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Foreword
by Steve Golson

Some people collectbaseball cards, old car magazines, or maybe rubber duckies.

I collectVerilog books.

It started back in 1989 with a looseleaf copy of "Gateway VERILOG-XL
Reference Manual Version I.5a" in a three-ring binder. Verilog was a bit simpler
back then-it's hard to believe we actually designed chipsusingonlyone typeof
procedural assignment (nonblocking assigns were not part of the language yet).
Andwe ran our simulations on a VAX, or maybe a fancy Apollo workstation.

SincethenI'vebought prettymuchevery Verilog bookthat camealong. I'vegot a
few synthesis books, and I'll pick up an occasional VHDL reference or maybe a
text on the history of hardware description languages, but mostly it's Verilog.
Dozens and dozens of booksabout Verilog.

There'sa funny thingaboutmostof these books though. AfterI leaf through them
a few times, they sit on the shelf. I admitthat it looks pretty impressive onceyou
have an entire bookcase filled with Verilog books, but the discerning visitor will
notice how fresh and newtheyall are. Unused. Unread. Useless.

I'm often disappointed to find very little information which is useful for the
practicing engineer. What I'm looking for is a book I can use every day, a book
that will helpme get my chipout the door, on timeand working.

StuandDonhavewritten sucha book. I've known these guysfor manyyears, and
they have probably forgotten more Verilog than I've ever known. They have
distilled their collective knowledge into this helpful and extremely useful book.
Readit and you won'tbe disappointed.

If you are an old hand at Verilog try to pick out all the Gotchas that you have
found the hard way. Smile and say to yourself "Oh yeah, I remember getting
caught by that one!"

Those of you who are new to Verilog and SystemVerilog, welcome aboard!
Here's your chance to learn from two of the leading experts in the field. And if
you ever have a chance to take a training class from either of these gentlemen,
don'thesitate to signup. I guarantee you won't regret it.



2 Verilog andSystemVeriiog Gotchas

Ohby the way, my favorite Gotcha is "Gotcha 65: Infinite for loops". Why? Well,
I builta chipwiththatbug in it. Believe me,when a modeling errorcauses you to
have broken silicon, you never forget why it happened. Back then I didn't have
this book to help me, but you do! Keep this bookcloseat hand, refer to it often,
andmayall yourmodels compile andall your loops terminate.

Steve Golson
Trilobyte Systems

http://www.trilobyte.com



Chapter 1
Introduction,

What Is A Gotcha?

This chapter defines what a "gotcha" is, and why programming languages
allowgotchas. For the curious, the chapteralsoprovides a briefhistoryof the

Verilog and SystemVerilog standards. The topics presented in this chapter
include:

• Whatare Verilog and SystemVerilog

• The definition of a gotcha

• A brief description of the Verilog and SystemVerilog standards

What are Verilog and SystemVerilog?

The terms "Verilog" and "SystemVerilog" are sometimes a source of confusion
because the terms are not used consistently in the industry. For the purposes of
this book,"Verilog" and SystemVerilog are used as follows:

Verilog is a Hardware Description Language (HDL). It is a specialized
programming language used to model digital hardware designs and, to a limited
extent, to write test programs to exercise thesemodels.

SystemVerilog is a substantial set of extensions to the Verilog HDL. A primary
goal of these extensions is to enablemodeling and verifying larger designs with
morecompact code. By itself, SystemVerilog is not a complete language; it is just
a set of additions to the base Verilog language.



4

What is a Gotcha?

Verilog and SystemVeriiog Gotchas

A programming "gotcha" is a language feature, which, if misused, causes
unexpected-and, in hardware design, potentially disastrous-behavior. The
classic example in the C language is having an assignment within a conditional
expression, suchas:

if (day=15) /* GOTCHA! assigns value of 15 to day, then */
do_mid_month_payroll; /* if day is non-zero, do a payroll */

Most likely, what the programmer intended to code is if (a==b) instead of if

(a=b). The results are very different! This classic C programming Gotcha is not
a syntax error; the code is perfectly legal. However, the code probably does not
produce the intended results. If the coding erroris not detected before a product is
shipped, a simple bug like this couldleadto serious ramifications in a product.

Just like any programming language, Verilog, and the SystemVerilog extensions
to Verilog, have gotchas. Thereare constructs in Verilog and SystemVerilog that
can be used in ways that are syntactically correct, but yield unexpected or
undesirable results. Some of theprimary reasons Verilog and SystemVerilog have
gotchas are:

• Inheritance of C and C++ gotchas
Verilog and SystemVerilog leverage the general syntax and semantics of the
C and C++ languages. Verilog and SystemVerilog inherit the strengths of
these powerful programming languages, but they also inherit many of the
gotchas of C and C++. (Which raises the question, can the common C cod­
ing error such as if (day= 15) be made in Verilog/SystemVerilog? The
answercan be found in Gotcha 44 on page99.)

• Loosely typedoperations

Verilog and SystemVerilog are loosely typed languages. As such, operations
can be performed on any data type, and underlying language rules take care
of how operations should be performed. If a design or verification engineer
does not understand these underlying language rules, then unexpected
results can occur.

• Allowance to model goodandbad designs

An underlying philosophy of Verilog and SystemVerilog is that engineers
should be allowed to model and prove both what works correctly in hard­
ware, and what will not work in hardware. In order to legally model hard­
ware that does not work, the language must also permit unintentional
modeling errorswhenthe intent is to model designs thatworkcorrectly.



Chapter 1: Introduction, What Is A Gotcha?

The Verilog and SystemVerilog standards

5

Veri/og is an international standard Hardware Description Language. The official
standard is IEEE Std 1364-2005 Verilog Language ReferenceManual (LRM),
commonly referred to as ((Veri/og-2005". The Verilog standard defines a rich set
of programming and modeling constructs specific to representing the behavior of
digital logic. The Verilog Hardware Description Language was first created in
1984. Verilog was designed to meet the needs of engineering in the mid 1980s,
when a typical design was under 50,000 gates and ICs were based on 3 micron
technology. As digital design size and technologies changed, Verilog evolved to
meet new design requirements. Verilog was first standardized by the IEEE in
1995 (IEEE Std 1364-1995). In 2001, The IEEE released the Verilog-2001
standard (IEEE Std 1364-2001) which enhanced Verilog in several ways, suchas
synthesizable signed arithmetic on any vector size and re-entrant tasks and
functions. TheIEEE updated theVerilog standard in 2005, but no major modeling
enhancements were added in this version. Instead, all enhancements to Verilog
were documented in a separate standard, SystemVerilog.

System Verilog is a standard set of extensions to the Verilog-2005 Standard. These
extensions are documented in a separate standard, IEEE Std 1800-2005
SystemVerilog Language Reference Manual, commonly referred to as
"SystemVeri/og-2005". The SystemVerilog extensions enable writing
synthesizable models that are continuously increasing in size and complexity, as
well as verifying these multi-million gate designs. SystemVerilog addsto Verilog
features from the SUPERLOG, VERA C, C++, and VHDL languages, along with
OVA and PSL assertions. SystemVerilog was first developed by Accellera, a
consortium of companies that do electronic design and companies that provide
Electronic Design Automation (EDA) tools. Accellera released a preliminary
version of the extensions to Verilog in 2002, called SystemVerilog 3.0 (3.0 to
showthat SystemVerilog was the nextgeneration of Verilog, where Verilog-1995
was the first generation and Verilog 2001 was the second generation). In 2003,
Accellera released SystemVerilog 3.1 and in 2004 SystemVerilog 3.la. This latter
Accellera standard was thensubmitted to the IEEE for full standardization.

The original intent was for the IEEE to fold the Accellera SystemVerilog
extensions into the Verilog standard. At the insistence of EDA companies,
however, the IEEE made the decision to temporarily keep the SystemVerilog
extensions in a separate document to make it easier for EDA companies to
implement theextensive set of newfeatures in theirVerilog tools.


