Unit 6: Reactions and Stoichiometry
 (Link to Prentice Hall Text: Chapters 7, 8 \& 9)

Name:

Date Due	Assignments	Page Number: Problem Numbers
	Assignment 1: Interpreting Equations and Balancing	$232: 32,39$
	Assignment 2: Predicting Reaction Products, Net Ionic Equations	$232: 47,48,50,51,52$
	Assignment 3: Mole/Number Conversions	$198: 47,48,49$
	Assignment 4: Mole/Mass Conversions	$198: 51,55 \mathrm{abc}, 56 \mathrm{abc}$
	Assignment 6: Percent Composition	$198: 57,58,59$
	Assignment 7: Empirical Formula/Molecular Formula	$198: 61,62$
	Assignment 8: Stoichiometry/Limiting Reactant/Percent Yield	$262: 39,44,45,46,47,54$

A. Representing Change with Equations

Parts of a Chemical Equation

glycerin

$1 \mathrm{Al}(\mathrm{s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
 $\rightarrow \quad \mathrm{Al}_{2} \mathrm{O}_{3}(\ell)+2 \mathrm{Fe}(\ell)+$ Heat

Common Notation Used in Equations:
(S) - _chemical is a solid
($\ell)$ - \qquad
(g). _chemical is a gas
(aq) - _ chemical is part of a solution with water

Heat May Be a Product or a Reactant

When heat is a reactant, the reaction is said to be \qquad endothermic (heat is added) .

When heat is a product, the reaction is said to be \qquad exothermic (heat is escaping) .

B. Balancing Chemical Reactions

Rules for Balancing Equations

\checkmark Never change the formula (subscripts can't change).
\checkmark Only change the coefficients!
\checkmark The coefficients should be in the simplest whole number ratio.
\checkmark If there is no coefficient written, a coefficient of on is assumed

Tips for Balancing Equations

Balance all other atoms then balance oxygen and lastly hydrogen
If you can treat polyatomic ions as if they were atoms.
Use a pencil! It is okay to make mistakes.

Equation Balancing Practice: The Applied Law of Conservation of Matter

1. ${ }^{2} \mathrm{H}_{2}+\sqrt{\square} \mathrm{O}_{2} \rightarrow \square \mathrm{H}_{2} \mathrm{O}$
2. ${ }^{3} \mathrm{H}_{2}+\square \mathrm{N}_{2} \rightarrow \sqrt{2} \mathrm{NH}_{3}$
3. $\sqrt{2} \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow \sqrt{4} \mathrm{Al}+\sqrt{3} \mathrm{O}_{2}$
4. $\sqrt{2} \mathrm{KClO}_{3} \rightarrow \sqrt{2} \mathrm{KCl}+\sqrt{3} \mathrm{O}_{2}$
5. $\square \mathrm{S}_{8}+\sqrt{8} \mathrm{O}_{2} \rightarrow \sqrt{8} \mathrm{SO}_{2}$

6. $\sqrt{2} \mathrm{C}_{2} \mathrm{H}_{6}+\sqrt{7} \mathrm{O}_{2} \rightarrow \sqrt{4} \mathrm{CO}_{2}+\sqrt{6} \mathrm{H}_{2} \mathrm{O}$
7.

$\square \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\sqrt{3} \mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \sqrt{2} \mathrm{Al}(\mathrm{OH})_{3}+\sqrt{3} \mathrm{CaSO}_{4}$
8. $\left\lceil\mathrm{P}_{4}+\sqrt{5} \mathrm{O}_{2} \rightarrow \sqrt{2} \mathrm{P}_{2} \mathrm{O}_{5}\right.$

10. $\sqrt{2} \mathrm{Al}+\sqrt{3} \mathrm{Br}_{2} \rightarrow \sqrt{2} \mathrm{AlBr}_{3}$
11. $\sqrt{4} \mathrm{Cr}+\sqrt{3} \mathrm{O}_{2} \rightarrow \sqrt{2} \mathrm{Cr}_{2} \mathrm{O}_{3}$
12. $\sqrt{2} \mathrm{C}_{2} \mathrm{H}_{2}+\sqrt{5} \mathrm{O}_{2} \rightarrow \sqrt{4} \mathrm{CO}_{2}+\sqrt{2} \mathrm{H}_{2} \mathrm{O}$
13. $\sqrt{2} \mathrm{C}_{6} \mathrm{H}_{6}+\sqrt{15} \mathrm{O}_{2} \rightarrow \sqrt{12} \mathrm{CO}_{2}+\sqrt{6} \mathrm{H}_{2} \mathrm{O}$
14.
$\sqrt{2} \mathrm{Na}+\sqrt{2} \mathrm{H}_{2} \mathrm{O} \rightarrow \sqrt{2} \mathrm{NaOH}+\square \mathrm{H}_{2}$
15. $\sqrt{2} \mathrm{All}_{3}+\sqrt{3} \mathrm{HgCl}_{2} \rightarrow \sqrt{2} \mathrm{AlCl}_{3}+\sqrt{3} \mathrm{Hgl}_{2}$
16.

17. $\sqrt{3} \mathrm{AgNO}_{3}+\sqrt{\square} \mathrm{K}_{3} \mathrm{PO}_{4} \rightarrow \square \mathrm{Ag}_{3} \mathrm{PO}_{4}+\sqrt{3} \mathrm{KNO}_{3}$
18.
$\sqrt{ } \mathrm{C}_{3} \mathrm{H}_{8}+\sqrt{5} \mathrm{O}_{2} \rightarrow \sqrt{3} \mathrm{CO}_{2}+\sqrt{4} \mathrm{H}_{2} \mathrm{O}$

Use the law of conservation of mass to determine the missing reactant in the equation given below.

1. $2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\underline{C O}_{2}-$
2. $\mathrm{BaCl}_{2}+\mathrm{K}_{2} \mathrm{CO}_{3} \rightarrow \xlongequal{2 \mathrm{KCl}}+\mathrm{BaCO}_{3}$
3. $2 \mathrm{C}_{6} \mathrm{H}_{6}+{ }^{15 \mathrm{O}_{2}-} \rightarrow 12 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
4. $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}-$
5. Given the equation $\mathrm{PbO}_{2} \rightarrow \mathrm{PbO}+\mathrm{O}_{2}$, how many grams of oxygen will be produced if 47.8 g of PbO_{2} decompose to form 44.6 g of PbO and oxygen gas?
$47.8 \mathrm{~g}-44.6 \mathrm{~g}=3.2 \mathrm{~g}$ of O_{2}
6. How many grams of Fe are needed to react with 8.0 g of O_{2} to produce 28.9 g of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ according to the equation $3 \mathrm{Fe}+2 \mathrm{O}_{2} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}$?
$28.9 \mathrm{~g}-8.0 \mathrm{~g}=20.9 \mathrm{~g}$ of Fe

C. Five Patterns of Chemical Reactivity

Type 1 - Synthesis "Building Up"

Two or more reactant molecules combine together to make one product.

$$
\begin{aligned}
& 2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl} \\
& 2 \mathrm{Li}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{LiBr}
\end{aligned}
$$

Type 2 -Decomposition "Breaking Down"

One reactant molecule breaks into simpler product molecules.

$$
\begin{aligned}
& 2 \mathrm{NaCl} \rightarrow 2 \mathrm{Na}+\mathrm{Cl}_{2} \\
& 2 \mathrm{LiBr} \rightarrow 2 \mathrm{Li}+\mathrm{Br}_{2}
\end{aligned}
$$

Type 3 - Single Replacement

One element replaces another in a compound. The more active metal loses its electrons and gains a partner.

$$
\begin{array}{ll}
2 \mathrm{Fe}+3 \mathrm{CuCl}_{2} \rightarrow 3 \mathrm{Cu}+2 \mathrm{FeCl}_{3} & \text { (Fe replaces } \mathrm{Cu} \text {) } \\
2 \mathrm{Na}+2 \mathrm{HOH}\left(\text { or } \mathrm{H}_{2} \mathrm{O}\right) \rightarrow \mathrm{H}_{2}+2 \mathrm{NaOH} & \text { (Na replaces } \mathrm{H}-\text { metal replacement) } \\
\mathrm{Ni}+2 \mathrm{HCl} \rightarrow \mathrm{H}_{2}+\mathrm{NiCl}_{2} & \text { (Ni replaces } \mathrm{H}-\text { metal replacement) } \\
2 \mathrm{~F}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{O}_{2}+4 \mathrm{HF} & \text { (F replaces } \mathrm{O}-\text { nonmetal replacement) }
\end{array}
$$

Practice Predicting Products for Single Replacement Reactions

Use Table J to determine if a reaction occurs. Predict the products. Balance the reaction.

1. ___Ca $+\ldots \mathrm{CuSO}_{4} \rightarrow \mathrm{CaSO}_{4}+\mathrm{Cu}$
2. \qquad $\mathrm{Mg}+$ \qquad $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow$ No Reaction
3. \qquad $\mathrm{Al}+\ldots \underline{6} \mathrm{HCl} \rightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{H}_{2}$
4. \qquad $\mathrm{Cu}+$ \qquad $\mathrm{NaCl} \rightarrow$ No reaction
5. \qquad $\mathrm{Mg}+\ldots \underline{2} \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
6. \qquad $\mathrm{F}_{2}+\ldots 2 \mathrm{NaI} \rightarrow 2 \mathrm{NaF}+\mathrm{I}_{2}$
7. \qquad $\mathrm{Br}_{2}+\ldots \mathrm{CaI}_{2} \rightarrow \mathrm{CaBr}_{2}+\mathrm{I}_{2}$

Type 4 - Double Replacement

Ionic Compounds trade partners.

$$
\begin{array}{cl}
\mathrm{CaCl}_{2}(\mathrm{aq})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) & \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{AgCl}(\mathrm{~s}) \\
\mathrm{NaCl}(\mathrm{aq})+\mathrm{BaSO}_{4}(\mathrm{~s}) & \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{LiOH}(\mathrm{aq}) \rightarrow \mathrm{Pb}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{NaNO}_{3}(\mathrm{aq})
\end{array}
$$

Practice Predicting Products for Double Replacement Reactions.
Predict the products. Balance the reaction.

1. \qquad $\mathrm{FeBr}_{3}+{ }^{3} \mathrm{CaCrO}_{4} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{CrO}_{4}\right)_{3}+3 \mathrm{CaBr}_{2}$
2.

$$
\ldots \mathrm{AgNO}_{3}+\ldots \mathrm{NaCl} \rightarrow \mathrm{NaNO}_{3}+\mathrm{AgCl}
$$

3.

$$
\underline{2} \mathrm{NH}_{4} \mathrm{OH}+\ldots \mathrm{Co}\left(\mathrm{ClO}_{3}\right)_{2} \rightarrow 2 \mathrm{NH}_{4} \mathrm{ClO}_{3}+\mathrm{Co}(\mathrm{OH})_{2}
$$

4. \qquad $\mathrm{Na}_{2} \mathrm{~S}+$ $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{FeS}+2 \mathrm{NaNO}_{3}$
5. \qquad $\ldots \mathrm{Na}_{2} \mathrm{SO}_{4}+\ldots \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{NaNO}_{3}$
6. \qquad $\mathrm{NaBr}+\ldots \mathrm{AgNO}_{3} \rightarrow \mathrm{AgBr}+\mathrm{NaNO}_{3}$
7. \qquad $\mathrm{K}_{2} \mathrm{CO}_{3}+\ldots \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{KNO}_{3}+\mathrm{CaCO}_{3}$
8. \qquad $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+\ldots \mathrm{BaCl}_{2} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{NH}_{4} \mathrm{Cl}$
9. \qquad $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+\ldots \mathrm{K}_{2} \mathrm{CrO}_{4} \rightarrow 2 \mathrm{KNO}_{3}+\mathrm{BaCrO}_{4}$
10. 2 _ $\mathrm{NaOH}+\ldots \mathrm{CaCl}_{2} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{NaCl}$

Type 5-Combustion

Oxygen is always a reactant, carbon dioxide and water are products.

$$
\begin{array}{ll}
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} & \text { (burning natural gas) } \\
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} & \text { (burning propane) }
\end{array}
$$

Practice Predicting Products of Combustion Reactions

Predict the products. Balance the reaction.

1. _2 $\mathrm{C}_{2} \mathrm{H}_{6}+\ldots \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
2.

$$
\underline{2} \mathrm{C}_{4} \mathrm{H}_{10}+\underline{13} \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}
$$

3. \qquad $\mathrm{CH}_{2} \mathrm{O}+\ldots \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Categorization Practice!

Write balanced chemical reactions for the following reactions. Categorize the reaction as Synthesis (S), Decomposition (D), Single Replacement (SR), Double Replacement (DR).

1. Ammonia $\left(\mathrm{NH}_{3}\right)$ reacts with hydrogen chloride to form ammonium chloride.

$$
\mathrm{NH}_{3}+\mathrm{HCl} \rightarrow \mathrm{NH}_{4} \mathrm{Cl} \quad \text { Synthesis }
$$

2. Calcium carbonate decomposes upon heating to form calcium oxide and carbon dioxide.

$$
\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2} \quad \text { Decomposition }
$$

3. Barium oxide reacts with water to form barium hydroxide.

$$
\mathrm{BaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ba}(\mathrm{OH})_{2} \quad \text { Synthesis }
$$

4. Acetaldehyde $\left(\mathrm{CH}_{3} \mathrm{CHO}\right)$ decomposes to form methane $\left(\mathrm{CH}_{4}\right)$ and carbon monoxide.

$$
\mathrm{CH}_{3} \mathrm{CHO} \rightarrow \mathrm{CH}_{4}+\mathrm{CO} \quad \text { Decomposition }
$$

5. Zinc reacts with copper(II) nitrate to form zinc nitrate and copper.

$$
\mathrm{Zn}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Cu} \quad \text { Single Replacement }
$$

6. Calcium sulfite decomposes when heated to form calcium oxide and sulfur dioxide.

$$
\mathrm{CaSO}_{3} \rightarrow \mathrm{CaO}+\mathrm{SO}_{2} \quad \text { Decomposition }
$$

7. Iron reacts with sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right.$ to form iron(II) sulfate and hydrogen gas.

$$
\mathrm{Fe}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{FeSO}_{4}+\mathrm{H}_{2} \quad \text { Single Replacement }
$$

8. Phosgene, COCl_{2}, is formed when carbon monoxide reacts with chlorine gas.

$$
\mathrm{CO}+\mathrm{Cl}_{2} \rightarrow \mathrm{COCl}_{2} \quad \text { Synthesis }
$$

9. Manganese(VII) iodide decomposes when exposed to light to form manganese and iodine.

$$
2 \mathrm{MnI}_{7} \rightarrow 2 \mathrm{Mn}+7 \mathrm{I}_{2} \quad \text { Decomposition }
$$

10. Dinitrogen pentoxide reacts with water to produce nitric acid $\left(\mathrm{HNO}_{3}\right)$.

$$
\mathrm{N}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HNO}_{3} \quad \text { Synthesis }
$$

11. Silver nitrate reacts with iron(III) bromide to form iron(III) nitrate and silver bromide
$3 \mathrm{AgNO}_{3}+\mathrm{FeBr}_{3} \rightarrow \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{AgBr} \quad$ Double Replacement

Molar Mass:

Synonyms for Molar Mass: formula mass, formula weight, molecular mass, gram-formula mass, g.f.m., molecular weight and M
Find the molar masses of the following compounds:

1) NaBr

$$
\begin{aligned}
& \mathrm{Na}: 1 \times 23.0=23.0 \mathrm{~g} / \mathrm{mol} \\
& \mathrm{Bril}^{1} \times 79.9=\frac{ \pm 9.9 \mathrm{~g} \mathrm{~mol}}{102.9 \mathrm{~g} / \mathrm{mol}}
\end{aligned}
$$

2) PbSO_{4}
$\mathrm{Pb}: 1 \times 207.2=207.29 / \mathrm{mol}$
S: $1 \times 32.1=32.19 \mathrm{~mol}$
$0: 4 \times 16.0=\frac{+64.0 \mathrm{~g} / \mathrm{mol}}{303.3 \mathrm{~g} / \mathrm{mol}}$
3) $\mathrm{Ca}(\mathrm{OH})_{2}$

Ca: $|\times 40|=,40.19 / \mathrm{mol}$
$0: 2 \times 16.0=32.0 \mathrm{~g} / \mathrm{mol}$
$\mathrm{H}: 2 \times 1.0= \pm 2.0 \mathrm{~g} / \mathrm{mol}$
$74.19 / \mathrm{mol}$
4) $\quad \mathrm{Na}_{3} \mathrm{PO}_{4}$
$\mathrm{Na}: 3 \times 23.0=69.0 \mathrm{~g} / \mathrm{mol}$
$p: 1 \times 31.0=31.09(\mathrm{~mol}$
$0: 4 \times 16.0=\frac{+64.0 \mathrm{~g} / \mathrm{mol}}{164.0 \mathrm{~g} / \mathrm{mol}}$
5) $\quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
$N: 2 \times 14.0=28.0 \mathrm{~g} / \mathrm{mol}$
$H: 8 \times 1.0=8.0 \mathrm{gmol}$
c: $1 \times 12.0=12.0 \mathrm{~g} / \mathrm{mol}$
$0: 3 \times 16.0=\frac{+48.0 \mathrm{~g} / \mathrm{mol}}{96.09 / \mathrm{mol}}$
6) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

$$
\begin{aligned}
\mathrm{C}: 6 \times 12.0 & =72.0 \mathrm{~g} / \mathrm{mol} \\
\mathrm{H:} 12 \times 1.0 & =12.0 \mathrm{~g} / \mathrm{mol} \\
0: 6 \times 16.0 & =\frac{+96.0 \mathrm{~g} / \mathrm{mol}}{180.0 \mathrm{~g} / \mathrm{mol}}
\end{aligned}
$$

7) $\quad \mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

$$
F_{e}: 3 \times 55.8=167 \mathrm{~g} / \mathrm{mol}
$$

$$
p: 2 \times 31.0=62.0 \mathrm{~g} / \mathrm{mol}
$$

$$
0: 8 \times 16.0=\frac{+128.9 / \mathrm{mol}}{357.9 / \mathrm{mol}}
$$

8) $\quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$

$$
\begin{aligned}
& \mathrm{N}: 2 \times 14.0=28.0 \mathrm{~g} / \mathrm{mol} \\
& H: 8 \times 1.0=8.0 \mathrm{~g} / \mathrm{mol} \\
& \mathrm{~s}: 1 \times 32.1=\frac{+32.1 \mathrm{~g} / \mathrm{mol}}{68.1 \mathrm{~g} / \mathrm{mol}}
\end{aligned}
$$

9) $\quad \mathrm{Zn}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$

$$
2 n: 1 \times 65.4=65.4 \mathrm{~g} / \mathrm{mol}
$$

$$
c: 4 \times 12.0=48,0 \mathrm{~g} / \mathrm{mol}
$$

$$
\mathrm{H}: 6 \times 1.0=6.0 \mathrm{~g} / \mathrm{mol}
$$

$$
0: 4 \times 16.0=\frac{+64.0 \mathrm{~g} / \mathrm{mol}}{183.4 \mathrm{~g} / \mathrm{mll}}
$$

10) AgE
$\mathrm{Ag}: 1 \times 107.9=107,9 \mathrm{~g} / \mathrm{mol}$
$F: 1 \times 19.0=\frac{+19.0 \mathrm{~g} / \mathrm{mol}}{126.9 \mathrm{~g} / \mathrm{mol}}$

Percent Composition: The percent by mass of each element in a compound
Formula: $\frac{\text { mass of part }}{\text { mass of whole }} \cdot 100 \%=\%$ composition
Find the percent mass of each atom in the following compounds

$$
\begin{aligned}
& \text { 1. } \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \\
& \mu=180.0 \mathrm{y} / \mathrm{mol}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. } \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \\
& \mu=164.1 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

$$
\begin{aligned}
& =24.49 \\
& =17.1 \%=58.590 \\
& \text { 3. }\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \\
& M=132.1 \mathrm{~g} / \mathrm{mo} 1 \\
& 90 N=\frac{\left(2 \cdot 14 \mathrm{gmol}^{2}\right)}{(132.19 / \mathrm{mat})} \cdot 100 \% \quad 9 \% \mathrm{H}=\frac{(8 \cdot 1.09 \mathrm{mmal})}{132.19 / \mathrm{mot}} \cdot 10090 \\
& =21.290 \\
& \% s=\frac{(1 \cdot 32.0 \mathrm{mal})}{132.1 \text { anal }} \cdot 100 \% \\
& 900=\frac{(4 \cdot 16.09 \mathrm{~g} \mathrm{~mol})}{132.19 / \mathrm{mol}} \cdot 100 \% \\
& =24.290=48.49 \\
& \text { 4. } \mathrm{CH}_{3} \mathrm{COOH} \\
& \mu=60.0 \mathrm{~g} / \mathrm{mol} \\
& \% C=\frac{(2 \cdot 12.0 \mathrm{gmol})}{60.0 \mathrm{~g} / \mathrm{mol}} \cdot 100 \% \quad \% \mathrm{H}=\frac{(4 \cdot 1.0 \mathrm{gmal})}{60.0 \mathrm{~g} / \mathrm{mot}}, 100 \% \quad, \% 0=\frac{(2 \cdot 16.0 \mathrm{gmol})}{60.0 \mathrm{~g} / \mathrm{mol}} \cdot 100 \% \\
& =40 \%=6.67 \%=53.3 \% \\
& \text { 5. } \mathrm{Fe}(\mathrm{ClO})_{3}
\end{aligned}
$$

$$
\begin{aligned}
& =26.590 \\
& =50.6 \%=22.890
\end{aligned}
$$

Big Numbers and Chemistry

At the most fundamental level, the chemist needs a unit that describes a very large quantity.
One of the most well-known numbers in the study of chemistry is number of units in a mole. The number of units in a mole is called Avogadro's number (named after the Italian physicist). The mole is defined as the number of atoms in 12.0 grams of ${ }^{12} \mathrm{C}$. As you can tell from the equality below, the mole is also a conversion factor.

6.02×10^{23} molecules $=1$ mole

The mole is the currency of choice for a chemist. It is a currency that allows them to convert between a number of molecules and the mass of those molecules.

Bakers and grocers use a similar idea to represent eggs. If you were asked to by a dozen eggs how many eggs would you buy?
12 eggs
If you were asked to buy a gross of eggs how many eggs would you buy?
$10020 n=12 \operatorname{eggS}$
$1 g \operatorname{loss}=12$ dozen

If you were asked to buy 5 moles of eggs how many eggs would you buy?

$$
\begin{aligned}
& 1 \mathrm{~mol} \text { eggs }=6.02 \times 10^{23} \mathrm{eggs} \\
& 5 \text { not eggs } \cdot \frac{6.02 \times 10^{23} \mathrm{eggs}}{1 \mathrm{mot} \mathrm{eggs}}=3.01 \times 10^{24} \mathrm{eggs}
\end{aligned}
$$

When performing mole calculations you must use dimensional analysis. Remember the three key questions for solving conversion problems.
-What do I want to find?
-What have I been given in the problem?
-What conversion factors can I use to calculate the necessary value?

Mole Map
Equivalency Statement:
$1 \mathrm{~mol} X=$ molar mass in grams of X
$1 \mathrm{~mol} \mathrm{X}=6.02 \times 10^{23} \mathrm{X}^{\prime} \mathrm{s}$
$1 \mathrm{~mol} X=22.4 \mathrm{~L}$ of X if and only if X is a gas at STP
STP = standard temperature and pressure $0^{\circ} \mathrm{C}$ and 1 atm.

Mole Conversion Practice Problems
Convert the following values using dimensional analysis. You must show all work!

1. How many grams are in 4.2 moles of Mg ?

$$
4.2 \text { mots } \mathrm{Mg} \cdot \frac{24.3 \mathrm{~g} \mathrm{Mg}}{1 \mathrm{~mol} \mathrm{Ag}}=102.06 \mathrm{~g} \mathrm{Mg}
$$

2. How many grams are in 2.3 moles of calcium fluoride?

$$
2.3 \frac{\text { mols Cafz }}{2} \cdot \frac{78 \mathrm{~g} \mathrm{CaFa}_{2}}{1 \mathrm{lnot} \mathrm{Cafz}}=179.4 \mathrm{~g} \mathrm{CaI}
$$

3. How many moles are in 345 grams of oxygen gas?

$$
345 \mathrm{~g} \theta_{2} \cdot \frac{1 \mathrm{~mol} \mathrm{O}}{3} 2
$$

4. How many moles are in 12.34×10^{24} atoms of argon?

$$
12.34 \times 10^{24} \text { atoms Ar. } \frac{1 \mathrm{~mol} \mathrm{Ar}}{6.02 \times 10^{23} \text { atoms Ar }}=20.5 \mathrm{~mol} \text { Ar }
$$

5. How many liters would 2.3 moles of nitrogen gas occupy at STP?

$$
2.3 \text { mols } N_{2} \cdot \frac{22.4 \mathrm{~L} \mathrm{~N}}{1} 1021.52 \mathrm{~L} \mathrm{~N}
$$

6. How many particles are in 56 g of methane $\left(\mathrm{CH}_{4}\right)$

$$
56 \mathrm{~g} \text { city } \cdot \frac{1 \text { mot CH44 }}{16 \mathrm{~g} \mathrm{CH}_{4}} \cdot \frac{6.02 \times 10^{23}}{1 \mathrm{mot} \mathrm{CH}_{4}}
$$

7. How many grams would be found in 39.0 L of Helium gas at STP?

$$
39.0 \mathrm{LHe} \cdot \frac{\text { Let He }}{22.4 \mathrm{te}} \cdot \frac{4 \mathrm{~g} \mathrm{He}}{}=6.96 \mathrm{~g} \mathrm{He}
$$

8. 1 gram of liquid water at STP has an approximate volume of 1 mL . What is the volume of 1 gram of gaseous water at STP?

$$
\frac{1 \mathrm{nol} \mathrm{H}_{2} \mathrm{O}}{189-\mathrm{H}_{2} \mathrm{O}} \cdot \frac{22.4 \mathrm{LH} \mathrm{O}}{1 \mathrm{~mol}+\mathrm{HzO}}=1.24 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}
$$

9. What is the volume of each of the following gases at STP?
a. 7.6 mol Ar
7.6 not Ar. $\frac{22.4 \mathrm{LAr}}{1 \mathrm{AOH} \mathrm{Ar}_{r}}=170.24 \mathrm{~L} \mathrm{Ar}$
b. 0.44 grams $\mathrm{C}_{2} \mathrm{H}_{6}$

$$
0.44 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6} \cdot \frac{1 \mathrm{~mol} \mathrm{C}_{2} H_{6}}{30 \mathrm{~g} \mathrm{C} \mathrm{C}_{2} \mathrm{H}_{6}} \cdot \frac{22.4 \mathrm{~L} \mathrm{C}_{2} H_{6}}{1 \mathrm{~mol} \mathrm{C} \mathrm{C}_{2} \mathrm{H}_{6}}=0.329 \mathrm{LC} \mathrm{C}_{2} \mathrm{H}_{6}
$$

c. 1.20×10^{23} molecules of O_{2}

$$
1.20 \times 10^{23} \text { molecules } \mathrm{O}_{2} \cdot \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{6.02 \times 10^{23} \text { molecules } \mathrm{O}_{2}} \cdot \frac{22.4 \mathrm{LO}}{1 \mathrm{mdl} \mathrm{O}_{2}}=4.47 \mathrm{LO}_{2}
$$

10. A chocolate turtle has approximately 2.5 g of sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ in it. One mole of sugar molecules equals 342 g . How many moles of sugar are in one chocolate turtle?

$$
2.5 \mathrm{~g} \text { sugar. } \frac{1 \mathrm{~mol} \text { sugar }}{342 \mathrm{~g} \text { sugar }}=7.31 \times 10^{-3} \mathrm{~mol} \text { sugar }
$$

How many molecules of sugar are in one chocolate turtle?
7.31×10^{-3} mot sugar. $\frac{6.02 \times 10^{23} \text { molecules sugar }}{1 \text { mot sugar }}=4.40 \times 10^{21}$ molecules sugar
How many atoms of carbon are found in the sugar from one chocolate turtle?
4.40×10^{21} sodeectes sugar. $\frac{12 \text { aton s } C}{1 \text { molecule suit }}=5.28 \times 10^{22}$ atoms C

Review

Empirical Formula: Chemical formula that represents the simplest whole number ratio of atoms in a compounds. (All of the subscripts have a greatest common factor of one)

Molecular Formula: Chemical formula that represents the actual number of atoms in a molecule. Usually for covalent compounds.

Finding an Empirical Formula from Percent Composition

During the yearly lab cleaning, you come across an unlabeled sample. You send away a small portion of the chemical for percent composition analysis. The results come back as:

> 58.8 \% C
> 9.8 \% H
> 31.4 \% 0

Chemical formulas are ratios of atoms or moles of atoms. To solve a chemical analysis problem you must convert mass percent of each element to a molar ratio of each element.

Step 1 Assume your unknown sample has a mass of 100 grams.
Assume 100 g sample
Convert q_{0} to 9
$58.8 \% \mathrm{C}$
$\begin{array}{lll}0.588 \cdot 100 \mathrm{~g}=58.8 \mathrm{~g} \mathrm{C} & 9.89 \mathrm{HH} & 31.4900 \\ \downarrow \downarrow & \downarrow \\ & 9.8 \mathrm{gH} & 31.4 \mathrm{gO}\end{array}$
Step 2 Convert the mass of each element to moles of each element using the molar mass.

$$
58.8 \mathrm{ge} \cdot \frac{1 \mathrm{molc}}{12 \mathrm{ge}}=4.9 \mathrm{~mol} \mathrm{C} \quad 9.8 \mathrm{gHt} \cdot \frac{1 \mathrm{molH}}{1 \mathrm{gH}}=9.8 \mathrm{~mol} \mathrm{H} \quad 31.4 \mathrm{ge} \cdot \frac{1 \mathrm{~mol} 0}{16 \mathrm{go}}=1.963 \mathrm{molo}
$$

Step 3 Divide the moles of each element by the smallest number of moles

$$
\frac{4.9 \cot C}{1.963 \operatorname{sot}}=2.5 \frac{9.8 \operatorname{sot} H}{1.963 \operatorname{sot}}=5 \quad \frac{1.963 \operatorname{mot} \mathrm{O}}{1.963 \operatorname{mot}}=1
$$

Step 4 if necessary, multiply the molar ratio by small whole number coefficients in order to obtain the simplest whole number ratio.

What is the Molecular Identity of the Unknown?

We found that the empirical formula for the unknown substance was $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$. Its gram molecular mass is $204 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula of the unknown substance?
$\frac{\mu}{\text { Empirical formula mass }}=\begin{gathered}\text { Multiplying } \\ \text { factor }\end{gathered} \frac{204 \mathrm{~g} / \mathrm{mol}}{(5.129 \mathrm{~mol}+10 \cdot 19 / \mathrm{mol}+2 \cdot 169 / \mathrm{mol})}=2$

$$
\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2} \xrightarrow{\times 2} \mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{4} \leftarrow \text { molecular formula }
$$

You Decide: Empirical or Molecular?

Are the following formulas empirical or molecular?
a. $\mathrm{S}_{2} \mathrm{Cl}_{2}$
Molecular formula
b. $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ Molecular formula
c. $\mathrm{Na}_{2} \mathrm{SO}_{3}$
Empirical formula
d. $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5} \quad$ Molecular formula
e. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3} \quad$ Empirical formula
f. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \quad$ Empirical formula

You try it now!

Model your work based on the above example.

1. What is the molecular formula for each compound? The empirical formula and molar mass are given below.
a. $\mathrm{CH}_{2} \mathrm{O}, 90 \mathrm{~g} / \mathrm{mol}$

$$
\frac{90_{\text {gemot }}}{3 O_{\text {gimel }}}=3 \quad \mathrm{CH}_{2} \mathrm{O} \xrightarrow{\times 3} \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}
$$

b. $\mathrm{HgCl}, 472.2 \mathrm{~g} / \mathrm{mol}$

$$
\frac{472.2 \text { gal }}{236.09 \text { gal }}=2 \mathrm{HgCl} \xrightarrow{x 2} \mathrm{Hg}_{2} \mathrm{Cl}_{2}
$$

c. $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}, 146 \mathrm{~g} / \mathrm{mol}$

$$
\frac{146-9+1}{72-g+1}=2 \quad \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2} \xrightarrow{x_{2}} \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}
$$

d. Vitamin C has an empirical formula of $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}$ and a molecular mass of 176 amu . What is its molecular formula?

$$
\begin{aligned}
& 176 \text { anu } \cdot \frac{1 \mathrm{~g} / \mathrm{mol}}{1 \text { ant }}=176 \mathrm{glmol} \\
& \frac{176 \mathrm{gtmol}}{88 \text { gtmol }}=2 \quad \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3} \xrightarrow{\times 2} \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}
\end{aligned}
$$

2. Determine the molecular formula for each compound:
a. $\quad 94.1 \% \mathrm{O}$ and $5.9 \% \mathrm{H}$; molar mass $=34 \mathrm{~g}$

$$
\begin{aligned}
& \text { Assume } 100 \mathrm{gram} \text { sample } \\
& 94.1 \% \mathrm{O} \rightarrow 94.1 \mathrm{gO} \quad 5.9 \% \mathrm{H} \rightarrow 5.9 \mathrm{gH} \\
& 94.1 \mathrm{gO} \cdot \frac{1 \mathrm{molO}}{16 \mathrm{gO}}=5.88 \mathrm{molo} \quad 5.9 \mathrm{gH} \cdot \frac{1 \mathrm{molH}}{1 \mathrm{HH}}=5.9 \mathrm{~mol} \mathrm{H} \\
& \frac{5.88 \mathrm{O}}{5.88 \mathrm{H}}=1 \quad \frac{5.9 \mathrm{H}}{5.88 \mathrm{HO}}=1 \\
& \text { Empirical formula: HO } \\
& \frac{349 \mathrm{HOl}}{179 \mathrm{HO} \times 2}=2 \quad \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

b. $40.0 \% \mathrm{C}, 6.6 \% \mathrm{H}$ and $53.4 \% \mathrm{O}$; molar mass $=120 \mathrm{~g}$

Assume 100 g sample

$$
\begin{aligned}
& 40.0 \% \mathrm{C} \rightarrow 40.0 \mathrm{~g} \mathrm{C} \\
& 6.690 \mathrm{H} \rightarrow 6,6 \mathrm{~g} \mathrm{H} \\
& 53.4900 \rightarrow 53.4 \mathrm{gO} \\
& 40,096 \cdot \frac{1 \mathrm{molc}}{12 \mathrm{gc}}=3,33 \mathrm{md} \mathrm{C} \\
& 6.6 \mathrm{gH} \cdot \frac{1 \mathrm{~mol} \mathrm{H}}{1 \mathrm{gt1}}=6.6 \mathrm{~mol} \mathrm{H} \\
& 53.4 \mathrm{~g} \theta \cdot \frac{1 \mathrm{~mol} \mathrm{O}}{16 \mathrm{~g} \mathrm{\theta}}=3.34 \mathrm{~mol} \mathrm{O} \\
& \frac{3.33 \mathrm{~mol} \mathrm{C}}{3.33 \mathrm{~mol}}=1 \quad \frac{6.6 \mathrm{mot} \mathrm{H}}{3.33 \mathrm{~mol}}=2 \quad \frac{3.34 \mathrm{~mol} \mathrm{O}}{3.33 \mathrm{mot}}=1 \\
& \text { Empirical formula }=\mathrm{CH}_{2} \mathrm{O} \\
& \frac{1209+}{30 \text { gram }}=4 \quad \mathrm{CH}_{2} \mathrm{O} \xrightarrow{\times 4} \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4}
\end{aligned}
$$

3. What is the empirical formula of a compound that is 58.80% barium, 13.75% sulfur, and 27.45% oxygen by mass?

$$
\begin{aligned}
& \text { Assume } 100 \mathrm{~g} \text { sample } \\
& 58.80 \% \mathrm{Ba} \rightarrow 58.80 \mathrm{~g} \mathrm{Ba} \\
& 13.75 \% \mathrm{~S} \rightarrow 13.75 \mathrm{~g} \mathrm{~S} \\
& 27.45 \% 0 \rightarrow 27.45 \mathrm{go} \\
& 58.80 \mathrm{~g} \mathrm{Ba} \cdot \frac{1 \mathrm{~mol} \mathrm{Ba}}{137.33 \mathrm{~g} \mathrm{Ba}}=0.428 \mathrm{~mol} \mathrm{Ba} \\
& 13.75 \mathrm{gF} \cdot \frac{1 \mathrm{~mol} \mathrm{~s}}{32 \mathrm{gs}}=0.430 \mathrm{~mol} \mathrm{~s} \\
& 27.45 \mathrm{gO} \cdot \frac{1 \mathrm{~mol} \mathrm{O}}{16 \mathrm{gO}}=1.716 \mathrm{~mol} \mathrm{O} \\
& \frac{0.428 \mathrm{mot} \mathrm{Ba}}{0.428 \mathrm{~mol}}=1 \frac{0.430 \mathrm{mots}}{0.428 \mathrm{mot}}=1 \\
& \text { Empirical formula } \mathrm{BaSO}
\end{aligned}
$$

4. Caffeine, a stimulant found in coffee, tea, and chocolate, contains 49.48% carbon, 5.15% hydrogen, 28.87% nitrogen, and 16.49% oxygen by mass, and has a molecular mass of $194.2 \mathrm{~g} / \mathrm{mol}$. Determine the molecular formula of caffeine.

$$
\begin{aligned}
& \text { Assume } 100 \mathrm{~g} \text { sample } \\
& 49.48 \% \mathrm{C} \rightarrow 49.48 \mathrm{~g} \mathrm{C} \quad 5.15 \% \mathrm{H} \rightarrow 5.15 \mathrm{~g} \mathrm{H} \\
& 28.87 \% \mathrm{~N} \rightarrow 28.87 \mathrm{~g} \mathrm{~N} \mathrm{\quad} \quad 16.49 \% \mathrm{O} \rightarrow 16.49 \mathrm{~g} \mathrm{O} \\
& 49.48 \mathrm{gC} \cdot \frac{1 \mathrm{~mol} \mathrm{C}}{12 \mathrm{~g}}=4.12 \mathrm{~mol} \mathrm{C} \\
& 5.15 \mathrm{gH} \cdot \frac{1 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~g} \mathrm{H}}=5.15 \mathrm{~mol} \mathrm{H} \\
& 28.87 \mathrm{~g} \cdot \frac{1 \mathrm{~mol} \mathrm{~N}}{14 \mathrm{~g}}=2.06 \mathrm{~mol} \mathrm{~N} \\
& 16.49 \mathrm{gO} \cdot \frac{1 \mathrm{molO}}{16 \mathrm{gO}}=1.03 \mathrm{~mol}
\end{aligned}
$$

$$
\frac{4.12 \mathrm{mot} \mathrm{C}}{1.03 \mathrm{~mol}}=4 \quad \frac{5.15 \mathrm{~mol} \mathrm{H}}{1.03 \mathrm{~mol}}=5 \quad \frac{2.06 \mathrm{~mol} \mathrm{~N}}{1.03 \mathrm{~mol}}=2
$$

$$
\frac{1.03 \mathrm{AolO} \mathrm{O}}{1.03}=1 \quad \mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O} \quad \text { Empirical formula }
$$

$$
\frac{199.2 \text { 9 tran }}{97 \text { 9traol }}=2 \quad \mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O} \xrightarrow{\times 2} \xrightarrow[\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}]{ }
$$

Stoichiometry!

1. If 156.0 grams of potassium metal reacts with excess water, then how many grams of potassium hydroxide are formed? What volume of hydrogen gas, in liters, is formed at STP ?

$$
\ldots 2 \mathrm{~K}(\mathrm{~s})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \text { 2 } \mathrm{KOH}(\mathrm{aq})+\ldots \mathrm{H}_{2}(\mathrm{~g})
$$

$$
156.0 \mathrm{gK} \cdot \frac{1 \mathrm{motK}}{39.1 \mathrm{gK}} \cdot \frac{2 \mathrm{mot} \mathrm{KOH}}{2 \mathrm{motK}} \cdot \frac{56 \mathrm{~g} \mathrm{KOH}}{1 \mathrm{mot} \mathrm{KOH}}=223 \mathrm{~g} \mathrm{KOH}
$$

$$
156.0 \mathrm{gK} \cdot \frac{1 \mathrm{motK}}{39.1 \mathrm{gK}} \cdot \frac{1 \mathrm{motitz}}{2 \mathrm{motK}} \cdot \frac{22.4 \mathrm{LH}_{2}}{1 \mathrm{motHz}}=44.68 \mathrm{LH}_{2}
$$

2. Given the unbalanced decomposition reaction of baking soda:

$$
\underline{2} \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow \ldots \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\ldots \mathrm{CO}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

How many grams of each product are produced by the decomposition of 42.0 grams of baking soda?
$42.0 \mathrm{~g} \mathrm{AnHCO}_{3} \cdot \frac{1 \mathrm{mof} \mathrm{AaHCO}_{3}}{84 \mathrm{~g} \mathrm{AaHCO}_{3}} \cdot \frac{1 \mathrm{mot} \mathrm{CO}_{2}}{2 \mathrm{~mol} \mathrm{NaHCO}_{3}} \cdot \frac{44 \mathrm{~g} \mathrm{CO}_{2}}{1 \mathrm{mot} \mathrm{CO}_{2}}=0 \mathrm{~g} \mathrm{CO}_{2}$
$42.0 \mathrm{~g} \mathrm{AaHCO}_{3} \cdot \frac{1 \mathrm{mot} \mathrm{AaHCO}}{84 \mathrm{~g} \mathrm{AaHCO}} 3 \cdot \frac{1 \text { not } \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{NaHCO}_{3}} \cdot \frac{18 \mathrm{~g} \mathrm{H} \mathrm{O}}{1 \text { not } \mathrm{H}_{2} \mathrm{O}}=4.5 \mathrm{~g} \mathrm{HzO}$

3. The unbalanced combustion reaction of butane gas in excess oxygen produces carbon dioxide gas and water vapor: $\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$. Starting with 11.6 grams of butane, how many grams of carbon dioxide gas and water vapor are formed at STP?

$$
\begin{aligned}
& 2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

4. The catalytic decomposition of hydrogen peroxide is:

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\ldots \mathrm{O}_{2}(\mathrm{~g})
$$

How many moles of water and oxygen are produced by the decomposition of 68.0 grams of hydrogen peroxide?

5. The Haber reaction produces ammonia, an important nitrogenous compound needed to make plant fertilizers. The unbalanced reaction is: $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})$. If 170.0 grams of ammonia are produced, then how many grams of nitrogen gas and hydrogen gas are needed? How many molecules of each reactant are needed?

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

$170.0 \mathrm{~g} \mathrm{AH}_{3} \cdot \frac{1 \mathrm{mot} \mathrm{AHz}}{17 \mathrm{~g} \mathrm{AHH}_{3}} \cdot \frac{1 \mathrm{mot} \mathrm{Az}}{2 \mathrm{matNH}} \cdot \frac{6.02 \times 10^{23} \text { molecules } \mathrm{N}_{2}}{1 \text { mot } \mathrm{Nz}_{2}}=3.01 \times 10^{24}$ molecules N_{2}
$170.0 \mathrm{~g} \mathrm{AHH}_{3} \cdot \frac{1 \mathrm{mot} \mathrm{NHH}_{3}}{17 \mathrm{~g} \mathrm{AH}} \cdot \frac{3 \mathrm{mot} \mathrm{H2}}{2} \cdot \frac{2 \mathrm{gH}_{2}}{1-\mathrm{mH}_{3}}=30 \mathrm{~g} \mathrm{H}$
$170.0 \mathrm{~g} \mathrm{AH}_{3} \cdot \frac{1 \text { mot } \mathrm{NHH}_{3}}{17 \mathrm{~g} \mathrm{AH}} \cdot \frac{3 \mathrm{Hot} \mathrm{H}_{2}}{2 \mathrm{NHOLH}_{3}} \cdot \frac{6.02 \times 10^{23} \text { molecules } \mathrm{H}_{2}}{1 \text { mot He }}=9.03 \times 10^{24}$ molecules H_{2}
6. Given the unbalanced reaction: $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{HOH}_{(\mathrm{g})}$. What volume of hydrogen gas is needed to completely react 17.8 L of oxygen gas?

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

7. The unbalanced synthesis reaction between aluminum metal and oxygen is:

$$
\mathrm{Al}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})} .
$$

If 6.02×10^{25} molecules of aluminum oxide are produced, then how many grams of aluminum metal was used?

$$
4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}
$$

6.02×10^{25} formats units $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \frac{1 \mathrm{Al}_{2} \mathrm{O}_{3}}{6.02 \times 10^{23} \text { formats units- } \mathrm{Al}_{2} \mathrm{O}_{3}} \cdot \frac{4 \mathrm{~mol} \mathrm{At}}{2 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}} \cdot \frac{27 \mathrm{~g} \mathrm{Al}}{1 \mathrm{At}}=5400 \mathrm{~g} \mathrm{Al}$
8. $ـ 4 \mathrm{NH}_{3}+\underline{3} \mathrm{O}_{2} \rightarrow$ __ $\mathrm{N}_{2}+\underline{6}$ _ $\mathrm{H}_{2} \mathrm{O}$

Based on the unbalanced reaction above:
a. How many moles of oxygen react with 0.23 moles of NH_{3} ?

b. How many grams of water will be produced if 0.55 moles of oxygen react?
$0.55 \mathrm{mot}_{2} \cdot \frac{6 \mathrm{moth}_{2} \mathrm{O}}{3 \mathrm{mot}_{2}} \cdot \frac{18 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{motH} \mathrm{O}}=19.8 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
c. How many grams of nitrogen gas will be produced if 12.6 grams of ammonia react?

Limiting Reactants
Limiting reactant is the reactant that runs out first, the other reactant is called "excess" When the limiting reactant is exhausted, then the reaction stops.

Example Problem:
10.0 g of aluminum reacts with 35.0 grams of chlorine gas to produce aluminum chloride. Which reactant is limiting, which is in excess, and how much product is produced? How much of the excess reactant is left over?

Limiting Reactant Problems

1. Sodium metal reacts with oxygen to produce sodium oxide. If 5.00 g of sodium reacted with 5.00 grams of oxygen, how many grams of product is formed? $4 \mathrm{Na}+\mathrm{O}_{2} \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}$

$$
\mathrm{Na} \text { is the limiting reactant. } \mathrm{O}_{2} \text { is the excess reactant. }
$$

2. How many grams of solid are formed when 10.0 g of lead reacts with 10.0 g of phosphoric acid?
$\underline{3} \mathrm{~Pb}+\ldots \underline{2} \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{~Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})}+\ldots \underline{3} \mathrm{H}_{2(\mathrm{~g})}$
3. $\mathrm{Og} \mathrm{Pt} \cdot \frac{1 \mathrm{mot} \mathrm{Pt}}{207.2 \mathrm{gtb}} \cdot \frac{1 \mathrm{mot} \mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}}{3 \mathrm{molPb}} \cdot \frac{81_{9} \mathrm{~Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}}{1 \mathrm{mat} \mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{z}}=13 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{PO}_{4}\right)_{2}$ formed

Pb is limiting.
4. If 25 g of aluminum was added to 90 g of HCl , what mass of H_{2} will be produced?

$$
2 \mathrm{Al}+6 \mathrm{HCl} \rightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{H}_{2}
$$

$$
25 \mathrm{~g} \mathrm{At} \cdot \frac{1 \operatorname{mot} A t}{27 \mathrm{~g} \mathrm{At}} \cdot \frac{3 \operatorname{mot} H_{2}}{2 \operatorname{mot} A t} \cdot \frac{2 \mathrm{gHz}}{1 \operatorname{mot} H_{2}}=\frac{270 \mathrm{~g} \mathrm{~Hz}}{2}
$$

90 gHCt . $\frac{1 \mathrm{mot} \mathrm{HCt}}{36.5 \mathrm{gHC}} \cdot \frac{3 \mathrm{motHz}}{6 \mathrm{motHC}} \cdot \frac{2 \mathrm{~g} \mathrm{H}}{1 \mathrm{MOtHz}}=2.46 \mathrm{~g} \mathrm{~Hz}$
HCl is limiting
4. If you have 20 g of N_{2} and 5.0 g of H_{2}, which is the limiting reagent?

$$
\begin{aligned}
& -\mathrm{N}_{2}+\underline{3} \mathrm{H}_{2} \rightarrow \underline{2} \mathrm{NH}_{3}
\end{aligned}
$$

$$
\begin{aligned}
& 5 . \mathrm{g}_{2} \cdot \frac{1 \mathrm{motHz}}{2 \mathrm{~g} \mathrm{H}} \cdot \frac{2 \mathrm{motNH}}{2} \cdot \frac{17 \mathrm{~g} \mathrm{NH}}{3}-28.3 \mathrm{motHz}
\end{aligned}
$$

N_{2} is limiting
5. What mass of aluminum oxide is formed when 10.0 g of Al is burned in 20.0 g of O_{2} ?

$$
\begin{aligned}
& 4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3} \\
& 10.0 \mathrm{~g} \mathrm{At} \cdot \frac{1 \mathrm{mot} A t}{27 \mathrm{~g} \mathrm{Al}} \cdot \frac{2 \mathrm{mot} \mathrm{Al}_{2} \mathrm{O}_{3}}{4 \mathrm{motAT}} \cdot \frac{102 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}}{1 \mathrm{~mol} \mathrm{Al} \mathrm{O}_{3}}=18.9 \mathrm{~g} \mathrm{Al} \mathrm{O}_{3}
\end{aligned}
$$

6. When $\mathrm{C}_{3} \mathrm{H}_{8}$ burns in oxygen, CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ are produced. If 15.0 g of $\mathrm{C}_{3} \mathrm{H}_{8}$ reacts with 60.0 g of O_{2}, how many grams of CO_{2} is produced? What mass of each reactant is left over?

$$
\begin{aligned}
& \mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

$\mathrm{C}_{3} \mathrm{H}_{8}$ is limiting, there is zero grams of $\mathrm{C}_{3} \mathrm{H}_{8}$ left over.

$$
\begin{aligned}
& \text { Original Mass - Mass of excess = Mass of excess } \\
& \text { of excess reactant - reactant used }=\text { reactant left } \\
& \text { over } \\
& 60 . \mathrm{og} \mathrm{O}_{2}-54.5 \mathrm{~g} \mathrm{O} \text { used }=5.5 \mathrm{~g} \mathrm{o} \text { 年 left over }
\end{aligned}
$$

7. When 10.0 g of copper was reacted with 60.0 g of silver nitrate solution. How many grams of silver are produced? How much of each reactant is left over?(Calculate the amount in grams) $\mathrm{Cu}+2 \mathrm{AgNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}$.
$10.0 \mathrm{gCv} \cdot \frac{1 \operatorname{not} \mathrm{CV}^{2}}{63.6 \mathrm{~g} \mathrm{St}} \cdot \frac{2 \mathrm{mot} \mathrm{Ag}}{1 \mathrm{mottv}} \cdot \frac{108 \mathrm{~g} \mathrm{Ag}}{1 \mathrm{mot} \mathrm{Ag}}=34.0 \mathrm{~g} \mathrm{Ag}$
$60.0 \mathrm{~g} \mathrm{Ag} \mathrm{NO} 3 \cdot \frac{1 \mathrm{mel} \mathrm{AgNO}_{3}}{170 \mathrm{~g} \mathrm{Ag} \mathrm{AO}} \cdot \frac{2 \mathrm{mot} \mathrm{Ag}}{2 \mathrm{mot} \mathrm{AgNo}} \cdot \frac{108 \mathrm{~g} \mathrm{gg}}{1 \frac{\mathrm{mel} \mathrm{Ag}}{2}}=38.1 \mathrm{~g} \mathrm{Ag}$
$C u$ is limiting, there will be zero grams of Cu left.

Original Mass - Mass of excess $=$ Mass of excess of excess reactant - reactant used $=$ reactant left over
$60.0 \mathrm{~g} \mathrm{AgNO}_{3}-53.5 \mathrm{~g} \mathrm{AgNO}_{3}$ used $=6.5 \mathrm{~g} \mathrm{Ag} \mathrm{NO}_{3}$ left over
