
www.appliedmathematics.info 
 

Vector Arithmetic and Geometry 
 

In applied mathematics and physics and engineering, vectors often have two 
components to represent for example planar motion or – more likely – have 
three components to represent the three-dimensional world. In this document 
we consider some of the geometrical properties and arithmetic of vectors.  For 
futher reinforcement or development, an Excel spreadsheet carrying out the 
vector operations and including vector operations in VBA is available1, 
alternatively a set of Fortran codes for the same purpose are also available2 and a 
set of Matlab/Freemat/Octave codes are available. 
 
Vectors 
 
The physical meaning of a vector is that it is a quantity that has both magnitude 
and direction. This is often diagrammatically-represented by an arrow, its angle 
representing the direction and  its length representing its magnitude. A vector in 
a two-dimensional system a vector can be resolved into two perpendicular 
components; one in the x-direction and one in the y-direction. A vector in a three 
dimensional system a vector can be resolved into three perpendicular 
components; one in the x, y and z-directions.  
 
Vector addition and subtraction for the physical vectors considered in this 
document follow the same rules as in matrix arithmetic3; it simply involves the 
component-wise addition or subtraction. 
 

 
 
Vectors are often written in bold or are underlined and in this document we use 
the former (the latter is often used in handwriting where it is more difficult to 
express and distinuish bold characters). For example we may write 𝒂 =

(
1
5

). Some of the properties and vectors are outlined in this document. A more 

thorough coveage can be found in Cartesian components of vectors4 
 
 
 
 
 

                                                 
1 GEOM.xlsm spreadsheet of vector operations and user-guide 
2 Fortran codes for vector geometry: 2D- GEOM2D.FOR and 3D GEOM3D.FOR and test codes GEOM2D_T.FOR and 
GEOM3D_T.FOR 
3 Matrix Arithmetic 
4 Mathcentre: Cartesian components of vectors document and video 

http://www.appliedmathematics.info/
http://www.appliedmathematics.info/software/GEOM.xlsm
http://www.appliedmathematics.info/software/GEOM_xlsm.htm
http://www.appliedmathematics.info/software/GEOM2D.FOR
http://www.appliedmathematics.info/software/GEOM3D.FOR
http://www.appliedmathematics.info/software/GEOM2D_T.FOR
http://www.appliedmathematics.info/software/GEOM3D_T.FOR
http://www.mathematics.me.uk/tutorials/Matrix%20Arithmetic.htm
http://www.mathcentre.ac.uk/resources/uploaded/mc-ty-cartesian1-2009-1.pdf
http://www.mathcentre.ac.uk/video/559/
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Points and Vectors 
 
The most natural method of representing a point is to use Cartesian 
coordinates5. In two dimensions any point in the plane can be represented by 
two co-ordinates, usually an x-co-ordinate and a y-coordinate. For example the 
point P1=(2,4) has an x-co-ordinate equal to ‘2’ and a y-coordinate equal to ‘4’. If 
P2=(3,9) is another point then the line connecting P1 to P2 is a vector, having 
magnitude (size or length of the line) and direction (the direction that follows 

the line from P1 to P2), and it written 𝑃1𝑃2  (athough a variety of other notations 
exist, such as the bar being replaced by an arrow).  
 
An alternative common notation is through utilising the unit directional vectors 
𝒊̂  and 𝒋̂, where 𝒊̂ is the unit directional vector in the x-direction and 𝒋̂ is the unit 
directional vector in the y-direction; 

𝒊̂ = (
1
0

)  and 𝒋̂ = (
0
1

) . 

 
 
 
 
 
 
 
 
 
 
 
 
 
In three dimensions any point can be respresented by three coordinates an x-
coordinate a y-coordinate and a z-coordinate. In three dimensions 𝒊̂  , 𝒋 ̂ and 𝒌̂ 
are the unit directional vectors: 
 

𝒊̂ = (
1
0
0

) , 𝒋̂ = (
0
1
0

) and 𝒌̂ = (
0
0
1

) . 

 
 
 
 
 
 
 
 
 
 
 
 

                                                 
5 Cartesian Coordinates 

Example 2 

 

Let P1=(2,4) and P2=(3,9) be points on the x-y plane. 
 

The vector  represents 3-2=1 units in the x-direction and 9-4=5 units in 
the y-direction, and can therefore be written 
 

𝑃1𝑃2 = (
1
5

). 

We may also write 𝑃1𝑃2 = 𝒊̂ + 5𝒋̂ . 
 

 

 

 

 

 

 

 

 

 

Example 3 

 

Let P1=(1,-3,2) be a point in 3D (P1 has an x-co-ordinate equal to ‘1’ a y-
coordinate equal to ‘-3’ and a z-coordinate equal to ‘2’). Similarly, if 
P2=(3,-5,7) is another point then the line connecting P1 to P2 is a vector 

and it written 𝑃1𝑃2 and 
 

𝑃1𝑃2 = (
2

−2
5

) = 2𝒊̂ − 2𝒋̂ + 5𝒌̂ . 
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The magnitude of a vector  

The size or magnitude of a two-dimensional vector is defined by: |𝒂| = |(
𝑎1

𝑎2
)| =

√𝑎1
2 + 𝑎2

2, which results on the application of Pythagoras’ theorem6. This also 

extends to three dimensions: |𝒂| = √(𝑎1)2 + (𝑎2)2 + (𝑎3)2. In terms of vector 

norms the the magnitude of a vector is equivalent to its 2-norm7. 

 

 

 

 

 
 

 

 

 

 

 

 

 
 
 
 
 
Unit vectors 
 
A vector is said to be a unit vector is its magnitude is one. For example the 
directonal vectors 𝒊̂  , 𝒋 ̂ and 𝒌̂ are unit vectors.  
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
6 Trigonometry 
7 Vector Norm and Normalisation 

Example 4 

 

The vector (
1
5

) has magnitude  |(
1
5

)| = √12 + 52 = √26 = 5.099 (3d. p. ). . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Examples 5 

The magnitude of the vector (
2

−2
5

) is  |(
2

−2
5

)| = √22 + (−2)2 + 52 =

√33 = 5.745 (3d. p. ). 
 

The magnitude of the vector (
7
1
3

) is  |(
7
1
3

)| = √72 + 12 + 32 = √59 =

7.681 (3d. p. ). 
 

 

 

 

 

 

 

 

 

 

 

 

 

Example 7 

The magnitude of the vector 
1

7
(

2
3
6

) is  
1

7
|(

2
3
6

)| =  
1

7
√22 + 32 + 62 =

1

7
√4 + 9 + 36 =

1

7
√49 = 1 and hence it is a unit vector. 

 

 

 

 

 

 

 

 

 

 

 

 

Example 6 

 

The vector (
0.8
0.6

) has magnitude  |(
0.8
0.6

)| = √0.82 + 0.62 = √0.64 + 0.36 =

√1 = 1 and hence it is a unit vector. . 
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www.appliedmathematics.info 
 

A vector can be transformed into a unit vector with the same direction but with 
unit magnitude by dividing the components by the vector’s magnitude; for any 

vector 𝒂 ≠ 𝟎,
𝒂

|𝒂|
 is a unit vector. 

 
 
 
 
 
 
 
 
 
 
 
 
Distance between two points 
 
The geometrical distance between two points P1 and P2  is the magnitude of the 
vector 𝑃1𝑃2; |𝑃1𝑃2| . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example 10 
 
Following on from Example 3,  P1=(1,-3,2) and P2=(3,-5,7) are points in 

three dimensions and  𝑃1𝑃2 = (
2

−2
5

) . In Example 5 it was shown that is  

|(
2

−2
5

)| = √33 = 5.745 (3d. p. ), and hence this is the distance  

 

between the points. 

 
 
 
 

Example 8 
 

From Example 4 it was found that the vector (
1
5

) has magnitude √26. The 

vector 
1

√26
(

1
5

) = (
0.1961
0.9806

) has magnitude  |(
0.1961
0.9806

)| = 

 

√0.19612 + 0.98062 = √0.03845 + 0.9615 = √1 = 1 (working to 4 d. p. ). 
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 9 

 

Let P1=(2,4) and P2=(3,9) be points on the x-y plane. Following on from 

Example 1, the vector linking the two points is 𝑃1𝑃2 = (
1
5

). From Example 4 

it was shown that |(
1
5

)| = √26 = 5.099 (3d. p. ) and hence this is also the 

distance between the two points.  
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Scalar or Dot Product  
 
The scalar or dot product of two vectors 𝒂 and 𝒃 is written 𝒂. 𝒃 is the sum of the 
component-wise products; 𝒂. 𝒃 = 𝑎1𝑏1 + 𝑎2𝑏2  in two dimensions and 𝒂. 𝒃 =
𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3 in three dimensions. 
 

 
 
The dot product of two vectors in the same direction is equal to the product of 
their magnitudes. The dot product of two perpendicular vectors is zero.    
 

 
 
In general 
 

𝒂. 𝒃 = |𝒂||𝒃| cos 𝜃 
 
where 𝜃 is the angle between the vectors 𝒂 and 𝒃. For further information on the 
properties of the scalar product see The Scalar Product8. In the following 
examples the angle between two vectors in two dimensions and three dimensios 
is calculated and the result is compared to the angle obtained through the 
application of the cosine formula to a triangle9. 
 
 
 
 
 
 
 
 
 
 
 

                                                 
8 Mathcentre: The Scalar Product document and video  
9 Mathcentre: Triangle Formulae document and video 

http://www.appliedmathematics.info/
http://www.mathcentre.ac.uk/resources/uploaded/mc-ty-scalarprod-2009-1.pdf
http://www.mathcentre.ac.uk/video/561/
http://www.mathcentre.ac.uk/resources/uploaded/mc-ty-triangleformulae-2009-1.pdf
http://www.mathcentre.ac.uk/video/343/
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Example 13 
 

The cosine of the angle between the vectors 𝒂 = (
1
5

) and 𝒃 = (
2

−3
) is 

𝒂.𝒃

|𝒂||𝒃|
=

(
1
5

).(
2

−3
)

|(
1
5

)| |(
2

−3
)|

=
−13

√26√13
=

−1

√2
. Hence the angle is 

3𝜋

4
 or 1350. 

 
Let us compare this with the angle that is obtained by the cosine rule. The 

length of the vector a is |𝒂| = √26 , the length of the vector b is |𝒃| = √13 

and the length of the remaining vector is |𝒃 − 𝒂| = √65 . Applying the 
cosine rule: 

(√65)
2

= (√26)
2

+ (√13)
2

− 2√26√13 cos 𝜃 . 

 
Hence 

65 = 26 + 13 − 2√26√13 cos 𝜃 
and 

cos 𝜃 =  
−13

√26√13
 , as before . 

Example 14 
 

The cosine of the angle between the vectors 𝒂 = (
2

−2
5

) and 𝒃 = (
7
1
3

) is 

(
2

−2
5

).(
7
1
3

)

 |(
2

−2
5

)||(
7
1
3

)|

=
27

√33√59
= 0.6119. Hence the angle is 0.9123 radians (4d.p.) or   

 
52.270 (2 d.p.). 
 
Let us compare this with the angle that is obtained by the cosine rule. The 

length of the vector a is |𝒂| = √33 , the length of the vector b is |𝒃| = √59 

and the length of the remaining vector is |𝒃 − 𝒂| = √38 . Applying the 
cosine rule: 

(√38)
2

= (√33)
2

+ (√59)
2

− 2√33 √59cos 𝜃 . 

 
Hence 

38 = 33 + 59 − 2√33 √59cos 𝜃 
and 

cos 𝜃 =  
27

√33√59
 , as before . 
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Vector or Cross Product   
 
The cross product of two vectors results in a vector that is perpendicular to the 
plane of the two original vectors. The cross product therefore only makes sense 
in three dimensions (in practical setting). Useful definitions and uses of the cross 
product are outlined in this sections, for a more thorough coverage see The 
Vector Product10. 
 
For two vectors 𝒂 and 𝒃, the cross product is written 𝒂 × 𝒃 and is defined as 
 

𝒂 × 𝒃 = |
𝒊̂ 𝒋 ̂ 𝒌̂
𝑎1 𝑎2 𝑎3

𝑏1 𝑏2 𝑏3

| , 

 
using the notation of the method for finding the determinant of a 3⨯3 matrix11, 
or by 

𝒂 × 𝒃 = 𝒊̂(𝑎2𝑏3 − 𝑎3𝑏2) + 𝒋 ̂(𝑎3𝑏1 − 𝑎1𝑏3) +  𝒌̂(𝑎1𝑏2 − 𝑎2𝑏1). 

 

A further definition of the vector product is as follows 
 

𝒂 × 𝒃 = |𝒂||𝒃| sin 𝜃 𝒏̂ , 
 
where θ is the angle between 𝒂 and 𝒃 and 𝒏̂ is a unit vector that is perpendicular 
to both 𝒂 and 𝒃 (or perpendicular to the plane occupied by 𝒂 and 𝒃), as 
illustrated in the following diagram. 
 
 
 
 
 
 
 
 
 
 
 
Note that the direction of 𝒂 × 𝒃, as defined above, is ambiguous. The direction is 
‘upward’ if the movement from 𝒂 to 𝒃 is in the counter-clockwise direction, as 
illustrated in the diagram. 
 
 
 
 
 

                                                 
10 Mathcentre: The Vector Product document and video 
11 Mathcentre: Determinants document  

𝒃 𝒂 ⨯ 𝐛 

𝒂 

𝜃 

http://www.appliedmathematics.info/
http://www.mathcentre.ac.uk/resources/uploaded/mc-ty-vectorprod-2009-1.pdf
http://www.mathcentre.ac.uk/video/560/
http://www.mathcentre.ac.uk/resources/Engineering%20maths%20first%20aid%20kit/latexsource%20and%20diagrams/5_1.pdf
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From the equation above, the magnitude of 𝒂 × 𝒃 is equal to |𝒂||𝒃| sin 𝜃  
 

|𝒂 × 𝒃| = |𝒂||𝒃| sin 𝜃, 
 
which is also equal to the area of the parallelogram illustrated in the following 
diagram. 
 
 
 
 

 
 
 
In order to show this let us view the parallelogram as follows, with the vector 𝒂 
viewed on a horizontal axis and the vectors replaced by their lengths |𝒂| and |𝒃|. 
 
 
 
 

 
 

𝜃 

𝜃 

|𝒃| 

|𝒂| 

Example 15 
 

Let 𝒂 = (
2

−2
5

) and 𝒃 = (
7
1
3

) be two vectors, 

𝒂 × 𝒃 = |
𝒊̂ 𝒋 ̂ 𝒌̂
2 −2 5
7 1 3

| 

 
= 𝒊̂((−2) ⨯ 3 − 5 ⨯ 1) + 𝒋 ̂(5 ⨯ 7 − 2 ⨯ 3) +   𝒌̂(2 ⨯ 1 − (−2) ⨯ 7) 

 

= −11𝒊̂ + 29𝒋 ̂ + 16𝒌̂ = (
−11
29
16

) . 

 
To show that 𝒂 × 𝒃 is perpendicular to 𝒂 and 𝒃, let us find the dot products. 
[Note the dot product of two perpendicular vectors is zero.] 

(𝒂 × 𝒃). 𝒂 = (
−11
29
16

) . (
7
1
3

) = (−11) ⨯ 7 + 29 ⨯ 1 + 16 ⨯ 3 

 
= −77 + 29 + 48 = 0. 

 

(𝒂 × 𝒃). 𝒃 = (
−11
29
16

) . (
2

−2
5

) = (−11) ⨯ 2 + 29 ⨯ (−2) + 16 ⨯ 5 

 
= −22 − 58 + 80 = 0. 

 

𝒂 

𝒃 

|𝒃| sin 𝜃 

http://www.appliedmathematics.info/
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The height of the parallelogram is |𝒃| sin 𝜃 and hence the area of the 
parallelogram is |𝒂||𝒃| sin 𝜃 . 
 
Application: Normal to a line between two points in 2D 
 
Consider the line joining two 2-points 𝑃1 to 𝑃2. Let 𝒂 be the vector linking 𝑃1 to 𝑃2 

; 𝒂 = 𝑃1𝑃2. The normal to the line is (
−𝑎2

𝑎1
)  to the left of the line and (

𝑎2

−𝑎1
) to the 

right. The unit normal to the left of the line is 
1

|𝒂|
(

−𝑎2

𝑎1
) and to right it is 

1

|𝒂|
(

𝑎2

−𝑎1
) . 

 
Note that the normal may also be defined in the opposite direction, but in this 
case the normal lies to point to the left of the vector 𝑃1𝑃2  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (
5

−1
) 

(
−5
1

) 

(3,9) 

(2,4) 

Example 16 
 
Let 𝑃1 = (2,4) and 𝑃2 = (3,9) be two points. The vector 𝑃1𝑃2

̅̅ ̅̅ ̅̅  is equal to 𝒂 =

(
1
5

), as shown in Example 2. Hence the normal to 𝑃1𝑃2 is (
−5
1

) to the left 

and (
5

−1
) to the right,as illustrated in the following diagram. 

 

 

𝑃1 

𝑃2 
normal to the left 

normal to the right 

http://www.appliedmathematics.info/
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Application: Area of a triangle joining three points in 3D 
 
Earlier, the following formula was stated  
 

|𝒂 × 𝒃| = |𝒂||𝒃| sin 𝜃, 
 
which is also equal to the area of the parallelogram formed by a and b. However, 
if we halve that area as follows, then it becomes the area of a triangle. Let 𝒂 be 
the vector that joins two points 𝑃1and 𝑃2 so that 𝒂 = 𝑃1𝑃2

̅̅ ̅̅ ̅̅  and let 𝒃 be the vector 
that joins two points 𝑃1 and 𝑃3 so that 𝒃 = 𝑃1𝑃3

̅̅ ̅̅ ̅̅ , as  illustrated in the following 
diagram. 
  
 

 
 

 
 
 
 

Hence the area of the triangle joining the points 𝑃1, 𝑃2 and 𝑃3 is  
1

2
|𝒂 × 𝒃|.  

 

Note that this is also equal to 
1

2
|𝒂||𝒃| sin 𝜃 and this fits in with the formula for the 

area of a triangle12. 
 

                                                 
12 Mathcentre: Triangle Formulae document 

𝒂 

𝒃 
𝑃3 

𝑃2 

𝑃1 𝜃 

Example 17 
 
In this example the area of the triangle with vertices P1=(1,-3, 2), P2=(3,-5, 
7) and P3=(8,-2, 5) is determined. 

Let 𝒂 = 𝑃1𝑃2
̅̅ ̅̅ ̅̅  and 𝒃 = 𝑃1𝑃3

̅̅ ̅̅ ̅̅  then  𝒂 = (
2

−2
5

) and 𝒃 = (
7
1
3

). 

Hence  𝒂 × 𝒃 = (
−11
29
16

) , as shown in Example 14. The area of the triangle 

joining the three points is  
1

2
|𝒂 × 𝒃| =

1

2
√(−11)2 + 292 + 162 

 

=
1

2
√121 + 841 + 256 = √1218 = 17.45 (2 d. p. ). 

 

In order to verify this result let us find 
1

2
|𝒂||𝒃| sin 𝜃. From Examples 5, 

|𝒂| = √33 and |𝒃| = √59 and from Example 14  𝜃 = 52.270. Hence 
 
1

2
|𝒂||𝒃| sin 𝜃 =

1

2
⨯ 5.745 ⨯ 7.681 sin 52.27𝑜 = 17.45 (2 d. p. ). 

http://www.appliedmathematics.info/
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