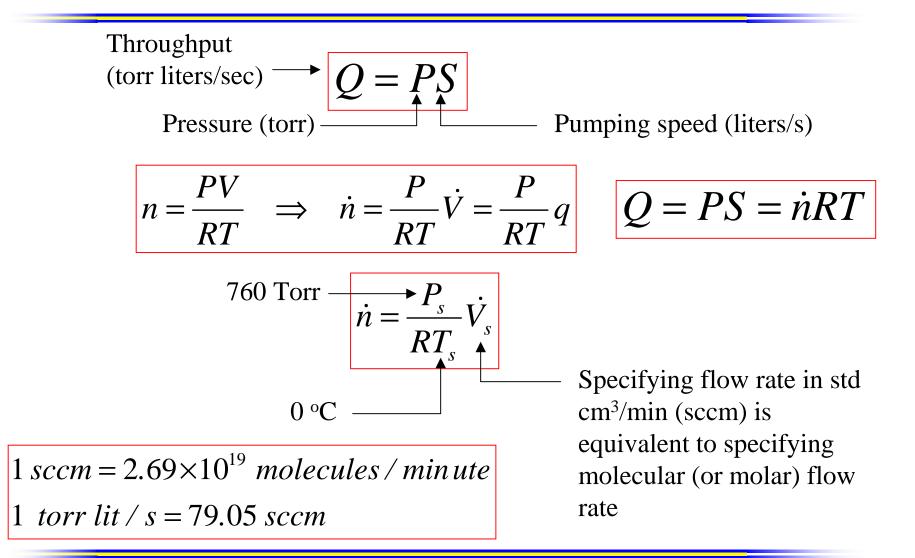
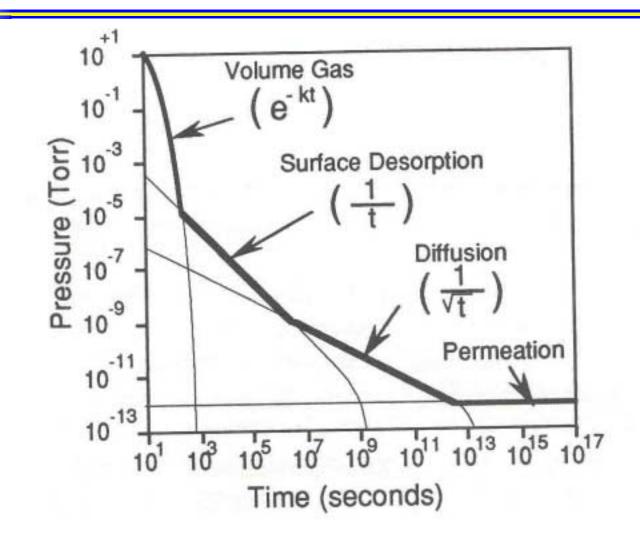

Vacuum Science and Technology


- Most CVD, Epitaxy and Plasma processes use vacuum
- > Vacuum : < 1 atm = 760 Torr
- ~ 0.1-760 Torr : Rough Vacuum
- > ~ 10⁻⁴-0.1 Torr : Medium Vacuum
- ➤ ~ 10⁻⁸- 10⁻⁴ Torr : High Vacuum
- < 10⁻⁸ Torr
 : Ultrahigh Vacuum (UHV)
- Base pressure: the lowest pressure the chamber can be pumped down to without any gases flowing.
- Processing pressure (with gases flowing) maybe higher than the "base pressure"

Why doesn't pressure go to 0?

- Even if gas flow is 0, there are always leaks. They may be very small but they are always there.
- Virtual leaks are leaks that are not associated with transport across the chamber wall but act as a gas source (e.g., desorption from gas walls, slow leak of gas trapped inside crevices and cracks.)
- Pumps are characterized by pumping speed (liters/second, m³/h, etc.)
- They are called vacuum pumps but they are really compressors.
- Think of pumping speed as volume captured per unit time and displaced out of the chamber. Amount of gas depends on how much gas is inside that volume (Pressure).

Pumping Speed, Throughput and Flow rate

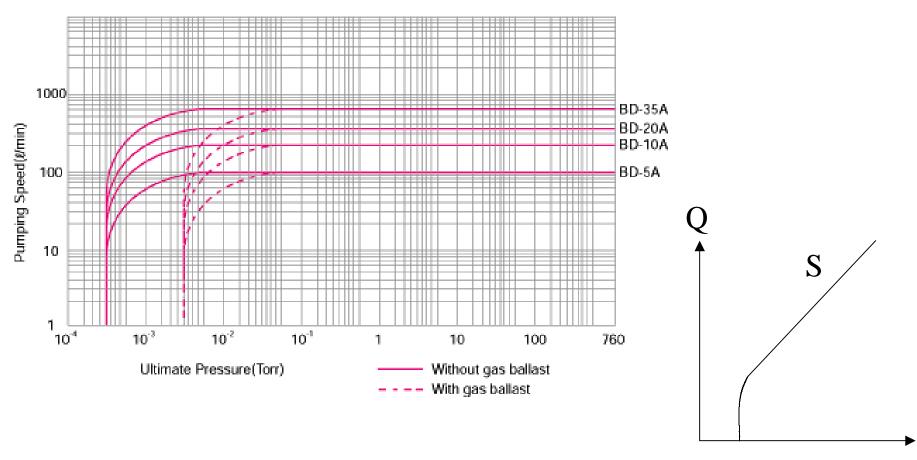


Residence time and chamber pressure

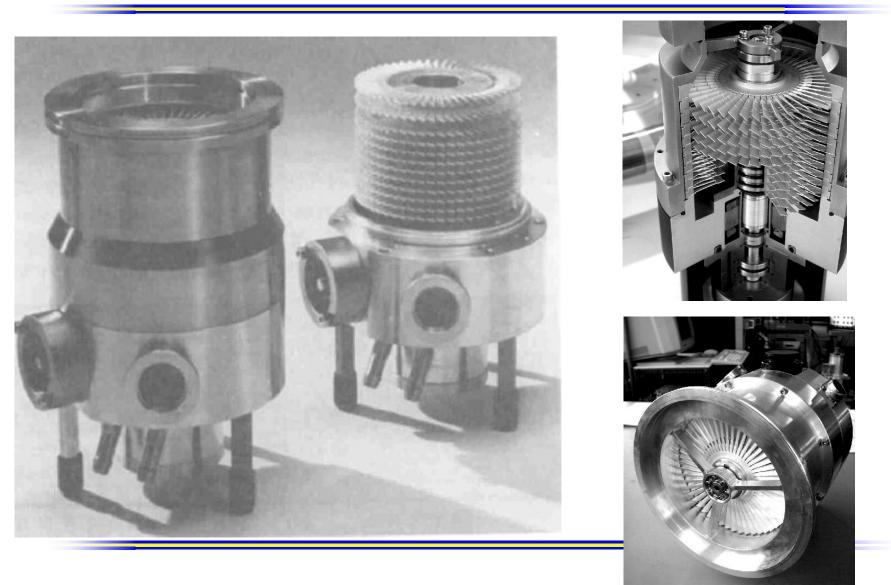
$$\frac{d(PV_R)}{dt} = -Q = -SP \implies \frac{dP}{P} = -\frac{S}{V_R} dt \implies P = P_o e^{-t/\tau}$$
Residence time $\implies \tau = \frac{V_R}{S}$

$$\frac{d(PV_R)}{dt} = Q_{gas} + Q_{leak} - Q = Q_{leak} - SP$$
Steady state no gas flow $P_{min} = \frac{Q_{leak}}{S}$
Steady state with gas flow $P = \frac{Q_{gas} + Q_{leak}}{S}$

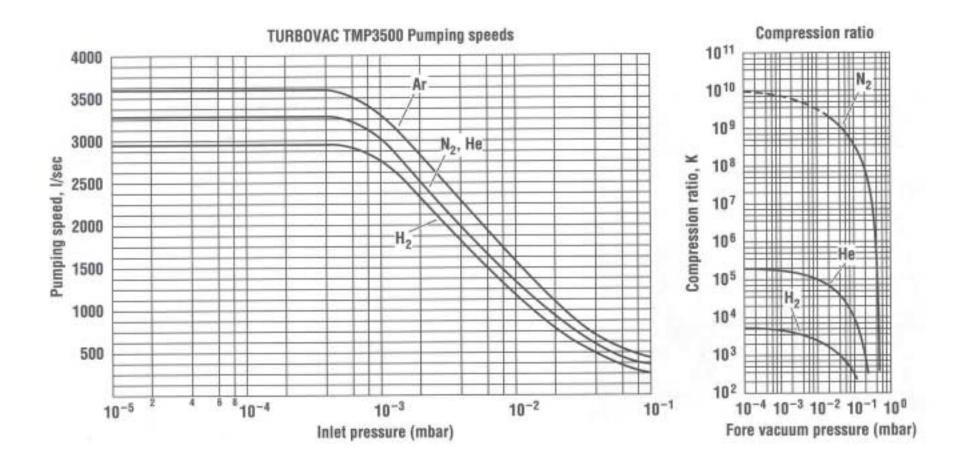
Typical pump down curve



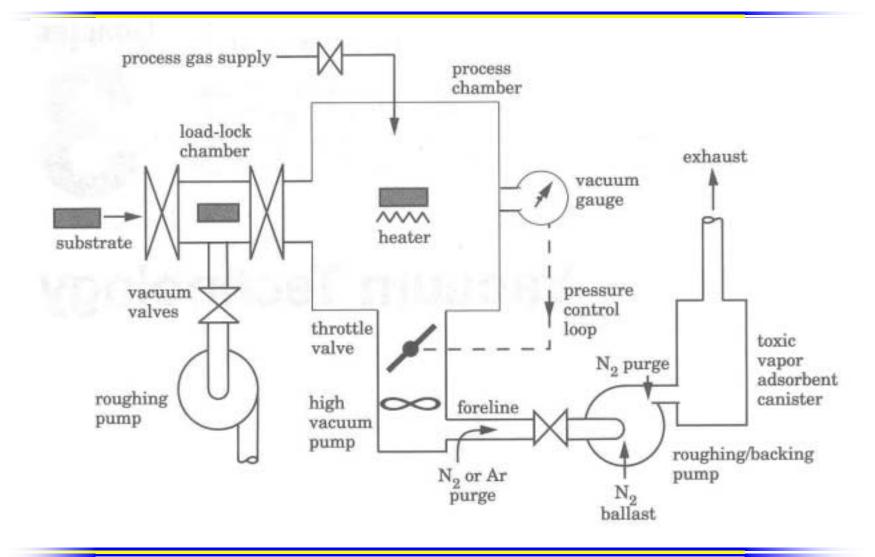
"Mechanical" Roughing Pumps

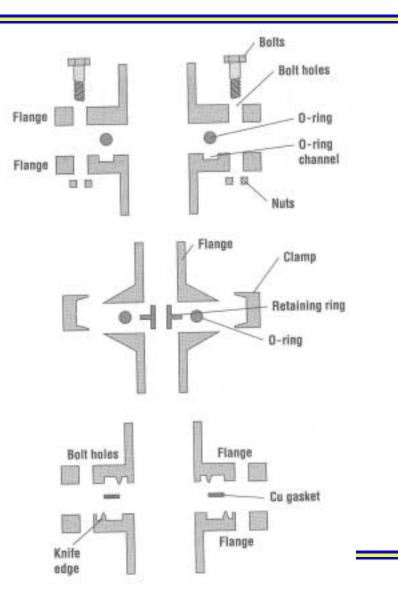


Pumping speed



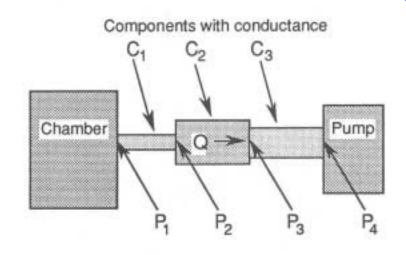
Ρ


Turbomolecular pump (turbopump)


Turbomolecular pump speed curves

Typical Vacuum Apparatus

Vacuum Seals


Pumps

Pump	Principle of operation Displacement of gas by rotary piston or vanes	Typical operating rang in torr	Remarks			
Rotary oil forepump		10 ⁻² -760	Common for pumpdown from atmospheric pressure; oil backstreaming has to be prevented			
Sorption forepump	Sorption on cooled zeolite	10 - 2-760	Initial pumpdown for oil-free systems of moderate size			
Roots pump	Displacement of gas by counter-rotating rotors	10 - 3-1	For medium to high loads at intermediate pressures			
Turbomolecular pump	Gas transfer by high- speed turbine blades	10-9-10-1	Low compression ratio for hydrogen and helium			
Diffusion pump	Gas transfer by high-speed oil vapor emanating from jets	10 ⁻¹⁰ -10 ⁻²	Low compression ratio for hydrogen-oil vapor has to be trapped			
Getter pump	Gas sorbed on evaporated titanium	10 - 10 - 10 - 3	Does not pump noble gases and methane			
Sputter-ion pump	Metal bombarded with . ions	10- 10-10-3	Memory effect-small speed for noble gases			
Cryogenic pump	Sorption and condensa- tion on cold surfaces	10 ⁻¹¹ -10 ⁻³	Excessive throughput causes temperature rise of cold surfaces			

Pumps

	Name	Category	Approx. \$/(Us)	Backing pump req'd?	Oil present?					
Pressure ranges					Inlet	Outlet	Problematic gases and vapors	Other comments		
1.++4	Dry rotary	Displacement	1000	No	No	Yes	Condensables require gas hallasting; see text			
ultimate limits }	Oil-sealed rotary		300	No	Yes	Yes		Common for roughing/backing		
•	Roots blower		70	Yes	No	Yes		Oil contam. unles foreline purged		
ا······ ا ۲۰۰۰۰۰۰ ←	Molecular drag		35	Yes	No	Үев*	Low compression ratio for H ₂ and He			
	Turbo-molecular		40	Yes	No	Yes*				
	Oil diffusion		5	Yes	Yes	Yes		Greatest risk of oil contam.		
+4	Cryosorption	Trapping	450	No	No	(No outlet)	Explosion danger with flammables	For dry roughing		
→	He-cycle cryopump		7	No	No	No [†]		Low capacity for He, H ₂		
←	Sputter-ion		25	No	No	(No outlet)	Poor for inerts			
molecular - fuid transition	Flow regime for 5 cm diameter tube									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a log of pump inlet pressure									

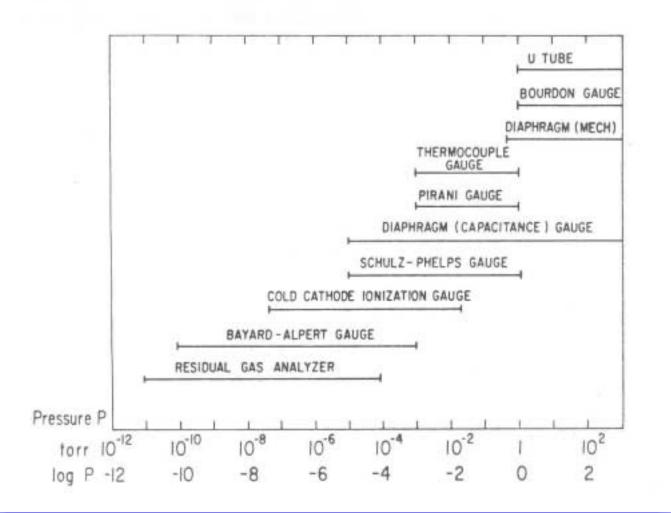
Conductance

$$P_{1} - P_{2} = \frac{Q}{C_{1}} \quad P_{2} - P_{3} = \frac{Q}{C_{2}} \quad P_{3} - P_{4} = \frac{Q}{C_{3}}$$
$$P_{1} - P_{4} = \left(\frac{1}{C_{1}} + \frac{1}{C_{2}} + \frac{1}{C_{3}}\right)Q = \frac{Q}{C_{t}}$$
$$\frac{1}{C_{t}} = \frac{1}{C_{1}} + \frac{1}{C_{2}} + \frac{1}{C_{3}} \quad \text{components}$$
$$\text{connected in series}$$

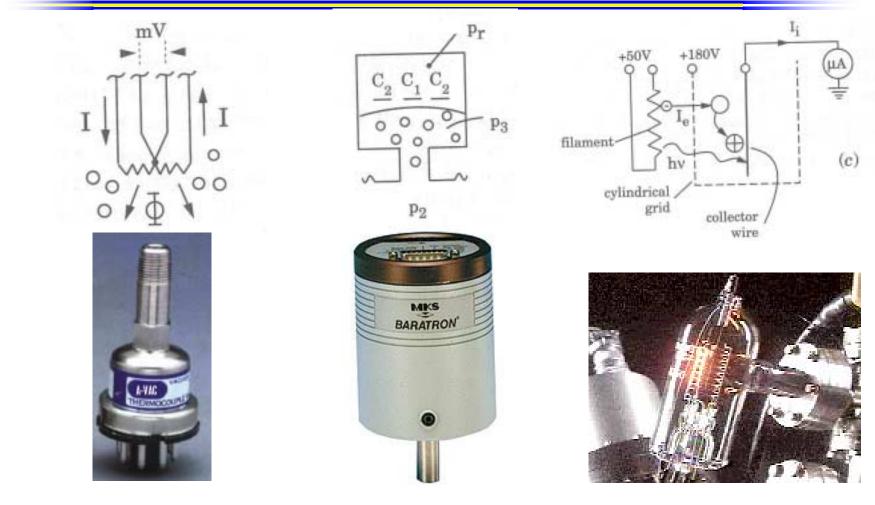
A connecting passage such as a tube, elbow, constriction or expansion impedes the gas flow (induces ΔP) and said to have resistance to flow.

$$P_1 - P_2 = ZQ$$

- > Analogous to Ohm's law in electronics: $\Delta V = IR$
- > Frequently conductance is used to characterize the ΔP where C=1/Z


$$C = \frac{Q}{P_1 - P_2}$$

Has same units of pumping speed but it is not the same thing


Conductance

Pressure Gauges

Pressure Gauges

Thermocouple gauge

capacitance manometer

Ion Gauge

Flow Control Devices

Mass flow controllers – senses mass flow via exchanging small amounts of heat with the gas stream.

 $\dot{Q} = \dot{m}C_p \Delta T$

- Active feedback control. Automatic.
- Needle (or metering) valve slow turning valve adjusts flow by changing the conductance over many turns. No feedback control. All manual

