! an for today

e Shell, Bourn shell command and shell script
o Review
« Leftover: small but useful
- set, shift, cut, redirection, /dev/null, function

¢ Review and new topics for C
e enuim....

« midterm review

tilities Il — advanced utilities

grep/egrep RE grep -w —1 [Tt]he filel23
sort sort +3 -4 -r -n/M file

= 2 Start column 1
unig uniq -C Default delimiter tab
cut cut -d” -2,3
awk awk —F”:7 “{print $1,%$2}"
tr tr a-z A- < fTilename
cmp/diff cmp/diff

Start column 1
In In Default delimiter blank/tab]
find e find . —name “*.c” -exec
e cp {3 {3-bak \;

Pattern | Maning Example

c Non-special, matches itself ‘tom’

\c Turn off special meaning \$'

$ End of line ‘ab$'
@~ < [Start of line— Aab

: Any-single character ..nodes'

[y Any single character in [] [tT]he'
@ [a==] Any single character not in [] '[MT]he'
MR- Zero or more occurrences of R ipx

R+ One or more occurrences of R (egrep) |'e+'
MR Zero or one occurrences of R (egrep) ‘e?

R1R2 R1 followed by R2 "[st][fe]'

R1|R2 R1 or R2 (egrep) 'the|The'

Don't get confused with UNIX Is file*.c *java
metacharacter (file name wildcards) cp file?.sh .

ind Utility
¢ find pathList expression

¢ finds files starting at pathList

¢ finds files descending from there

¢ Allows you to perform certain actions

e e.g. deleting the files
* e.g., copying , my, rm

“Find all the c files and make a backup of them/rename to 2012°

find . —name “*.c” -exec cp {} {}-bak \;
find . —name “*.c¢” -exec mv {} {}-2012 \j

#% find startingDir searchOptions commandToPerform

$ find . -name a2.c -print # print C source files
in the current directory or
any of its subdirectories.
./proj/fall.89/play.c
./proj/fall.89g/rerefee.c
./proj/fall.8g/player.c
./rock/guess.c

$ find /code -mtime -14 -Is # list modified files during the last 14 days

$ find . -name *.txt’ - print # find all text files in the current directory

° -mtime count
e true if the file has been modified within count days

¢ -atime count
e true if the file has been accessed within count days
¢ -ctime count

e true if the contents of the file have been modified within
count days or any of its file attributes have been modified

* -exec command
e true if the exit code = o from executing the command.
» command must be terminated by \;

« If {} is specified as a command line argument it is replaced by
the file name currently matched

¢ ¢ find / -name x.c

» searches for file x.c in the entire file system

* ¢ find . -mtime 14 -Is

e lists files modified in the last 14 days

¢ ¢ find . -name "*.bak’ -Is-execrm {}\;

e |s and then remove all files that end with .bak

¢ $ find . -name ‘a?.c’ -exec cp {} {}.bak\;

e Find all a?.c and then cp it to a?.c.bak

e ai.c ->ai.c.bak

e az.c ->az.c.bak

ies Il — advanced utili

Introduces utilities for power users, grouped into logical sets
We introduce about thirty useful utilities.

section

Utilities

Filtering files

Sorting files
Comparing files
Archiving files
Searching for files
Scheduling commands
Programmable text processing
Hard and soft links
Switching users
Checking for mail
Transforming files

Looking at raw file contents
Mounting file systems
Identifying shells

Document preparation

Timing execution of commands

egrep, fgrep, grep, uniq
sort

cmp, diff

tar, cpio, dump

find

at, cron, crontab

awk, perl

In

su

biff

compress, Crypt, gunzip, gzip,
sed, tr, ul, uncompress
od

mount, umount
whoami

nroff, spell, style, troff
time

UNIX Shells

e INTRODUCTION

A shell is a program that is an interface between a user and
the raw operating system.

It makes basic facilities such as multitasking and piping easy
to use, and it adds useful file-specific features such as wildcards
and 1/0 redirection.

There are four common shells in use:

- the Bourne shell

- the Korn shell

- the C shell

- the Bash shell (Bourne Again Shell)

e SHELL FUNCTIONALITY

- This part describes the common core of functionality that
all four shells provide.

- The relationship among the four shells:

Bourne Again Shell

e SHELL FUNCTIONALITY

- A hierarchy diagram is a useful way to illustrate the features
shared by the four shells

Shell functions

%N

Built-in Scripts Variables Redirection Wildcards Pipes Sequence Subshells Background Command
Commands Processing subsitution

Local Environment Conditional Unconditional

Built-in

Scripts Variables Redirection Wildcards Pipes Sequence Subshells Background Command

Commands Processing substitution

Local Environment Conditional Unconditional

e Displaying Information : echo

The built-in echo command displays its arguments to standard
output and works like this:

Shell Command: echo {arg}*

echo is a built-in shell command that displays all of its
arguments to standard output.
By default, it appends a new line to the output.

use —n to fix

sh-3.00% echo hello world # echo “hello world”
hello world

sh-3.00% echo -n hello

hellosh-3.00%

Some characters are processed specially by a shell and
are known as metacharacters.

All four shells share a core set of common metacharacters,
whose meanings are as follow:

Symbol Meaning
> Output redirection; writes standard output to a file.
>> Output redirection; appends standard output to a file.
< Input redirection; reads standard input from a file.
2 File-substitution wildcard;
matches zero or more characters.
2 File-substitution wildcard;
matches any single character.
[..] File-substitution wildcard;

matches any character between the brackets.

Built-in Scripts Variables Redirection Wildcards Pipes We Subshells Background Command

Commands T s . Processing substitution
Local Environment Conditional Unconditional
Symbol Meaning
“command” | Command substitution; replaced by the output from
]
command.
$ Variable substitution. Expands the value of a variable.
O
& Runs a command in the background.

| Pipe symbol; sends the output of one process to the
input of another.

R Used to sequence commands. % echo hello; wc lyrics
1 Conditional execution;
executes a command if the previous one fails.

&& Conditional execution;
executes a command if the previous one succeeds.
) Groups commands.
All characters that follow up to a new line are ignored
by the shell and program(i.e., used for a comment)
\ Prevents special interpretation of the next character.
<<tok Input redirection; reads standard input from script up to tok.

- When you enter a command,
the shell scans it for metacharacters and processes them specially.

When all metacharacters have been processed,
the command is finally executed.

To turn off the special meaning of a metacharacter,
precede it by a backslash(\) character. [also * ' “ ” (later) |

Here’s an example:

$ echo hi > file ---> store output of echo in “file”.

$ cat file ---> look at the contents of “file”.

hi

$ echo hi \> file ---> inhibit > metacharacter.

hi > file ---> > js treated like other characters.
$ cat file ---> look at the file again.

hi

$echo3*4 =12
$echo3+2=5 # this is a comment

Built-in Scripts }a@)les Redirection Wildcards Pipes Sequence Subshells Background Command

Commands Processin subsitution
Local Envirnment Conditm\l\Unconditional g

Redirection > >> < <<
The shell redirection facility allows you to:
1) store the output of a process to a file (output redirection)
2) use the contents of a file as input to a process (input redirection)
Output redirection
To redirect output, use either the “>” or “>>" metacharacters.
The sequence
$ command > fileName
sends the standard output of command to the file with name fileName.

The shell creates the file with name fileName if it doesn’t already exist
or overwrites its previous contents if it does alreadv exist

e Input Redirection

Input redirection is useful because it allows you to prepare a process
input beforehand and store it in a file for later use.

To redirect input, use either the ‘<’ or ‘<<’ metacharacters.
The sequence
$ command < fileName

executes command using the contents of the file fileName
as its standard input.

If the file doesn’t exist or doesn’'t have read permission,an error occurs.

~ - When the shell encounters a sequence of the form
$ command << word
- it copies its standard input up to, but not including,
the line starting with word into a buffer and then executes command

using the contents of the buffer as its standard input.

- that allows shell programs(scripts) to supply the standard input to
other commands as in-line text,

$ cat << eof ‘Here’ document

Sy Useful for output large info

s ::22 5 cat <<ENDOFMENU

> eof f

= | (d)isplay db (n)ew record (u)pdate record |

I!ne 5 | (s)ort records (a)verage age (s)earch (rjecord |

I!“e . | (c)lear db (c)lear (r)ecord (flormatted display |

$!ne | (v)iew courses (co)unt enrollment (q)uit |
ENDOFMENU

uilt-in Scripts Variables Redirection Wildcards Pipes Sequence Subshells Background Command
Commands 3 i/\U ___Processing subsitution
Local Envirnment Conditional Unconditional

* FILENAME SUBSTITUTION (WILDCARDS)

- All shells support a wildcard facility that allows you to select files
that satisfy a particular name pattern from the file system.

- The wildcards and their meanings are as follows: ‘ Is *.c ‘ ‘ cpa?.c .

Wildcard Meaning
* Matches any string, including the empty string. O-more char
? Matches any single character. Exactly one
[--] Matches any one of the characters between the brackets.
A range of characters may be specified by separating
a pair of characters by a hyphen.

Don’t confuse with Regulation Expression # ‘ grep a*b file123 ‘ ‘ grep a?.c file123

10

- Prevent the shell from processing the wildcards in a string
by surrounding the string with single quotes(apostrophes) or double
quotes. (talk shortly)

Here are some examples of wildcards in action:

$Is *.c --->=list any text ending in “.c”.

a.c b.c cc.c

$Is ?.c ---> list text for which one character is followed by “.c”.
a.c b.c

$ cp /cs/dept/course/2012-13/W/2031/file?

$ cp /cs/dept/course/2012-13/W/2031/file[12] .

$ Is [ac]™ ---> list any string beginning with “a” or “c”.
a.c abcd a3.pdf cc.c ce3.doc

$ Is [A-Za-z]* ---> list any string beginning with a letter.
a.c b.c cc.c

$ Is dir*/*.c ---= list all files ending in “.c” files in “dir*”
---= directories (that is, in any directories beginning
with “dir”).
dirl/d.c dir2/g.c
$ls*/*c ---= list all files ending in “.c” in any subdirectory.

dirl/d.c dir2/g.c

11

Built-in Scripts Variables Redirection Wildcards Pipes Sequence Subshells Background Command
Commands _ i/\U . Processing subsitution
Local Envirnment Conditional Unconditional

- PIPES
- Shells allow you to use the standard output of one process
as the standard input of another process by connecting the processes
together using the pipe(]) metacharacter.
- The sequence

$ commandl1 | command?2

causes the standard output of command1l to “flow through” to
the standard input of command2.

- Any number of commands may be connected by pipes.

A sequence of commands changed together in this way
is called a pipeline.

$ head -4 /etc/passwd ---> look at the password file.
root:eJ2S10rVe8mCg:0:1:Operator:/:/bin/csh
nobody:*:65534:65534::/:

daemon:*:1:1::/:

sys:*:2:2::/:/bin/csh

$ cat /etc/passwd | awk -F: ‘{ print $1 }' | sort

audit
bin
daemon

glass Is Pipe awk Pipe sort [Terminal

ingres
news
nobody
root
sync
sys
tim
uucp

$

12

Built-in Scripts Variables Redirection Wildcards Pipes Sequence Subshells Background Command

Commands = = = Processing substitution
Local Envirnment Conditional Unconditional

COMMAND SUBSTITUTION used heavily in script

A command surrounded by grave accents (‘) - back quote - is executed,
and its standard output is inserted in the command’s place in the entire
command line. Any new lines in the output are replaced by spaces.

For example:

$ echo the date today is ‘date”, right?
the date today is Mon Feb 2 00:41:55 CST 1998, right?

$

$echo there are ‘wc —I classlist™ students in the class O
there are 71 students in the class

$echo there are ‘cat classlist | grep —w Wang | wc -1~ students with name Wang
there are 1 students with name Wang

$x="wc -l classlist™ # x get value 71 (talk later)

Built-in Scripts Variables Redirection Wildcards Pipes Sequence Subshells Background Command
Commands s Processing substitution
Local Envirnment /\

Conditional Unconditional

= SEQUENCES M

If you enter a series of simple commands or pipelines separated by
semicolons, the shell will execute them in sequence, from left to right.

This facility is useful for type-ahead(and think-ahead) addicts who like
to specify an entire sequence of actions at once.

Here’s an example:

$ date; pwd; Is ---> execute three commands in sequence.
Mon Feb 2 00:11:10 CST 1998

/home/glass/wild

a.c b.c cc.c dirl dir2

$

- Each command in a sequence may be individually 1/0
redirected as well:

$ date > date.txt; Is; pwd > pwd.txt
a.c b.c cc.c date.txt dirl dir2

13

Built-in Scripts Variables Redirection Wildcards Pipes Sequence Subshells Background Command
Commands /\ /\ Processing substitution

Local Envirnment Conditional Unconditional

= Conditional Sequences && ||

- Every UNIX process terminates with an[exit value. |
By convention, an exit value of O means that the process completed
successfully, and a nonzero exit value indicates failure.
(opposite to C)

- All built-in shell commands return a value of O if they success.
and a non-zero value if they fail.
You may construct sequences that make use of this exit value:

1) If you specify a series of commands separated by “&&” tokens,
the next command is executed only if the previous command returns

an exit code of 0 -- successful
2) If you specify a series of commands separated by “||” tokens,
the next command is executed only if the previous command returns
a nonzero exit code -- fails

- For example,
if the C compiler gcc compiles a program without fatal errors,
it creates an executable program called “a.out” and returns an exit
code of 0O;
otherwise, it returns a nonzero exit code.

$ gcc myprog.c && a.out # if gcc successful, do a.out

- The following conditional sequence compiles a program
called “myprog.c” and displays an error message if the compilation
fails:

$ gcc myprog.c || echo “compilation failed.”

$ grep huiwang classlist && echo “find this guy”

return o if match, return 1 otherwise]

14

- GROUPING COMMANDS ()

- Commands may be grouped by placing them between parentheses,
which causes them to be executed by a child shell(subshell).

- The group of commands shares the same standard input,
standard output, and standard error channels and may be redirected
and piped as if it were a simple command.

$ date; Is; ---> execute a sequence.
Mon Feb 2 00:33* 1998 ---> output from date.

a.c b.c ---> output from Is.

$ cat out.txt ---=> only pwd was redirected.
/home/glass

$ (date; Is; pwd) > out.txt ---> group and then redirect.
$ cat out.txt ---> all output was redirected.
Mon Feb 2 00:33:28 CST 1998

a.c b.c

/home/glass

$

Built-in Scripts Variables Redirection Wildcards Pipes Sequence Subshells Background Command

Commands Processing substitution

Local Environment Conditional Unconditional

e Background Processing &

- If you follow a simple command, pipeline, sequence of pipelines,
or group of commands by the “&” metacharacter, a subshell is
created to execute the commands as a background process

- The background process runs concurrently with the parent shell and
does not take control of the keyboard.

Background processing is therefore very useful for performing several

tasks simultaneously, as long as the background tasks do not require
input from the keyboard.

15

Built-in Scripts Variables Redirection Wildcards Pipes Sequence Subshells Background Command
Commands /\ Processing substitution

Local Environment Conditional Unconditional

= SHELL PROGRAMS: SCRIPTS

- Any series of shell commands may be stored inside a regular text file
for later execution.

A file that contains shell commands is called a script.
batch file in Windows

Before you can run a script, you must give it execute permission by
using the chmod utility.
chmod u+x filename echo hello world

date

to run it, you need only to type its name.

- Scripts are useful for storing commonly used sequences of commands,
and they range in complexity from simple one-liners to fully blown
programs.

~ < SHELL PROGRAMS: SCRIPTS

- The system decides which shell the script is written for by examining
the first line of the script.

- Here are the rules that it uses to make this decision:

1) If the first line of the script is just a pound sign(#),
then the script is interpreted by the shell from which you executed
this script as a command.

2) If the first line of the script is of the form #! path name,
then the executable program pathName is used to interpret the script.

3) If neither rulel nor rule2 applies,
then the script is interpreted by a Bourne shell (sh).
Note: Bash on Linux, MacOS X is positioned as /bin/sh.

16

one for the Bash shell and the other for the Korn shell.

$ cat > script.sh ---> create the bash script.

#!1 /bin/sh
This is a sample sh script.
echo “hello world”

echo -n “the date today is “ # in sh, -n omits new line
date # output today’s date.
~D

---=> end of input.

$ chmod u+x script.sh ---> make the scripts executable.
$ script.sh ---> execute the C-shell script.
hello world

The date today is Sun Feb 1 19:50:00 CST 2004

Built-in Scripts Variables Redirection Wildcards Pipes Sequence Subshells Background Command
Commands /\ Processing substitution

Local Environment Conditional Unconditional

e SUBSHELLS

When you log into a UNIX system, you execute an initial login
shell.

This initial shell executes any simple commands that you enter.

- current(parent) shell creates a new(child) shell to perform
some tasks:

1) When a grouped command,
such as (Is; pwd; date), is executed, the parent shell creates
a child shell to execute the grouped commands.

If the command in not executed in the background,
the parent shell sleeps until the child shell terminates.

17

2) When a script is executed,
the parent shell creates a child shell to execute the commands
in the script.

If the script is not executed in the background,
the parent shell sleeps until the child shell terminates.

3) When a background job is executed,
The parent shell creates a child shell to execute the background
commands.

The parent shell continues to run concurrently with the child
shell.

Built-in Scripts Variables Redirection Wildcards Pipes Sequence Subshells Background Command
Commands /\ Processing substitution

Local Environment Conditional Unconditional

- VARIABLES $

- A shell supports two kinds of variables:
local and environment variables.

local:
user defined, X=4
positional $0 ... $9

Both kinds of variables hold data in a string format.

the child shell gets a copy of its parent shell’s environment
variables, but not its local variables.

Environment variables are therefore used for transmitting
useful information between parent shells and their children.

18

- = Environment VARIABLES (for your reference)

- Here is a list of the predefined environment variables that are
common to all shells:

Name Meaning

$HOME the full pathname of your home directory
$PATH a list of directories to search for commands
$MAIL the full pathname of your mailbox

$USER your username

$SHELL the full pathname of your login shell
$TERM the type of your terminal

~ -several common built-in local variables that have
special meanings:

Name Meaning

$$ The process ID of the shell.

$0 The name of the shell script (if applicable).

$1..$9 $n refers to the nth command line argument
(if applicable).

B A list of all the command-line arguments.

$ myscript we are the world

$0 $1
\

$2 $3 $4

/
e

19

~~echo the name of this script is $0
echo the first argument is $1
echo a list of all the arguments is $*
echo this script places the date into a temporary file called $1.$$

date > $1.$$ # redirect the output of date.
Is $1.$% # list the file.

rm $1.$$ # remove the file.

x=5

echo the value of variable x is $x N

Bvariables.sh paul ringo george john --> execute the script.
the name of this script is variables:sh
the first argument is paul
a list of all the arguments is paul ringo, george john

this script places the date into a temporary file called paul.2431
paul.2431

value of variable x is 5. - .
B3 substitution

B F_ B m m B M P
oa o o Nomlk | salk | SRy | Beak

& T B 9y M=
7 8 0
U 41 50 6P *

"« QUOTING

There are often times when you want to inhibit the shell’s
wildcard-replacement * ? [], variable-substitution $, and/or
command-substitution © © mechanisms.

The shell’s quoting system allows you to do just that.

- Here’s the way that it works:

1) Single quotes(* ’) inhibits wildcard replacement,
variable substitution, and command substitution.

2) Double quotes(* ") inhibits wildcard replacement only.

20

= QUOTING

- The following example illustrates the difference between the
two different kinds of quotes:

$echo 3*4=12 ---> remember, * is a wildcard.
e b bcicic 4 —12

= ek e e r e x mm s e x ek mm s ek mm mm s e x mm s =k mm x mm s =k M s e s =k mm mm s = ke o = ko= ke s = s o= m

Piecho=s3s A= ="12" ---> double guotes inhibit wildcards.
3*4 =12
$echo ‘3*4=12 ---> single quotes inhibit wildcards.

another way?

1
1
1
1
3*4=12 :
1
1
1
1

- By using single quotes(apostrophes) around the text,
we inhibit all wildcarding and variable and command
substitutions:

$ name=Graham # assign value to name variable

$ echo ‘my name is $name - date is “date™’

my name is $name - date is ‘date’

$_

- By using double quotes around the text, we inhibit wildcarding,
but allow variable and command substitutions:

$ echo “my name is $name - date is “date™”

my name is Graham - date is Mon Feb 2 23:14:56 CST 1998

%

21

~ - TERMINATION AND EXIT CODES

Every UNIX process terminates with an exit value.

By convention, an exit value of O means that the process
completed successful, and a nonzero exit value indicates failure.

All built-in commands return an exit value of O if they succeed
return an non-zero is they fail.

In the Bash, Bourne and Korn shells, the special shell variable

$? always contains the value of the previous command’s
exit code.

date, Is, grep, find Every command has a exit code (return status)
Look for man ™\

| Matching 0 ~ No matching 1 No such file 2 ‘

$ date ---> date succeeds.

Mon Feb 2 22:13:38 CST 1998

$ echo $? ---> display its exit value.

0 ---> indicates success.

$ gcc prog.c ---> compile a nonexistent program.
cpp: Unable to open source file ‘prog.c’.

$ echo $?

1 ---> indicates failure.

22

$ grep Wang classlist
$ echo $?
0 ---> indicates success.

$grep Hui classlist
$ echo $? :
1 ---> indicates failure (not matching)

$grep Hui classlistX

grep: classlistX: No such file or directory

$ echo $? S

2 ---> indicates failure (not matching)

~ - Any script that you write should always explicitly return an exit
code.

To terminate a script, use the built-in exit command,
which works as follows:

Shell Command: exit number

exit terminates the shell and returns the exit value number
to its parent process.

If number is omitted, the exit value of the previous command
is used.

23

.

%N

Built-in Scripts Variables Redirection Wildcards Pipes Sequence Subshells Background Command

Commands $ <> * 0 [] | Processing subsitution
>> : &
Local Environment Conditional Unconditional
$0 $1-9 $* && ||

* Covered core shell functionality

e Built-in commands

* Redirection

e Wildcards

* Pipes

* Background processing
e Scripts

* Variables

24

The Bourne Shell
and its script

Ch5 Bourn shell
“UNIX for Programmers and Users”
Third Edition, Prentice-Hall, GRAHAM GLASS, KING ABLES

49

Ch. 4. The Bourne Shell

Shell functions

Built-in Scripts Variables Redirection Wildcards Pipes Sequence Subshells Background Command
Commands A Processing substitution
Local Environment Conditional Unconditional
e Introduction

- The Bourne shell supports all of the core-shell facilities
describe earlier, plus the following new facilities:

= several ways to set and access variables

* a built-in programming language that supports conditional
branching, looping, and interrupt handling

= extensions to the existing redirection and
command-sequence operations

—=SeVelkalnew built-in.commands

50

25

Ch. 4. The Bourne Shell

~ e Introduction

- These new facilities are described by this chapter and
are illustrated by the following hierarchy diagram:

Bourne shell
functions

Built-in Redirection Programming Sequences Variables Startup
commands language

e

51

trap set read for case while if {.} export readonly .profile

~ « The Bourne shell, written by Stephen Bourne, was the first popular
UNIX shell and is available on all UNIX systems.

+ This section introduces the following utilities,
expr test

* Shell commands
This section introduces the following shell commands,

break for..in..do..done set
case..in..esac if..then..elif..fi trap

continue read while..do..done
export readonly

52

26

Ch. 4. The Bourne Shell

e STARTUP

- The Bourne shell is a regular C program whose executable file
is stored as “/bin/sh”.

If your chosen shell is “/bin/sh”,
an interactive Bourne shell is invoked automatically when you
log into UNIX.

You may also invoke a Bourne shell manually from a script or
from a terminal by using the command sh.

53

Ch. 4. The Bourne Shell

~ ¢ VARIABLES (setting and getting)

- The Bourne shell can perform the following variable-related
operations:

= simple assignment and access

= testing a variable for existence

= reading a variable from standard input

= making a variable read only

= exporting a local variable to the environment
- Creating/Assigning a Variable

The Bourne-shell syntax for assigning a value to a variable is:

{name=value}+

54

27

Ch. . The Bourne Shell —

— : = No space!
-« VARIABLES

$ firstName=Graham
$ lastName=Glass
$ age=29

---> assign variables.
$ echo $firstName $lastName is $age
Graham Glass is 29 ---> simple access variable substitution

$ name=Graham Glass ---> syntax error.
Glass: not found

$ name=“Graham Glass” ---> use quotes to built strings.
$ echo $name ---> now it works.

Graham Glass

¢

No need to declare! If assigned does not exist, create!

55

Ch. 4. The Bourne Shell

e Accessing a Variable
- The Bourne shell supports the following access methods:

Syntax Action
$name Replaced by the value of name.
${name} Replaced by the value of name.

56

28

Ch. 4. The Bourne Shell

- Example
$ verb=sing ---> assign a variable.
$ echo | like $verbing ---> there’s no variable “verbing”.
I like
$ echo | like ${verb}ing ---> now it works.
I like singing
$ -

57

Ch. 4. The Bourne Shell

- Reading a Variable from Standard Input

The read command allows you to read variables from standard
input and works like this:

Shell Command: read {variable}+

read reads one line from standard input and then assigns
successive words from the line to the specified variables.

Any words that are left over are assigned to the last named
variable.

58

29

Ch. 4. The Bourne Shell

- If you specify just one variable,
the entire line is stored in the variable.

Here’s an example script that prompts a user for his or her
full name:

$ cat readName.sh ---> view the script.

echo —n “Please enter your name: ”
read just one variable.

echo your input is $name # display the variable.

$ readName.sh
Please enter your name: Graham Walker Glass

$ -

your input is Graham Walker Glass ---> the whole line was read.

59

Ch. 4. The Bourne Shell

~ - Here’s other example script that prompts a user for his or her
full name:

$ cat readNames.sh

echo —n “Please enter your name: ”

read two variables.
echo your first name is $first # display the variables.
echo your last name is $last

$ readNames.sh
Please enter your name: Graham Walker Glass
your first name is Graham

$ -
sh-3.00$ read a b sh-3.00$ readab c
1234567 12
Try yourself =» sh-3.00$ echo $a sh-3.00$ echo $a
1 1
sh-3.00% echo $b sh-3.003% echo $b
234567 2

your last name is Walker Glass ---> the whole rest line was read.

60

30

Ch. 4. The Bourne Shell

- Predefined Local Variables

In addition to the core predefined local variables ($$,$0,$1..9,$*)
the Bourne shell defines the following local variables:

Name Value
$@ an individually quoted list of all of the positional parameters
$# the number of positional parameters
$? the exit value of the last command
$$ the process ID of this shell

61

-Recall: several common (core) built-in local variables that have
special meanings:

Name Meaning

$$ The process ID of the shell.

$0 The name of the shell script(if applicable).

$1..$9 $n refers to the nth command line argument
(if applicable).

B A list of all the command-line arguments.

$ myscript we are the world™

$0 \$1 $2 $3 $4}1 $H=4

Y $* $@

31

Ch. 4. The Bourne Shell

- Here’s a small shell script that illustrates the first three variables.

$ cat script.sh

echo there are $# command line arguments: $@

grep —w $2 $1

echo the last exit value was $? # display exit code.

$ script.sh 2031classlist Hui

there are 2 command line arguments: 2031classlist Hui
the last exit value was 1

$ -

$ script.sh 2031classlist Wang
there are 2 command line arguments: 2031classlist Wang

the last exit value was O ---> match find
$ =

63

Ch. 4. The Bourne Shell

e ARITHMETIC Space!

- Although the Bourne shell doesn’t directly
it may be performed by using the expr utili

port arithmetic,
J which works like this:

Utility : expr expression $expr’'2’'+ 4
expr evaluates expression and sends the result to standard output.

All of the components of expression must be separated by blanks,

The result of expression may be assigned to a shell variable by
the appropriate use of command substitution. ~ ~

X=expr2+4

64

32

Ch. 4. The Bourne Shell

e ARITHMETIC

- expression may be constructed by applying the following binary
operators to integer operands, grouped in decreasing order of

precedence:
OPERATOR RESPECTIVE MEANING
*/ % multiplication, division, remainder
+- addition, subtraction
=> >= < <= I= comparison operators
& logical and

| logical or

65

Ch. 4. The Bourne Shell

- The following example illustrates some of the functions of expr
and makes plentiful use of command substitution:

$ x=1 ---> initial value of x.

$x="expr $x + 1~ --->increment X. X = x+1

$ echo $x

2

$x="expr2 +3*5” ---> * |s conducted before +.
$ echo $x

17

33

Ch. 4. The Bourne Shell

~ e CONDITIONAL EXPRESSIONS

- The control structures often branch based on the value of a logical
expression-that is, an expression that evaluates to true or false.

The test utility supports a substantial set of UNIX-oriented expressions
suitable for most occasions and works like this:

Utility: test expression
[expression]

test returns a zero exit code if expression evaluates to true;
otherwise, it returns a nonzero exit status.
sh-3.00% test 3 -eq 3; echo $? 0 true
sh-3.00% test 3 -eq 33 ; echo $? 1 false

The exit status is typically used by shell control structures for
branching purposes. if test $x —eq 3 ...

Some Bourne shells supports test as a built-in command,
in which case they support the second form of evaluation as well. []

Ch. 4. The Bourne Shell

~ - The brackets of the second from must be surrounded by spaces

in order for it to work[2 -eq 4]

A test expression may take the following forms:

Form Meaning
-d filename True if flename exists as a directory.
-f filename True if filename exists as an ordinary file
-s filename True if flename contains at least 1 char (none empty)

68

34

Meaning

-r filename
-w filename
-x filename

-| string

-n string
-z string
str1 = str2
str1 1= str2
string

int1 —eq int2
int1 -ne int2
int1 -gt int2

int1 -ge int2
int1 —lt int2

int1 -le int2

! expr

True if filename exists as a readable file.
True if filename exists as a writeable file.
True if filename exists as an executable file.

True if length of string is nonzero.

True if string contains at least one character.

True if string contains no characters. empty string
True if str1 is equal to str2.

True if str1 is not equal to str2.

True if string is not null.

True if integer int1 is equal to integer int2.

True if integer int1 is not equal to integer int2.

True if integer int1 is greater than integer int2.

True if integer int1 is greater than or equal to integer int2.
True if integer int1 is less than integer int2.

True if integer int1 is less than or equal to integer int2.
True is expr is False 69

Argument Testls frueif...

-d file Sile is a directory

- file file is an ordinary file

~r file file is readable

-5 file file size is greater than zero

-w file Jile is writable

-x file Jile is executable

! -d file file is not a divectory

1 T file Jile is not an ordinary file

bo-r file file i8 not readable

! -5 file file size is not greater than zero

b -w file Jile 1s not writable

i -x file file is not executable

nl -eq n2 integer #1 equals integer #.2

nl -ge n2 integer nl is greater than or equal to integer n2
nl -gt n2 integer nl is greater than integer n2

w1l ~le n2 integer nl is less than or equal to integer n2

nl -ne n2 integer 1l is not equal fo integer n2

nl ~1t n2 integer ! igless than integer n2

sl o= 32 string 51 equals string 52

si 1= 52 string 5! is not equal to string s2 70

35

Ch. 4. The Bourne Shell

= CONTROL STRUCTURES

- The Bourne shell supports a wide range of control structures that
make it suitable as a high-level programming tool.

Shell programs are usually stored in scripts and are commonly used
to automate maintenance and installation tasks.

Branch: If then fi case..in..esac

Loop: While do done For do done until do done

7

Ch. 4. The Bourne Shell

o if...then...fi

The if command supports nested conditional branches and
has the following syntax:

if listl
then

list2
elif list3 ---> optional,

the elif part may be repeated several times.

then

list4
else ---> optional,

listb the else part may occur zero times or one time.
fi

72

36

Ch. 4. The Bourne Shell

- The if command works as follows:

The commands in listl are executed.

If the last command in listl succeeds,
the commands in list2 are executed.

If the last command in listl fails and there are one or more elif
components, then a successful command list following an elif
causes the commands following the associated then to be

executed.

If no successful lists are found and there is an else component,
the commands following the else are executed.

73

Ch. 4. The Bourne Shell

~ - Here’s an example of a script that uses an if control structure:

$ cat numberScript.sh

echo -n “enter a number:
read number
if [$number -It 0] # if test $number —It O
then # if ! ([$number —gt 0] || [$number —eq O]
echo negative
elif [$number -eq 0]
then
echo zero
else
echo positive
fi

$ numberScript.sh ---> run the script.

enter a number: 1

positive

$ numberScript.sh ---= run the script again.
enter a number: -1

negative 74
L

37

Ch. 4. The Bourne Shell

~ - Here’s another example of a script that uses an if control structure

\
$ cat week.sh Compare string is 3%
echo -n “enter a dat | ")
read date

if [$date = Fri] # if [$date = “Fri”] compare string easy
then
echo “Thank God it is Friday”
elif [$date = Sat] || [$date = Sun]
then
echo “You should not be here working, go home!!!”
else
echo “Not weekend yet. Get to work”
fi

$ week.sh ---> run the script.
enter a date: Wed
Not weekend yet. Get to work

$ week.sh ---> run the script again.
enter a date: Fri

~~Thank God it is Friday -
&

Ch. 4. The Bourne Shell

~ -Here’s an example of a script that uses an if control structure:
-If a file empty, echo, else Is it

$ cat if.sh
echo -n “enter a file name: *
read name
if [—s $name]
then -
echo “File $1 is empty” Argument Testis trueif...
exit 1 -d file file is a directory
else -f file file is an ordinary file
.IS —| $name -r file file is readable
L -s file file size is greater than zero
-w file file is writable
| -x file file is executable

-s filename True if filename contains at least 1 char (none empty)

76

Ch. 4. The Bourne Shell

~ - Here’s an example of a script that uses an if control structure:

$ catif.sh ---> list the script.

echo -n “enter a file name: “

read name

if [—d $name] # if [$number —1t 0] || [$number —eq O]
then

echo $name is a directory
elif [-x $name]

then
echo “File $name is executable”
else Argument Testis trueif...
echo “File $name is not executable” ~d file Tle 1s a directory
Chmo? .+X $name. = -f file file is an ordinary file
echo “File $name is executable now o
fi -r file file is readable
-s file file size is greater than zero
-w file file is writable
| -x file file is executable

7

Ch. 4. The Bourne Shell

~ - Here’s an example of a script that uses an if control structure:
improved version of grep

$ cat grepNotFound.sh ---> list the script.

argl search pattern
arg2 file to search

egrep $1 $2
if [$? -ne O] # not O --- not successful [$? gtO]
then
echo patternn$l not found
fi

$ grepNotFound.sh hui classlist2031
pattern hui not found

How to check if found or not?

39

Ch. 4. The Bourne Shell

- * CONTROL STRUCTURES

case..in..esac

The case command supports multiway branching based on the value
of a single string and has the following syntax:

case expression in
pattern {|pattern}*)
list

esac

79

Ch. 4. The Bourne Shell

~ - expression is an expression that evaluates to a string,

pattern may include wildcards, and a list of one or more shell
commands.

You may include as many pattern/list associations as you wish.

The shell evaluates expression and then compares it to each pattern
in turn, from top to bottom.

When the first matching pattern is found,
its associated list of commands is executed and then the shell skips
to the matching esac.

A series of patterns separated by “or” symbols(]) are all associated
with the same list.

If no match is found, then the shell skips to the matching esac.

80

40

Ch. 4. The Bourne Shell

~ e while...done

- The while command executes one series of commands as long

as another series of commands succeeds.

Here’s its syntax:

while listl
do

list2
done

The while command executes the commands in listl and ends

if the last command in listl fails;
otherwise, the commands in list2 are executed and
the process is repeated.

81

Ch. 4. The Bourne Shell

~ - If list2 is empty, the do keyword should be omitted.
A break command causes the loop to end immediately,
and a continue command causes the loop to immediately
jump to the next iteration.

- Here’s an example of a script that uses a while control structure

to generate a small multiplication table:

$ cat repeat.sh

count=1
hile count -It 5
\évol [$cou] sh-4.1% repeat.sh
echo Hello :e::o
Count:\expr $COUnt apa L
= Hello
Hello
sh-4.1%

82

41

Ch. 4. The

Write a script matrix.sh to generate a matrix

$ matrix.sh
1 2

2 4

3 6

4 8

5 10

6 12

7 14

$

Bourne Shell

$1
- ;/—]

3 4 5 6

6 8 10 12
9 12 15 18
12 16 20 24
15 20 25 30
18 24 30 36
21 28 35 42

7
14
21
28
35
42
49

x=1
while (x <7)
{
V=1
while (y <7)
{
print y*x
=
!
X=x+1

}

83

$ cat matrix.sh

Ch. 4. The Bourne Shell

---> |ist the script.

———]

echo
— X="expr

echo -n “expr $x * $y~
y="expr $y + 1~

$x + 17 # x++ update inner-loop count

!
UUTITC

if [-z$1]; then x=1
echo “Usage: matrix number” while (x < 7)
exit y=1
fi while (y < 7){
x=1 # set outer-loop value pr|=nt+¥ X
—while [$x -le $1] # outer loop } y=y
do : X=x+1
y=1 # set inner-loop value }

[By -le $1] # generate one table entry:

y++ update inner-loop count

Indent not mandatory

24

42

Ch. 4. The Bourne Shell

- Here’s an example of a script called “menu.sh” that makes use of
while and case control structure:

#! /bin/sh
echo menu test program

stop=0 # reset loop-termination flag.

while test $stop -eq O # while [$stop —eq O] loop until done.
do

cat << ENDOFMENU # display menu.
1 : print the date.

2,3 : print the current working directory.
4 :exit

ENDOFMENU

echo

echo —n ‘your choice?’

read reply
echo

prompt.
read response.

85

Ch. 4. The Bourne Shell

process response.

1)
date # display date.
27173™)
pwd # display working directory.
)
stop=1 # set loop termination flag.
=) # default.
echo illegal choice # error.
esac

done

86

43

Ch. 4. The Bourne Shell

$ menu.sh

1
2:3
4

1
2,3
4

1
2,3
4

- Here’s the output from a sample run of the “menu.sh” script:

menu test program

print the date.
print the current working directory.
exit

your choice? 1
Thu Feb 5 07:09:13 CST 1998

print the date.
print the current working directory.
exit

your choice? 2
/home/glass

print the date.
print the current working directory.
exit

your choice? 5

87

illegal choice
1
2,3
4
your choice? 4
$ =

Ch. 4. The Bourne Shell

print the date.
print the current working directory.
exit

88

44

Ch. 4. The Bourne Shell

~ e for..do..done
- The for command allows a list of commands to be executed
several times, using a different value of the loop variable
during each iteration.

Here’s its syntax:

for name [in {word}*]
do

list
done

The for command loops the value of the variable name through
each word in the word list, evaluating the commands in list
after each iteration.

89

Ch. 4. The Bourne Shell

- If no word list is supplied, $@($1...) is used instead.
A break command causes the loop to immediately end, and
a continue command causes the loop to immediately jump
to the next iteration.

Here’s an example of a script that uses a for control structure:

$ cat for.sh
for color in red yellow green blue
do
echo current color is $color
done

$ for.sh
current color is red
current color is yellow
current color is green
current color is blue
e -

45

Ch. 4. The Bourne Shell

- If no word list is supplied, $@($1...) is used instead.

Here’s an example of a script that uses a for control structure:

All the command line input
$ cat for2.sh
for color in $*

do
echo current color is $color
done

$ for2.sh red yellow green blue black
current color is red

current color is yellow

current color is green

current color is blue

current color is black

$ -

91

#! /bin/sh
echo -n "enter a number or ‘q’:
read number

| while [$number = q] # while [number !="q"]
| do
if [$number -It 0]
then

echo "a negative number"
elif test $number -eq 0
then

echo " this is zero"
i else

echo " a positive number"
fi

read again
echo -n "enter a number: "
read number

—1done

Ch. 4. The Bourne Shell

~ + CONTROL STRUCTURES

- The Bourne shell supports a wide range of control structures that
make it suitable as a high-level programming tool.

Shell programs are usually stored in scripts and are commonly used
to automate maintenance and installation tasks.

Branching: Ifelifelse fi case..in..esac

Looping: While do done For do done ("until do done

93

Ch. 4. The Bourne Shell

"l until...do...done

- The until command executes one series of commands as long as
another series of commands fails and has the following syntax:

until list1
do

list2
done

- The until command executes the commands in list1
and ends if the last command in list1 succeeds;
otherwise, the commands in list2 are executed and
the process is repeated.

- If list2 is empty, the do keyword should be omitted.
A break command causes the loop to immediately end, and
a continue command causes the loop to immediately jump to
the next iteration.

94

47

Ch. 4. The Bourne Shell

- Here’s an example of a script that uses an until control structure:

$ cat until.sh ---> ist the script.
x=1
until [$x -gt 31]
do
echo x=$x
x="expr $x + 1°
done
$ until.sh ---> execute the script.
x=1
x=2
x=3
$-

95

Some small but useful topics in shell
scripting

* Looping: [1]/ true, break, continue, :,

* Command line: set, shift

* function
e dev/null/ and redirection

48

Ch. 4. The Bourne Shell
~ -while true, break, continue, and :
/bin/sh x=0
echo menu test program ‘é"h”e true
o)
while [1] # while true x="expr $x + 1°
do if [$x -eq 100]
echo —n ‘your choice?’ # prompt. then
read reply # read response. Ibreak
if [$reply =q] else
then : # do nothing
break fi
fi done
....... echo $x
done 99
97

ommand Line Arguments -- shift, set

* Command line arguments stored in variables called
positional parameters.

* These parameters are named $1 $9.
¢ Command itself is in parameter $o.

¢ In diagram format:
command argl arg2 arg3 arg4 arg5 arg6 arg7 arg8 arg9
$0 $1 $2 $3 $4 $5 $6 7 $8 %9

* Note: $# does NOT include the program name (unlike argc
in C programs)
98

| el

Comrﬁand Line Arguments

* What if the number of arguments is more than 9?
How to access the 10th, 11th, etc.?

* Use shi Tt operator.

99

ift Operétor

¢ shift promotes each argument one position to the left.
¢ Operates as a conveyor belt.
* Allows access to arguments beyond $9.

shifts contents of $2 into $1

shifts contents of $3 into $2

shifts contents of $4 into $3

etc.

¢ Eliminates argument(s) positioned immediately after the
command.

¢ Syntax:
shift # shifting arguments one position to the left

* Aftera shift, the argument count stored in $# is
automatically decremented by one.

100

50

P e

% cat args
#1/bin/sh
echo "argl
echo $@
shift

echo "argl
echo $@

$1, arg2 = $2, arg9 = $9, ARGC = $#"

$9, ARGC

$1, arg2 = $2, arg9 "

% args 1 234567 89 10 11 12

argl = 1, arg2 = 2, arg9 = 9, ARGC = 12
12345678910 11 12

argl = 2, arg2 = 3, arg9 = 10, ARGC = 11
2345678910 11 12

101

% ple 2 ; ;

% cat show shift

#1/bin/sh

echo “argl=%$1, arg2=%$2, arg3=%$3"
shift

echo “argl=%1, arg2=%$2, arg3=%$3"
shift

echo “argl=%1, arg2=%$2, arg3=%$3"

% show_shift William Richard Elizabeth
argl=William, arg2=Richard, arg3=Elizabeth
argl=Richard, arg2=Elizabeth, arg3=
argl=Elizabeth, arg2=, arg3=

102

% my_copy dir_name Ffilenamel Filename2 filename3 ..

e mycopy lab8b f1 f2 3 T4

This shell script copies all the files to
directory “dir_name” --- 1St argument

% cat my_copy

#1/bin/sh

directory=%$1

shift

files=$* # 1 f2 f3 f4

cp $files $directory # or cp $* $directory

103

ifting Multiple Times
Shifting arguments three positions: 3 ways to write it
shift

shift

shift

shift; shift; shift

shift 3

104

52

~ set: Changing Values of Positional Parameters

* Positional parameters $1, $2, ... normally store
command line arguments.

¢ Their values can not be set or changed using =
command , $1=2 wrong

¢ Their values can be changed using set command , for
example, set “date"

* The new values are the output of date command.

105

! !xamble - '

sh-3.00% set a b cd e
sh-3.00%$ echo $@
abcde

sh-3.00% echo $1 $2 $3 $5
abce

sh-3.00% shift

sh-3.00$ echo $@ ?

b-c e

106

53

e %wc Filename
57 84 Tilename

e cat myWC.sh

set “wc $1° # 5:$1 17:$2 84:$3 Ffilename:%$4
echo “File: $4”

£chn T hiaes ol

echo “Words $2”

echo ‘“characters: $3”

%myWC.sh Filename
File: filename
Lines: 5

Worlds: 17
Characters: 84

 Similar to shell scripts.
e Stored in shell where it is defined (instead of in a file).
¢ Executed within sh

* no child process spawned

¢ Syntax:

function_name()

{

commands

}

¢ or function function_name

* Allows structured shell scripts

108

54

#1/bin/sh
function to sample how many users are logged on

1ogO
echo “Users logged on:” >> users
date >> users
who >> users
echo “\n\n” >> users

1

taking first sample
log

taking second sample (30 min. later)
sleep 1800
log

109

#1/bin/sh
Enable labtest.

How to pass and receive

error() { parameters/arguments ?
echo "error: $1"

exit 1
}
usage() {

echo "usage: $0 <full path to labtest dir>"
exit 1

}

if [$# -ne 1]; then
usage
Ti

95

/xsys/pkg/pcmode/bin/ltfix -q $LTDIR

if [$?2 -ne 0]; then
error "Labtest \"$LTPATH\" is NOT enabled."
fi \ J
[

Argument to the function
chmod 750 $LTDIR in function, this is referred to as $1

if [$?2 -ne 0]; then
error "'chmod on $LTDIR failed. Labtest unabled."
fi

echo "Labtest \"$LTDIR\" is enabled."

ot Fin/sh
= st
X=expr $1 + $2° How to pass and receive
echo $x parameters/arguments ?
}

Arguments to the function
x=1 e in function, 5 is referred to as $1, and 3 is referred to as $2

sum 5 3

echo "The sum of 4 and 7 is "sum 4 7°"
a="sum 2 10"

echo a is %a

8

The sum of 4 and 7 is 11
12

a is 12

56

= Special file found in device directory (/dev)

¢ Discard data written to (but report writing succeed)
* Write to it -- everything disappears (absorbed)

¢ Provide no data to reading process (EOF immediately)
* Read from it - get nothing

°ls-1 > /dev/null # standard output is suppressed
* Create an empty file / clear a file

1. cat </dev/null >emptyF

2. cat /dev/null >emptyF

5. echo /dev/null >emptyF ???

4. Another way: touch emptyF

~ Structures
¢ Isxx 1> logfile Text terminal

3 Keybhoard
* Isxx 2> logfile

#0 stdin

° Isxx 2> /dev/null

#1 stdout
Display @

Handle Name Description

° Isxx 2>&
* Send 2 to same place as1

o Isxx > logfile 2>& 0 stdin | Standard input
1 stdout | Standard output
¢ Isxx >/dev/null 2>&1 2 stderr | Standard error

o Isxx 2>&1 > /dev/null
114

57

rgl search pattern
arg?2 file to search

egrep $1 $2
if [$? -ne 0] # not 0 --- not successful
then
echo pattern $1 not found
fi

l Suppress all the outputs from grep

argl search pattern
arg2 file to search
egrep $1 $2 >/dev/null 2>&1

echo pattern $1 found
fi

if[$? -ne 0] # not O --- not successful
then

echo pattern $1 not found
else

small topi

' (summary)

e while[1] break

* set and shift

* function in scripting
e dev/null,

e redirection 2>&1

58

Quick review and addition of C

* Topics that is small but it is better that you know
e const
* enum
* union
e Library funciton, e.g., memset
* self-referential structures
e system calls (C + Unix)

WO Imore ways for constant
define MAX_LENGTH 30

By default, start from 0

enum boolean {NO, YES} /* NO O YESEqumry

e enum months {Jan=1,Feb,MAR,APR,MAY,JUN,JUL, AUG, SEP,
OCT,NOV,DEC}

o JAN -1 EEB 1S 2 MAR IS 3 -

* You can specify values if you want - C fills in the rest
e enum col { RED = 1,BLUE, GREEN = 16, BROWN};

o enum DAY { saturday, \- N
sunday = O,
monday, \
tuesday, < |

wednesday,

thursday,
friday } workday;

60

- » Two more ways for constant
define MAX_LENGTH 30

enum boolean {NO, YES} /* NO O YES 1 */

e enum months {Jan=1,Feb,MAR,APR,MAY,JUN,JUL,
AUG, SEP,0OCT,NOV,DEC}

e JAN =1, FEB is 2, MAR is 3 ...

const int MAX LENGTH = 30;
const double e = 2.71828182835905;
int strlen (const char *s) # fun will not change s

nnm;@@@
* To use a function, need two things @ .
* Declaration (prototype) lj

» Have implementation (the code)

e #finclude <math.h> # /usr/include/math.h

¢ header file contains declaration (prototype)

e gcc File.c —Im
e link math library # /usr/lib/libm.so

61

;| Roat directary

/hin idev

essential device
programs{ | files

fetc

admin
files &
programs

SPEET T
ceR B@
i

| | |
fusr Atmp /public fuser

temporary access user
files far all files
users
/hin fony
|| mare
prograrms
/dave
libm.so
/pete
o S

beatsh
string.h
stdio.h

on -- old style definition —

type fun (parml, parm2, .. parmN)

type parml
type parm2
type parmN
{ function code

}

main(argc,argv)

e
}

int argc;
char *argv[]:;

float func (a, b, ch)
Bl d e
eliay cli;
Lo
bs

float func (int a, int b, char ch){.}

explore (world, myworld, nbeacons)
Graph *world, *myworld;
int nbeacons;

RobotState state, mystate;

int beaccons [MAXBEACONS], beaconlink[MA3
int shouldvisit [MAXDEGREE]:

char buf[20]:

o=y
int dists[MRXNODES]:

62

e int arr[]; x

e intarr[] =1{1,1,2,3,3,9};

e intarr2D[][3] = {1,2,3,4,4,5}
Give some or all

* function(int [2]) the sizes !

e function(int []) x

e function (int [2][3] str)
e function (int [][3] str)

e function (int [][] str) x

f, struc -

* Array (string) can not be operated as whole. arr1 = arrzx
* Others could be copied

e E.g., structure, and pointer si=s2 p1=p2

e Copy a structure is different from Java -- a separate copy

* Beware when accessing members:

*d.width --- incorrect x
* 7 is higher precedence than *’
(*d) .width --- correct
d->width

63

' Trouble with Pointers

* Pointers (vs. arrays) and dynamic memory
management are the largest source of crashes and
errors in C programs

¢ All of the problems deal with losing track of pointers
and dynamically allocated memory

segmentation fault
core dump

127

- Be extra careful with pointers!

Common errors:
¢ Uninitialized pointers
e Overruns and underruns

e Occurs when you reference a memory beyond what you
allocated.

128

64

roblems with pointers
int *ptr; /* 1°’m a pointer to an int */

ptr= &rate; /*1 got the address of rate */
otr = 57 - contents of the pointee/

int *ptr; /* 1’m a pointer to an int */
ptr = 5; / contents of the pointee is 5*/

x e Prtis uninitialized. Has some value but don’t know
¢ Pointing to sth unknown, may be your os!

e Always make it point to sth! Ptr= & rate

129

l—- problem with pointers

char name[6];
char *name2;
int age; double wage;

printf(“input name, name2, age, wage’);
scanf(“%s %s %d %f’,name,name2,age,wage);
while(strcmp(name, “xx”))

X

segmentation fault ! Why?

+

130

65

enever you need to access its “pointee”

Ask you self: Have you done one of this
1. ptr = & var. /* direct */

e var must not be a local variable
2. ptr = ptr2 /* indirect */
3. ptr = (.)malloc(--..)

* You do need to do one of above for these
e *ptr = var

prt[2] = var

scanf(“%s”, ptr)

strcpy(ptr, “hello”)

fgets(ptr, .)

%ver to use malloc ? ;’ ;

* When you need to allocate memory in run time.

* When you need memory space thoughout the program
running

1. ptr = & var. /* direct */ x
- var is a local variable

2. ptr = ptr2 /* indirect */

e Ptr2 point to a local variable x

e varisin Stack Notin heap.

132

66

void sethArr (int):
int * arr[10]; // array of 10 int pointers

setArr2 int main{int arge, char *argv[])
{

int i:

setArr(0});
setArr(l);

for(i=0; i<2rit+t)
printf("arr [%d] = %£d\n", i, *arrl[il}): i
return 0;

}

f/* 3et arr[index], which i3 a pointer, to polnt to
vold setArr (int index) |

int 1 = 2 * index;

arr[index] = =i:

1 X

133

ck vs. heap
* Local (stack) memory, automatic

¢ Allocated on function call, and deallocated
automatically when function exits

¥ cool

* Dynamic heap memory
¢ Not deallocated when function exits!

* Request a heap memory: malloc/calloc in C, new in
Java

» free() to deallocated in C, garbage collection in Java

* The heap is an area of memory available to allocate

areas ("blocks") of memory for the program. -~

67

void Heapl() {
int* intPtr:

Local (stack Heap

)
inteer

intPtr = malloc(sizeof(int)) ;
*intPtr = 42;

Local (stack Heap
)

free (intPtr);

Local (stack Heap
)

135

void setArr (int):

setArr2 int main{int arge, char *argv[])
{
int i:
sethArre(0);
3etirr(l):

for(i=0; i<2;i++)
printf("arr [%d] = %dw.n", i,
return 0;

}

vold setArr (int index) |
int 1 = 2 * index;
arr[index] = si;

int * arr[l10]; // array of 10 int pointers

/* get arr[index], which is a pointer, to point to

iisin stack --

I x deallocated

when fun exits

68

Heap

o[]

vold sethrr (int);
int * arr[l0]; 7/ array of 10 int pointers

int main{int argc, char *argv[])}

{

int i;

sethrr (0}
sethArr(l):

for(i=0; i<53;it++)
I printf{"arr [%d] = %d\n", i, *arr[i]):
return 0;

}

/* 3et arr[index], which i3 a pointer, to point to

void sethrr (int index) |
int 1 = 2 * index;

arr[index] = (int *) malloc (3izeci({int));

* arr[index] = i:

1

137

char name[LEN];
int age;

char courl[LEN], cour2[LEN];

printf("name: "); scanf("%s'", name);
printf('age: "); scanf(""%d", &age);
printf(“course-1: "); scanf("%s", courl);
printf(“course-2: "); scanf("'%s", cour2);

record newStudent;
strcpy(newStudent.name, name);
newStudent.age = age;
strcpy(newStudent.coursel, courl);
strcpy(newStudent.course2, cour2);

database[count++] = &newStudent; x

69

char nam[LEN];
int ag;
char courl[LEN], cour2[LEN];

printf('name:); scanf('%s™, nam);
printf('age: "); scanf('%d", &ag);
printf(“course-1: '); scanf("'%s", courl);
printf(“course-2: '); scanf("'%s", cour2);

arrfcount] = (record *)malloc (sizeof(record)) ;

strcpy(arr[count] -> name, name)
arr[count] -> age = ag;
strcpy(arr[count -> coursel, courl);
strcpy(arr[count] -> course2, cour2);

void writeDisk(void){
FILE *fp; iInt i;
it ((fp=fopen(diskFile,"ab™)) == NULL){
, '‘cannot open file\n');

return;
}
for (i=0; i< SIZE ; i++){
if (database[i] "= NULL)
{ if (fwrite(database[i], sizeof(struct
people), 1, fp) 1= 1)
{ fprintf(stderr, "file write error\n');
}
}
}
fclose(fp);

}

70

C oaab K
ILE *fp; Int i;
struct inv_type * tmp;

if ((fp = fopen(diskFile,"r')) == NULL){
fprintf(stderr,"cannot open file\n'"); return; }

for (i=0; 1 < SIZE ; i++){
tmp = (struct inv_type *) malloc (sizeof(struct
inv_type));
if (fread(tmp, sizeof(struct inv_type), 1, fp) I= 1)
{
if (feof(fp))
{ fclose(fp);

return;
}
printf("'file read error\n‘);
}
else invtry[i] = tmp;
It

/O fseek, ftett;

* For binary files there is also
fseek(FILE *stream, long offset, Int origin);
* where origin is one of
e SEEK_SET (relative to beginning of file),
* SEEK_CUR (relative to current position),
e SEEK_END (relative to end of file).

e Ttell (FILE *stream)
* Tell the offset (from beginning, in byte)
e rewind(FILE *stream)
e isequivalentto fseek(f,0,SEEK SET);

142

71

g=p, char line [20];
if ((fp = fopen("lines.txt","rt'")) == NULL){
fprintf(stderr, "cannot open file™);
exit()}

fgets(line, 20, p): Each line 15 chars
fgets(line, 20, fp);
p = ftell(fp); printfd\n, p); 7/ 30

fseek(fp, 20, SEEK_CUR); :::2 :: ::22 ;
p = ftell(fp); printf(%d\n, p); // 50 this is line 3

ﬂﬁsis qne4
fastociine, 20) this s tine 6
fputs(line, stdout); // is line 4 this is line 7

ﬂﬁsis ﬁnes
fseek(fp, 0, SEEK SET); // rewind(); EHS!S rneio
p = ftell(fp); printf(%d\n, p); // 0 is is line

fgets(line, 20, fp); fputs(line, stdout); // this is line 1

fseek(fp, 15, SEEK _CUR);
fgets(line, 20, fp); fputs(line, stdout); // this is |in533
fclose(fp):

e

#include <stdio.h>

int main (int argc, char **argwv) {
FILE *file handle:;
long int file length;

file handle = fopen("file.bin","rb"):

1f (fseek(file handle, 0, SEEK END)) {
puts ("Error while seeking to end of file"):
return 1;

}

file length = ftell(file handle);

if (file length < 0) {
puts ("Error while reading file position™);
return 2;

}

printf ("File length: %d bytes\n", file length):

fclose (file handle);
return 0;

72

E_ g!t be useful in your future siuglges |

¢ Union

* Pointer to whole arrays, int (*arr) [] [][] decayed to
e int (*arr) [8]; // A pointer to an array of integers
e We have seen: int* arr[8]; // An array of int pointers.

¢ Pointer to functions void (*fptr) (int)

e System calls (fork, pipe ... read, write)
* You will see if you take CSE3221 operating systems.

e Others
e Make file
e dbg

T Unix -> System calls (ch8)

* You may never use it, but good to know
* Processes accesses kernel facilities via system calls

¢ Peripherals communicate with the kernel via hardware
interrupts

User Level

System Calls

Interrupts

Hardware Level

73

Talking to Kernel
System calls

Kernel

Hardware interrupts

T TN

Peripheral Peripheral Peripheral

ystem calls vs. library subroutines

Read data, two ways

fopen (..)

fread (...) | program code

open (...)
read (..) /

library routine

Standard IO (e.g., fopen/ fread) fread
eventually call system call (e.g.,
open/read) -
Act as an interface for system calls read
user code
Unix utilities/ shell commandcall ¢+ |
system call read
cat, Is, | kernel code

74

Your program read_dict("'words')

C Library fopen('words™,"'r')
Unix interface open(*'words" ,0_RDONLY)
kernel actual work is done here

System calls are functions under Unix which are implemented in the kernel
See section 2 of the manual pages

ygur program calls this function in C, but the kernel does the real work

'Your program

fopen, fread, fwrite, fclose,remove, fseek

C Library

nix interf : i
U terface open, read, write, close,unlink, Iseek

S Stem Ca” and more ...

kernel actual work is done here

150

% e things to gm§l

* Lab exercise for Bourne shell script posted (lab 9)
» Sample shell scripting programs

(] a3
* Give me your lab 8.
* Final exam...?

* Midterm papers
* [am still around -- email me if you need my help

IO Tt C—

e Sometimes you may have suffer, I tried my best to avoid or at
least minimize this, but

* Learning C is not an easy task, and this course has never
been an easy course.

* Hope you find the course useful

* Thank you for your supports
* And enjoy the coming spring & summer!

76

* Thank you for your supports
* And enjoy the coming spring & summer!

+ so long ...

77

