
Web Services API Developer Guide

 | Contents | 2

Contents

Web Services API Developer Guide... 3
Quick Start...4
Examples of the Web Service API Implementation... 13

Exporting Warehouse Data... 14
Exporting Stock Items...16
Simulating the Behavior of Add Buttons on the Purchase Receipts Form................. 19
Copying a Sales Order..24
Adding a New Cash Transaction Document.. 27
Adding Records to the Business Accounts and Opportunities Forms........................ 29
Importing of Data With an Image Into the Journal Transactions Form...................... 32
Exporting of Data With an Image From the Journal Transactions Form.................... 35

 | Web Services API Developer Guide | 3

Web Services API Developer Guide

The Acumatica Web Services Application Programming Interface (API) provides a fast, reliable,
and convenient way of exposing business functionality and data managed by an Acumatica
application for integration with any external business and operation support system. The
Acumatica API is based on web service standards, such as SOAP and WSDL, and can be accessed
with almost any current programming environment or integration tool. By using the development
environment you are familiar with, you can easily create a client application that accesses the
Acumatica Studio application through standard web services protocols to do any of the following:

• Authorize the programmer with the server running the Acumatica application

• Get query and access information from the Acumatica application

• Import information into the Acumatica application

• Create, update, and delete objects in the Acumatica application

• Execute some long-running processes and perform administrative tasks

Every operation that uses the Acumatica API is executed through the same business logic layer as
the user interface.

Web Services API Overview

Acumatica introduces a simple, streamlined way of interacting with its web services. The system
automatically generates a WSDL file describing the operations (services) and list of parameters
and objects; you can access this file through the Web Services (SM.20.70.40) form.

You can implement advanced integration scenarios involving operations on one or more forms by
using the new web services configuration form to generate custom WSDL files.

All the functionality of the application is available through the Web Services API; however, the
functionality and information that will be exposed and available to the web services client depends
on the access rights granted to the user logged in as a client to the Acumatica ERP instance.

Web Services Calls

To execute the API call, you need to prepare the SOAP message and send it to the remote server
that provides web services by using the HTTP/HTTPS protocol.

To simplify this process, most development environments (such as Microsoft Visual Studio and
NetBeans) support importing of the WSDL definition file and provide automation tools for the
creation of proxy classes. This approach enables you to access the object model in a convenient
and familiar way, while ensuring compile-time verification of the web services calls.

 | Web Services API Developer Guide | 4

Web Services API Objects

Interaction with the API is made through an object called Screen. This object acts as a gateway
between the web services client and Acumatica, so that you can log in and retrieve, insert, update,
or delete data, as well as perform any action that may be exposed by the form.

The preparation and execution of web services calls is facilitated by the Content object, which
you can retrieve by calling the GetSchema() API function. This function returns an object that
closely matches the way the form is presented to the end user. Each area on the form is mapped to
an object in the Content object. For example, the Account Settings area in the General Info tab
of the Customers (AR.30.30.00) form is defined in the GeneralInfoAccountSettings object. This
object exposes a public property for every field in this area. Actions that can be performed in the
form are exposed in a property called Actions. The class diagram below illustrates the relationship
between the Screen and Content objects and associated areas of the Content object.

Figure: Sample web service class diagram

To execute an API call, you must build an array of commands and submit it to the form by calling
the Submit() function. To process batch import and export operations, you define a scenario and
use the Import() and Export() functions.

Quick Start

This mini-tutorial will help you get started with the Acumatica Web Services Application
Programming Interface (API). To begin working with the Web Services API, perform the
following steps:

• Generate and Locate the WSDL File of the Web Services

• Import the WSDL File of the Web Services Into the Development Environment

• Review and Use the Code From the Sample Project

 | Web Services API Developer Guide | 5

Step 1. Generate and Locate the WSDL File of the Web Services

Acumatica automatically generates a WSDL file describing the operations (services) and an
XML description of parameters and objects for a form or multiple forms. You can access this file
through the Web Services (SM.20.70.40) form of the Acumatica ERP application.

For more information about the WSDL standard, see Web Services Description Language
(WSDL) 1.1.

To create a WSDL file for multiple forms, perform the following actions:

1. On the Web Services form, click Add New Record on the form toolbar, and type the Service
ID name (for instance, APITEST, as shown in the figure below).

2. Keep the Import, Export, and Submit check boxes selected (as they are by default), and
leave the Include Untyped check box cleared. Click Save.

If you also want to use untyped data to make it possible to manipulate string
arrays instead of structured data, select the Include Untyped check box. The
generated untyped operations have the Untyped prefix in their names—for
instance, UntypedSetSchema, UntypedExport, and UntypedSubmit. The untyped
operations cannot be used with specific forms. For instance, you can't generate the
UntypedGL301000Submit operation, but you can generate the GL301000Submit
operation.

3. Click Add Row on the table toolbar, and then add the value for the Screen ID column by
using the lookup window and finding the Payments and Applications (AR.30.20.00) form.

4. Repeat the previous step to add each of the following forms, as shown in the figure below:
Customers (AR.30.30.00), Transactions (CA.30.40.00), Leads (CR.30.10.00), Contacts
(CR.30.20.00), Business Account (CR.30.30.00), Opportunities (CR.30.40.00), Journal
Transactions (GL.30.10.00), Stock Items (IN.20.25.00), Warehouses (IN.20.40.00), Transfers
(IN.30.40.00), Purchase Receipts (PO.30.20.00), Sales Orders (SO.30.10.00), and Shipments
(SO.30.20.00). Click Save again.

The collection of forms you added above is necessary for using a single WSDL file
in various kinds of examples that illustrate the use of the Web Services API. You
can perform the instructions in these examples to learn the rules of syntax and the
semantics of the API code, and then use the obtained experience in your work when
you need to include a client application along with Acumatica ERP.

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl

 | Web Services API Developer Guide | 6

Figure: Creating the WSDL file

5. On the form toolbar, click Generate to start the process of generating the WSDL file. After
the process is successfully completed, you can see the green flags in the leftmost column for
each table row (that is, for each form).

6. Optional: Click View Generated to open the new window with the list of operations that
are supported by the Acumatica Web Services API, as illustrated in the figure below. Note
that some operations are bound with specific forms, because these operations support the
particular structure of the appropriate form. To see the examples of SOAP client requests and
HTTP server responses that can be implemented by using the appropriate operation, click any
item.

 | Web Services API Developer Guide | 7

Figure: The list of available operations

7. Optional: Return to the previous screen, and click the Service Description reference to see
the XML description of the generated WSDL file. A fragment of this file is shown in the
figure below.

8. Close the window and return to the application.

Figure: The XML description of the generated WSDL file

 | Web Services API Developer Guide | 8

To find the latest version of the WSDL file, use the following URL:

http://{domain}/Soap/{name}.asmx?WSDL

Replace domain with the actual URL path to your application and name with the ID of the
web service. For example, the valid URL to access the Customers form could be either of the
following, with the latter for the local Acumatica ERP instance:

http://www.acumatica.com/Demo/Soap/APITEST.asmx?WSDL
http://localhost/WebAPIVirtual/Soap/APITEST.asmx?WSDL

The WSDL file automatically generated by the system includes all the changes
implemented to the application logic and its database structure through the customization.
If you made any customization that affects the business logic or database structure that
you use through the API support of the form, make sure that you have retrieved the latest
version of the WSDL file after the customization is published. You may generate the
WSDL file any number of times.

Step 2. Import the WSDL File of the Web Services Into the Development
Environment

When the WSDL file is generated, you must import it into your development environment to
generate proxy classes. If necessary, see the documentation of your development environment to
find out the correct way of building the proxy classes based on the WSDL definition.

Programming languages supported by Microsoft Visual Studio.NET can access the Web Services
API through the proxy classes created by using the WSDL description for corresponding server-
side objects. Below you will find instructions on how to implement the proxy classes by using
Visual Studio 2008 or later and NetBeans 6.9.

To generate proxy classes from the WSDL definition by using Visual Studio 2008 or later:

1. Start MS Visual Studio and select File > New > Project.

2. In the New Project window that appears, select the required template; most examples of
Acumatica Web Service API implementation are based on the Visual C# Console Application
template, although you can use any another template.

3. Define the name of the project and solution, as shown in the figure below, and click OK.
(Although you can use any name for the project and solution, we recommend that you use a
project name that is identical to the name of the solution that includes it.)

 | Web Services API Developer Guide | 9

Figure: Creating the new project

4. Open the Project menu and select Add Service Reference.

5. In the dialog box that appears, click Advanced.

6. In the second dialog box that appears, click Add Web Reference.

7. In the third dialog box, type the path to Web Service WDSL descriptor file for the URL, as
shown in the figure below. You can either use the local version of the WSDL file or provide
the URL reference to the remote server.

 | Web Services API Developer Guide | 10

Figure: Specifying the URL of the WSDL file for the web reference

8. Click GO to continue.

9. Specify the Web reference name: apitest, for instance (see the figure above). This name will
be used as a namespace for the generated web service proxy classes.

10. Click Add Reference to complete the creation process. As a result, in the Solution Explorer
window, you can see the Web References folder with the reference to the WSDL file generated
in Step 1, as shown in the figure below.

The new Visual Studio project now consists of the Program proxy class, which can be used for
communication between the client application and Acumatica Web Services. The communication
program code must be added within the body of the Program proxy class.

Because you may access multiple web services in the same Acumatica instance, we
recommend that you name web references according to the original name of the WSDL
file, but without capitalization: apitest.

 | Web Services API Developer Guide | 11

Figure: The apitest web reference and the Program proxy class

Java API for XML Web Services (JAX WS) supports the SOAP protocol and may be used with
Acumatica Studio.

To generate proxy classes from the WSDL definition by using NetBeans 6.9 or later:

1. Right-click on your project, and select New > Web Service Client.

2. In the dialog box, for the URL input line, specify the path to the web service WDSL
descriptor file.

3. Enter a package name.

4. Click Finish to complete the process.

NetBeans will process the specified WSDL definition and create a proxy class. This proxy class
will be used for communication between the client application and the Acumatica Web Service.

Step 3. Review and Use the Code From the Sample Project

Once you have imported the WSDL file and created the proxy class, you can start development of
your client application. The fastest way to learn how to develop a client application by using the
Web Services API is to learn and use the client application code from the sample project. The first
typical solution can be found in Exporting Warehouse Data.

To avoid possible errors, pay attention to the following points:

1. To avoid unexpected code conflicts, create each example of the client application
code within the project of the new empty solution. Otherwise, you should replace all

 | Web Services API Developer Guide | 12

previous code lines within the same project before starting to test the results of each
code example.

2. Before adding the client application code, add to the proxy class code one line that
contains the using command (as the figure below shows):

using ConsoleApplication.apitest;

Here ConsoleApplication is the name of your client application and apitest is the name
of the bound web service.

3. Optional: Before you debug the client application, replace the URL of the WSDL file
with the URL that corresponds to your file name and location. (In the figure below,
you can see the example of the command line with the highlighted URL in the client
application code that is to be replaced with the URL of your WSDL file.) This step is
optional because if you don't specify the URL of the WSDL file, the system will use
the URL set in the App.Config file.

4. Optional: Before debugging the client application, ensure that you have created the
proper support of the authorization process; otherwise, you may need to make changes
as follows (also shown in the figure below):

• If your installation of Acumatica ERP includes the common company, use the
simplest authorization code line:

LoginResult result = context.Login("admin", "E618");

Instead of admin, you may have another user name, but you should have
enough rights to work with Web Services API services. Replace the password
in the appropriate code line (E618 by default) with the password that you had
specified for the Acumatica ERP instance.

In all the topics with examples, we use the common company and the simplest
authorization code line.

• If you work with more than one company but with the common branch, use the
following modified authorization code line:

LoginResult result = context.Login("user@CompanyCD", "E618");

In the code line above, Company CD represents the required company short (CD)
name.

• If you work with more than one company and the company that you need has
various branches, you should use the following modified authorization code line:

LoginResult result = context.Login("user@CompanyCD:BranchCD", "E618");

In the code line above, CompanyCD represents the required company short (CD)
name, and BranchCD is the short branch name—that is, the CD name of the branch
(for instance, MAIN, NORTH, or SOUTH) within the selected company.

 | Web Services API Developer Guide | 13

Figure: Correcting the code of the client application

Examples of the Web Service API Implementation

The examples in this section demonstrate how to use the following objects and properties of the
Web Services API:

• Screen, an intermediary object that you will use for implementing the Web Services
communication layer.

• The CookieContainer property, which preserves the session state between round trips. This
property must be enabled in all client applications.

• Content, an object that defines the schema of the current form.

You can use the following links to directly access the examples of the Web Services API
implementation:

• Exporting Warehouse Data

• Exporting Stock Items

• Simulating the Behavior of Add Buttons on the Purchase Receipts Form

• Copying a Sales Order

• Adding a New Cash Transaction Document

• Adding Records to the Business Accounts and Opportunities Forms

• Importing of Data With an Image Into the Journal Transactions Form

• Exporting of Data With an Image From the Journal Transactions Form

 | Web Services API Developer Guide | 14

Exporting Warehouse Data

In this example, you create, run, and test a client application that exports to a string array required
record fields from the Warehouses (IN.20.40.00) maintenance form of the Inventory module. The
system filters exported data by the fixed Warehouse ID field value.

We make the following assumptions in this example:

1. You have installed the local client application instance (named WEBAPIVirtual) with the
standard ERP demo application database. If you will use another application instance name,
you should correct appropriate code lines in the code example shown in the next section.

2. You have created the Web Services WSDL definition file. (See Quick Start, Step 1.)

3. You have imported the Web Services WSDL definition file and generated the proxy class in
the ConsoleApplication.apitest namespace. (See Quick Start, Step 2.) If you will use another
WDSL file name, location, or namespace, you should correct appropriate code lines in the
code example shown in the next section. You should also add your own password if it is
different from the one used in the authorization code line in the code example. (See Quick
Start, Step 3.)

4. You have primary information about the objects and properties of the Web Services API that
the code lines of the example use. See the brief definitions in Examples of the Web Service
API Implementation.

Create, Correct, and Run the Code Example

Add the code lines to the Program proxy class code and add the using operator, as shown in the
code below. (The added code lines are preceded by +.)

 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
+using ConsoleApplication.apitest;

 namespace ConsoleApplication
 {
 class Program
 {
 static void Main(string[] args)
 {
+ apitest.Screen context = new apitest.Screen();
+ context.CookieContainer = new System.Net.CookieContainer();
+ context.AllowAutoRedirect = true;
+ context.EnableDecompression = true;
+ context.Timeout = 1000000;
+ context.Url = "http://localhost/WebAPIVirtual/Soap/APITEST.asmx";
+ LoginResult result = context.Login("admin", "E618");

+ IN204000Content IN204000 = context.IN204000GetSchema();
+ context.IN204000Clear();
+ string[][] IN204000result = context.IN204000Export
+ (
+ new Command[]
+ {
+ IN204000.WarehouseSummary.WarehouseID,
+ IN204000.LocationTableLocationTable.LocationID,
+ new Field { FieldName = "LocationID", ObjectName =
+ IN204000.LocationTableLocationTable.LocationID.ObjectName }

 | Web Services API Developer Guide | 15

+ },
+ new Filter[]
+ {
+ new Filter()
+ {
+ Field = new Field() { FieldName = IN204000.WarehouseSummary.
+ WarehouseID.FieldName, ObjectName = IN204000.
+ WarehouseSummary.WarehouseID.ObjectName },
+ Condition = FilterCondition.Equals,
+ Value = "GIT",
+ Operator = FilterOperator.And
+ }
+ },
+ 0, false, false
+);
 }
 }
 }

This code implements the following process flow:

1. Using the Export method to export data from the form.

2. Using the Filter method to constrain the exported data by two fields of one record from the
Warehouses form.

Figure: Exploring the Warehouses form

After you prepare the code, you should build the solution. Start the Acumatica ERP application
instance with the WSDL file, navigate to Distribution > Inventory, select the Configuration
submenu, and then select the Manage > Warehouses form. Select GIT as the Warehouse ID,
and note the Location ID column values, as shown in the figure above. In Visual Studio, set
appropriate breakpoints and then press F5 to run the client application in Debug mode. Use step-
by-step debugging to ensure that the array contains exported data. (The figure below illustrates the
test results.)

 | Web Services API Developer Guide | 16

Figure: Checking the results in debug mode

Exporting Stock Items

In this example, you create, run, and test a client application that exports to a string array required
record fields from the Warehouses (IN.20.25.00) maintenance form of the Inventory module. The
system filter exports data by the hidden field LastModifiedDateTime. The date and time of the
last modification of the Stock Items form must be fewer than 100 days before the current date.

We make the following assumptions in this example:

1. You have installed the local client application instance (named WEBAPIVirtual) with the
standard ERP demo application database. If you will use another application instance name,
you should correct appropriate code lines in the code example shown in the next section.

2. You have created the Web Services WSDL definition file. (See Quick Start, Step 1.)

3. You have imported the Web Services WSDL definition file and generated the proxy class in
the ConsoleApplication.apitest namespace. (See Quick Start, Step 2.) If you will use another
WDSL file name, location, or namespace, you should correct appropriate code lines in the
code example shown in the next section. You should also add your own password if it is
different from the one used in the authorization code line in the code example. (See Quick
Start, Step 3.)

4. You have primary information about the objects and properties of the Web Services API that
the code lines of the example use. See the brief definitions in Examples of the Web Service
API Implementation.

 | Web Services API Developer Guide | 17

Create, Correct, and Run the Code Example

Add the code lines to the Program proxy class code and add two using operators, as shown in the
code below. (The added code lines are preceded by +.)

 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
+using System.Globalization;
+using ConsoleApplication.apitest;

 namespace ConsoleApplication
 {
 class Program
 {
 static void Main(string[] args)
 {
+ apitest.Screen context = new apitest.Screen();
+ context.CookieContainer = new System.Net.CookieContainer();
+ context.AllowAutoRedirect = true;
+ context.EnableDecompression = true;
+ context.Timeout = 1000000;
+ context.Url = "http://localhost/WebAPIVirtual/Soap/APITEST.asmx";
+ LoginResult result = context.Login("admin", "E618");

+ context.SetLocaleName(CultureInfo.CurrentCulture.Name);
+ DateTime lastSyncDate = DateTime.UtcNow;
+ lastSyncDate = lastSyncDate.AddDays(-100);
+ IN202500Content IN202500 = context.IN202500GetSchema();
+ context.IN202500Clear();
+ string[][] IN202500data = context.IN202500Export
+ (
+ new Command[]
+ {
+ IN202500.StockItemSummary.ServiceCommands.EveryInventoryID,
+ IN202500.StockItemSummary.InventoryID,
+ IN202500.WarehouseDetails.Warehouse,
+ IN202500.WarehouseDetails.QtyOnHand,
+ new Field
+ {
+ ObjectName = IN202500.StockItemSummary.InventoryID.ObjectName,
+ FieldName = "LastModifiedDateTime"
+ }
+ },
+ new Filter []
+ {
+ new Filter
+ {
+ Field = new Field { ObjectName =
+ IN202500.StockItemSummary.InventoryID.ObjectName,
+ FieldName = "LastModifiedDateTime" },
+ Condition = FilterCondition.Greater,
+ Value = lastSyncDate.ToLongDateString()
+ }
+ },
+ 0, false, false
+);
 }
 }
 }

This code implements the following process flow:

1. Using the Export method to export data from the form.

 | Web Services API Developer Guide | 18

2. Using the Filter method to limit the exported data by the date and time of the last modification
of the Stock Items form. (The date and time of the last modification must be fewer than 100
days before the current date.)

You defined the lastSyncDate variable, which is used to limit the quantity of data being
exported depending on the current date and time.

Figure: Checking the results in debug mode

After preparing the code, you should build the solution. Set appropriate breakpoints and then press
F5 to run the client application in Debug mode. Use step-by-step debugging to ensure that the
array contains exported data. (The figure above illustrates the test results.)

Optionally, you can start the Acumatica ERP application instance with the WSDL file and
navigate to the Distribution > Inventory > Manage > Stock Items form. Select IB00000001
as the Inventory ID, open the Warehouse Detail tab, and note the Warehouse and Qty On
Handcolumn values, as shown in the figure below. Compare the column values with the values in
the string array, displayed in the Watch window of Visual Studio in debug mode.

If no data has been exported, increase the number of subtracted days in the lastSyncDate
= lastSyncDate.AddDays(-100); code line and repeat the data export.

 | Web Services API Developer Guide | 19

Figure: Exploring the Warehouse Details tab of the Stock Items form

Simulating the Behavior of Add Buttons on the Purchase Receipts Form

In this example, you create, run, and test a command-line client application that adds lines to the
details table of the Purchase Receipts (PO.30.20.00) form from the details table of the Purchase
Orders (PO.30.10.00)form. (Both forms are located in the Purchase Orders module.) The client
application will add lines from all purchase orders that have the same VendorCD field value. The
application will imitate a user clicking the Add PO (the AddPOOrder action is called) button on
the Purchase Receipts form and the user's next few steps.

We make the following assumptions in this example:

1. You have installed the local client application instance (named WEBAPIVirtual) with the
standard ERP demo application database. If you will use another application instance name,
you should correct appropriate code lines in the code example shown in the next section.

2. You have created the Web Services WSDL definition file. (See Quick Start, Step 1.)

3. You have imported the Web Services WSDL definition file and generated the proxy class in
the ConsoleApplication.apitest namespace. (See Quick Start, Step 2.) If you will use another
WDSL file name, location, or namespace, you should correct appropriate code lines in the
code example shown in the next section. You should also add your own password if it is
different from the one used in the authorization code line in the code example. (See Quick
Start, Step 3.)

4. You have primary information about the objects and properties of the Web Services API that
the code lines of the example use. See the brief definitions in Examples of the Web Service
API Implementation.

Create, Correct, and Run the Code Example

In the steps below, before you create the code, you will add a purchase order and a purchase
receipt. These tasks are necessary to test the result of running the client application when we know
the values of key fields and use them in the code lines.

 | Web Services API Developer Guide | 20

Do the following actions:

1. Start Acumatica ERP, and navigate to the Distribution > Purchase Orders > Enter >
Purchase Orders form. Add a purchase order with the Normal type and the following values:
PORG000084 as the Order Nbr, ACITAISYST as the Vendor, and MAIN as the Location.
Click Save.

2. Add to the Document Details tab three lines with any Inventory ID, Order Qty, and Unit
Cost column values (as an example, see the figure below). Add 0 as the Subitem value (this
column cannot be empty). Add the Control Total value (if this field appears in your system)
so that it equals the Order Total value, and fill in the other mandatory fields (designated with
asterisks); otherwise, the purchase order will not be saved. Click Save.

3. Clear the Hold check box and click Save.

Figure: Creating a new purchase order

4. Navigate to the Distribution > Purchase Orders > Enter > Purchase Receipts form, and
add a receipt with the Receipt type and the following values: PORE000079 as the Receipt
Nbr., ACITAISYST as the Vendor, and MAIN as the Location. Click Save.

5. Click Add PO on the table toolbar of the Document Details tab.

6. In the table of the Add Purchase Order dialog box that appears, notice one line with the field
values of the purchase order added before. (In other cases, more than one line or no lines may
be displayed.) Select the unlabeled check box and click Add & Close, as shown in the figure
below. Notice that the Add Purchase Order window is closed, while on the Document
Details tab, the three lines have been added. (You can see this in the figure in the end of this
article.) You will implement this scenario in the C# client application code. Click Cancel to
not save the added lines.

If you implement within one client application another scenario, based on the Add
PO Line button, you should obtain the same result. You can prepare the code for the
second scenario independently. This code is shown at the end of this topic; see code of
the second scenario.

 | Web Services API Developer Guide | 21

Figure: Adding new lines to the details table of the purchase receipt

7. Add code lines to the Program proxy class code but previously add the using operator, as
shown in the code below. (The added code lines are preceded by +.)

 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
+using ConsoleApplication.apitest;

 namespace ConsoleApplication
 {
 class Program
 {
 static void Main(string[] args)
 {
+ apitest.Screen context = new apitest.Screen();
+ context.CookieContainer = new System.Net.CookieContainer();
+ context.AllowAutoRedirect = true;
+ context.EnableDecompression = true;
+ context.Timeout = 1000000;
+ context.Url = "http://localhost/WebAPIVirtual/Soap/APITEST.asmx";
+ LoginResult result = context.Login("admin", "E618");

+ PO302000Content PO302000 = context.PO302000GetSchema();
+ context.PO302000Clear();
+ PO302000.Actions.AddPOOrder.Commit = true;
+ PO302000.Actions.AddPOOrder2.Commit = true;
+ PO302000.AddPurchaseOrder.Selected.LinkedCommand = null;
+ PO302000.DocumentDetails.InventoryID.LinkedCommand = null;

+ PO302000Content[] PO302000result = context.PO302000Submit
+ (
+ new Command[]
+ {
+ new Value { Value = "PORE000079", LinkedCommand =
+ PO302000.DocumentSummary.ReceiptNbr },
+ new Value { Value = "OK", LinkedCommand =
+ PO302000.AddPurchaseOrder.ServiceCommands.DialogAnswer, Commit =
 true },
+ //uncomment the next two lines if you want to use multicurrency orders

+ //new Value { Value = "True", LinkedCommand =

 | Web Services API Developer Guide | 22

+ // PO302000.AddPurchaseOrderPOSelection.AnyCurrency, Commit = true },
+ PO302000.Actions.AddPOOrder,
+ new Key { Value = "='Normal'", FieldName =
+ PO302000.AddPurchaseOrder.OrderType.FieldName,
+ ObjectName =
 PO302000.AddPurchaseOrder.OrderType.ObjectName },
+ new Key { Value = "='PORG000084'", FieldName =
+ PO302000.AddPurchaseOrder.OrderNbr.FieldName,
+ ObjectName =
 PO302000.AddPurchaseOrder.OrderNbr.ObjectName },
+ new Value { Value = "True", LinkedCommand =
+ PO302000.AddPurchaseOrder.Selected, Commit = true },
+ PO302000.Actions.AddPOOrder2
+ }
+);
 }
 }
 }

If you created a purchase order with another Order Nbr. value or a receipt with
another Receipt Nbr. value, use the real document ID value.

8. Build the solution, open the application, and press F5 to run the client application in Debug
mode.

9. Again open Acumatica ERP, refresh the form, and ensure that the three lines have been added
as a result of running the client application. (The figure below illustrates the test results.)

Figure: Three added lines as a result of running the client application code

This code implements the following process flow:

1. Activating the AddPOOrder and AddPOOrder2 actions.

2. Invoking the AddPOOrder and AddPOOrder2 actions to imitate adding lines to the details
table by using the scenario that had been implemented for the Add PO button in Acumatica

 | Web Services API Developer Guide | 23

ERP: selecting all the records in the table of the Add Purchase Order dialog box (after
invoking the Add PO Line button, you can also specify through the code the required purchase
order number), and clicking the Add & Close button.

The code for the second scenario follows.

apitest.Screen context = new apitest.Screen();
 context.CookieContainer = new System.Net.CookieContainer();
 context.AllowAutoRedirect = true;
 context.EnableDecompression = true;
 context.Timeout = 1000000;
 context.Url = "http://localhost/WebAPIVirtual/Soap/APITEST.asmx";
 LoginResult result = context.Login("admin", "E618");

 PO302000.Actions.AddPOOrderLine.Commit = true;
 PO302000.Actions.AddPOOrderLine2.Commit = true;
 PO302000.AddPurchaseOrderLine.Selected.LinkedCommand = null;
 PO302000.DocumentDetails_.InventoryID.LinkedCommand = null;
 PO302000result = context.PO302000Submit(
 new Command[]
 {
 new Value { Value = "PORE000079", LinkedCommand =
 PO302000.DocumentSummary.ReceiptNbr},
 new Value { Value = "OK", LinkedCommand =
 PO302000.AddPurchaseOrderLine.ServiceCommands.DialogAnswer,
 Commit = true },
 PO302000.Actions.AddPOOrderLine,
 new Key { Value = "='PORG000084'", FieldName =
 PO302000.AddPurchaseOrderLine.OrderNbr.FieldName, ObjectName =
 PO302000.AddPurchaseOrderLine.OrderNbr.ObjectName },
 new Key { Value = "='CPU00004'", FieldName =
 PO302000.AddPurchaseOrderLine.InventoryID.FieldName, ObjectName =
 PO302000.AddPurchaseOrderLine.InventoryID.ObjectName },
 new Value{ Value = "True", LinkedCommand =
 PO302000.AddPurchaseOrderLine.Selected, Commit = true },
 PO302000.Actions.AddPOOrderLine2
 new Key{ Value = "='CPU00004'", FieldName =
 PO302000.DocumentDetails_.InventoryID.FieldName, ObjectName =
 PO302000.DocumentDetails_.InventoryID.ObjectName},
 new Value{ Value = "1.00", LinkedCommand =
 PO302000.DocumentDetails_.ReceiptQty, Commit = true},
 // the next part of code is needed if you use Serial items
 PO302000.BinLotSerialNumbers.ServiceCommands.NewRow,
 new Value { Value = "R01", LinkedCommand =
 PO302000.BinLotSerialNumbers.Location },
 new Value { Value = "1.00", LinkedCommand =
 PO302000.BinLotSerialNumbers.Quantity, Commit = true },
 new Value { Value = "25.00", LinkedCommand =
 PO302000.DocumentDetails_.UnitCost, Commit = true },
 new Key { Value = "='CPU00004'", FieldName =
 PO302000.DocumentDetails_.InventoryID.FieldName, ObjectName =
 PO302000.DocumentDetails_.InventoryID.ObjectName },
 new Value { Value = "0.00", LinkedCommand =
 PO302000.DocumentDetails_.ReceiptQty, Commit = true }
 PO302000.Actions.Save
 }
);

If you created a purchase order with another Order Nbr. value or a receipt with another
Receipt Nbr. value, use the real document ID value.

 | Web Services API Developer Guide | 24

Copying a Sales Order

In this example, you create, run, and test a simple command-line client application that copies key
field and column values from an existing Sales Orders (SO.30.10.00) form of the Sales Orders
module and pastes the values into an added sales order.

We make the following assumptions in this example:

1. You have installed the local client application instance (named WEBAPIVirtual) with the
standard ERP demo application database. If you will use another application instance name,
you should correct appropriate code lines in the code example shown in the next section.

2. You have created the Web Services WSDL definition file. (See Quick Start, Step 1.)

3. You have imported the Web Services WSDL definition file and generated the proxy class in
the ConsoleApplication.apitest namespace. (See Quick Start, Step 2.) If you will use another
WDSL file name, location, or namespace, you should correct appropriate code lines in the
code example shown in the next section. You should also use your own password if it is
different from the one used in the authorization code line in the code example. (See Quick
Start, Step 3.)

4. You have primary information about the objects and properties of the Web Services API that
the code lines of the example use. See the brief definitions in Examples of the Web Service
API Implementation.

Create, Correct, and Run the Code Example

In the steps below, before you create the code example, you will ensure that a particular sales
order with a specific Order Nbr. value exists—the order we plan to copy—and check some
of its values. This step is necessary so you can later make sure the copying operation worked
appropriately.

Do the following actions:

1. Start Acumatica ERP, and navigate to Distribution > Sales Orders > Enter > Sales Orders.
In the Order Type field, select SO, and in the Order Nbr. field, select (by using the lookup
window) 000097. Note the values of the Inventory ID column in the details table on the
Document Details tab (for the three rows) and the Order Total field in the main area of the
form. (See the figure below).

 | Web Services API Developer Guide | 25

Figure: The existing sales order

If you select Copy Order on the Actions menu, you can create a new order by using
the internal Acumatica ERP Copy Order operation. This example imitates the copying
operation by using the external client application code.

2. Add the code lines to the Program proxy class code and add the using operator, as shown in
the code below. (The added code lines are preceded by +.)

 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
+using ConsoleApplication.apitest;

 namespace ConsoleApplication
 {
 class Program
 {
 static void Main(string[] args)
 {
+ apitest.Screen context = new apitest.Screen();
+ context.CookieContainer = new System.Net.CookieContainer();
+ context.AllowAutoRedirect = true;
+ context.EnableDecompression = true;
+ context.Timeout = 1000000;
+ context.Url = "http://localhost/WebAPIVirtual/Soap/APITEST.asmx";
+ LoginResult result = context.Login("admin", "E618");

+ SO301000Content SO301000 = context.SO301000GetSchema();
+ context.SO301000Clear();
+ SO301000.Actions.CopyOrder.Commit = true;
+ SO301000Content[] SO301000Content = context.SO301000Submit

 | Web Services API Developer Guide | 26

+ (
+ new Command[]
+ {
+ new Value { Value = "SO", LinkedCommand =
+ SO301000.OrderSummary.OrderType },
+ new Value { Value = "000097", LinkedCommand =
+ SO301000.OrderSummary.OrderNbr },
+ new Value { Value = "OK", LinkedCommand =
+ SO301000.CopyTo.ServiceCommands.DialogAnswer },
+ new Value { Value = "QT", LinkedCommand =
+ SO301000.CopyTo.OrderType},
+ SO301000.Actions.CopyOrder,
+ SO301000.Actions.Save,
+ SO301000.OrderSummary.OrderNbr
+ }
+);
 }
 }
 }

3. Build the solution, open the application, and press F5 to run the client application in Debug
mode.

4. Again open Acumatica ERP and navigate to the Sales Order form. Select QT in the Order
Type field, and select the new sales order (with the highest Order Nbr. value).Ensure that
same three lines that existed in sales order 000097 have been added to the details table after
you ran the client application, and make sure the Order Total field has the same value that
you noted in sales order 000097. (The figure below illustrates the test results.)

Figure: The added sales order as a result of running the client application code

As the introduction mentions, this code represents the simple example of a client application that
is used for inserting a new sales order by copying many of its settings from an existing one. This
code implements the following process flow:

1. Using the Submit method to provide the copying operation.

 | Web Services API Developer Guide | 27

2. Invoking the CopyOrder action to imitate the selection of the Copy Order option on the
Actions menu of the form.

3. Using the SO301000.OrderSummary.OrderNbr command to invoke the document
autonumbering method implemented in Acumatica ERP.

Adding a New Cash Transaction Document

In this example, you create, run, and test a simple command-line client application that adds a
new cash transaction document to the Transactions (CA.30.40.00) form of the Cash Management
module.

We make the following assumptions in this example:

1. You have installed the local client application instance (named WEBAPIVirtual) with the
standard ERP demo application database. If you will use another application instance name,
you should correct appropriate code lines in the code example shown in the next section.

2. You have created the Web Services WSDL definition file. (See Quick Start, Step 1.)

3. You have imported the Web Services WSDL definition file and generated the proxy class in
the ConsoleApplication.apitest namespace. (See Quick Start, Step 2.) If you will use another
WDSL file name, location, or namespace, you should correct appropriate code lines in the
code example shown in the next section. You should also add your own password if it is
different from the one used in the authorization code line in the code example. (See Quick
Start, Step 3.)

4. You have primary information about the objects and properties of the Web Services API that
the code lines of the example use. See the brief definitions in Examples of the Web Service
API Implementation.

Create, Correct, and Run the Code Example

Add the code lines to the Program proxy class code and add the using operator, as shown in the
code below. (The added code lines are preceded by +.)

 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
+using ConsoleApplication.apitest;

 namespace ConsoleApplication
 {
 class Program
 {
 static void Main(string[] args)
 {
+ apitest.Screen context = new apitest.Screen();
+ context.CookieContainer = new System.Net.CookieContainer();
+ context.AllowAutoRedirect = true;
+ context.EnableDecompression = true;
+ context.Timeout = 1000000;
+ context.Url = "http://localhost/WebAPIVirtual/Soap/APITEST.asmx";
+ LoginResult result = context.Login("admin", "E618");

+ try

 | Web Services API Developer Guide | 28

+ {
+ CA304000Content CA304000 = context.CA304000GetSchema();
+ context.CA304000Clear();
+ CA304000Content[] CA304000result = context.CA304000Submit
+ (
+ new Command[]
+ {
+ new Value { Value = "100000", LinkedCommand =
+ CA304000.TransactionSummary.CashAccount },
+ new Value { Value = "PETTYEXP", LinkedCommand =
+ CA304000.TransactionSummary.EntryType },
+ new Value { Value = "111", LinkedCommand =
+ CA304000.TransactionSummary.DocumentRef },
+ new Value { Value = "true", LinkedCommand =
+ CA304000.TransactionSummary.Approved },
+ CA304000.TransactionDetails.ServiceCommands.NewRow,
+ new Value { Value = "408000", LinkedCommand =
+ CA304000.TransactionDetails.OffsetAccount },
+ new Value { Value = "00-00-00-00-000", LinkedCommand =
+ CA304000.TransactionDetails.OffsetSubaccount },
+ new Value { Value = "1", LinkedCommand =
+ CA304000.TransactionDetails.Quantity },
+ new Value { Value = "100", LinkedCommand =
+ CA304000.TransactionDetails.Price, Commit = true },
+ new Value { Value = "100", LinkedCommand =
+ CA304000.TransactionSummary.ControlTotal, Commit = true },
+ CA304000.Actions.Save, CA304000.TransactionSummary.ReferenceNbr
+ }
+);
+ }
+ catch (Exception ex)
+ {
+ Console.WriteLine(ex.Message);
+ }
 }
 }
 }

As the introduction mentions, this code represents the simple example of a client application
that is used for inserting a new cash transaction document into the Transactions form of the Cash
Management module. This code implements the following process flow:

1. Using the Submit method to add data to the form.

2. Invoking the Save action in the form.

3. Using the CA304000.TransactionSummary.ReferenceNbr command to invoke the document
autonumbering method implemented in the Acumatica ERP.

After preparing the code, you can build the solution and then press F5 to run the client application
in Debug mode. Start the Acumatica ERP application instance with the WSDL file, and navigate
to Finance > Cash Management > Enter > Transactions to open the Transactions form. In the
Reference Nbr. field, select the added transaction item (which has the highest reference number).
Ensure that the item has been added with the needed values. (See the figure below.)

 | Web Services API Developer Guide | 29

Figure: Testing the result of running the client application

Adding Records to the Business Accounts and Opportunities Forms

In this example, you create, run, and test a simple command-line client application that adds new
records to the Business Accounts (CR.30.30.00) and Opportunities (CR.30.40.00) forms of the
Customer Management module.

As with the previous example, we make the following assumptions in this example:

1. You have installed the local client application instance (named WEBAPIVirtual) with the
standard ERP demo application database. If you will use another application instance name,
you should correct appropriate code lines in the code example shown in the next section.

2. You have created the Web Services WSDL definition file. (See Quick Start, Step 1.)

3. You have imported the Web Services WSDL definition file and generated the proxy class in
the ConsoleApplication.apitest namespace. (See Quick Start, Step 2.) If you will use another
WDSL file name, location, or namespace, you should correct appropriate code lines in the
code example shown in the next section. You should also add your own password if it is
different from the one used in the authorization code line in the code example. (See Quick
Start, Step 3.)

4. You have primary information about the objects and properties of the Web Services API that
the code lines of the example use. See the brief definitions in Examples of the Web Service
API Implementation.

Create, Correct, and Run the Code Example

Add the code lines to the Program proxy class code and add the using operator, as shown in the
code below. (The added code lines are preceded by +.)

 using System;
 using System.Collections.Generic;

 | Web Services API Developer Guide | 30

 using System.Linq;
 using System.Text;
+using ConsoleApplication.apitest;

 namespace ConsoleApplication
 {
 class Program
 {
 static void Main(string[] args)
 {
+ apitest.Screen context = new apitest.Screen();
+ context.CookieContainer = new System.Net.CookieContainer();
+ context.AllowAutoRedirect = true;
+ context.EnableDecompression = true;
+ context.Timeout = 1000000;
+ context.Url = "http://localhost/WebAPIVirtual/Soap/APITEST.asmx";
+ LoginResult result = context.Login("admin", "E618");

+ CR303000Content CR303000 = context.CR303000GetSchema();
+ context.CR303000Clear();
+ CR303000Content[] CR303000Content = context.CR303000Submit
+ (
+ new Command[]
+ {
+ new Value { Value = "TEST123", LinkedCommand =
+ CR303000.AccountSummary.BusinessAccount },
+ new Value { Value = "TEST123", LinkedCommand =
+ CR303000.AccountSummary.BusinessAccountName },
+ new Value { Value = "US", LinkedCommand =
+ CR303000.DetailsMainAddress.Country },
+ new Value { Value = "Industry", LinkedCommand =
 CR303000.Attributes.Attribute },
+ new Value { Value = "Banking", LinkedCommand =
+ CR303000.Attributes.Value, Commit = true },
+ CR303000.Actions.Save
+ }
+);

+ CR304000Content CR304000 = context.CR304000GetSchema();
+ context.CR304000Clear();
+ CR304000Content[] CR304000Content = context.CR304000Submit
+ (
+ new Command[]
+ {
+ new Value { Value = "TEST123", LinkedCommand =
+ CR304000.OpportunitySummary.BusinessAccount },
+ new Value { Value = "MAIN", LinkedCommand =
+ CR304000.OpportunitySummary.NoteText },
+ new Value { Value = "INSIDE", LinkedCommand =
+ CR304000.Details.ClassID },
+ new Value { Value = "DESCRIPTION", LinkedCommand =
+ CR304000.OpportunitySummary.Subject },
+ CR304000.Actions.Save
+ }
+);
 }
 }
 }

As the introduction mentions, this code represents the simple example of a client application that
adds new records to the Business Accounts and Opportunities forms of the Customer Management
module. This code implements the following process flow:

1. Using the Submit method to add data to the forms.

2. Invoking the Save action in the form.

 | Web Services API Developer Guide | 31

After preparing the code, you can build the solution and then press F5 to run the client application
in Debug mode. Perform the following actions:

• Start the Acumatica ERP application instance with WSDL file. Navigate to Organization >
Cash Management > Manage > Business Account to open the Business Account form, and
in the Business Account field, find the added record by using a quick search and select it. (The
new record has the number TEST123.) Ensure that the record has been added with the needed
values. (See the figure below.)

Figure: Testing the first result of running client application

• Navigate to Organization > Cash Management > Manage > Opportunities to open the
Opportunities form, and in the Opportunity ID field, select the added record, which has the
highest reference number. Ensure that the record has been added with the needed values. (See
the figure below.)

 | Web Services API Developer Guide | 32

Figure: Testing the second result of running the client application

Importing of Data With an Image Into the Journal Transactions Form

In this example, you create, run, and test a client application that enables the import data with an
image into the Journal Transactions (GL.30.10.00) form of the General Ledger module.

We make the following assumptions in this example:

1. You have installed the local client application instance (named WEBAPIVirtual) with the
standard ERP demo application database. If you will use another application instance name,
you should correct appropriate code lines in the code example shown in the next section.

2. You have created the Web Services WSDL definition file. (See Quick Start, Step 1.)

3. You have imported the Web Services WSDL definition file and generated the proxy class in
the ConsoleApplication.apitest namespace. (See Quick Start, Step 2.) If you will use another
WDSL file name, location, or namespace, you should correct appropriate code lines in the
code example shown in the next section. You should also add your own password if it is
different from the one used in the authorization code line in the code example. (See Quick
Start, Step 3.)

4. You have primary information about the objects and properties of the Web Services API that
the code lines of the example use. See the brief definitions in Examples of the Web Service
API Implementation.

Create, Correct, and Run the Code Example

Add the code lines to the Program proxy class code and add the using operator, as shown in the
code below. (The added code lines are preceded by +.)

 | Web Services API Developer Guide | 33

 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
+using ConsoleApplication.apitest;

 namespace ConsoleApplication
 {
 class Program
 {
 static void Main(string[] args)
 {
+ apitest.Screen context = new apitest.Screen();
+ context.CookieContainer = new System.Net.CookieContainer();
+ context.AllowAutoRedirect = true;
+ context.EnableDecompression = true;
+ context.Timeout = 1000000;
+ context.Url = "http://localhost/WebAPIVirtual/Soap/APITEST.asmx";
+ LoginResult result = context.Login("admin", "E618");

+ byte[] filedata;
+ using (System.IO.FileStream file =
+ System.IO.File.Open(@"D:\01.jpg", System.IO.FileMode.Open))
+ {
+ filedata = new byte[file.Length];
+ file.Read(filedata, 0, filedata.Length);
+ }
+ GL301000Content GL301000 = context.GL301000GetSchema();
+ context.GL301000Clear();
+ GL301000ImportResult[] GL301000ImportResult = context.GL301000Import
+ (
+ new Command[]
+ {
+ new Value
+ {
+ Value = "GL", LinkedCommand = GL301000.BatchSummary.Module },
+ GL301000.BatchSummary.BatchNumber,
+ GL301000.BatchSummary.ControlTotal,
+ new Value
+ {
+ FieldName = "01.jpg", LinkedCommand =
- GL301000.BatchSummary.ServiceCommands.Attachment
+ }
+ GL301000.TransactionDetails.Account,
+ GL301000.TransactionDetails.Subaccount,
+ GL301000.TransactionDetails.RefNumber,
+ GL301000.TransactionDetails.CreditAmount,
+ GL301000.TransactionDetails.DebitAmount,
+ GL301000.Actions.Save
+ },
+ null,
+ new string [][]
+ { new string[] { "00003849", "10", Convert.ToBase64String(filedata),
+ "100000", "US-00-00-00-000", "REF", "10,0", "0,0" },
+ new string[] { "00003849", "10", Convert.ToBase64String(filedata),
+ "101000", "US-00-00-00-000", "REF", "0,0", "10,0" },
+ },
+ false, false, true);
+);
 }
 }
 }

This code implements the following process flow:

1. Using the Import method to import data into the form.

2. Using the standard .Net classes (FileStream, File, and FileMode) to open and read the byte
content of the external file.

 | Web Services API Developer Guide | 34

3. Using the Attachment service command to attach the external file to the form.

Figure: Exploring the Journal Transactions form

Test the results of data importing as follows:

• After preparing the code, build the solution and then press F5 to run the application in debug
mode. Start the Acumatica ERP application instance with the WSDL file, and navigate to the
Finance > General Ledger > Enter > Journal Transactions form. In the Batch Number
lookup field, find and select the largest batch number, and note the transaction values of the
two transactions in the details table (these values must equal those used in the code lines), as
shown in the figure above.

• To see the attached file, click Attach file on the title bar and select the attached file name. (The
figure below illustrates the process of opening the attached file.)

 | Web Services API Developer Guide | 35

Figure: Opening the attached file

Exporting of Data With an Image From the Journal Transactions Form

In this example, you create, run, and test a client application that exports data with an image from
the Journal Transactions (GL.30.10.00) form of the General Ledger module to a string array and
limits exported data with filter conditions.

Before performing the actions of this example, import data with an image, as described in the
previous example (see Importing of Data With an Image Into the Journal Transactions Form).

We make the following assumptions in this example:

1. You have installed the local client application instance (named WEBAPIVirtual) with the
standard ERP demo application database. If you will use another application instance name,
you should correct appropriate code lines in the code example shown in the next section.

2. You have created the Web Services WSDL definition file. (See Quick Start, Step 1.)

3. You have imported the Web Services WSDL definition file and generated the proxy class in
the ConsoleApplication.apitest namespace. (See Quick Start, Step 2.) If you will use another
WDSL file name, location, or namespace, you should correct appropriate code lines in the
code example shown in the next section. You should also add your own password if it is
different from the one used in the authorization code line in the code example. (See Quick
Start, Step 3.)

4. You have primary information about the objects and properties of the Web Services API that
the code lines of the example use. See the brief definitions in Examples of the Web Service
API Implementation.

 | Web Services API Developer Guide | 36

Create, Correct, and Run the Code Example

Add the code lines to the Program proxy class code and add the using operator, as shown in the
code below. (The added code lines are preceded by +.)

 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
+using ConsoleApplication.apitest;

 namespace ConsoleApplication
 {
 class Program
 {
 static void Main(string[] args)
 {
+ apitest.Screen context = new apitest.Screen();
+ context.CookieContainer = new System.Net.CookieContainer();
+ context.AllowAutoRedirect = true;
+ context.EnableDecompression = true;
+ context.Timeout = 1000000;
+ context.Url = "http://localhost/WebAPIVirtual/Soap/APITEST.asmx";
+ LoginResult result = context.Login("admin", "E618");

+ GL301000Content GL301000 = context.GL301000GetSchema();
+ context.GL301000Clear();
+ string[][] export = context.GL301000Export
+ (
+ new Command[]
+ {
+ new Value
+ {
+ Value = "GL", LinkedCommand = GL301000.BatchSummary.Module },
+ GL301000.BatchSummary.ServiceCommands.EveryBatchNumber,
+ new Field
+ {
+ ObjectName = GL301000.BatchSummary.BatchNumber.ObjectName,
- FieldName = "LastModifiedDateTime", Value = "TS"
+ }
+ GL301000.BatchSummary.BatchNumber,
+ GL301000.BatchSummary.ControlTotal,
+ new Value {
+ FieldName = "01.jpg", LinkedCommand =
+ GL301000.BatchSummary.ServiceCommands.Attachment
+ },
+ GL301000.TransactionDetails.Account,
+ GL301000.TransactionDetails.Subaccount,
+ GL301000.TransactionDetails.RefNumber,
+ GL301000.Transactionetails.CreditAmount,
+ GL301000.TransactionDetails.DebitAmount
+ },
+ new Filter[]
+ { new Filter { Field = GL301000.BatchSummary.TransactionDate,
+ Condition = FilterCondition.GreaterOrEqual, Value = DateTime.Today }
+ },
+ 0, true, true);
+);
 }
 }
 }

This code implements the following process flow:

1. Using the Export method to export data from the form to the string array.

 | Web Services API Developer Guide | 37

2. Using the Filter object with the FilterCondition property to filter exported data to the string
array. (This exports only transactions from the current day.)

3. Using the Attachment service command to identify and download the attached file from the
form.

Test the results of data exporting as follows:

• After preparing the code, build the solution and then press F5 to run the application in debug
mode. Start the Acumatica ERP application instance with the WSDL file, navigate to the
Finance > General Ledger > Enter > Journal Transactions form. In the Batch Number
lookup field, find and select the largest batch number, change the Transaction Date field value
to the current date value (if necessary), and note the transaction values of the two transactions
in the details table (which must equal the values that will be obtained in the watch window
of Visual Studio), as shown in the figure above. Compare the transaction values with the
debugging results, as shown in the figure below.

• In Visual Studio, set appropriate breakpoints and then press F5 to run the client application in
Debug mode. Use step-by-step debugging to ensure that the array contains exported data with
the attached image file code. (The figure below illustrates the test results.)

Figure: Checking the results in debug mode

	Contents
	Web Services API Developer Guide
	Quick Start
	Examples of the Web Service API Implementation
	Exporting Warehouse Data
	Exporting Stock Items
	Simulating the Behavior of Add Buttons on the Purchase Receipts Form
	Copying a Sales Order
	Adding a New Cash Transaction Document
	Adding Records to the Business Accounts and Opportunities Forms
	Importing of Data With an Image Into the Journal Transactions Form
	Exporting of Data With an Image From the Journal Transactions Form

