
Verilog and SystemVerilog
Gotchas
101 Common CodingErrors and How to
Avoid Them

Stuart Sutherland
Don Mills

Verilog and SystemVerilog
Gotchas
101 Common Coding Errors and How to
Avoid Them

~ Springer

StuartSutherland
Sutherland HDL, Inc.
Tualatin, OR
USA

Don Mills
LCDM Engineering
Chandler, AZ
USA

Libraryof CongressControlNumber: 2007926706

ISBN978-0-387-71714-2

Printedon acid-freepaper.

e-ISBN978-0-387-71715-9

© 2007SpringerScience+Business Media,LLC
All rights reserved. This work may not be translated or copied in whole or in part without
the writtenpermissionof the publisher(SpringerScience-BusinessMedia,LLC,233 Spring
Street,New York, NY 10013,USA),except for brief excerptsin connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now
know or hereafter developed is forbidden. The use in this publication of trade names,
trademarks, servicemarksand similar terms, even if they are not identifiedas such, is not to
be taken as an expression of opinion as to whether or not they are subject to proprietary
rights.

9 8 7 6 5 432 1

springer.com

Dedication

To my wonderful wife, LeeAnn, and my children, Ammon, Tamara, Hannah, Sethand
Samuel- thankyoufor yourpatienceduringthe many longhoursand latenights
you toleratedwhile this bookwas beingwritten.

StuSutherland
Portland, Oregon

To my wifeandsweetheart GeriJean, and my children, Sara, Kirsten, Adam, Alex,
Dillan, Donnelle, Grantand Gina- thanks to eachofyoufor thepatienceyou have
hadwithme as I havedealtwithdebugging manyofthesegotchason designs overthe
years.

Don Mills
Chandler, Arizona

About the Authors

Mr. Stuart Sutherland is a member of the IEEE 1800 working
group that oversees both the Verilog and SystemVerilog
standards. He has been involved with the definition of the
Verilog standard since its inception in 1993, and the
SystemVerilog standard since work began in 200I. In addition,
Stuart is the technical editor of the official IEEE Verilog and
SystemVerilog Language Reference Manuals (LRMs). Stuart is
an independent Verilog consultant, specializing in providing

comprehensive expert training on the Verilog HDL, SystemVerilog and PLI.
Stuart is a co-authorof the books "SystemVerilog for Design", "Verilog-2001: A
Guide to the New Features in the Verilog Hardware Description Language" and
is the author of "The Verilog PLl Handbook", as well as the popular "Verilog
HDL Quick Reference Guide" and"Verilog PLl QuickReference Guide". He has
alsoauthored a number of technical papers on Verilog and SystemVerilog, which
are available at www.sutherland-hdl.com/papers. You can contact Stuart at
stuart@sutherland-hdl.com.

visit the authorswebpage at www.sutherland-hdl.com

Mr. Don Mills has been involved in ASIC design since 1986.
During that time, he has worked on morethan 30 ASIC projects.
Don started using top-down design methodology in 1991
(Synopsys Design Compiler 1.2). Don has developed and
implemented top-down ASIC design flows at several companies.
His specialty is integrating tools and automating the flow. Don
works for Microchip Technology Inc. as an internal
SystemVerilog and Verilog consultant. Don is a member of the

IEEE Verilog and System Verilog committees that are working on language
issues and enhancements. Don has authored and co-authored numerous papers,
such as "SystemVerilog Assertions are for Design Engineers Too!" and "RTL
Coding Styles that Yield Simulation and Synthesis Mismatches". Copies of these
papers can be found at www.lcdm-eng.com.Mr. Mills can be reached at
mills@lcdm-eng.comor don.mills@microchip.com.

visit the authorswebpage at www.lcdm-eng.com

Acknowledgments

The authors express their sincere appreciation to the contributions of several
Verilog and SystemVerilog experts.

Chris Spear of Synopsys, Inc. suggested several of the verification related
gotchas, provided the general descriptions of these gotchas, and ran countless
tests forus.

Shalom Bresticker of Intelalsosuggested several gotchas.

Jonathan Bromley of Doulos, Ltd., Clifford Cummings of Sunburst Design,
Tom Fitzpatrick of Mentor Graphics, Steve Golson of Trilobyte Systems, Gregg
Lahti of Microchip Technology, Inc. and Chris Spear of Synopsys, Inc. provided
thorough technical reviews of this book, and offered invaluable comments on
howto improve the gotcha descriptions.

Steve Golson of Trilobyte Systems provided a wonderful foreword to thisbook

Lastly, we acknowledge and express our gratitude to our wives, LeeAnn
Sutherland and Geri Jean Mills, for meticulously reviewing this book for
grammar and punctuation. If any sucherrataremain in the book, it could onlybe
due to changes we madeaftertheirreviews.

Table ofContents

List of Gotchas...•••.••..•....•••....•..•.•..•..••.....•...••..•.........••................•..•.........•..•.............•..... xv

Foreword
by SteveGolson...••..•.......••...•......................•.....•...................•.................•..••................•.•.•. 1

Chapter 1:
Introduction,
What Is A Gotcha? 3

Chapter 2:
Declaration and Literal Number Gotchas 7

Gotcha 1: Case sensitivity 7

Gotcha 2: Implicitnet declarations 10

Gotcha 3: Default of l-bit internal nets 13

Gotcha4: Single file versus multi-file compilation of $unit declarations 15

Gotcha 5: Local variable declarations 17

Gotcha6: Escapednames in hierarchical paths 19

Gotcha 7: Hierarchical references to automatic variables 22

Gotcha 8: Hierarchical references to variables in unnamedblocks 25

Gotcha9: Hierarchical references to importedpackage items 27

Gotcha 10: Importingenumerated types from packages 28

Gotcha 11: Importingfrom multiplepackages 29

Gotcha 12: Default base of literal integers 30

Gotcha 13: Signedness of literal integers 32

Gotcha 14: Signed literal integerszero extend to their specifiedsize 33

Gotcha 15: Literal integer size mismatch in assignments 35

Gotcha 16: Filling vectorswith all ones 37

Gotcha 17: Array literalsversusconcatenations 38

Gotcha 18: Port connectionrules 39

Gotcha 19: Back-driven ports 43

Table of Contents

Gotcha 20: Passing real (floating point)numbers through ports 46

Chapter 3:
RTL Modeling Gotchas 49

Gotcha21: Combinational logicsensitivity listswith function calls 49

Gotcha22: Arrays in sensitivity lists 52

Gotcha23: Vectors in sequential logicsensitivity lists 54

Gotcha24: Operations in sensitivity lists 56

Gotcha25: Sequential logicblocks withbegin end groups 57

Gotcha26: Sequential logicblockswith resets 59

Gotcha 27: Asynchronous set/reset flip-flop for simulation and synthesis 60

Gotcha28: Blocking assignments in sequential procedural blocks 62

Gotcha29: Sequential logicthat requires blocking assignments 64

Gotcha30: Nonblocking assignments in combinational logic 66

Gotcha31: Combinational logicassignments in the wrongorder 70

Gotcha32: Casez/casex masksin caseexpressions 72

Gotcha33: Incomplete decision statements 74

Gotcha34: Overlapped decision statements 77

Gotcha35: Inappropriate use of unique casestatements 79

Gotcha36: Resetting 2-statemodels 82

Gotcha 37: Lockedstatemachines modeled with enumerated types 84

Gotcha38: Hidden design problems with4-statelogic 86

Gotcha39: Hiddendesign problems using2-statetypes 88

Gotcha40: Hidden problems with out-of-bounds arrayaccess 90

Gotcha 41: Out-of-bounds assignments to enumerated types 92

Gotcha 42: Undetected sharedvariables in modules 94

Gotcha43: Undetected sharedvariables in interfaces and packages 96

Chapter 4:
Operator Gotchas 99

Gotcha 44: Assignments in expressions 99

Gotcha 45: Self-determined versuscontext-determined operators 101

Gotcha46: Operation sizeand sign extension in assignment statements 105

Gotcha47: Signedarithmetic rules 108

xii

Table of Contents

Gotcha 48: Bit-select and part-select operations 111

Gotcha 49: Increment, decrement and assignment operators 112

Gotcha 50: Pre-increment versuspost-increment operations 113

Gotcha 51: Modifying a variable multiple times in one statement 115

Gotcha52: Operator evaluation shortcircuiting 116

Gotcha53: The not operator(!) versus the invertoperator(--) 118

Gotcha54: Arraymethod operations 119

Gotcha 55: Arraymethod operations on an arraysubset. 121

Chapter 5:
General Programming Gotchas 123

Gotcha56: Verifying asynchronous and synchronous reset at time zero 123

Gotcha57: Nestedif else blocks 128

Gotcha 58: Evaluation of equality with4-statevalues 129

Gotcha 59: Eventtriggerrace conditions 131

Gotcha60: Usingsemaphores for synchronization 134

Gotcha 61: Usingmailboxes for synchronization 137

Gotcha 62: Triggering on clocking blocks 139

Gotcha 63: Misplaced semicolons afterdecision statements 140

Gotcha 64: Misplaced semicolons in for loops ~ 142

Gotcha65: Infinitefor loops 144

Gotcha 66: Lockedsimulation due to concurrent for loops 145

Gotcha 67: Referencing for loopcontrol variables 147

Gotcha68: Defaultfunction returnsize 148

Gotcha69: Task/function arguments with defaultvalues 150

Gotcha70: Continuous assignments with delays cancel glitches 151

Chapter 6:
Object Oriented and Multi-Threaded Programming Gotchas 153

Gotcha 71: Programming statements in a class 153

Gotcha 72: Using interfaces with object-oriented testbenches 155

Gotcha 73: All objects in mailbox comeout with the samevalues 157

Gotcha 74: Passing handles to methods using inputversus ref arguments 158

Gotcha 75: Constructing an arrayof objects 159

xiii

Table of Contents

Gotcha 76: Statictasksand functions are not re-entrant 160

Gotcha 77: Staticversus automatic variable initialization 162

Gotcha 78: Forkedprogramming threads needautomatic variables 164

Gotcha 79: Disable forkkills too manythreads 166

Gotcha 80: Disabling a statement blockstopsmorethan intended 168

Gotcha 81: Simulation exitsprematurely, beforetestscomplete 171

Chapter 7:
Randomization, Coverage and Assertion Gotchas 173

Gotcha 82: Variables declared withrandare not getting randomized 173

Gotcha 83:Undetected randomization failures 175

Gotcha 84: $assertoffcoulddisable randomization 177

Gotcha 85: Boolean constraints on more than tworandom variables 179

Gotcha 86: Unwanted negative values in random values 181

Gotcha 87: Coverage reports default to groups, not bins 182

Gotcha 88: Coverage is always reported as 0% 184

Gotcha 89: The coverage reportlumps all instances together 186

Gotcha 90: Covergroup argument directions are sticky 187

Gotcha 91: Assertion passstatements execute witha vacuous success 188

Gotcha 92: Concurrent assertions in procedural blocks 190

Gotcha 93: Mismatch in assert else statements 192

Gotcha 94: Assertions that cannot faiI. 193

Chapter 8:
Tool Compatibility Gotchas 195

Gotcha 95: Defaultsimulation timeunitsand precision 195

Gotcha 96: Package chaining 198

Gotcha 97: Random number generator is not consistent across tools 200

Gotcha 98: Loading memories modeled withalways_latchlalways_ff 202

Gotcha 99: Non-standard language extensions 204

Gotcha 100:Array literals versus concatenations 206

Gotcha 101 :Module portsthat passfloating pointvalues (real types) 208

Index •.••••..••.•..•••.••..•.•••••••••••••..••.••••.•....•••..•.••..••.••••.••.•..•..••.......•...•••.•.••.•.••..•••....•••..•...••. 209

xiv

List ofGotchas

Gotcha 1: 7
The names in my code look correct and worked in my VHDL models, but
Verilog/System Verilog gets errors about "undeclared identifiers ''.

Gotcha 2: 10
A typo in my design connections was not caught by the compiler, and only
showedup as afunctional problemin simulation.

Gotcha 3: 13
In my netlist, only bit zero ofmy vectorports get connected.

Gotcha 4: 15
My models compile OK, and the modelsfrom anothergroup compile OK; but
whencompiledtogether, I get errorsaboutmultiple declarations.

Gotcha 5: 17
I get compilation errorson my localvariable declarations, but the declaration
syntax is correct.

Gotcha 6: 19
I get weird compiler errors when I try to reference a design signal with an
escapednamefrom my testbench.

Gotcha 7: 22
I get compilation errorswhenmy testbench tries toprint outsomesignalsin my
design, but othersignalscan beprinted withouta problem.

Gotcha 8: 25
With Verilog, my testbench couldprintout localvariables in a begin endblock,
but with SystemVerilog I get compilation errors.

Gotcha 9: 27
My design can use importedpackage itemsjust fine, but my testbench cannot
access the itemsfor verification.

Gotcha 10: 28
I importedan enumerated typefrom a package, but I cannot access the labels
definedby the enumerated type.

Gotcha 11: 29
I get errorswhenI try to wildcardimportmultiplepackages, but I can wildcard
importeachpackageseparately withoutany errors.

Listof Gotchas

Gotcha 12: 30
Some branches ofmy case statement are neverselected, even with the correct
inputvalues.

Gotcha 13: 32
My lncrementor modelsometimes gets incorrect values when I increment using
a literal1 'b1.

Gotcha 14: 33
When I specifya signed, sized literalinteger with a negative value, it does not
sign extend.

Gotcha 15: 35
When I assign a 4-bit negative value to an 8-bit signed variable, it is not sign
extended.

Gotcha 16: 37
I can use a literal integerto set all bits to Z on a vectorofany size, but when I
use the samesyntaxto set all bits to 1, I get a decimal 1 instead.

Gotcha 17: 38
The wrongvalues arestoredwhenI assign a listofvalues to a packedarrayor
structure.

Gotcha 18: 39
My design doesn't workcorrectly when I connect all the modules together, but
eachmodule workscorrectly by itself.

Gotcha 19: 43
I declaredmy port as an input, and software tools let me accidentally use the
port as an output, without any errors or warnings.

Gotcha 20: 46
I cannotfind a way topass realvalues from onemodule to anotherusingeither
Verilog or System Veri/og.

Gotcha 21: 49
My combinational logic seemedto simulate OK, but after synthesis, the gate­
levelsimulation doesnot matchthe RTLsimulation.

Gotcha 22: 52
I need my combinational logic block to be sensitive to all elements ofa RAM
array, but the sensitivity list won't triggerat the correcttimes.

Gotcha 23: 54
My always block is supposedto triggeron anypositiveedge in a vector, but it
misses mostedges.

xvi

Listof Gotchas

Gotcha 24: 56
My sensitivity list should trigger on any edge of a or b, but it misses some
changes.

Gotcha 25: 57
The clocked logic in my sequential block gets updated, even when no clock
occurred.

Gotcha 26: 59
Someofthe outputs ofmy sequential logicdo not get reset.

Gotcha 27: 60
When I code an asynchronous set/reset D-type flip-flop following synthesis
codingrules, mysimulation results are sometimes wrong.

Gotcha 28: 62
Myshift register sometimes doesa double shift in one clockcycle.

Gotcha 29: 64
I'm following the recommendations for using nonblocking assignments in
sequential logic, butI still haveraceconditions in simulation.

Gotcha 30: 66
MyRTLsimulation locksup and timestopsadvancing.

Gotcha 31: 70
Simulation ofmygate-level combinational logicdoesnotmatch RTLsimulation.

Gotcha 32: 72
Mycasexstatement is takingthewrongbranch whenthereis anerrorinthecase
expression.

Gotcha 33: 74
Myfull_case, parallel_case decision statement simulatedas I expected, but the
chipdoesnot work.

Gotcha 34: 77
Oneofmy decision branches nevergets executed.

Gotcha 35: 79
I am using uniquecase everywhere to help trap design bugs but my synthesis
results are not whatI expected.

Gotcha 36: 82
My design fails to reset thefirst time in RTL simulation.

Gotcha 37: 84
Mystate machine modellocksup in its start-up state.

xvii

Listof Gotchas

Gotcha 38: 86
There wasaproblemdeep insidethe logicofmy design, but it neverpropagated
to moduleboundaries.

Gotcha 39: 88
Some majorfunctional bugs in my design did not show up untilaftersynthesis,
whenI ran gate-levelsimulations.

Gotcha 40: 90
A design bugcausedreferences to nonexistent memoryaddresses, but therewas
no indication ofa problem in RTL simulation.

Gotcha 41: 92
My enumerated state machine variables have values that don't exist in the
enumerated definition.

Gotcha 42: 94
My RTL model output changes values when it shouldn't, and to unexpected
values.

Gotcha43: 96
Variables in mypackagekeepchanging at unexpected timesand to unexpected
values.

Gotcha 44: 99
I need to do an assignment as part ofan ifcondition, but cannot get my code to
compile.

Gotcha 45: 101
In some operations, my data is sign extendedand in other operations it is not
sign extended, and inyet otheroperations it is not extendedat all.

Gotcha 46: 105
I declared my outputs as signed types, but my design is still doing unsigned
operations.

Gotcha 47: 108
MysignedaddermodelworkedperfectlyuntilI addeda carry-in input, andnow
it only does unsignedaddition.

Gotcha 48: 111
All my data typesaredeclaredas signed, andI am referencing theentiresigned
vectors in my operations, yet I still get unsignedresults.

Gotcha 49: 112
I'm usingthe ++operatorfor mycounter; thecountervalueis correct, butother
code that reads the countersees the wrongvalue.

xviii

Listof Gotchas

Gotcha 50: 113
My while loop is supposedto execute 16 times, but it exits after 15 times, even
though the loopcontrolvariable has a valueof16.

Gotcha 51: 115
When I have multiple operations on a variable in a single statement. I get
different results from different simulators.

Gotcha52: 116
I am callingafunction twice in a statement, but sometimes onlyoneofthecalls
is executed.

Gotcha 53: 118
My ifstatement witha not-true condition did not execute when I wasexpecting
it to.

Gotcha 54.' 119
I get the wrongresult when I sum all the values ofan array using the built-in
.summethod

Gotcha 55: 121
I get the wronganswerwhenI sum specific arrayelements in an array.

Gotcha 56.' 123
Sometimes my design resets correctly at time zero, and sometimes it fails to
reset.

Gotcha 57: 128
My else branch ispairingup with the wrongifstatement.

Gotcha 58: 129
My testbench completely misses problems on design outputs, even though it is
testingthe outputs.

Gotcha59: 131
I'm using the event data type to synchronize processes, but sometimes when I
triggeran event, thesensingprocessdoes not activate.

Gotcha 60: 134
Myprocesses arenotsynchronizing thewayI expectedusingsemaphores. Even
when therearewaitingprocesses, someotherprocessgets to runaheadofthem.

Gotcha 61: 137
My mailbox works atfirst, and thenstartsgettingerrorsduringsimulation.

Gotcha 62: 139
I cannotget my testprogram to waitfor a clocking blockedge.

xix

Listof Gotchas

Gotcha 63: 140
Statements in my i/O decision execute, evenwhen the condition is not true.

Gotcha 64: 142
Myfor loop only executes one time.

Gotcha 65.' , " " .. , , 144
Myfor loopneverexits. When the loopvariable reaches the exit value, the loop
just starts over again.

Gotcha 66.' 145
When I run simulation, myfor loopslock up or do strangethings.

Gotcha 67: , 147
My Verilog code no longercompiles after I convertmy Verilog-style for loops
to a SystemVerilog style.

Gotcha 68: , 148
Myfunction only returns the leastsignificant bit ofthe return value.

Gotcha 69.' , , 150
I get a syntax error when I try to assign my task/function input arguments a
defaultvalue.

Gotcha 70.' , , " 151
Some delayedoutputsshow up with continuous assignments and others do not.

Gotcha 71: , , ,., , .. , .. "", ",." .. , .153
Someprogramming code in an initialprocedurecompiles OK, but whenI move
the code to a class definition, I get compilation errors.

Gotcha 72.' , 155
I get a compilation error whenI try to use a class object to create test values
whenthe testbench connects to the design usingan interface.

Gotcha 73.' , ,." , , , " .. 157
My codecreatesrandom objectvaluesandputs themintoa mailbox, but all the
objectscomingout ofthe mailboxhave the same value.

Gotcha 74.' "."" , , ", .. , ,., , .. ,., ,., 158
My methodconstructs and initializes an object, but I can neversee the object's
value.

Gotcha 75: " , " .. , , .. , 159
I declaredan arrayofobjects, butget a syntaxerrorwhenI try to construct the
array.

Gotcha 76: , , , ,. 160
My task worksOKsometimes, butgets bogusresults other times.

xx

Listof Gotchas

Gotcha 77.' 162
The variables in my testbench do not initialize correctly.

Gotcha 78.' , , 164
When I fork offmultiple tests, I get incorrect results, but each test runs OK by
itself.

Gotcha 79.' , 166
When I execute a disable fork statement, sometimes it kills threads that are
outside the scopecontaining the disable fork statement.

Gotcha 80.' , 168
When I try to disable a statement block in one thread, it stops the block in all
threads.

Gotcha 81.' , 171
Mysimulation exitsprematurely, beforeI call Sfinish, and while sometestsare
still running.

Gotcha 82.' 173
Someofmy class variables are notgettingrandomized, even though theywere
taggedas rand variables.

Gotcha 83: , , 175
My class variables do not get random values, even though I called the
randomize function.

Gotcha 84.' 177
I used an assertion to detect randomization failures, and now nothing gets
randomized during reset.

Gotcha 85.' , 179
When I specifyconstraints on morethantworandom variables, I don't get what
I expect.

Gotcha 86: , 181
I amgettingnegative values in my random values, whereI onlywantedpositive
values,

Gotcha 87.' .. , 182
I've definedspecificcoverage bins insidemy covergroup to track coverage of
specificvalues, but thereportonlyshowsthecoverage oftheentirecovergroup.

Gotcha 88: 184
I defined a covergroup, but the group always has 0% coverage in the cover
report.

xxi

Listof Gotchas

Gotcha 89: 186
I haveseveralinstances ofa covergroup, but thecoverage reportlumps them all
together.

Gotcha 90: 187
Sometimes the call to my covergroup constructor doesnot compile.

Gotcha 91: 188
My assertion pass statement executed, even though I thought thepropertywas
not active.

Gotcha 92: "" , , 190
My assertion pass statements are executing, even when the procedural code
does not execute the assertion.

Gotcha 93: " , , .. ,.,., 192
My assertion fail statement executes when the assertion succeeds instead of
fails.

Gotcha 94.' , , " , .. , , 193
I have an assertion propertywith an open-ended delay in the consequent, and
doesn'tfail when it should.

Gotcha 95: ,." , , " .. ,." , , 195
My design outputs do not change at the sametime in different simulators.

Gotcha 96,' , , , 198
My packages compile fine on all simulators, but my design that uses the
packages will onlycompile on somesimulators.

Gotcha 97: , 200
I cannotrepeatmy constrained random testson different tools.

Gotcha 98: , ,., , 202
When I use System Verilog, some simulators will not let me load my memory
models using$readmemb.

Gotcha 99: , , , 204
MySystem Verilog codeonlyworks on one vendor's tools.

Gotcha 100: , , 206
Sometoolsrequire onesyntaxfor arrayliterals. Othertoolsrequirea different
syntax.

Gotcha 101.' , , ,. 208
Some SystemVeriiog tools allowme to declare my inputports as real (floating
point), but othertoolsdo not.

xxii

Foreword
by Steve Golson

Some people collectbaseball cards, old car magazines, or maybe rubber duckies.

I collectVerilog books.

It started back in 1989 with a looseleaf copy of "Gateway VERILOG-XL
Reference Manual Version I.5a" in a three-ring binder. Verilog was a bit simpler
back then-it's hard to believe we actually designed chipsusingonlyone typeof
procedural assignment (nonblocking assigns were not part of the language yet).
Andwe ran our simulations on a VAX, or maybe a fancy Apollo workstation.

SincethenI'vebought prettymuchevery Verilog bookthat camealong. I'vegot a
few synthesis books, and I'll pick up an occasional VHDL reference or maybe a
text on the history of hardware description languages, but mostly it's Verilog.
Dozens and dozens of booksabout Verilog.

There'sa funny thingaboutmostof these books though. AfterI leaf through them
a few times, they sit on the shelf. I admitthat it looks pretty impressive onceyou
have an entire bookcase filled with Verilog books, but the discerning visitor will
notice how fresh and newtheyall are. Unused. Unread. Useless.

I'm often disappointed to find very little information which is useful for the
practicing engineer. What I'm looking for is a book I can use every day, a book
that will helpme get my chipout the door, on timeand working.

StuandDonhavewritten sucha book. I've known these guysfor manyyears, and
they have probably forgotten more Verilog than I've ever known. They have
distilled their collective knowledge into this helpful and extremely useful book.
Readit and you won'tbe disappointed.

If you are an old hand at Verilog try to pick out all the Gotchas that you have
found the hard way. Smile and say to yourself "Oh yeah, I remember getting
caught by that one!"

Those of you who are new to Verilog and SystemVerilog, welcome aboard!
Here's your chance to learn from two of the leading experts in the field. And if
you ever have a chance to take a training class from either of these gentlemen,
don'thesitate to signup. I guarantee you won't regret it.

2 Verilog andSystemVeriiog Gotchas

Ohby the way, my favorite Gotcha is "Gotcha 65: Infinite for loops". Why? Well,
I builta chipwiththatbug in it. Believe me,when a modeling errorcauses you to
have broken silicon, you never forget why it happened. Back then I didn't have
this book to help me, but you do! Keep this bookcloseat hand, refer to it often,
andmayall yourmodels compile andall your loops terminate.

Steve Golson
Trilobyte Systems

http://www.trilobyte.com

Chapter 1
Introduction,

What Is A Gotcha?

This chapter defines what a "gotcha" is, and why programming languages
allowgotchas. For the curious, the chapteralsoprovides a briefhistoryof the

Verilog and SystemVerilog standards. The topics presented in this chapter
include:

• Whatare Verilog and SystemVerilog

• The definition of a gotcha

• A brief description of the Verilog and SystemVerilog standards

What are Verilog and SystemVerilog?

The terms "Verilog" and "SystemVerilog" are sometimes a source of confusion
because the terms are not used consistently in the industry. For the purposes of
this book,"Verilog" and SystemVerilog are used as follows:

Verilog is a Hardware Description Language (HDL). It is a specialized
programming language used to model digital hardware designs and, to a limited
extent, to write test programs to exercise thesemodels.

SystemVerilog is a substantial set of extensions to the Verilog HDL. A primary
goal of these extensions is to enablemodeling and verifying larger designs with
morecompact code. By itself, SystemVerilog is not a complete language; it is just
a set of additions to the base Verilog language.

4

What is a Gotcha?

Verilog and SystemVeriiog Gotchas

A programming "gotcha" is a language feature, which, if misused, causes
unexpected-and, in hardware design, potentially disastrous-behavior. The
classic example in the C language is having an assignment within a conditional
expression, suchas:

if (day=15) /* GOTCHA! assigns value of 15 to day, then */
do_mid_month_payroll; /* if day is non-zero, do a payroll */

Most likely, what the programmer intended to code is if (a==b) instead of if

(a=b). The results are very different! This classic C programming Gotcha is not
a syntax error; the code is perfectly legal. However, the code probably does not
produce the intended results. If the coding erroris not detected before a product is
shipped, a simple bug like this couldleadto serious ramifications in a product.

Just like any programming language, Verilog, and the SystemVerilog extensions
to Verilog, have gotchas. Thereare constructs in Verilog and SystemVerilog that
can be used in ways that are syntactically correct, but yield unexpected or
undesirable results. Some of theprimary reasons Verilog and SystemVerilog have
gotchas are:

• Inheritance of C and C++ gotchas
Verilog and SystemVerilog leverage the general syntax and semantics of the
C and C++ languages. Verilog and SystemVerilog inherit the strengths of
these powerful programming languages, but they also inherit many of the
gotchas of C and C++. (Which raises the question, can the common C cod­
ing error such as if (day= 15) be made in Verilog/SystemVerilog? The
answercan be found in Gotcha 44 on page99.)

• Loosely typedoperations

Verilog and SystemVerilog are loosely typed languages. As such, operations
can be performed on any data type, and underlying language rules take care
of how operations should be performed. If a design or verification engineer
does not understand these underlying language rules, then unexpected
results can occur.

• Allowance to model goodandbad designs

An underlying philosophy of Verilog and SystemVerilog is that engineers
should be allowed to model and prove both what works correctly in hard­
ware, and what will not work in hardware. In order to legally model hard­
ware that does not work, the language must also permit unintentional
modeling errorswhenthe intent is to model designs thatworkcorrectly.

Chapter 1: Introduction, What Is A Gotcha?

The Verilog and SystemVerilog standards

5

Veri/og is an international standard Hardware Description Language. The official
standard is IEEE Std 1364-2005 Verilog Language ReferenceManual (LRM),
commonly referred to as ((Veri/og-2005". The Verilog standard defines a rich set
of programming and modeling constructs specific to representing the behavior of
digital logic. The Verilog Hardware Description Language was first created in
1984. Verilog was designed to meet the needs of engineering in the mid 1980s,
when a typical design was under 50,000 gates and ICs were based on 3 micron
technology. As digital design size and technologies changed, Verilog evolved to
meet new design requirements. Verilog was first standardized by the IEEE in
1995 (IEEE Std 1364-1995). In 2001, The IEEE released the Verilog-2001
standard (IEEE Std 1364-2001) which enhanced Verilog in several ways, suchas
synthesizable signed arithmetic on any vector size and re-entrant tasks and
functions. TheIEEE updated theVerilog standard in 2005, but no major modeling
enhancements were added in this version. Instead, all enhancements to Verilog
were documented in a separate standard, SystemVerilog.

System Verilog is a standard set of extensions to the Verilog-2005 Standard. These
extensions are documented in a separate standard, IEEE Std 1800-2005
SystemVerilog Language Reference Manual, commonly referred to as
"SystemVeri/og-2005". The SystemVerilog extensions enable writing
synthesizable models that are continuously increasing in size and complexity, as
well as verifying these multi-million gate designs. SystemVerilog addsto Verilog
features from the SUPERLOG, VERA C, C++, and VHDL languages, along with
OVA and PSL assertions. SystemVerilog was first developed by Accellera, a
consortium of companies that do electronic design and companies that provide
Electronic Design Automation (EDA) tools. Accellera released a preliminary
version of the extensions to Verilog in 2002, called SystemVerilog 3.0 (3.0 to
showthat SystemVerilog was the nextgeneration of Verilog, where Verilog-1995
was the first generation and Verilog 2001 was the second generation). In 2003,
Accellera released SystemVerilog 3.1 and in 2004 SystemVerilog 3.la. This latter
Accellera standard was thensubmitted to the IEEE for full standardization.

The original intent was for the IEEE to fold the Accellera SystemVerilog
extensions into the Verilog standard. At the insistence of EDA companies,
however, the IEEE made the decision to temporarily keep the SystemVerilog
extensions in a separate document to make it easier for EDA companies to
implement theextensive set of newfeatures in theirVerilog tools.

