Verilog and SystemVerilog
Gotchas

101 Common Coding Errors and How to
Avoid Them



Stuart Sutherland
Don Mills

Verilog and SystemVerilog
Gotchas

101 Common Coding Errors and How to
Avoid Them

@ Springer



Stuart Sutherland Don Mills

Sutherland HDL, Inc. LCDM Engineering
Tualatin, OR Chandler, AZ
USA USA

Library of Congress Control Number: 2007926706
ISBN 978-0-387-71714-2 e-ISBN 978-0-387-71715-9
Printed on acid-free paper.

© 2007 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now
know or hereafter developed is forbidden. The use in this publication of trade names,
trademarks, service marks and similar terms, even if they are not identified as such, is not to
be taken as an expression of opinion as to whether or not they are subject to proprietary
rights.

987654321

springer.com



Dedication

To my wonderful wife, LeeAnn, and my children, Ammon, Tamara, Hannah, Seth and
Samuel — thank you for your patience during the many long hours and late nights

you tolerated while this book was being written.
Stu Sutherland

Portland, Oregon

To my wife and sweetheart Geri Jean, and my children, Sara, Kirsten, Adam, Alex,
Dillan, Donnelle, Grant and Gina — thanks to each of you for the patience you have
had with me as I have dealt with debugging many of these gotchas on designs over the

years.
Don Mills
Chandler, Arizona



About the Authors

Mr. Stuart Sutherland is a member of the IEEE 1800 working
group that oversees both the Verilog and SystemVerilog
standards. He has been involved with the definition of the
Verilog standard since its inception in 1993, and the
SystemVerilog standard since work began in 2001. In addition,
Stuart is the technical editor of the official IEEE Verilog and
SystemVerilog Language Reference Manuals (LRMs). Stuart is
an independent Verilog consultant, specializing in providing
comprehensive expert training on the Verilog HDL, SystemVerilog and PLIL
Stuart is a co-author of the books “SystemVerilog for Design”, “Verilog-2001: A
Guide to the New Features in the Verilog Hardware Description Language” and
is the author of “The Verilog PLI Handbook”, as well as the popular “Verilog
HDL Quick Reference Guide” and “Verilog PLI Quick Reference Guide”. He has
also authored a number of technical papers on Verilog and SystemVerilog, which
are available at www.sutherland-hdl.com/papers. You can contact Stuart at
stuart@sutherland-hdl.com.

visit the author s web page at www.sutherland-hdl.com

Mr. Don Mills has been involved in ASIC design since 1986.
During that time, he has worked on more than 30 ASIC projects.
Don started using top-down design methodology in 199!
(Synopsys Design Compiler 1.2). Don has developed and
implemented top-down ASIC design flows at several companies.
His specialty is integrating tools and automating the flow. Don
works for Microchip Technology Inc. as an internal
SystemVerilog and Verilog consultant. Don is a member of the
IEEE Verilog and System Verilog committees that are working on language
issues and enhancements. Don has authored and co-authored numerous papers,
such as “SystemVerilog Assertions are for Design Engineers Too!” and “RTL
Coding Styles that Yield Simulation and Synthesis Mismatches”. Copies of these
papers can be found at www.lcdm-eng.com. Mr. Mills can be reached at
mills@lcdm-eng.com or don.mills@microchip.com.

visit the author s web page at www.lcdm-eng.com



Acknowledgments

The authors express their sincere appreciation to the contributions of several
Verilog and System Verilog experts.

Chris Spear of Synopsys, Inc. suggested several of the verification related
gotchas, provided the general descriptions of these gotchas, and ran countless
tests for us.

Shalom Bresticker of Intel also suggested several gotchas.

Jonathan Bromley of Doulos, Ltd., Clifford Cummings of Sunburst Design,
Tom Fitzpatrick of Mentor Graphics, Steve Golson of Trilobyte Systems, Gregg
Lahti of Microchip Technology, Inc. and Chris Spear of Synopsys, Inc. provided
thorough technical reviews of this book, and offered invaluable comments on
how to improve the gotcha descriptions.

Steve Golson of Trilobyte Systems provided a wonderful foreword to this book

Lastly, we acknowledge and express our gratitude to our wives, LeeAnn
Sutherland and Geri Jean Mills, for meticulously reviewing this book for
grammar and punctuation. If any such errata remain in the book, it could only be
due to changes we made after their reviews.



Table of Contents

List of Gotchas XV
Foreword

by Steve Golson 1
Chapter 1:

Introduction,

What IS A GOteha?......cooooieviiiiiieerieiectrrie st sa s et be s asnenen 3
Chapter 2:

Declaration and Literal Number Gotchas.................cccocvviivnniinncieiene 7
Gotcha 11 €Case SENSILIVIEY ..o.ovviiriiricccrree e e s erere e sesens 7
Gotcha 2: Implicit net declarations..........ccovccecercemrinece e 10
Gotcha 3: Default of 1-bit internal nets ...........ccevvviiririnennnicereenne 13
Gotcha 4:  Single file versus multi-file compilation of $unit declarations................ 15
Gotcha 5: Local variable declarations ............ccoccvneiinicnceinn e 17
Gotcha 6: Escaped names in hierarchical paths.............ocoeeccrneeiinnnnncninn, 19
Gotcha 7: Hierarchical references to automatic variables........ccccoveiiniirerinernenees 22
Gotcha 8: Hierarchical references to variables in unnamed blocks.........c..ccceeuennnne. 25
Gotcha 9: Hierarchical references to imported package items..........c.ocovceevrecrinnnnn, 27

Gotcha 10:
Gotcha 11:
Gotcha 12:
Gotcha 13:
Gotcha 14:
Gotcha 15:
Gotcha 16:
Gotcha 17:
Gotcha 18:
Gotcha 19:

Importing enumerated types from packages..........c.covrvevininvririnirerennnnns 28
Importing from multiple packages...........cocecvvenvernricrnnernninenn e, 29
Default base of literal iNteZErs .........coievrnrirrrirerriri e et 30
Signedness of literal INtEEETS ........coccvviieicciniincre e 32
Signed literal integers zero extend to their specified size..............coeeee 33
Literal integer size mismatch in assignments ...............ocoveeennivinnecrenns 35
Filling vectors with all 0nes..........cccocovvevvivvriii e 37
Array literals versus concatenations ...........cvcevurrurernriennicrernnconsensenees 38
Port connection TUlEs..........ccovvvriiiiii 39
Back-AriVen POTTS.......cccovvriveeriirieeinninnssesesessnessesesssnssssssss s sssssssnsssss s 43



Table of Contents

Gotcha 20: Passing real (floating point) numbers through ports.............cococecireennn, 46
Chapter 3:

RTL Modeling Gotchas .........cooiuviiiminiiiiicieineeeserereesceiennesis e 49
Gotcha 21: Combinational logic sensitivity lists with function calls..............ccoreeee. 49
Gotcha 22: Arrays in SEnSItiVIEY liStS.....cccooiiriciiiniii e 52
Gotcha 23: Vectors in sequential logic sensitivity lists.........ocvvrvreccrvccsnnneennnn, 54
Gotcha 24: Operations in SENSItIVILY liStS......c.ccveirireririeiennncnnnnmennenerennnnnn: 56
Gotcha 25: Sequential logic blocks with begin...end groups..........coocoeverrverrvsernnns 57
Gotcha 26: Sequential logic blocks With TESELS......c.ovvrerevircrciveeiorirenrn e niens 59
Gotcha 27: Asynchronous set/reset flip-flop for simulation and synthesis................ 60
Gotcha 28: Blocking assignments in sequential procedural blocks .....c....coovviervvennee, 62
Gotcha 29: Sequential logic that requires blocking assignments............c.cccccevrvrnen. 64
Gotcha 30: Nonblocking assignments in combinational 10gic .........c.coeerirircriririinnnn. 66
Gotcha 31: Combinational logic assignments in the wrong order...........cccovvvvinnnan. 70
Gotcha 32: Casez/casex masks in case eXPreSSiOns .........ccverirerivniecrnnrersnnnirsereens 72
Gotcha 33: Incomplete decision StAtEMENts .............coovveveercerrniecniermnnenesnecerernns 74
Gotcha 34: Overlapped decision Statements...........c..ocovviieieieirincenenenceeirs e 77
Gotcha 35: Inappropriate use of unique case Statements...........occoveevveenrrerereireeennes 79
Gotcha 36: Resetting 2-state models ........ovvirieeinreieniriiieceen e 82
Gotcha 37: Locked state machines modeled with enumerated types......c......o.eceuninen. 84
Gotcha 38: Hidden design problems with 4-state logicC..........coccovierieiincneenireinnn, 86
Gotcha 39: Hidden design problems using 2-state types........c.ocovviveverievererenerennn, 88
Gotcha 40: Hidden problems with out-of-bounds array access........c.coccovuveirenrnnnn. 90
Gotcha 41: Out-of-bounds assignments to enumerated tyPes ........cccvvrerveiririrensienns 92
Gotcha 42: Undetected shared variables in modules.........ccccoeevevervvcrveirecnreccennnnns 94
Gotcha 43: Undetected shared variables in interfaces and packages .........ccco.coouven.. 96
Chapter 4:

OPeErator GotChAs ...........cviiiiiiiiicece ettt 99
Gotcha 44: Assignments in EXPrESSIONS .........ecerrrvrereeerereretsrisstsrevens s snesiens 99
Gotcha 45: Self-determined versus context-determined operators.................co........ 101
Gotcha 46: Operation size and sign extension in assignment statements................. 105
Gotcha 47: Signed arithmetic TIIEs ..o e 108

xii



Table of Contents

Gotcha 48: Bit-select and part-select Operations .........c..ccceceverecermincrvonnreecenrenes 111
Gotcha 49: Increment, decrement and assignment operators...........cocvcvvverervevcrnnnenes 112
Gotcha 50: Pre-increment versus post-increment Operations............oueeevveovererernenns 113
Gotcha 51: Modifying a variable multiple times in one statement................ccooveec. 115
Gotcha 52: Operator evaluation Short Circuiting .........c.coorevevernenercccrernccniinenn 116
Gotcha 53: The not operator (! ) versus the invert operator ( ~ ) .........ceecorervernnnne 118
Gotcha 54: Array method Operations.............coeeeveiniiincncrn e 119
Gotcha 55: Array method operations on an array SubSet............ccovvrvencresininecnns 121
Chapter 5:

General Programming Gotchas. ..o 123
Gotcha 56: Verifying asynchronous and synchronous reset at time zero................. 123
Gotcha 57: Nested if...els€ blocks ........ocovieieninccini e 128
Gotcha 58: Evaluation of equality with 4-state Values..........c.cooerriririrriieererennanen: 129
Gotcha 59: Event trigger race conditions .........c.covcvrrcieinnnincreernrininens 131
Gotcha 60: Using semaphores for synchronization..........c.ccevveevnnerninencriniennn, 134
Gotcha 61: Using mailboxes for synchronization ............cccovvrninineiieceionnnene 137
Gotcha 62: Triggering on clocking blocks .........cocoveciminiicnccree e 139
Gotcha 63; Misplaced semicolons after decision statements ............c.cccccoveeccnnnine. 140
Gotcha 64: Misplaced semicolons in for Ioops ..., 142
Gotcha 65: Infinite fOr I00PS ...c.cccoveiriiriricicec e 144
Gotcha 66: Locked simulation due to concurrent for loops ........c.coeeevverivccirernnens 145
Gotcha 67: Referencing for loop control variables ............ocvcvvevvnicinivccnnccncornnean 147
Gotcha 68: Default function retlurn S1Z€ .........oceovvevvriioreernensoeersreeneseseseenes 148
Gotcha 69: Task/function arguments with default values ..........c.cc.oceceecnnneccnne 150
Gotcha 70: Continuous assignments with delays cancel glitches.................cccocee. 151
Chapter 6:

Object Oriented and Multi-Threaded Programming Gotchas........................ 153
Gotcha 71: Programming statements in @ class ... 153
Gotcha 72: Using interfaces with object-oriented testbenches..........c.ooovcevriiiinann 155
Gotcha 73: All objects in mailbox come out with the same values.........c..c.coenneee 157
Gotcha 74: Passing handles to methods using input versus ref arguments .............. 158
Gotcha 75: Constructing an array 0f OBJECES ......cocuvvvrimreriiniiriiese e 159

Xiii



Table of Contents

Gotcha 76: Static tasks and functions are not re-entrant ............c.cocvvrerernrerererrencenne 160
Gotcha 77: Static versus automatic variable initialization ..............coveervverecnienns 162
Gotcha 78: Forked programming threads need automatic variables ........c....c.ooenu 164
Gotcha 79: Disable fork kills too many threads ..., 166
Gotcha 80: Disabling a statement block stops more than intended............cocovcvvnnes 168
Gotcha 81: Simulation exits prematurely, before tests complete...........ccccccovvnenen, 171
Chapter 7:

Randomization, Coverage and Assertion Gotchas...................cccociinrvnnenne 173
Gotcha 82: Variables declared with rand are not getting randomized .................... 173
Gotcha 83: Undetected randomization failures ...........coocovccereenemneccvennccneenenennens 175
Gotcha 84: $assertoff could disable randomization .............ccceerevreiirirnenricneninenne 177
Gotcha 85: Boolean constraints on more than two random variables....................... 179
Gotcha 86: Unwanted negative values in random values.............ccveeivvvnnrecnvnions 181
Gotcha 87: Coverage reports default to groups, not bins ..........ccovveeererverervriniineenns 182
Gotcha 88: Coverage is always reported as 0% .........ccccvnevvenenisnen e 184
Gotcha 89: The coverage report lumps all instances together........c.coveeviereiirnnnns 186
Gotcha 90: Covergroup argument directions are sticky ...........ccococeeveeenerieeennn. 187
Gotcha 91: Assertion pass statements execute with a vacuous success ................... 188
Gotcha 92: Concurrent assertions in procedural blOcks..........c.oeovvveveccnvriorenrns 190
Gotcha 93: Mismatch in assert...else Statements ..........co.ooviveevernrinereserecceernennenns 192
Gotcha 94: Assertions that cannot fail............cccovvvvieiiiniinne e 193
Chapter 8:

Tool Compatibility Gotchas .............c.ocovvevirivineiereirce s 195
Gotcha 95: Default simulation time units and precision ............cccccvceveeververeereninens 195
Gotcha 96: Package chaining .........cccoovviriririniicceeneeere e 198
Gotcha 97: Random number generator is not consistent across tools ...................... 200
Gotcha 98: Loading memories modeled with always_latch/always_ff.................... 202
Gotcha 99: Non-standard language eXtensions ..............cccvverreererinrinerineesininsenenns 204
Gotcha 100:Array literals versus concatenations ............oevccvviveeievenrereensrsees s 206
Gotcha 101:Module ports that pass floating point values (real types) ..................... 208
Index 209

Xiv



List of Gotchas

Gotcha 1 ... . e 7
The names in my code look correct and worked in my VHDL models, but
Verilog/SystemVerilog gets errors about “undeclared identifiers”.

Gotcha 2: ... 10
A typo in my design connections was not caught by the compiler, and only
showed up as a functional problem in simulation.

Gotcha 3: ... 13
In my netlist, only bit zero of my vector ports get connected.
Gotcha 4: . 15

My models compile OK, and the models from another group compile OK; but
when compiled together, I get errors about multiple declarations.

Gotcha 5: .. 17
[ get compilation errors on my local variable declarations, but the declaration
Syntax is correct.

Gotcha 6: . ... . 19
I get weird compiler errors when I try to reference a design signal with an
escaped name from my testbench.

Gorcha 7: .. e 22
1 get compilation errors when my testbench tries to print out some signals in my
design, but other signals can be printed without a problem.

Gotcha 8: ... . 25
With Verilog, my testbench could print out local variables in a begin...end block,
but with SystemVerilog I get compilation errors.

Gotcha 9: ... . .. 27
My design can use imported package items just fine, but my testbench cannot
access the items for verification.

Gotcha 10: .. ... . 28
1 imported an enumerated type from a package, but I cannot access the labels
defined by the enumerated type.

Gotcha 11: ... 29
1 get errors when I try to wildcard import multiple packages, but I can wildcard
import each package separately without any errors.



List of Gotchas

Gotcha 12: ... .. 30
Some branches of my case statement are never selected, even with the correct
input values.

Gotcha 13: .. .. 32

My incrementor model sometimes gets incorrect values when I increment using
aliteral 1'b1.

Gotcha 14: ... 33
When I specify a signed, sized literal integer with a negative value, it does not
sign extend.

Gotcha 15: .. 35
When I assign a 4-bit negative value to an 8-bit signed variable, it is not sign
extended.

GOICha 16: . . 37

I can use a literal integer to set all bits to Z on a vector of any size, but when I
use the same syntax to set all bits to 1, I get a decimal I instead.

Gotcha 17: .. e 38
The wrong values are stored when I assign a list of values to a packed array or
structure.

Gotcha 18: .. 39

My design doesn’t work correctly when I connect all the modules together, but
each module works correctly by itself.

Gotcha 19: . .. . 43
I declared my port as an input, and software tools let me accidentally use the
port as an output, without any errors or warnings.

Gotcha 20: .. ... e 46
I cannot find a way to pass real values from one module to another using either
Verilog or SystemVerilog.

Gotcha 21: ... . . 49
My combinational logic seemed to simulate OK, but after synthesis, the gate-
level simulation does not match the RTL simulation.

Gotcha 22: .. .. e 52
I need my combinational logic block to be sensitive to all elements of a RAM
array, but the sensitivity list won 't trigger at the correct times.

Gotcha 23: < . 54
My always block is supposed to trigger on any positive edge in a vector, but it
misses most edges.

Xvi



List of Gotchas

Gotcha 24 . . e 56
My sensitivity list should trigger on any edge of a or b, but it misses some
changes.

GOICRa 25 o e 57
The clocked logic in my sequential block gets updated, even when no clock
occurred.

GOICha 26: .. .. o e e 59
Some of the outputs of my sequential logic do not get reset.

GOtCha 27 . . 60

When I code an asynchronous set/reset D-type flip-flop following synthesis
coding rules, my simulation results are sometimes wrong.

Gotcha 28: . . 62
My shift register sometimes does a double shift in one clock cycle.
Gotcha 29: . . 64

I'm following the recommendations for using nonblocking assignments in
sequential logic, but 1 still have race conditions in simulation.

Gotcha 30: ... ... 66
My RTL simulation locks up and time stops advancing.

Gotcha 31 . . . 70
Simulation of my gate-level combinational logic does not match RTL simulation.

Gotcha 32: ... 72
My casex statement is taking the wrong branch when there is an error in the case
expression.

Gotcha 33: . 74

My full_case, parallel_case decision statement simulated as I expected, but the
chip does not work.

GOotcha 34: . o 77
One of my decision branches never gets executed.
Gotcha 35: .. 79

I am using unique case everywhere to help trap design bugs but my synthesis
results are not what I expected.

Gotcha 36: .. e 82
My design fails to reset the first time in RTL simulation.
Gotcha 37: 84

My state machine model locks up in its start-up state.

xvii



List of Gotchas

Gotcha 38: .« 86
There was a problem deep inside the logic of my design, but it never propagated
to module boundaries.

Gotcha 39: . 88
Some major functional bugs in my design did not show up until after synthesis,
when I ran gate-level simulations.

Gotcha 40: .. .. 90
A design bug caused references to nonexistent memory addresses, but there was
no indication of a problem in RTL simulation.

Gotcha 41: ... . 92
My enumerated state machine variables have values that don’t exist in the
enumerated definition.

Gotcha 42: . . 94
My RTL model output changes values when it shouldn't, and to unexpected
values.

Gotcha 43 o 96
Variables in my package keep changing at unexpected times and to unexpected
values.

Gotcha 44: o 99
I need to do an assignment as part of an if condition, but cannot get my code to
compile.

Gotcha 45: ........... ... .. i il e 101

In some operations, my data is sign extended and in other operations it is not
sign extended, and in yet other operations it is not extended at all,

Gotcha 46: . .. 105
I declared my outputs as signed types, but my design is still doing unsigned
operations.

Gotcha 47: . 108

My signed adder model worked perfectly until I added a carry-in input, and now
it only does unsigned addition.

Gotcha 48: .. ... 111
All my data types are declared as signed, and I am referencing the entire signed
vectors in my operations, yet I still get unsigned results.

Gotcha 49: o e e 112
I'm using the ++ operator for my counter; the counter value is correct, but other
code that reads the counter sees the wrong value.

xviii



List of Gotchas

Gotcha 50: . .. e 113
My while loop is supposed to execute 16 times, but it exits after 15 times, even
though the loop control variable has a value of 16.

Gotcha J1: ... 115
When I have muitiple operations on a variable in a single statement, I get
different results from different simulators.

Gotcha 52: .. .. 116
I am calling a function twice in a statement, but sometimes only one of the calls
is executed.

Gotcha 53: ..o 118
My if statement with a not-true condition did not execute when I was expecting
it to.

Gotcha 54: .. 119
I get the wrong result when I sum all the values of an array using the built-in
.sum method,

Gotcha 55: ... . . . 121
I get the wrong answer when I sum specific array elements in an array.

Gotcha 56: . . ... 123
Sometimes my design resets correctly at time zero, and sometimes it fails to
reset,

Gotcha 57 o o 128
My else branch is pairing up with the wrong if statement.

GOtCha 58: . . 129

My testbench completely misses problems on design outputs, even though it is
testing the outputs.

Gotcha 59: .. 131
I'm using the event data type to synchronize processes, but sometimes when I
trigger an event, the sensing process does not activate.

Gotcha 60: ... . ... 134
My processes are not synchronizing the way I expected using semaphores. Even
when there are waiting processes, some other process gets to run ahead of them.

Gotcha 61: .. ... . . 137
My mailbox works at first, and then starts getting errors during simulation.
Gotcha 62: .. ... 139

I cannot get my test program to wait for a clocking block edge.

Xix



List of Gotchas

Gotcha 63: .. 140
Statements in my iff) decision execute, even when the condition is not true.
Gotcha 64: .. . 142

My for loop only executes one time.
GotCha 65 .. 144

My for loop never exits. When the loop variable reaches the exit value, the loop
Just starts over again.

GOICha 66: ... 145
When I run simulation, my for loops lock up or do strange things.
Gotcha 67: ... 147

My Verilog code no longer compiles after I convert my Verilog-style for loops
to a SystemVerilog style.

GOtCha B8: . e e 148
My function only returns the least significant bit of the return value.
Gotcha 69: . . 150

I get a syntax error when I try to assign my task/function input arguments a
default value.

Gotcha 70: . ... . . . 151
Some delayed outputs show up with continuous assignments and others do not.
Gotcha 71 . 153

Some programming code in an initial procedure compiles OK, but when I move
the code to a class definition, I get compilation errors.

Gotcha 72; . . e e 155
I get a compilation error when I try to use a class object to create test values
when the testbench connects to the design using an interface.

Gotcha 73: o 157
My code creates random object values and puts them into a mailbox, but all the
objects coming out of the mailbox have the same value.

GOICha 74 e e 158
My method constructs and initializes an object, but I can never see the object’s
value.

Gotcha 75: . 159
I declared an array of objects, but get a syntax error when I try to construct the
array.

Gotcha 76: . .. e 160

My task works OK sometimes, but gets bogus resulls other times.

XX









Foreword
by Steve Golson

Some people collect baseball cards, old car magazines, or maybe rubber duckies.
I collect Verilog books.

It started back in 1989 with a looseleaf copy of “Gateway VERILOG-XL
Reference Manual Version 1.5a” in a three-ring binder. Verilog was a bit simpler
back then—it’s hard to believe we actually designed chips using only one type of
procedural assignment (nonblocking assigns were not part of the language yet).
And we ran our simulations on a VAX, or maybe a fancy Apollo workstation.

Since then I've bought pretty much every Verilog book that came along. I've got a
few synthesis books, and I'll pick up an occasional VHDL reference or maybe a
text on the history of hardware description languages, but mostly it’s Verilog.
Dozens and dozens of books about Verilog.

There’s a funny thing about most of these books though. After I leaf through them
a few times, they sit on the shelf. I admit that it looks pretty impressive once you
have an entire bookcase filled with Verilog books, but the discerning visitor will
notice how fresh and new they all are. Unused. Unread. Useless.

I'm often disappointed to find very little information which is useful for the
practicing engineer. What I'm looking for is a book I can use every day, a book
that will help me get my chip out the door, on time and working.

Stu and Don have written such a book. I've known these guys for many years, and
they have probably forgotten more Verilog than I've ever known. They have
distilled their collective knowledge into this helpful and extremely useful book.
Read it and you won't be disappointed.

If you are an old hand at Verilog try to pick out all the Gotchas that you have
found the hard way. Smile and say to yourself “Oh yeah, I remember getting
caught by that one!”

Those of you who are new to Verilog and SystemVerilog, welcome aboard!
Here’s your chance to learn from two of the leading experts in the field. And if
you ever have a chance to take a training class from either of these gentlemen,
don't hesitate to sign up. | guarantee you won'’t regret it.



2 Verilog and SystemVerilog Gotchas

Oh by the way, my favorite Gotcha is “Gotcha 65: Infinite for loops”. Why? Well,
1 built a chip with that bug in it. Believe me, when a modeling error causes you to
have broken silicon, you never forget why it happened. Back then I didn’t have
this book to help me, but you do! Keep this book close at hand, refer to it often,
and may all your models compile and all your loops terminate.

Steve Golson
Trilobyte Systems
http://www.trilobyte.com



Chapter 1

Introduction,
What Is A Gotcha?

his chapter defines what a “gotcha” is, and why programming languages

allow gotchas. For the curious, the chapter also provides a brief history of the
Verilog and SystemVerilog standards. The topics presented in this chapter
include:

» What are Verilog and SystemVerilog
» The definition of a gotcha
* A brief description of the Verilog and System Verilog standards

What are Verilog and SystemVerilog?

The terms “Verilog” and “SystemVerilog” are sometimes a source of confusion
because the terms are not used consistently in the industry. For the purposes of
this book, “Verilog” and SystemVerilog are used as follows:

Verilog is a Hardware Description Language (HDL). It i1s a specialized
programming language used to model digital hardware designs and, to a limited
extent, to write test programs to exercise these models.

SystemVerilog is a substantial set of extensions to the Verilog HDL. A primary
goal of these extensions is to enable modeling and verifying larger designs with
more compact code. By itself, SystemVerilog is not a complete language; it is just
a set of additions to the base Verilog language.



4 Verilog and SystemVerilog Gotchas

What is a Gotcha?

A programming ‘“gotcha” is a language feature, which, if misused, causes
unexpected—and, in hardware design, potentially disastrous—behavior. The
classic example in the C language is having an assignment within a conditional
expression, such as:

if (day=15) /* GOTCHA! assigns value of 15 to day, then */
do_mid month payroll; /* if day is non-zero, do a payroll */

Most likely, what the programmer intended to code is 1f (a==b) instead of if
(a=b). The results are very different! This classic C programming Gotcha is not
a syntax error; the code is perfectly legal. However, the code probably does not
produce the intended results. If the coding error is not detected before a product is
shipped, a simple bug like this could lead to serious ramifications in a product.

Just like any programming language, Verilog, and the SystemVerilog extensions
to Verilog, have gotchas. There are constructs in Verilog and SystemVerilog that
can be used in ways that are syntactically correct, but yield unexpected or
undesirable results. Some of the primary reasons Verilog and SystemVerilog have
gotchas are:

¢ Inheritance of C and C++ gotchas
Verilog and SystemVerilog leverage the general syntax and semantics of the
C and C++ languages. Verilog and SystemVerilog inherit the strengths of
these powerful programming languages, but they also inherit many of the
gotchas of C and C++. (Which raises the question, can the common C cod-
ing error such as if (day=15) be made in Verilog/SystemVerilog? The
answer can be found in Gotcha 44 on page 99.)

» Loosely typed operations

Verilog and SystemVerilog are Joosely typed languages. As such, operations
can be performed on any data type, and underlying language rules take care
of how operations should be performed. If a design or verification engineer
does not understand these underlying language rules, then unexpected
results can occur.

+ Allowance to model good and bad designs

An underlying philosophy of Verilog and SystemVerilog is that engineers
should be allowed to model and prove both what works correctly in hard-
ware, and what will not work in hardware. In order to legally model hard-
ware that does not work, the language must also permit unintentional
modeling errors when the intent is to model designs that work correctly.



Chapter 1: Introduction, What Is A Gotcha? 5

The Verilog and SystemVerilog standards

Verilog is an international standard Hardware Description Language. The official
standard is IEEE Std 1364-2005 Verilog Language Reference Manual (LRM),
commonly referred to as “Verilog-2005”. The Verilog standard defines a rich set
of programming and modeling constructs specific to representing the behavior of
digital logic. The Verilog Hardware Description Language was first created in
1984. Verilog was designed to meet the needs of engineering in the mid 1980s,
when a typical design was under 50,000 gates and ICs were based on 3 micron
technology. As digital design size and technologies changed, Verilog evolved to
meet new design requirements. Verilog was first standardized by the IEEE in
1995 (IEEE Std 1364-1995). In 2001, The IEEE released the Verilog-2001
standard (IEEE Std 1364-2001) which enhanced Verilog in several ways, such as
synthesizable signed arithmetic on any vector size and re-entrant tasks and
functions. The IEEE updated the Verilog standard in 2005, but no major modeling
enhancements were added in this version. Instead, all enhancements to Verilog
were documented in a separate standard, SystemVerilog.

SystemVerilog is a standard set of extensions to the Verilog-2005 Standard. These
extensions are documented in a separate standard, IEEE Std 1800-2005
SystemVerilog Language Reference Manual, commonly referred to as
“SystemVerilog-2005”. The SystemVerilog extensions enable writing
synthesizable models that are continuously increasing in size and complexity, as
well as verifying these multi-million gate designs. SystemVerilog adds to Verilog
features from the SUPERLOG, VERA C, C++, and VHDL languages, along with
OVA and PSL assertions. SystemVerilog was first developed by Accellera, a
consortium of companies that do electronic design and companies that provide
Electronic Design Automation (EDA) tools. Accellera released a preliminary
version of the extensions to Verilog in 2002, called SystemVerilog 3.0 (3.0 to
show that SystemVerilog was the next generation of Verilog, where Verilog-1995
was the first generation and Verilog 2001 was the second generation). In 2003,
Accellera released SystemVerilog 3.1 and in 2004 SystemVerilog 3.1a. This latter
Accellera standard was then submitted to the IEEE for full standardization.

The original intent was for the IEEE to fold the Accellera SystemVerilog
extensions into the Verilog standard. At the insistence of EDA companies,
however, the IEEE made the decision to temporarily keep the SystemVerilog
extensions in a separate document to make it easier for EDA companies to
implement the extensive set of new features in their Verilog tools.



