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An approach to developing and using Bayesian networks to model watershed management

decisions is presented with a case study application to phosphorus management in the East

Canyon watershed in Northern Utah, USA. The Bayesian network analysis includes a graphical

model of the key variables in the system and conditional and marginal probability distributions

derived from a variety of data and information sources. The resulting model is used to 1) estimate

the probability of meeting legal water quality requirements for phosphorus in East Canyon Creek

under several management scenarios and 2) estimate the probability of increased recreational

use of East Canyon Reservoir and subsequent revenue under these scenarios.
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INTRODUCTION

Bayesian networks

A Bayesian network (BN) is a directed acyclic graph that

graphically shows the causal structure of variables in a

problem, and uses conditional probability distributions to

define relationships between variables (see Pearl 1988, 1999;

Jensen 1996) A simple 3-node BN is shown in Figure 1

including the variables A, B and C. The graph structure

indicates that A and B are conditionally independent and

that C is conditionally dependent on both A and B. To

transform this graph into a BN, the marginal probability

distributions P(A) and P(B) as well as the conditional

probability distribution P(CjA,B) (read as “the probability of

C given A and B”) need to be estimated.

To simplify estimating and using these quantities in the

BN, the variables are discretized into distinct states

allowing one to characterize the continuous probability

distributions through a discretized conditional probability

table (CPT). Discretization of variables is not a requirement

of BNs in general (see Pearl 1988) but is a convention used

here to ease computation, elicitation of probabilities from

experts and communication of results to stakeholders. The

disadvantage of discretization is in the potential loss of

information; however, it can be particularly useful in the

case of variables with a distinct breakpoint significant to

management.

For example, if A and B are each discretized into two

states, then the BN model would require estimates of the

marginal probabilities P(A¼ a1), P(A ¼ a2), P(B ¼ b1) and

P(B ¼ b2). To complete the BN, and assuming two states for

C, then the CPT representing the following conditional

probabilities would also be required:

PðC ¼ c1jA ¼ a1;B ¼ b1Þ PðC ¼ c2jA ¼ a1;B ¼ b1Þ

PðC ¼ c1jA ¼ a1;B ¼ b2Þ PðC ¼ c2jA ¼ a1;B ¼ b2Þ

PðC ¼ c1jA ¼ a2;B ¼ b1Þ PðC ¼ c2jA ¼ a2;B ¼ b1Þ

PðC ¼ c1jA ¼ a2;B ¼ b2Þ PðC ¼ c2jA ¼ a2;B ¼ b2Þ:

Once these probabilities are estimated, then the BN is

complete and propagation of information through the BN

can be used to view how decisions and observed conditions
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(called “evidence”) at one node affect the probable

conditions at other nodes. Downward propagation of

evidence through the BN is based on the law of total

probability:

Pðc1Þ ¼ Pðc1ja1;b1Þ·Pða1;b1Þ þ Pðc1ja1;b2Þ·Pða1;b2Þ

þ Pðc1ja2;b1Þ·Pða2;b1Þ þ Pðc1ja2;b2Þ·Pða2;b2Þ:

Upward propagation of evidence through the BN is based

on Bayes’ Rule:

Pða1;b1jc1Þ ¼ Pðc1ja1;b1Þ·Pða1;b1Þ=Pðc1Þ:

Since their inception, BNs have been used extensively in

medicine and computer science (Heckerman 1997). In

recent years, BNs have been applied in environmental

management studies, including the Neuse Estuary Bayesian

ecological response network (Borsuk & Reckhow 2000),

Baltic salmon management (Varis & Kuikka 1997), climate

change impacts on Finnish watersheds (Kuikka & Varis

1997), the Interior Columbia Basin Ecosystem Management

Project (Lee & Bradshaw 1998) and waterbody eutrophica-

tion (Haas 1998). As collectively illustrated in these studies,

a BN graph structures a problem such that it is visually

interpretable by stakeholders and decision-makers while

serving as an efficient means for evaluating the probable

outcomes of management decisions on selected variables.

Constructing Bayesian networks for watershed

management

A generalized approach for developing BNs specifically for

watershed management problems is proposed, followed by

a case study implementation of the approach. Key elements

of the approach are shown in Figure 2 and are described in

greater detail as follows.

Problem definition

The watershed management problem must be formulated as

a BN graph, providing an opportunity for stakeholders and

decision-makers to produce a first-cut assessment of the

important variables, decisions, outcomes and relationships

in the problem. Variables in a BN are represented by nodes

in the graph. The three types of BN graph nodes include:

decision nodes (representing sets of distinct management

alternatives), utility nodes (representing costs and other

value measures) and state nodes (representing variables that

can exist in any of several separate states with a certain

probability). The BN graph serves as a reference for later

data analysis and information gathering used to refine the

graph structure and infer probability distributions. The

following steps are proposed for building the BN graph.

Identify management endpoints. Selection of endpoints at

the outset helps keep the BN focused only on variables

significant to the decision problem under investigation. If

this is done with the direct input of stakeholders, it has the

effect of bringing different interests together to agree on a

set of endpoints for evaluation. Additionally, geographic

locations (control points) at which the endpoints will be

evaluated must also be selected.

A B

C

Figure 1 | Simple 3-node BN showing conditional dependence of C on A and B. A and

B are conditionally independent.

Problem Definition

1. Identify management endpoints 
2. Identify management alternatives
3. Identify critical intermediate and

exogenous variables 
4. Establish discretization states for

variables 
5. Plan for use of probabilistic results

Model Inference

1. Observed data
2. Dynamic simulation model
3. Expert elicitation
4. Stakeholder surveys
5. Uninformed equal odds

Model Validation

1. Independent information
2. Sensitivity analysis
3. Adaptive management

Figure 2 | Generalized approach to developing a BDN for watershed management

decision problems.
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Identify management alternatives. Decision alternatives

may include, but are not limited to, long-term planning

options as well as day-to-day management activities. A

separate decision node is added to the BN graph for each

set of mutually exclusive alternatives.

Identify critical intermediate and exogenous variables. A

minimum number of intermediate state nodes should be

selected to define the relationship between management

options and endpoints while capturing all variables that

decision-makers and stakeholders consider important. In a

group setting, this process can iterate until all parties

involved agree on a single BN graph structure. Exogenous

variables that drive the system, but are not managed (e.g.

precipitation), are also identified at this stage.

Establish discretization states for variables. Terciles or

quartiles of the data can be convenient discretization states

when all that is needed is a distinction between “high”,

“medium” and “low.” Alternatively, it may be more mean-

ingful to stakeholders and decision-makers if the discretiza-

tion is based on values critical to the management problem.

For example, a stream segment might have a cold water

fishery beneficial use criterion of 228C and a salmonid

spawning beneficial use criterion of 158C, making these

useful breakpoints for three states of temperature. Likewise,

a low 7-day average streamflow with a 10-year return period

(7Q10) can be a meaningful breakpoint for streamflow.

Identify data sources. It is important to identify data

sources at the outset to ensure that all available and relevant

information is used in the BN model. This activity may help

one to refine the BN model by eliminating graph nodes

where no information is available and adding nodes where

information is available. This activity will also help identify

data gaps where expert judgment may be needed to

characterize the relationship between variables.

Plan for use of probabilistic results. For some environ-

mental problems, results may be required or expected to be

“true” or “false” (e.g. “the lake is impaired”). However, by

definition, results from a BN analysis are probabilistic (e.g.

“there is a high probability that the lake is impaired”).

Because of this, it is important to establish early on how

probabilistic results will be used to address the problem. For

example, the plan may be to convert probabilistic results

into binary results using some threshold (e.g. if the

probability of impairment is over 70% then the lake is

reported as impaired). It is also useful to report results in

terms of risk (e.g. “under management scenario one, there is

a 20% chance that the temperature requirement for

salmonid spawning will be exceeded”). Presenting results

in this way shifts the burden of assessing risk acceptability

from technical analysts to regulators and policy personnel.

Model inference

CPTs that define the probabilistic relationship between

variables in the BN can be inferred from a variety of

information sources, including observed data, model simu-

lation results and expert judgment. Additionally, economic

analyses, stakeholder surveys or expert judgment can be

used to estimate cost–benefit utility functions and CPTs

where hard data is not available.

Observed data. Observed data can include water quality

or streamflow monitoring data, ecological measures, sedi-

ment loads, riparian vegetation, recreational use records

and other relevant information. Cheng et al. (1997) present

an algorithm for inferring both the BN graph structure and

CPTs from observed data. When the BN graph structure is

known, the following steps can be used to infer CPTs from

data:

(1) Simultaneous observations of each variable are tabu-

lated and sorted by parent variable.

(2) Observations are converted into categories (High,

Medium, Low or True, False, etc) based on the node

discretization defined previously.

(3) For every combination of states of the parent nodes,

the number of occurrences of states of the child is

counted.

(4) Probabilities are calculated as the number of occur-

rences of a child state divided by the total number of

observations for that combination of parent states.

Dynamic simulation model. A dynamic simulation model

can also be used to estimate BN CPTs (for example, see

Borsuk & Reckhow 2000). This is particularly useful in
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cases where there is little or no observed data available to

characterize a particular relationship in the BN. In this way,

model results are integrated in a single BN with data and

expert judgment used to characterize other relationships.

The following steps are used to estimate a CPT using a

dynamic simulation model.

(1) Construct and calibrate the simulation model.

(2) Identify model input variables corresponding to parent

nodes in the BN and model output variables corre-

sponding to child nodes in the BN.

(3) Run the model using an uncertainty analysis technique

such as Monte Carlo simulation, varying the selected

input variables and calibration parameters about an

appropriate distribution.

(4) Tabulate simulation output with corresponding sets of

input variable conditions.

(5) Discretize the input and output data, tabulate the

results and use them to generate a conditional

probability table using the same method described

for observed data.

There are several important issues to consider when using a

model to generate simulations for use in a CPT. Uncertainty

associated with the formulation of the model will not be

explicitly accounted for in the BN. Results generated by the

model for conditions outside of the model calibration and

validation data range will add to unreliability in the BN.

Often, large amounts of data are necessary to accurately

calibrate a deterministic model. In this case, it may be more

appropriate to generate probability distributions directly

from the data, rather than to use a simulation model.

Other sources of information. In cases where data are

sparse and no appropriate models are available, CPTs can

be inferred from information obtained from experts and

stakeholders. For example, expert judgment may be needed

to estimate the probability of increased recreational use of a

stream reach given improved fish habitat or the probability

of degradation of surrounding areas given increased

recreation. See Cooke (1991) and Meyer & Booker (1991)

for methodologies for eliciting probabilistic information

from individuals. When no expert judgment is available

for the needed CPT then equal odds are used ðe:g:

P(a1jB) ¼ 0.50, P(a2jB) ¼ 0.50).

Depending on its number of nodes, a single BN may

require estimates of several CPTs. Each of these may be

derived using any one of the approaches presented here. For

example, in a dam management BN, a CPT for streamflow

given different dam release plans could be estimated from

observed data; a CPT for flooding given different states of

streamflow might be derived from a flooding model; and a

CPT for economic impact given flooding might be estimated

through expert judgment. In this way a BN provides a

framework for integrating all relevant variables in the

system using the best available information for each inter-

variable relationship.

Model validation

A completed BN should be validated using independent

information when available. However, this can be a

challenge when the BN CPTs were derived from sources

other than observed data or when no new data becomes

available for assessing the BN model. Marcot et al. (2001)

created BNs using expert judgment and validated the BN

models using independent assessment of probability distri-

butions by third-party experts. In some cases, the best or

only available validation option may be to make decisions

in the watershed and compare the results to those predicted

by the BN model. This would be a suitable approach in

cases where adaptive management is prescribed. At a

minimum, a sensitivity analysis that considers the uncer-

tainties in the BN model should be conducted.

This generic approach to developing and using a BN for

watershed management should be applicable to a variety of

problem types such as total maximum daily load (TMDL)

implementation, integrated watershed planning and man-

agement, pollutant trading and assessing the impact of river

management on endangered species. In the remainder of

this paper, a case study on the application of the approach is

presented with a BN analysis and results.

EAST CANYON RESERVOIR CASE STUDY

Case study overview

East Canyon Reservoir (ECR) in northern Utah, USA has

experienced a dramatic decrease in recreational use over

270 D. P. Ames et al. | Bayesian network modeling of watershed management decisions Journal of Hydroinformatics | 07.4 | 2005



the past several years due to reductions in fish populations.

The State of Utah Department of Environmental Quality

(DEQ) has identified one of the causes of this problem as

excess phosphorus entering the reservoir through East

Canyon Creek, resulting in increased algal growth and

subsequent eutrophication (low levels of dissolved oxygen)

(Judd 1999). Phosphorus concentrations in East Canyon

Creek have been determined to be in violation of the legal

limit streams, placing this water body on the state’s list of

impaired waters (Utah DEQ 1998). The challenge faced by

DEQ is to identify sources of phosphorus in East Canyon

Creek and select management alternatives to control these

sources in an economical manner.

Figure 3 shows the East Canyon drainage, dominated by

East Canyon Creek which flows north approximately 26 km

(16 miles) from Kimball Junction into ECR. ECR is the sink

for surface and ground water flows from Park City, Kimball

Junction, Jeremy Ranch and rural areas in the Wasatch

Mountains, east of Salt Lake City and Bountiful, UT, USA.

The Snyderville Basin wastewater treatment plant (WWTP)

is the only major phosphorus point source in the drainage.

ECR hosts a state park and has historically supported a

high quality cold water fishery. In recent years water quality

and fish habitat in ECR has deteriorated and recreational

visitation has decreased from 300000 visitor-days/yr to

about 80 000 visitor-days/yr.

Analysis of WWTP releases and streamflow data reveal

that, during late summer, the WWTP contributes a large

percentage (as high as 80%) of the flow in the creek. Also, the

WWTP is the only major phosphorus point source. At the

time of this study, the Utah Department of Environmental

Quality was exploring new limits on phosphorus loadings

from the WWTP. The available physical and chemical

phosphorus removal technologies that would have to be

implemented to attain these limits are very costly. As a result,

the superintendents of the WWTP have challenged the State

of Utah’s position that restricting phosphorus in the plant’s

effluent will improve conditions in the stream and reservoir.

In addition to the WWTP, phosphorus also enters East

Canyon Creek from non-point sources in the watershed

headwaters. For the purpose of this case study, headwaters

are considered to be in the Kimball Junction area near the

intersection of the highways Interstate 80 and Utah 65.

Non-point sources of phosphorus in the drainage include

septic systems, grazing lands, camp grounds, golf courses,

residential development and recreational reservoir use.

Salt Lake City #

Utah

#

# ParkCity

$

East Canyon Reservoir

Snyderville Basin WWTP

Kimball Junction

East Canyon Creek

#  Jeremy Ranch

Figure 3 | East Canyon Creek watershed in northern Utah.

271 D. P. Ames et al. | Bayesian network modeling of watershed management decisions Journal of Hydroinformatics | 07.4 | 2005



ECR BN MODEL DEVELOPMENT

Problem definition

Identify management endpoints

The goals of the management of point and non-point source

phosphorus are: 1) decrease the risk of not meeting the

legally required phosphorus limit in East Canyon Creek and

2) increase the probability of improved recreational use and

revenue at ECR State Park. BN nodes associated with these

management endpoints are shown in Figure 4 as REV_RS

(revenue generated at the reservoir) and PH_ST (phos-

phorus concentrations in East Canyon Creek).

Identify management alternatives

The number of potentially acceptable and viable manage-

ment options that can be implemented in the ECR

watershed is limited. Specific management options defined

by the DEQ for management of phosphorus in ECR

include: 1) increase the level of treatment at the WWTP

and 2) reduce non-point source loading in the watershed

headwaters. BN nodes associated with these management

alternatives are shown in Figure 4 as OP_TP (management

options at the WWTP) and OP_HW (management options

in the watershed headwaters).

The WWTP has been operating with biological treat-

ment since 1992. This has resulted in a marked reduction in

phosphorus concentrations in the WWTP effluent. In

Table 1, OP_TP Alternative B (“Status quo”) represents

current conditions. Conditions at the WWTP prior to the

use of biological treatment of wastes are represented by

OP_TP Alternative A (“No bio. treatment”). Alternatives C

and D represent two specific treatment technologies that

can be installed at the WWTP. The first (Alternative C) is

targeted to reduce effluent phosphorus to 0.10mg/L and the

second (Alternative D) is targeted to reduce effluent

phosphorus to 0.05mg/L. Management alternatives in the

watershed headwaters (OP_HW) include “Status quo”

(Alternative A) and “Reduce non-point” (Alternative B).

Identify critical intermediate and exogenous variables

Table 2 shows a list of all of the key variables for this

study with a brief description and the variable type. The

BN graph in Figure 4 shows the interactions between

these variables grouped by geographic location and

variable type. The only exogenous variable, season

(SEAS), is the primary driver for headwater streamflow

(FL_HW) and WWTP effluent flow (FL_TP). These

variables are also directly impacted by the management

alternatives at the WWTP (OP_TP) and in the headwaters

(OP_HW). The costs associated with the management

alternatives are shown as outcomes of the management

alternative nodes (CO_TP and CO_HW). Phosphorus

concentrations at the WWTP (PH_TP) and phosphorus

CO_TP

OP_TP

CO_HWFL_TP

PH_HW

FL_HW

PH_TP

SEAS

VIS_RS

REV_RS

OP_HW

PH_ST

WWTP variables
Exogenous variable

Headwater variables

Control point
(at reservoir inlet)

Reservoir variables

Figure 4 | East Canyon Creek BDN for phosphorus management.
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concentrations in the headwaters (PH_HW) are both

dependent on the selected management alternatives. The

critical endpoint variables are East Canyon Creek phos-

phorus concentration at the ECR inlet (PH_ST) and

revenue to the state and local community as a result of

recreational reservoir use (REV_RS).

Establish discretization states for variables

The variables in the ECR BN were discretized into specific

states including “High” and “Low” for streamflow variables;

“High”, “Medium” and “Low” for headwater phosphorus

concentration; five distinct states for WWTP phosphorus

concentration; three states for East Canyon Creek phos-

phorus concentration and three states for the variable

VIS_RS (visits to the state park at ECR). The specific states

selected for each variable are described in a later section on

model inference.

Identify data sources

Several data and information sources were identified to

populate the probability distributions for the ECR BN.

These include streamflow and WWTP effluent records,

in-stream phosphorus concentration observations and

information regarding recreational use of ECR. An existing

Table 1 | Options and costs associated with phosphorus management in the ECR BN

Decision variable Alternative A Alternative B Alternative C Alternative D

WWTP options
(OP-TP)

No bio. Treatment $0 Status quo $0 Target ,0.10 mg/L
$5000,000

Target ,0.05mg/L
$10,000,000

Headwater options
(OP-HW)

Status quo $0 Implement BMPs
$2000,000

N/A N/A

Table 2 | Critical variables for phosphorus management in the ECR BN

Variable name Description Type

OP_TP Available management options at the WWTP Decision

OP_HW Available management alternatives in the headwaters Decision

SEAS Exogenous forcing variable related to climate conditions Exogenous

PH_ST ECR inlet phosphorus concentration State

PH_TP WWTP phosphorus concentration State

PH_HW Headwater phosphorus concentration State

FL_TP WWTP streamflow State

FL_HW Headwater streamflow State

VIS_RS Reservoir visitor-days State

REV_RS Revenue to the state and local community from recreational reservoir use Utility

CO_TP Cost to the WWTP anticipated under various management options Utility

CO_HW Cost for reduction of phosphorus concentration in the headwaters through the
implementation of specific best management practices (BMPs)

Utility
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water quality simulation model developed by Stevens (2000)

using QUAL2E (Brown & Barnwell 1987) was also

identified.

Plan for the use of probabilistic results

A key management endpoint in this study is PH_ST, in-

stream phosphorus concentrations at the inlet to ECR. As

noted previously, the State of Utah has established a legal

in-stream phosphorus concentration criterion at 0.05mg/L.

The language that defines this limit does not allow for

violations, even very low frequency violations. Rather, it

would suggest that a stream is only satisfactory if it has a 0%

chance of violation. However, as the results of this case

study show, there is no set of management alternatives that

reduces the probability of violation to 0. Therefore it was

decided to present results in terms of the probability of

exceedance of the limit, allowing DEQ to interpret this

according to their needs.

Model inference

Cost of management options

Costs associated with management of the WWTP (CO_TP)

are dependent on WWTP management (OP_TP) and costs

associated with headwater management (CO_HW) are

dependent on headwater management (OP_HW). In the

BN model, these costs are stored in a “utility table”. A utility

table shows the utility (cost, benefit or other measure) of

every combination of states of its parent node. Table 1

shows the utility tables for both decision nodes.

The estimated cost of upgrading the WWTP to target

0.10mg/L and 0.05mg/L phosphorus is $5 million and $10

million, respectively. These values were obtained from the

WWTP superintendent based on the current market cost of

each treatment alternative. Non-point source reduction in

the headwaters of the East Canyon drainage will include a

significant amount of riparian restoration, estimated by

DEQ to cost approximately $2 million.

Streamflow

Assuming that flows from the WWTP are independent of

the type of treatment used and that headwater streamflow is

independent of non-point source management, the flow

variables, FL_TP and FL_HW can be defined as only

dependent on season (SEAS). These relationships require

estimates of two CPTs, P(FL_TPjSEAS) and

P(FL_HWjSEAS).

Daily records of flow releases from the Snyderville

Basin WWTP between May 1992 and September 1996

(1614 records) were used to estimate P(FL_TPjSEAS). The

data range from 0.031m3/s to 0.158m3/s with a median of

0.059m3/s, as shown in Figure 5. The data were categorized

as “High” and “Low” using the median as a breakpoint so

that an equal number of observations occur in each

category. A CPT for P(FL_TPjSEAS) was computed using

these states and is shown in Table 3.

Headwater streamflow (FL_HW) was defined as

streamflow immediately above the WWTP. Daily stream-

flow values at this location were estimated by subtracting

daily WWTP flows from data collected at the USGS Big

Bear Hollow gage station immediately downstream of the

WWTP. The resulting estimated streamflow ranges from

near zero to over 14m3/s. These data were categorized as

“High” or “Low” using the 10th percentile value (0.15m3/s)

as a breakpoint to accentuate the low flow conditions, when

the streamflow is dominated by WWTP inputs. The

resulting seasonal CPT (Table 4) highlights the fact that

the lowest streamflow in East Canyon Creek occurs in

summer. This suggests that there is most likely to be a

negative impact from undiluted WWTP phosphorus loads

during the summer months.

WWTP phosphorus

WWTP effluent phosphorus concentration, PH_TP, is

dependent on WWTP operation, OP_TP. Eight years of

phosphorus concentration data at the WWTP (see Figure 6)

were used to derive a CPT for P(PH_TPjOP_TP) under each

management alternative (see Table 5). Conditional prob-

abilities for the management alternatives, “No bio. treat-

ment” and “Status quo,” were estimated from historical

records of effluent total phosphorus concentrations from

the WWTP. Probabilities for P(PH_TPjOP_TP ¼ “No bio.

treatment”) were derived from 75 observations taken

between February 1991 and July 1996. In August 1996,

biological phosphorus removal was implemented at the
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WWTP. This condition is representative of the “Status quo”

alternative. Probabilities for P(PH_TPjOP_TP ¼ “Status

quo”) were derived from 45 observations of PH_TP taken

between August 1996 and December 1998.

Conditional probability distributions for alternatives C

and D were challenging to estimate because there is no prior

experience at the Synderville BasinWWTPwith either of the

proposed technologies. At the present time, only a few

wastewater treatment plants have implemented physical and

chemical treatment technologies with an endpoint of 0.10 or

0.05mg/L total phosphorus. Probability distributions for

these alternatives were inferred from phosphorus effluent

records from two similar WWTPs. These facilities both have

treatment technologies installed with target phosphorus

concentrations of 0.07mg/L. Approximately 2200 obser-

vations taken at these facilities from1990 to 1999were scaled

by 0.10/0.07 and 0.05/0.07 to represent likely effluent

concentrations under alternatives C and D, respectively.

These estimated datasets were then used to derive probability

distributions for P(PH_TPjOP_TP ¼ “Target ,0.10 mg/L”)

and P(PH_TPjOP_TP ¼ “Target ,0.05 mg/L”).

Headwater phosphorus

Headwater phosphorus concentration is conditioned on the

selected headwater management alternative. Figure 7 shows

phosphorus concentrations in the East Canyon Creek

headwaters for 1979–1999. These data were used together

with projections of reductions due to non-point source

management to estimate a CPT for P(PH_HWjOP_HW). A

50% reduction in phosphorus concentrations was assumed

under the non-point source management alternative using

an estimate provided by DEQ.

Historical headwater phosphorus concentrations above

the WWTP vary between 0.005mg/L and 0.530mg/L. The

distribution of these data is shown in Table 6. Under status

quo conditions, 35% of headwater concentrations were

,0.05mg/L. This suggests the probability that the legal

Table 3 | CPT for P(FL_TPjSEAS)

WWTP flow (FL_TP)

Simulation season (SEAS) High Low

Winter 69% 31%

Spring 79% 21%

Summer 34% 66%

Autumn 18% 82%

Table 4 | CPT for P(FL_HWjSEAS)

Headwater flow (FL_HW)

Simulation season (SEAS) High Low

Winter 95% 5%

Spring 97% 3%

Summer 80% 20%

Autumn 91% 9%

Figure 5 | WWTP effluent flow rate.
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limit for phosphorus is being violated 65% of the time, even

without WWTP contributions.

East Canyon Creek phosphorus concentration

Phosphorus concentration in East Canyon Creek at the

inlet to ECR (PH_ST) is a function of the flow variables

(FL_TP, FL_HW) and the phosphorus concentration

variables (PH_ST, PH_TP). The conditional probability

distribution required here is P(PH_STjPH_TP, PH_HW,

FL_TP, FL_HW). A deterministic simulation model

(QUAL2E) was used to estimate this CPT. QUAL2E was

chosen because of its well-established uncertainty analysis

module, QUAL2E-UNCAS, and because a model of the

East Canyon Creek drainage using QUAL2E had already

been developed by Stevens (2000) and was readily available

to be used. This fits well with the proposed BN analysis

scenario where all readily available data and information

sources are used to develop and populate the BN.

The East Canyon Creek QUAL2E model was used to

generate 16 000 Monte Carlo simulations. In these simu-

lations, each of the four input variables (PH_TP, PH_HW,

FL_TP, FL_HW) were varied over the full range of observed

and expected values. A subset of model parameters were also

allowed to vary within their specific acceptable ranges, as

documented in Brown & Barnwell (1987). After each model

simulation, the value of the four input variables and the

resulting in-stream phosphorus concentration was recorded.

Table 5 | CPT for P(PH_TPjOP_TP)

WWTP effluent phosphorus (mg/L) (PH_TP)

WWTP management (OP_TP) <0.05 0.05–0.10 0.10–1.00 1.00–2.00 >2.00

A. No bio. treatment 0% 0% 0% 20% 80%

B. Status quo 0.1%p 1%p 46% 39% 13%

C. Target ,0.10mg/L 34% 42% 22% 1%p 0.1%p

D. Target ,0.05mg/L 77% 15% 7% 1%p 0.1%p

pAlthough these small percentages were not observed in the raw data they were included as allowance for potential plant upsets.
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Figure 6 | WWTP effluent phosphorus concentration.
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This resulted in a data set with 16000 simultaneous

observations from which the required CPT was inferred

using the approach outlined previously in this paper.

The CPT for P(PH_STjPH_TP, PH_HW, FL_TP,

FL_HW) is a 60 £ 3 table, giving the probability distribution

across three states of PH_ST, “Low”, “Medium” and “High”,

for all 60 possible combinations of the four predictor

variables (e.g. “Low, Low, Low, Low”, “Low, Low, Low,

Medium”, etc). In Table 7, a portion of this CPT is shownwith

predictor states indicated numerically. For example, “Low,

Low, Low, Low” is indicated as “1,1,1,1” and “Low, Low,

Low, Medium” is indicated as “1,1,1,2”, etc.

Close examination of these conditional probability

distributions shows consistency with what one might expect

from the physical system. For example, during low-flow

periods, streamflow is dominated by effluent releases from

theWWTP.However, in high runoff periods, headwater flow

dominates. In both cases, it is clear that streamflow directly

impacts phosphorus concentration, andWWTP phosphorus

discharge and headwater phosphorus concentration

also directly impact the downstream phosphorus

concentration.

Recreation endpoints

Additional management endpoints include visitor-days

(VIS_RS) and recreational reservoir use revenue

(REV_RS), requiring estimates of the conditional prob-

ability distribution, P(VIS_RSjPH_ST) and the utility func-

tion, REV_RS ¼ U(VIS_RS). The challenge in deriving these

probabilistic relationships is lack of data.

The Utah State Division of Parks and Recreation (DPR)

was consulted to estimate P(VIS_RSjPH_ST). In the past

decade, the number of visitors to the state park has declined

from approximately 300 000 visitor-days/yr to less than

80000, coinciding with a decline in the reservoir fishery

(Judd, 1999). DPR has assumed that, if the eutrophication

problem were solved, the number of visits to the state park

facilities at ECRwould return to the previous level.However,

there is some uncertainty regarding this because of the

concept of “recreational replacement”. That is, people who

stop using a park or facility tend to replace it with a different

one, reducing the likelihood that they will return to the

original when it is improved. A CPT for P(VIS_RSjPH_ST)

was inferred from this anecdotal information and is shown in

Table 6 | CPT for P(PH_HWjOP_HW)

Headwater total phosphorus (mg/L) (PH_HW)

Headwater BMP

(OP_HW) Low (<0.05)

Medium

(0.05–0.10)

High

(0.10–1.00)

Status quo 35% 34% 31%

BMP implementation 60% 24% 16%

Figure 7 | Phosphorus concentrations in ECC above WWTP.
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Table 8. The expected revenue from recreational use of ECR

(REV_RS) is shown in Table 9 with values derived from a

visitorship study in ECR conducted byGlover (2000).

Model validation

The BN analysis software package Netica (Norsys, 1998)

was used to construct the ECR BN and conduct two types of

sensitivity analyses. These analyses included the sensitivity

of select variables to observations or findings at other

variables and the sensitivity of select variables to changes in

key probability distributions.

Netica provides a built-in function for the first analysis,

allowing one to select an “inquiry” variable and several

“test” variables. The function cycles through the nodes in

the BN and systematically enters evidence or findings to

simulate observing each state of each test variable. When a

new set of observations is simulated, the resulting prob-

ability distribution for the states of the inquiry variable is

recorded. Finally a single mutual information (MI) statistic

is computed, indicating the variance in the inquiry variable

that is explained by changes in the test variables (described

in Norsys (1998)).

This analysis was used to identify those variables in the

ECR BN that have the greatest effect on critical

management endpoints. Specifically, PH_ST (phosphorus

concentration at the reservoir inlet)was selected as the inquiry

variable and all other upstream nodes in the network were

selected as test variables. The analysis ranked the test variables

in order of their influence on PH_ST from high to low as

follows: PH_TP (MI ¼ 0.447), OP_TP, PH_HW, FL_TP,

SEAS, OP_HW and FL_HW (MI ¼ 0.004).

These results suggest that in-stream phosphorus concen-

tration is most sensitive toWWTP loadings andmanagement

options, while headwater streamflow and management

options have the least impact. This is consistent with what

one would expect in a point source dominated system and

provides a first-cut assessment ofwhichmanagement options

will have the greatest impact on management endpoints.

Specifically, the assumption that headwater management

would reducephosphorus concentrationby50%was a liberal

assumption based on a best guess fromDEQ. The experience

of the authors suggests that it is more likely that implemen-

tation of phosphorus management plans in the headwaters

Table 7 | Partial CPT for P(PH_STjPH_TP, PH_HW, FL_TP, FL_HW)

PH_HW PH_TP FL_HW FL_TP

In-stream phosphorus

concentration (mg/L)

<0.05 0.05–0.10 0.10–1.00

… … … … … … …

1 2 2 2 100% 0% 0%

1 3 1 1 91% 9% 0%

1 3 1 2 46% 35% 19%

1 3 2 1 95% 5% 0%

1 3 2 2 57% 31% 12%

1 4 1 1 30% 38% 33%

1 4 1 2 0% 0% 100%

… … … … … … …

3 2 1 1 82% 9% 9%

3 2 1 2 73% 27% 0%

3 2 2 1 8% 53% 39%

3 2 2 2 7% 40% 53%

3 3 1 1 45% 33% 22%

3 3 1 2 16% 43% 41%

3 3 2 1 9% 47% 43%

3 3 2 2 2% 32% 66%

3 4 1 1 0% 43% 57%

3 4 1 2 0% 0% 100%

3 4 2 1 0% 18% 82%

3 4 2 2 0% 0% 100%

3 5 1 1 0% 0% 100%

3 5 1 2 0% 0% 100%

3 5 2 1 0% 3% 97%

3 5 2 2 0% 0% 100%
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will yield somewhat less reduction in headwater concen-

trations. This being the case, and given that the management

endpoint variable is not sensitive, even at the 50% reduction

level, the analysis yields an argument for not investing further

resources in considering headwater phosphorus manage-

ment plans.

The second type of sensitivity analysis, investigating the

impact of CPT estimates on management endpoints, focused

on the CPT for PH_ST. This CPT is a central feature of the

ECR BN and is singularly responsible for the high degree of

sensitivity ofPH_ST toPH_TP. The simulationmodel used to

derive P(PH_STjPH_TP, PH_HW, FL_TP, FL_HW) was

calibrated and validated against water quality observations

as described in Stevens (2000). Hence, one can assume that

the resulting CPT is equally valid. However, it is useful to

observe how sensitivity to variables changes given different

estimates of this critical CPT.

Initially the CPT for PH_ST was “faded” using the

Netica software. The fading function has the effect of

moving the conditional probabilities for all states towards a

uniform distribution. A 25% fading was applied to the

PH_ST CPT and the sensitivity to findings analysis was

repeated. This produced the same ordering of test variables

as resulted from the original PH_ST CPT; however, the MI

statistic for PH_TP dropped from 0.447 to 0.109. Similarly,

when the PH_ST CPT was faded by 50% and 75%, the same

ordering of test influence variables occurred with PH_TP

MI values of 0.028 and 0.005, respectively.

For comparison, two additional formulations of the

PH_ST CPT were tested including several random CPTs and

a uniform CPT. In each case the new CPT was entered

(replacing the original PH_ST CPT) and the sensitivity to

finding analysis was repeated. As expected, the rankings of

test variables using the random CPTs varied significantly

between randomizations, and when a uniform distribution

was used, the MI for each test variable was computed as 0

(i.e. no variable influenced PH_ST).

RESULTS AND DISCUSSION

Figure 8 shows the probabilities of states of all nodes in the

network under status quo management and summer season

conditions. This scenario results in a net benefit of $0.619

million/yr and has only a 28% chance of meeting the legally

required in-stream phosphorus concentration. Under these

conditions there is a 70% chance of continued low numbers

of visitors at the state park. In this section, different

combinations of management options and seasonal con-

ditions were selected and the resulting probability distri-

butions and costs and benefits were computed by the Netica

software and compared to arrive at a final management

recommendation.

Cost of management options

The total benefit of each management scenario was

calculated as REV_RS - CO_TP - CO_HW. A summary of

total benefit under each management scenario is shown in

Figure 9. The value of REV_RS is also shown separately in

Table 8 | CPT for P(VIS_RSjPH_ST)

In-stream phosphorus concentration (PH_ST) Park visits (visitor-days) (VIS_RS)

<80,000 80,000–168,000 168,000–300,000

,0.05mg/L 34% 56% 10%

0.05–0.10mg/L 60% 25% 5%

.0.10mg/L 97% 3% 0%

Table 9 | Utility table for the expected revenue for each possible state of VIS_RS

Park visits (visitor-days) (VIS_RS)

<80,000 80,000–168,000 168,000–300,000

Expected revenue $0 $1685,000 $4211,000
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this figure under each management scenario. The total

benefit is negative in scenarios 7 and 8 because of the large

costs associated with the management alternative,

OP_TP ¼ 4 (targeting 0.05mg/L effluent phosphorus). In

the case of scenario 6, expected recreational use benefit is

nearly equal to the cost of implementing the management

decisions, so the expected total benefit is approximately 0.

From a cost/benefit analysis point of view the most

appealing option is Scenario 3, status quo in both the

headwaters and at the WWTP. This scenario results in an

expected total benefit of $0.55 million/yr although it does

not improve water quality or the recreational use of ECR.

In this case study, legal and political issues associated

with degradation of ECR are motivating the decision

analysis more than economics. If not, then the decision to

maintain status quo at both the WWTP and headwaters

would be chosen. However, given the other motivating

factors, decisions in this system must be based substantially

Figure 8 | Full ECC BDN showing probability distributions for status quo summer conditions.
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on the success associated with meeting water quality and

recreational use goals stated as the primary management

endpoints in the watershed.

Recreational reservoir use and phosphorus

concentrations

A key endpoint goal of the analysis was to increase the

probability of improved recreational use and revenue at ECR

state park. Variables in the BN associated with this outcome

are VIS_RS (visitor-days to the state park) and REV_RS

(revenue realized at the state park). The probability of

maintained or increased visitation at ECR (VIS_RS) under

all combinations of management alternatives is shown in

Figure 10, together with the risk of violating the legal limit for

phosphorus. Considering these two endpoints, the optimal

management scenario is scenario 8, non-point source

reduction in the headwaters and improvement of the

WWTPto target 0.05mg/Lphosphorus effluent.With respect

to the visitation at the state park, the probability of same or

improved conditions only increases from 57% to 58% by

implementing the more stringent controls at the WWTP

(scenario 8 versus scenario 6). This increase of 1%probability

of improvement does not justify the significant increase in

total cost of the scenario. Additionally, the increased revenue

from recreational use of the reservoir under scenario 8 is only

slightly better than under scenario 6.

From the point of view of recreational users of the state

park there is not a clear need to choose scenario 8 over

scenario 6. However, in the full decision-making context,

and in light of the costs associated with scenario 8, it is

important to consider the increase in probable benefit

compared to the cost. While the cost–benefit analysis of

scenario 6 shows nearly break-even conditions, scenario 8

is expected to have a net cost of over $1 million/yr.

Therefore, from a recreational use point of view, the best

choice would be scenario 6.

CONCLUSIONS

The Bayesian network analysis approach and case study

presented here outline and illustrate a means for modeling

complex watershed management decisions. The results of

the case study show a clear choice of management

alternatives that increase the probability of improved
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recreational use at ECR while reducing East Canyon Creek

phosphorus concentrations at nearly no net cost. The

recommended scenario uses a combination of improved

headwater management practices and reduction in WWTP

phosphorus concentrations through implementation of new

technology that targets 0.10mg/L. Together, this combi-

nation of management activities reduces the risk of

exceeding the legal limit for phosphorus concentrations to

21%, and raises the probability of same or improved

recreational use to 57% with an expected total benefit of

$0.006 million/yr.

The BN framework serves as a structured means for

capturing the probability that management activities will

have the desired effect based on all of the available data and

information relevant to the problem at hand. Deficiencies in

the case study presented here are primarily associated with

the lack of independent data to validate the model. In an

adaptive management setting, one might collect additional

streamflow, phosphorus concentration, recreation and

revenue data and use it to further improve the CPTs used

in the BN model. However, the ability to conduct a

meaningful analysis in the absence of large quantities of

data—even based in part on expert judgment—is a clear

strength of the approach.
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