
Web Development
with Django
Instructor: Jorge Mendez

Logistics

• Homework 6 has been graded on Canvas
• Homework 8 is out, due this Friday
• Final project is out, due April 29th (in practice, May 9th)

Overview

• Free, open-source web framework
• Model-template-view architecture
• Model — database
• View — endpoint function
• Template — HTML template

• Designed to make common web dev tasks fast and easy
• Primarily thought for database-driven websites
• Create and manage databases directly in Python code

• Used in Instagram, YouTube, Spotify…

Installation

• pip install Django
• conda install -c anaconda django
• Python includes SQLite, supported by Django
• Django also officially supports PostgreSQL, MySQL, and Oracle
• Necessary for large-scale production websites

Projects and apps

Creating a project

• Command line
• django-admin startproject mysite

• Creates auto-generated code for project setup
• Project: package with database config, Django options, and

application settings
• We’ll (partially) follow the tutorial from the Django website

https://docs.djangoproject.com/en/2.2/intro/tutorial01/

Live Example

Creating a project

• Directory structure automatically created
• mysite/ — outer directory, container for project

(name does not matter)
• manage.py — command line utility for

interacting with Django
• mysite/ — inner directory, actual Python

package (name matters!)
• settings.py — Django project settings
• urls.py — declarations for URLs in your project. Like

a table of contents
• wsgi.py — entry point for WSGI servers

Running development server

• python manage.py runserver
• Runs lightweight development server
• By default, DEBUG=True (in settings.py)
• Provides auto-reloading and error traces

• Django’s server is designed to be used only during development (not
production)

Live Example

Creating an app

• Applications are also Python packages
• What’s the difference between a project and an app?
• Apps are web apps that do something concrete
• Projects are a collection of apps and configurations
• Projects contain multiple apps, and apps can be in various projects

• App path can be anywhere

Example: Creating an app

• Will create it in mysite/ outer directory
• This way it can be imported as a top-level package, not a sub-package of
mysite (inner)

• From mysite/: python manage.py startapp polls
• Creates app directory structure

Live Example

Creating a view

• A view is a function that renders a page
• Like functions in a Flask app

1. Create function in views.py that returns an HTTP response
2. Add a urls.py (table of contents) to the app directory
3. Add the URL to urlpatterns list in urls.py
4. Add the urls.py from the app to the project’s urlpatterns in

urls.py

Example: Creating a view

1. Create function in views.py that returns an HTTP response

Example: Creating a view

2. Add a urls.py (table of contents) to the app directory
3. Add the URL to urlpatterns list in urls.py

• The path() function creates a URL object specifically for urlpatterns

Example: Creating a view

4. Add the urls.py from the app to the project’s urlpatterns in
urls.py

• include() references all URLs in another URL config file

The path() function

• path(route, view, name, kwargs)
• route — string with the URL pattern to match

• Can include variables like <varname> or <type:varname> like in Flask
• view — either a function or an include()

• Functions are called with the HTTP request as the first argument and any variable from
the URL as keyword arguments

• name — string for reverse matching (must be unique to avoid clashes)
• Allows us to do reverse(name) instead of reverse(view), both of which are

valid, to retrieve the URL of a given view.
• kwargs — additional keyword arguments sent to the view

Database setup

Default settings

• settings.py contains database settings
• Defaults are for using SQLite, so we’ll leave them untouched

• INSTALLED_APPS — list of apps for project
• django.contrib.admin — The admin site
• django.contrib.auth — An authentication system
• django.contrib.contenttypes — A framework for content types
• django.contrib.sessions — A session framework
• django.contrib.messages — A messaging framework
• django.contrib.staticfiles — A framework for managing static

files

Creating models

• Models are the database layout with some additional metadata
• Each table in the database is represented by a Python class
• Each class variable represents a column in the table
• Classes must subclass django.db.models.Model
1. Update models in models.py
2. Add the app to the INSTALLED_APPS list
3. Run python manage.py makemigrations app to track

changes
4. Run python manage.py migrate to apply changes

Example: Creating models

1. Update models in models.py

Notes on models

• The variable names are used for the column names
• Different tables can be related to others’
• ForeignKey — one-to-many
• ManyToManyField — self-explanatory
• OneToOneField — self-explanatory

2. Add polls.apps.PollsConfig to INSTALLED_APPS list to
include model
• Defined in apps.py

Creating tables

3. python manage.py makemigrations polls — include
new models
• Generates migration: Python code that is translated into SQLite code for each

table

4. python manage.py migrate — creates database tables
• Looks at INSTALLED_APPS and the database settings in settings.py
• Runs SQLite code from migrations (i.e., updates database schemas)

• python manage.py sqlmigrate polls id — returns SQL
code for migration #id (to visualize the code)

Live Example

Using the model objects in Python

from django.utils import timezone

q = Question(question_text="What's new?", pub_date=timezone.now())

q.save() # Add to the database

• You can add custom methods to your class
• It is important to add __str__ method

Some more of the
polls app

The index view

• render() returns an HTTP response for displaying the template
• The template can be managed directly by Django or by external template engine (e.g.,

Jinja2)
• arguments from context are passed into template

The index template

• This is what a typical template looks like

Django template
language

Overview

• A template is a text file that generates other text files
• Goal: use code to generate (parts of) HTML, CSS, or XML files
• We’ll follow the Django documentation for the template language

https://docs.djangoproject.com/en/2.2/ref/templates/language/

Variables

1. {{variable}} — evaluates variable name and replaces with
result

• foo.bar — searches for dict element à attribute/method à
numeric index
• If foo.bar is callable (e.g., a function), it is called with no argument

(foo.bar()) and the result is the template value
• bar is treated as a string ‘bar’ and not as a variable (even if a variable
bar exists)

• If variable is not found, it is replaced with
string_if_invalid (‘’ by default)

Filters

2. {{var|filter}} — applies a filter to var
• {{name|lower}} — converts string to lower case
• {{text|escape|linebreaks}} — escapes HTML code and

changes linebreaks for <p>
• {{bio|truncatewords:30}} — display first 30 words of bio
• {{list|join:’, ’}} — join strings in list, separate by ’, ‘
• {{var|default:val}} — if var is missing, replace with val
• Django includes about 60 filters

Tags

3. {% tag %} or {% tag %} … {% end tag %} — create
text, control flow, load external info…

• {% for elem in list %} do_stuff {% endfor %}
• {% if cond %} do_suff {% elif %} do_other_stuff
{% endif %}

Template inheritance

• Most powerful and complex part
• {% extends %} — inherit a template
• Must be the first tag in the child template

• {% block name %} some content {% endblock %} —
replace the parent’s content in block name with child’s content
• If a block is missing, defaults from parent are used

Template example (parent)

Template example (child)

Template example (result)

Auto-escaping

• By default, Django automatically escapes the following characters
• < is converted to <
• > is converted to >
• ' (single quote) is converted to '
• " (double quote) is converted to "
• & is converted to &

Takeaways

• Django is a complete web framework, as opposed to Flask

• It follows a model-view-template architecture

• Database handling is at the core of Django
• Like in Flask, views handle specific requests

• Django also includes its own template engine
• We barely got into the tutorial…

