenic instances in all four 
species (ic), and the total number of intergenic instances in 
S.cerevisiae (i).  The two counts seem linearly related for the large 
majority of patterns, which can be attributed to a basal level of 
conservation ri given the total evolutionary distance that separates 
the four species compared.  We estimate the typical ratio ri as the 
log-average of non-outlier instances of ic/i within a control set of 
motifs.  We then calculate for every motif the binomial 
probability pi of observing ic successes out of i trials, given 
parameter ri.  We then assign a z-score Si to every motif as the 
number of standard deviations away from the mean of a normal 
distribution that correspond to tail area pi.  This score is positive if 
the motif is conserved more frequently than random, and negative 
if the motif is diverged more frequently than random.  We find 
that the distribution of scores is symmetric around zero for the 
vast majority of motifs.  The right tail of the distribution however 
extends much further than the left tail, containing 1190 motifs 
more than 5 sigma away from the mean, as compared to 25 motifs 
for the left tail.  By comparing the two counts, we estimate that 
94% of these 1190 motifs are non-random in their conservation 
enrichment.   

3.1.2: Intergenic vs. coding conservation (GEN) 
We then searched for motifs that are preferentially conserved in 
intergenic regions, as compared to coding regions.  In addition to 
ic and i (see previous section), we counted the number of 
conserved coding instances gc, and the number of total coding 
instances g, for every mini-motif.  We then compared the 
proportion of motif instances that were in intergenic regions for 
both conserved instances and total instances, namely a=ic/(ic+gc) 
and b=i/(i+g).  On average, 25% of all motif instances are found 
in intergenic regions, which account for roughly ¼ of the yeast 
genome.  However, only 10% of conserved motif instances appear 
in intergenic regions, since nucleotides in genes are more strongly 
conserved.  For a population of motifs of similar GC-content, the 
ratio f =a/b remains constant.  For a given motif, we calculate the 
enrichment in the proportion of intergenic instances, as the 
binomial probability of seeing at least ic successes, given ic+gc 
trials, given the probability p of success.  To estimate p, we use 
the proportion of total intergenic instances for that motif i/(i+g), 
and corrected by the log-average f of control motifs.  We then 
score this motif by the standard deviations away from the mean of 
a standard normal distribution that correspond to this probability.  
The distribution of scores is again centered around zero for most 
motifs, but shows a heavier right tail.  At 5 sigma, 1110 motifs are 
on the right tail, as compared to 39 motifs on the left tail.  Hence 
at this cutoff, we expect 97% of motifs to be non-random.   

3.1.3:  Upstream vs. downstream conservation (UPD) 
We finally searched for motifs that are conserved differently in 
upstream regions and downstream regions.  We defined upstream-
only intergenic regions as divergent promoters that are upstream 
of both flanking ORFs, and downstream-only regions as 
convergent 3’ intergenic regions that are downstream of both 
flanking ORFs.  We then counted uc and u, the conserved and 
total counts in upstream-only regions, and similarly dc and d in 
downstream-only regions.  Although upstream-only regions 
account for twice the total length of downstream-only regions, 
they show the same level of conservation, and the two ratios uc/u 
and dc/d are both similar to ic/i for the large majority of motifs.  
To detect a specificity in the upstream vs. downstream 

Figure 4. Selecting motif cores using three different
tests. Patterns selected by one of the three tests
(INT,GEN,UPD) correlate with function 90 times more
frequently than randomly chosen motifs (RND).  
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conservation of a motif, we use a chi-square contingency test on 
the four counts (uc,u,dc,d).  We find 1089 mini-motifs with a chi-
square value of 10.83 or greater, which corresponds to a p-value 
of .001.  We thus expect to see roughly 46 of the 45760 motifs 
with such a score by chance alone, and hence estimate that 96% of 
the 1089 mini-motifs chosen to be non-random.   

3.1.4: Motifs found show category enrichment 
The mini-motifs selected are indeed enriched in regulatory 
sequences.  Many of them are at the core of well-known motifs 
such as Abf1, Reb1, Cbf1, Mbp1.  Moreover, their conserved 
instances are enriched in functionally related genes.  We 
calculated the hypergeometric enrichment score for each of these 
motifs against 358 functional categories, consisting of 146 sets of 
genes co-bound in chromatin immunoprecipitation 
experiments[16], 120 sets of GO molecular processes as annotated 
in SGD[2, 5], and 92 clusters of genes that are coordinately 
expressed [8].  We found that more than a third of these motifs 
show a significant enrichment (hypergeometric score of 10-5 or 
stronger).  If we compare this result with that of a random 
collection of 1000 motifs, we find that only 1% show a category 
enrichment.  

Figure 4 shows the number of motifs that show a significant 
category enrichment score for increasingly larger sets of top-
ranked motifs in each test (INT,GEN,UPD), as compared to a 
random sorting (RND).  From the top 100 motifs of each test, 71, 
80, and 89 are explained by at least one category, as compared to 
only 1 for random motifs.  This trend continues for the top 200, 

500 and 1000 motifs.  Naturally, the categories chosen here do not 
capture but a small fraction of the wealth of transcriptionally 
controlled molecular processes a cell coordinates, and hence we 
should not expect all motifs to show a category correlation.  
However, with respect to functional categories, our search shows 
a 90-fold enrichment in explained motifs as compared to random.  

3.2. Constructing full motifs  
We extend each of these mini-motifs by searching for surrounding 
bases that are preferentially conserved when the motif is 
conserved.  We extend the motif iterative, one base at a time, by 
choosing, amidst the neighborhood of all conserved instances of 
the motif the base that maximally discriminates these from the 
neighborhood of non-conserved instances.  The added base can be 
any of the fourteen degenerate symbols of the IUB code (A, C, G, 
T, S, W, R, Y, M, K, B, D, H, V). When no such symbol separates 
the conserved instances, the extension terminates.  Figure 5 shows 
the top-scoring mini-motif found in the first test (INT_1), and the 
corresponding extension (INT_1x).  

Many mini-motifs will have the same or similar extensions, and 
we group these based on sequence similarity. The similarity 
between two profiles is measured as the number of bits in 
common in the best ungapped alignment of the two profiles, 
divided by the number of bits contained in the profile with fewer 
bits. Based on the pairwise motif similarity matrix, we cluster the 
motifs hierarchically, until an average 70% similarity within a 
group is reached.  This collapses the 1190 extended motifs 
discovered in test1 (INT) into 332 unique patterns, the 1110 
motifs from test2 into 269, and the 1089 motifs from test 3 into 
285 distinct patterns.  The first 9 members of a cluster containing 
ABF1-like motifs from test1 are shown in figure 5, with mini-
motif cores shown in bold, and the corresponding consensus 
INT_M1.  

Finally, we merge motifs that co-occur in the same intergenic 
regions (Figure 5).  The same motif will frequently be discovered 
across tests, or even multiple times within a test with slightly 
different sequences.  These variations may prevent the sequence-
based clustering from detecting an overlap, but the motifs will still 
typically occur in the same intergenic regions.  To detect further 
overlaps, we compute a co-occurrence score between the 
conserved intergenic regions of each pair of collapsed motifs, and 
construct a consensus for the resulting group.  We iterate this 
collapsing based on the newly constructed consensus and obtained 
fewer than 200 distinct motifs, of which 71 show a strong 
genome-wide conservation as compared to motifs of similar 
degeneracy.  

These contain 30 known motifs, of which 28 correlate with 
functional categories, and an additional 41 ‘novel’ motifs of 
which 61% correlate with at least one category (see [13]).  

 

3.3. Category-based motif discovery 
We further applied our motif discovery methods within functional 
categories.  To select mini-motifs, we counted the conserved 
instances within the category (IN), and the conserved instances 
outside the category (OUT).  We estimated the ratio 
IN/(IN+OUT) that we should expect for the category, based on 
the entire population of mini-motifs.  We then calculated the 
significance of an observed enrichment as the binomial 

Figure 5. Overview of genome-wide motif discovery. We
select motif cores by one of three tests, extend them to include
additional conserved bases, and collapse together motifs with
similar extension.  We then merge motifs across multiple tests
based on their co-occurrence in the same intergenic regions. 
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probability of observing IN successes out of IN+OUT trials given 
the probability of success p.  We assign a z-score to each mini-
motif, as described in the genome-wide search, and similarly 
extended and collapsed the significant mini-motifs.   

From the 106 profiled factors, 42 recognize a well-characterized 
motif.  Of these however, only 25 show an actual enrichment in 
the published motif within the regions bound.  In the remaining 
cases, the published motif may be incorrect or the ChIP 
experiment may be incorrect.  For these 25 factors, we compared 
the published motif to the motif we discovered using our method, 
as well as the motif discovered by MEME and reported in Lee et 
al.    

We identified short and concise motifs for all 25 factors, all of 
which agreed with the published consensus.  On the contrary, the 
patterns produced by MEME typically contain additional bases 
that obscure the real binding site.  By comparing multiple species, 
the signal therefore becomes stronger.  It allows the search to 
focus on the conserved bases, eliminating most of the noise.  

Table 1 summarizes the results. For each factor, we show the 
published motif, the hypergeometric enrichment score of the motif 

within the category (Hyper), the motif discovered by MEME and 
a quality assessment, the motif discovered by our method, as well 
as the corresponding category-based score and a quality 
assessment, and finally the comparison of our method to MEME.  
The performance of MEME degrades for less enriched motifs, but 
we consistently find the correct motif.  

We then applied our methods to the complete set of 358 
categories and discovered a total of 183 significant motifs.  109 
categories gave rise to at least one motif, 46 gave rise to at least 
two motifs, and 16 gave rise to 3 motifs or more.  The category-
based motifs found are frequently shared across categories.  After 
collapsing category-based motifs by sequence similarity, we 
obtain only 51 distinct motifs.  

This overlap of the motifs discovered across categories is 
certainly to be expected between functionally related categories 
such as the chromatin IP experiment for Gcn4, the expression 
cluster of genes involved in amino acid biosynthesis, as well as 
the GO annotations for amino acid biosynthesis, all of which are 
enriched in the Gcn4 motif, the master regulator of amino acid 
metabolism.  

Table 1:  Category-based motif discovery. By searching for motifs that are both enriched in the category and evolutionarily
conserved across the four species, we increase our sensitivity and specificity in category-based regulatory motif discovery.  Here we
compare known regulatory motifs to those discovered by MEME in a single genome and the ones we discover in conserved bases.  
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More surprisingly however, different transcription factors often 
share the same binding specificity, and the same motif appears in 
multiple expression clusters and functional categories.  For 
example, Cbf1, Met4, and Met31 share a motif, and so do Hsf1, 
Msn2 and Msn4; Fkh1 and Fkh2; Fhl1 and Rap1; Ste12 and Dig1; 
Swi5 and Ace2;  Swi6, Swi4, Ash1 and Mbp1.  Also, a single 
motif involved in environmental stress response is found 
repeatedly in numerous expression clusters, and in functional 
categories ranging from secretion, cell organization and 
biogenesis, transcription, ribosome biogenesis and rRNA 
processing.  

Hence, the set of regulatory motifs that are specific to the 
categories analyzed seems limited.  Only a small minority of the 
transcription factors probed show specificity to a concise 
sequence.  This may be due to the cooperative nature of binding 
that hides the actual sequence elements used in each region.  The 
expression clusters we have used, although constructed over an 
impressive array of experiments, are still limited to the relatively 
few experimental conditions generated in the lab.  Finally, the 
functional categories we used are limited to the few well-
characterized processes in yeast, and the molecular function of 
more than 3000 ORFs remains unknown. 

Moreover, category-based computational identification of 
regulatory elements can be hampered by the fact that motifs are 
shared across categories.  No category will be enriched in a single 
motif, and no motif will be enriched in a single category.  By 
discovering in an unbiased way the complete set of conserved 
sequence elements, as well as their target intergenic regions, we 
will have the building blocks to subsequent analyses of regulatory 
interaction networks. Thus, a genome-wide approach is a new and 
powerful paradigm to understanding the dictionary of regulatory 
motifs.  

4. CONCLUSION 
Our results show that comparative analysis with closely related 
species can be invaluable in annotating a genome. It reveals the 
way different regions change and the constraints they face, 
providing clues as to their use.  Even in a genome as compact as 
that of S.cerevisiae, where genes are easily detectable and rarely 
spliced, much remains to be learned about the gene content.  We 
found that a large number of the annotated ORFs are dubious, 
adjusted the boundaries of hundreds of genes, and discovered 
more than 50 novel ORFs and 40 novel introns.  Moreover, our 
comparisons have enabled a glimpse into the dynamic nature of 
gene regulation and co-regulated genes by discovering most 
known regulatory motifs as well as a number of novel motifs.  
The signals for these discoveries are present within the primary 
sequence of S.cerevisiae, but represent only a small fraction of the 
genome.  Under the lens of evolutionary conservation, these 
signals stand out from the non-conserved noise.  Hence, in 
studying any one genome, comparative analysis of closely related 
species can provide the basis for a global understanding of all 
functional elements.  
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