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2.1 Instruction Codes 

A computer instruction is a binary code that specifies a sequence of microoperations 

for the computer. Instruction codes together with data are stored in memory. The 

computer reads each instruction from memory and places it in a control register. The 

control then interprets the binary code of the instruction and proceeds to execute it by 

issuing a sequence of microoperations. Every computer has its own unique instruction set. 

The ability to store and execute instructions, the stored program concept, is the most 

important property of a general-purpose computer. 

An instruction code is a group of bits that instruct the computer to perform a 

specific operation. It is usually divided into parts, each having its own particular 

interpretation. The most basic part of an instruction code is its operation code operation 

part. The operation code of an instruction is a group of bits that define such operations as 

add, subtract, multiply, shift, and complement. The number of bits required for the 

operation code of an instruction depends on the total number of operations available in the 

computer. The operation code must consist of at least 11 bits for a given 2n (or less) 

distinct operations. 

The operation part of an instruction code specifies the operation to be performed. 

This operation must be performed on some data stored in processor registers or in 

memory. An instruction code must therefore specify not only the operation but also the 

registers or the memory words where the operands are to be found, as well as the register 

or memory word where the result is to be stored. Memory words can be specified in 

instruction codes by their address. Processor registers can be specified by assigning to the 

instruction another binary code of k bits that specifies one of 2k registers. There are many 

variations for arranging the binary code of instructions, and each computer has its own 

particular instruction code format. Instruction code formats are conceived by computer 

designers who specify the architecture of the computer. 

 

Stored Program Organization 

The simplest way to organize a computer is to have one processor register and an 

instruction code format with two parts. The first part specifies the operation to be 

performed and the second specifies an address. The memory address tells the control 

where to find an operand in memory. This operand is read from memory and used as the 

data to be operated on together with the data stored in the processor register. 

 



 

 

 
 

Figure 5-1 depicts this type of organization. Instructions are stored in one section of 

memory and data in another. For a memory unit with 4096 words we need 12 bits to 

specify an address since 212 = 4096. If we store each instruction code in one 16-bit 

memory word, we have available four bits for the opcode Operation code (abbreviated 

opcode) to specify one out of 16 possible operations, and 12 bits to specify the address of 

an operand. The control reads a 16-bit instruction from the program portion of memory. It 

uses the 12-bit address part of the instruction to read a 16-bit operand from the data 

portion of memory. It then executes the operation specified by the operation code. 

Computers that have a single-processor register usually assign to it the name accumulator 

(AC) accumulator and label it AC. The operation is performed with the memory operand 

and the content of AC. 

 

Indirect Address 

It is sometimes convenient to use the address bits of an instruction code not as an 

address but as the actual operand. When the second part of an instruction immediate code 

specifies an operand, the instruction is said to have an immediate instruction operand. 

When the second part specifies the address of an operand, the instruction is said to have a 

direct address. This is in contrast to a third possibility called indirect address, where the 

bits in the second part of the instruction designate an address of a memory word in which 

the address of the operand is found. One bit of the instruction code can be used to 

distinguish between a direct and an indirect address. 

As an illustration of this configuration, consider the instruction code format shown 

in Fig. 5-2(a). It consists of a 3-bit operation code, a 12-bit address, and an indirect 

address mode bit designated by I. The mode bit is 0 for a direct address and 1 for an 

indirect address. A direct address instruction is shown in Fig. 5-2(b). It is placed in address 

22 in memory. The I bit is 0, so the instruction is recognized as a direct address 

instruction. The opcode specifies an ADD instruction, and the address part is the binary 

equivalent of 457. The control finds the operand in memory at address 457 and adds it to 

the content of AC. The instruction in address 35 shown in Fig. 5-2(c) has a mode bit I = 1. 

Therefore, it is recognized as an indirect address instruction. 

The indirect address instruction needs two references to memory to fetch an 

operand. The first reference is needed to read the address of the operand; the effective 

address second is for the operand itself. We define the effective address to be the address 



 

 

of the operand in a computation-type instruction or the target address in a branch-type 

instruction. Thus the effective address in the instruction of Fig. 5-2(b) is 457 and in the 

instruction of Fig 5-2(c) is 1350. 

 

 
 

2.2 Computer Registers 

Computer instructions are normally stored in consecutive memory locations and are 

executed sequentially one at a time. The control reads an instruction from a specific 

address in memory and executes it. It then continues by reading the next instruction in 

sequence and executes it, and so on. This type of instruction sequencing needs a counter 

to calculate the address of the next instruction after execution of the current instruction is 

completed. It is also necessary to provide a register in the control unit for storing the 

instruction code after it is read from memory. The computer needs processor registers for 

manipulating data and a register for holding a memory address. These requirements 

dictate the register configuration shown in Fig. 5-3. The registers are also listed in      

Table 5-1 together with a brief description of their function and the number of bits that 

they contain. 

 



 

 

 

 
 

Common bus: 

 

The basic computer has eight registers, a memory unit, and a control unit (to be 

presented in Sec. 5-4). Paths must be provided to transfer information from one register to 

another and between memory and registers. The number of wires will be excessive if 

connections are made between the outputs of each register and the inputs of the other 

registers. A more efficient scheme for transferring information in a system with many 

registers is to use a common bus. The connection of the registers and memory of the basic 

computer to a common bus system is shown in Fig. 5-4. 

The outputs of seven registers and memory are connected to the common bus. The 

specific output that is selected for the bus lines at any given time is determined from the 

binary value of the selection variables S2, S1, and S0. The number along each output shows 

the decimal equivalent of the required binary selection. For example, the number along the 

output of DR is 3. The 16-bit outputs of DR are placed on the bus lines when S2S1S0= 011 

since this is the binary value of decimal 3. The lines from the common bus are connected 

to the inputs of each register and the data inputs of the memory. The particular load (LD) 

register whose LD (load) input is enabled receives the data from the bus during the next 

clock pulse transition. The memory receives the contents of the bus when its write input is 

activated. The memory places its 16-bit output onto the bus when the read input is 

activated and S2S1S0 = 111.  

Four registers, DR, AC, IR, and TR, have 16 bits each. Two registers, AR and PC, 

have 12 bits each since they hold a memory address. When the contents of AR or PC are 

applied to the 16-bit common bus, the four most significant bits are set to 0'3. When AR or 

PC receives information from the bus, only the 12 least significant bits are transferred into 

the register. 

 



 

 

 
The input register INPR and the output register OUT R have 8 bits each and 

communicate with the eight least significant bits in the bus. INPR is connected to provide 

information to the bus but OUTR can only receive information from the bus. This is 

because INPR receives a character from an input device which is then transferred to AC. 

OUTR receives a character from AC and delivers it to an output device. There is no transfer 

from OUTR to any of the other registers. 

The input data and output data of the memory are connected to the common bus, 

but the memory address is connected to AR. Therefore, AR must memory address always 

be used to specify a memory address. 

The 16 inputs of AC come from an adder and logic circuit. This circuit has three sets 

of inputs. One set of 16-bit inputs come from the outputs of AC. They are used to 

implement register microoperations such as complement AC and shift AC. Another set of 

16-bit inputs come from the data register DR. The inputs from DR and AC are used for 



 

 

arithmetic and logic microoperations, such as add DR to AC or AND DR to AC. The result of 

an addition is transferred to AC and the end carry-out of the addition is transferred to flip-

flop E (ex- tended AC bit). A third set of 8-bit inputs come from the input register INPR. 

 

2.3 Computer Instructions 

The basic computer has three instruction code formats, as shown in Fig. 5-5. Each 

format has 16 bits. The operation code (opcode) part of the instruction contains three bits 

and the meaning of the remaining 13 bits depends on the operation code encountered. A 

memory-reference instruction uses 12 bits to specify an address and one bit to specify the 

addressing mode I. I is equal to 0 for direct address and to 1 for indirect address (see Fig. 

5-2). The register-reference instructions are recognized by the operation code 111 with a 0 

in the leftmost bit (bit 15) of the instruction. A register-reference instruction specifies an 

operation on or a test of the AC register. An operand from memory is not needed; 

therefore, the other 12 bits are used to specify the operation or test to be executed. 

Similarly, an input-output instruction does not need a reference to memory and is 

recognized by the operation code 111 with a 1 in the leftmost bit of the instruction. The 

remaining 12 bits are used to specify the type of input-output operation or test performed. 

 

 
The type of instruction is recognized by the computer control from the four bits in 

positions 12 through 15 of the instruction. If the three opcode bits in positions 12 though 

14 are not equal to 111, the instruction is a memory-reference type and the bit in position 

15 is taken as the addressing mode I. If the 3-bit opcode is equal to 111, control then 

inspects the bit in position 15. If this bit is 0, the instruction is a register-reference type. If 

the bit is 1, the instruction is an input-output type. 



 

 

 
Register-reference instructions use 16 bits to specify an operation. The leftmost four bits 

are always 0111, which is equivalent to hexadecimal 7. The other three hexadecimal digits 

give the binary equivalent of the remaining 12 bits. The input-output instructions also use 

all 16 bits to specify an operation. The last four bits are always 1111, equivalent to 

hexadecimal F 

Instruction Set Completeness 

The set of instructions are said to be complete if the computer includes a sufficient number 

of instructions in each of the following categories: 

1. Arithmetic, logical, and shift instructions 

2. Instructions for moving information to and from memory and processor registers 

3. Program control instructions together with instructions that check status conditions 

4. Input and output instructions 

Arithmetic, logical, and shift instructions provide computational capabilities for 

processing the type of data that the user may wish to employ. The bulk of the binary 

information in a digital computer is stored in memory, but all computations are done in 

processor registers. Therefore, the user must have the capability of moving information 

between these two units. Decision making capabilities are an important aspect of digital 

computers. For example, two numbers can be compared, and if the first is greater than the 

second, it may be necessary to proceed differently than if the second is greater than the 

first. Program control instructions such as branch instructions are used to change the 



 

 

sequence in which the program is executed. Input and output instructions are needed for 

communication between the computer and the user. Programs and data must be 

transferred into memory and results of computations must be transferred back to the user. 

 

2.4 Timing and Control 

The timing for all registers in the basic computer is controlled by a master clock 

clock pulses generator. The clock pulses are applied to all flip-flops and registers in the 

system, including the flip-flops and registers in the control unit. The clock pulses do not 

change the state of a register unless the register is enabled by a control signal. The control 

signals are generated in the control unit and provide control inputs for the multiplexers in 

the common bus, control inputs in processor registers, and microoperations for the 

accumulator. There are two major types of control organization: hardwired control and 

microprogrammed control. 

Hardwired control 

 In the hardwired organization, the control logic is implemented with gates, flip-

flops, decoders, and other digital circuits. It has the advantage that it can be 

optimized to produce a fast mode of operation. 

 A hardwired control, as the name implies, requires changes in the wiring among the 

various components if the design has microprogrammed to be modified or changed. 

 

Microprogrammed control. 

 In the microprogrammed organization, the control information is stored in a control 

memory. The control memory is programmed to initiate the required sequence of 

microoperations. 

 In the microprogrammed control, any required control changes or modifications can 

be done by updating the microprogram in control memory. 

The block diagram of the control unit is shown in Fig. 5-6. It consists of two decoders, 

a sequence counter, and a number of control logic gates. An instruction read from memory 

is placed in the instruction register (IR). 

The instruction register is shown again in Fig. 5-6, where it is divided into three parts: 

the I bit, the operation code, and bits 0 through 11. The operation code in bits 12 through 

14 are decoded with a 3 X 8 decoder. The eight outputs of the decoder are designated by 

the symbols Do through D7. The subscripted decimal number is equivalent to the binary 

value of the corresponding operation code. Bit 15 of the instruction is transferred to a flip-

flop designated by the symbol 1. Bits 0 through 11 are applied to the control logic gates. 

The 4-bit sequence counter can count in-binary from 0 through 15. The outputs of the 

timing signals counter are decoded into 16 timing signals T0 through T15. 

 



 

 

 
Fig. 5-7 show how SC is cleared when D3T4 = 1. Output D3 from the operation decoder 

becomes active at the end of timing signal T2. When timing signal T4 becomes active, the 

output of the AND gate that implements the control function D3T4 becomes active. This 

signal is applied to the CLR input of SC. On the next positive clock transition (the one 

marked T4 in the diagram) the counter is cleared to 0. This causes the timing signal To to 

become active instead of T5 that would have been active if SC were incremented instead of 

cleared. 

 
 



 

 

 

A memory read or write cycle will be initiated with the rising edge of a timing signal. It 

will be assumed that a memory cycle time is less than the clock cycle time. According to 

this assumption, a memory read or write cycle initiated by a timing signal will be 

completed by the time the next clock goes through its positive transition. The clock 

transition will then be used to load the memory word into a register. 

For example, the register transfer statement 
To: AR  P C 

Specifies a transfer of the content of PC into AR if timing signal To is active. 

 

2.5 Instruction Cycle 

A program residing in the memory unit of the computer consists of a sequence of 

instructions. The program is executed in the computer by going through a cycle for each 

instruction. Each instruction cycle in turn is subdivided into a sequence of subcycles or 

phases. In the basic computer each instruction cycle consists of the following phases: 

1. Fetch an instruction from memory. 

2. Decode the instruction. 

3. Read the effective address from memory if the instruction has an indirect address. 

4. Execute the instruction. 

Upon the completion of step 4, the control goes back to step 1 to fetch, decode, 

and execute the next instruction. This process continues indefinitely unless a HALT 

instruction is encountered. 

 

Fetch and Decode 

Initially, the program counter PC is loaded with the address of the first instruction in the 

program. The sequence counter SC is cleared to 0, providing a decoded timing signal To. 

After each clock pulse, SC is incremented by one, so that the timing signals go through a 

sequence To, T1, T2, and so on. The microoperations for the fetch and decode phases can 

be specified by the following register transfer statements. 

 
To: AR  PC 

T1: IR M[AR], PC PC + 1 

T 2: Do, . . . , D7Decode IR(12-14), AR IR(0-11), I IR(15) 

Since only AR is connected to the address inputs of memory, it is necessary to transfer the 

address from PC to AR during the clock transition associated with timing signal To. The 

instruction read from memory is then placed in the instruction register IR with the clock 

transition associated With timing signal T1. At the same time, PC is incremented by one to 

prepare it for the address of the next instruction in the program. At time T2, the operation 

code in IR is decoded, the indirect bit is transferred to flip-flop I, and the address part of 

the instruction is transferred to AR. Note that SC is incremented after each clock pulse to 

produce the sequence To, T1, and T2. 

Figure 5-8 shows how the first two register transfer statements are implemented in the 

bus system. To provide the data path for the transfer of PC to AR we must apply timing 

signal To to achieve the following connection: 

1. Place the content of PC onto the bus by making the bus selection inputs S2S1S0  equal to 

010. 

2. Transfer the content of the bus to AR by enabling the LD input of AR. 

The next clock transition initiates the transfer from PC to AR since To = 1. In order to 

implement the second statement. 
T1: IR M[AR], PC PC + 1 

it is necessary to use timing signal T1 to provide the following connections in the bus 

system. 

1. Enable the read input of memory. 



 

 

2. Place the content of memory onto the bus by making S2S1S0 = 111. 

3. Transfer the content of the bus to IR by enabling the LD input of IR. 

4. Increment PC by enabling the INR input of PC. 

The next clock transition initiates the read and increment operations since 

T1 = 1. 

 
 

Determine the Type of Instruction 

The timing signal that is active after the decoding is T3. During time T3, the control unit 

determines the type of instruction that was just read from memory. The flowchart of Fig. 

5-9 presents an initial configuration for the instruction cycle and shows how the control 

determines the instruction type after the decoding. 

Decoder output 07 is equal to 1 if the operation code is equal to binary 111. From Fig. 5-5 

we determine that if D7 = 1, the instruction must be a register-reference or input-output 

type. If D7 = O, the operation code must be one of the other seven values 000 through 

110, specifying a memory-reference instruction. Control then inspects the value of the first 

bit of the instruction, which is now available in flip-flop I . If D7 = 0 and 1 = 1, we have a 

memory- reference instruction with an indirect address. It is then necessary to read the 



 

 

effective address from memory. The microoperation for the indirect address indirect 

address condition can be symbolized by the register transfer statement 

AR M [AR] 

Initially, AR holds the address part of the instruction. This address is used during the 

memory read operation. The word at the address given by AR is read from memory and 

placed on the common bus. The LD input of AR is then enabled to receive the indirect 

address that resided in the 12 least significant bits of the memory word. 

 
 

The three instruction types are subdivided into four separate paths. The selected 

operation is activated with the clock transition associated with timing signal T3. This can 

be symbolized as follows: 

D7’IT3: AR M[AR] 

D7’I’T3: Nothing 

D7 I’T3: Execute a register-reference instruction 

D7IT3: Execute an input-output instruction 

When a memory-reference instruction with I = O is encountered, it is not necessary 

to do anything since the effective address is already in AR. However, the sequence counter 

SC must be incremented when D§T3 = 1, so that the execution of the memory-reference 

instruction can be continued with timing variable T4. A register-reference or input-output 

instruction can be executed with the clock associated with timing signal T 3. After the 



 

 

instruction is executed, SC is cleared to 0 and control returns to the fetch phase with 

To=1. 

Note that the sequence counter SC is either incremented or cleared to 0 with every 

positive clock transition. We will adopt the convention that if SC is incremented, we will not 

write the statement SC (-SC + 1, but it will be implied that the control goes to the next 

timing signal in sequence. When SC is to be cleared, we will include the statement SC <-0. 

 

Register-Reference Instructions 

Register-reference instructions are recognized by the control when D7=1 and I = 0. 

These instructions use bits 0 through 11 of the instruction code to specify one of 12 

instructions. These 12 bits are available in IR(0-11). They were also transferred to AR 

during time T2. 

The control functions and microoperations for the register-reference instructions are 

listed in Table 5-3. These instructions are executed with the clock transition associated 

with timing variable T3. Each control function needs the Boolean relation D7I’ T3, which we 

designate for convenience by the symbol r. 

 
 

 2.6 Memory-Reference Instructions 

In order to specify the microoperations needed for the execution of each 

instruction, it is necessary that the function that they are intended to perform be defined 

precisely. 

Table 5-4 lists the seven memory-reference instructions. The decoded output Di for 

i = 0, 1, 2, 3, 4, 5, and 6 from the operation decoder that belongs effective address to 

each instruction is included in the table. The effective address of the instruction is in the 

address register AR and was placed there during timing signal T; when I = 0, or during 

timing signal T3 when I = 1. The execution of the memory-reference instructions starts 

with timing signal T4. 

 

 

 



 

 

 
 

We now explain the operation of each instruction and list the control functions and 

microoperations needed for their execution. A flowchart that summarizes all the 

microoperations is presented at the end of this section. 

 

AND to AC 

This is an instruction that performs the AND logic operation on pairs of bits in AC and the 

memory word specified by the effective address. The result of the operation is transferred 

to AC. The microoperations that execute this instruction are: 

D0T4: DR M[AR] 

D0T5: AC AC /\ DR, SC 0 

ADD to AC 

This instruction adds the content of the memory word specified by the effective address to 

the value of AC. The sum is transferred into AC and the output carry Cout is transferred to 

the E (extended accumulator) flip-flop. The microoperations needed to execute this 

instruction are 

D1T4: DR  M [AR] 

D1T5: AC  AC + DR, E  Cout, SC  0 

LDA: Load to AC 

This instruction transfers the memory word specified by the effective address to AC. The 

microoperations needed to execute this instruction are 
D2T4: DR M[AR] 

D2T5: AC  DR, SC  0 

STA: Store AC 

This instruction stores the content of AC into the memory word specified by the effective 

address. Since the output of AC is applied to the bus and the data input of memory is 

connected to the bus, we can execute this instruction with one microoperation: 
D3T4: M[AR]  AC, SC 0 

BUN: Branch Unconditionally 

This instruction transfers the program to the instruction specified by the effective address. 

Remember that PC holds the address of the instruction to be read from memory in the 

next instruction cycle. PC is incremented at time T1 to prepare it for the address of the 

next instruction in the program sequence. The BUN instruction allows the programmer to 

specify an instruction out of sequence and we say that the program branches (or jumps) 

unconditionally. The instruction is executed with one microoperation: 
D4T4: PC  AR, SC  0 

The effective address from AR is transferred through the common bus to PC. Resetting SC 

to 0 transfers control to To. The next instruction is then fetched and executed from the 

memory address given by the new value in PC. 

BSA: Branch and Save Return Address 

This instruction is useful for branching to a portion of the program called a 

subroutine or procedure. When executed, the BSA instruction stores the address of the 



 

 

next instruction in sequence (which is available in PC) into a memory location specified by 

the effective address. The effective address plus one is then transferred to PC to serve as 

the address of the first instruction in the subroutine. This operation was specified in Table 

5-4 with the following register transfer: 
M[AR]  PC, PC  AR + 1 

Subroutine call  

The BSA instruction performs the function usually referred to as a sub- routine call. The 

indirect BUN instruction at the end of the subroutine performs the function referred to as a 

subroutine return. In most commercial computers, the return address associated with a 

subroutine is stored in either a processor register or in a portion of memory called a stack. 

 
 

It is not possible to perform the operation of the BSA instruction in one clock cycle 

when we use the bus system of the basic computer. To use the memory and the bus 

properly, the BSA instruction must be executed with a sequence of two microoperations: 

D5T4 : M[AR]PC, AR AR + 1 

D5T5: PC AR, SC 0 

Timing signal T4 initiates a memory write operation, places the content of PC onto the bus, 

and enables the INR input of AR. The memory write operation is completed and AR is 

incremented by the time the next clock transition occurs. The bus is used at T5 to transfer 

the content of AR to PC. 

ISZ: Increment and Skip if Zero 

This instruction increments the word specified by the effective address, and if the 

incremented value is equal to 0, PC is incremented by 1. The programmer usually stores a 

negative number (in 2’s complement) in the memory word. As this negative number is 

repeatedly incremented by one, it eventually reaches the value of zero. At that time PC is 

incremented by one in order to skip the next instruction in the program. 

Since it is not possible to increment a word inside the memory, it is necessary to 

read the word into DR, increment DR, and store the word back into memory. This is done 

with the following sequence of microoperations: 
D6T4: DRM[AR] 

D6T5: DRDR + 1 

D6T6: M[AR]  DR, if (DR = 0) then (PC <- PC + 1), SC  0 



 

 

 

Control Flowchart 

A flowchart showing all microoperations for the execution of the seven memory-

reference instructions is shown in Fig. 5-11. The control functions are indicated on top of 

each box. The microoperations that are performed during time T4, T5, or T6 depend on the 

operation code value. This is indicated in the flowchart by six different paths, one of which 

the control takes after the instruction is decoded. The sequence counter SC is cleared to 0 

with the last timing signal in each case. This causes a transfer of control to timing signal To 

to start the next instruction cycle. 

Note that we need only seven timing signals to execute the longest instruction 

(ISZ). The computer can be designed with a 3-bit sequence counter. The reason for using 

a 4-bit counter for SC is to provide additional timing signals for other instructions that are 

presented in the problems section. 

 
 

2.7 Input-Output and Interrupt. 

A computer can serve no useful purpose unless it communicates with the external 

environment. Instructions and data stored in memory must come from some input device. 

Computational results must be transmitted to the user through some output device. 

Commercial computers include many types of input and output devices. To demonstrate 

the most basic requirements for input and output communication, we will use as an 

illustration a terminal unit with a keyboard and printer.  

Input-Output Configuration 

The terminal sends and receives serial information. Each quantity of information 

has eight bits of an alphanumeric code. The serial information from the keyboard is shifted 

into the input register INPR. The serial information for the printer is stored in the output 

register OUTR. These two registers communicate with a communication interface serially 

and with the AC in parallel. The input-output configuration is shown in Fig. 5-12. The 

transmitter interface receives serial information from the keyboard and transmits it to 



 

 

INPR. The receiver interface receives information from OUTR and sends it to the printer 

serially.  

 
The input register INPR consists of eight bits and holds an alphanumeric input 

information. The 1-bit input flag PGI is a control flip-flop. The flag bit is set to 1 when new 

information is available in the input device and is cleared to 0 when the information is 

accepted by the computer. The flag is needed to synchronize the timing rate difference 

between the input device and the computer. The process of information transfer is as 

follows. Initially, the input flag PGI is cleared to 0. When a key is struck in the keyboard, 

an 8-bit alphanumeric code is shifted into INPR and the input flag PGI is set to 1. As long 

as the flag is set, the information in INPR cannot be changed by striking another key. The 

computer checks the flag bit; if it is 1, the information from INPR is transferred in parallel 

into AC and PGI is cleared to 0. Once the flag is cleared, new information can be shifted 

into INPR by striking another key.  

The output register OUTR works similarly but the direction of information flow is 

reversed. Initially, the output flag FGO is set to 1. The computer checks the flag bit; if it is 

1, the information from AC is transferred in parallel to OUTR and FGO is cleared to O. The 

output device accepts the coded information, prints the corresponding character, and when 

the operation is completed, it sets FGO to 1. The computer does not load a new character 

into OUT R when FGO is 0 because this condition indicates that the output device is in the 

process of printing the character. 

 

Input-Output Instructions 

Input and output instructions are needed for transferring information to and from 

AC register, for checking the flag bits, and for controlling the interrupt facility. Input-

output instructions have an operation code 1111 and are recognized by the control when 

D7 = 1 and I = 1. The remaining bits of the instruction specify the particular operation. 

The control functions and microoperations for the input-output instructions are listed in 

Table 5-5.  



 

 

 
 

Program Interrupt 

In programmed control transfer. The computer keeps checking the flag bit, and 

when it finds it set, it initiates an information transfer. The difference of information flow 

rate between the computer and that of the input-output device makes this type of transfer 

inefficient. To see why this is inefficient, consider a computer that can go through an 

instruction cycle in 1 µs. Assume that the input-output device can transfer information at a 

maximum rate of 10 characters per second. This is equivalent to one character every 

100,000 µs. Two instructions are executed when the computer checks the flag bit and 

decides not to transfer the information. This means that at the maximum rate, the 

computer will check the flag 50,000 times between each transfer. The computer is wasting 

time while checking the flag instead of doing some other useful processing task. 

An alternative to the programmed controlled procedure is to let the external device 

inform the computer when it is ready for the transfer. In the meantime the computer can 

be busy with other tasks. This type of transfer uses the interrupt facility. While the 

computer is running a program, it does not check the flags. However, when a flag is set, 

the computer is momentarily interrupted from proceeding with the current program and is 

informed of the fact that a flag has been set. The computer deviates momentarily from 

what it is doing to take care of the input or output transfer. It then returns to the current 

program to continue what it was doing before the interrupt. 

The interrupt enable flip-flop IEN can be set and cleared with two instructions. 

When IEN is cleared to 0 (with the IOF instruction), the flags cannot interrupt the 

computer. When IEN is set to 1 (with the ION instruction), the computer can be 

interrupted. These two instructions provide the programmer with the capability of making 

a decision as to whether or not to use the interrupt facility. 

The way that the interrupt is handled by the computer can be explained by means 

of the flowchart of Fig. 5-13. An interrupt flip-flop R is included in the computer. When R = 

0, the computer goes through an instruction cycle. During the execute phase of the 

instruction cycle IEN is checked by the control. If it is 0, it indicates that the programmer 

does not want to use the interrupt, so control continues with the next instruction cycle. If 

IEN is 1, control checks the flag bits. If both flags are 0, it indicates that neither the input 

nor the output registers are ready for transfer of information. In this case, control 

continues with the next instruction cycle. If either flag is set to 1 while IEN = 1, flip-flap R 

is set to 1. At the end of the execute phase, control checks the value of R, and if it is equal 

to 1, it goes to an interrupt cycle instead of an instruction cycle. 

 



 

 

 
The interrupt cycle is a hardware implementation of a branch and save return 

address operation. The return address available in PC is stored in a specific location where 

it can be found later when the program returns to the instruction at which it was 

interrupted. This location may be a processor register, a memory stack, or a specific 

memory location. Here we choose the memory location at address 0 as the place for 

storing the return address. Control then inserts address 1 into PC and clears IEN and R so 

that no more interruptions can occur until the interrupt request from the flag has been 

serviced. 

An example that shows what happens during the interrupt cycle is shown in Fig. 5-

14. Suppose that an interrupt occurs and R is set to 1 while the control is executing the 

instruction at address 255. At this time, the return address 256 is in PC. The programmer 

has previously placed an input-output service program in memory starting from address 

1120 and a BUN 1120 instruction at address 1. This is shown in Fig. 5-14(a). 

When control reaches timing signal To and finds that R = 1, it proceeds with the 

interrupt cycle. The content of PC (256) is stored in memory location 0, PC is set to 1, and 

R is cleared to 0. At the beginning of the next instruction cycle, the instruction that is read 

from memory is in address 1 since this is the content of PC. The branch instruction at 

address 1 causes the program to transfer to the input-output service program at address 

1120. This program checks the flags, determines which flag is set, and then transfers the 

required input or output information. Once this is done, the instruction ION is executed to 



 

 

set IEN to 1 (to enable further interrupts), and the program returns to the location where 

it was interrupted. This is shown in Fig. 5-14(b). 

 

 
The instruction that returns the computer to the original place in the main program 

is a branch indirect instruction with an address part of 0. This instruct tion is placed at the 

end of the I/0 service program. After this instruction is read from memory during the fetch 

phase, control goes to the indirect phase (because I = 1) to read the effective address. 

The effective address is in location 0 and is the return address that was stored there during 

the previous interrupt cycle. The execution of the indirect BUN instruction results in placing 

into PC the return address from location 0. 

 

Interrupt Cycle 

We are now ready to list the register transfer statements for the interrupt cycle. The 

interrupt cycle is initiated after the last execute phase if the interrupt flip-flop R is equal to 

1. This flip-flop is set to 1 if IEN = 1 and either PGI or FGO are equal to 1. This can happen 

with any clock transition except when timing signals To, T1, or T2 are active. The condition 

for setting flip-flop R to 1 can be expressed with the following register transfer statement: 
T6T1T5(IEN)(FGI + PGO): R 1 

The symbol + between FGI and FGO in the control function designates a logic OR 

operation. This is ANDed with IEN and T’0T’1T’2. 

 

 

 



 

 

 

MICRO-PROGRAMMED CONTROL: Control Memory, Address Sequencing, Micro-program 

Example, Design of Control Unit, Hardwired Control, Micro-programmed Control, 

Nanoprogramming. 

 

2.8 Control Memory  

Introduction  

 The function of a control unit in a digital computer is to initiate sequences of 

finite micro-operations  

 The complexity of any digital system is related to the number of 

microoperations performed.  

 

2 types of control units:  
1. “Hardwired control unit” is implemented using conventional logic design techniques.  

2. “Microprogramming” is another implementation for building control units.  

 

 The control unit initiates a series of sequential microoperations. During a given time 

certain microoperations needed to be initiated while others remain idle.  

 

Control word  

 is a series of 0’s and 1’s that can be programmed to perform different 

operations on components of the system  

 

Now  

 The control unit whose binary control words are stored in memory is called 

“microprogrammed control unit”. Such that each word in control memory 

contains a number of microinstructions  

 Microinstruction specifies one or more microoperations of the system  

 

Microprogram  

 Program stored in memory that generates all the control signals required to 

execute the instruction set correctly  

 Consists of microinstructions  

 

Microinstruction  

 Contains a control word and a sequencing word  
o Control Word -All the control information required for one clock cycle  

o Sequencing Word -Information needed to decide the next 

microinstruction address  

 
Control Memory (Control Storage: CS)  

 Storage in the microprogrammed control unit to store the microprogram  

 Holds fixed microprogram that cannot be altered by user  

 Microprogram consists of microinstructions that specifies internal control signals 
for register microoperations  

 Microinstruction generates microoperations to fetch instructions from main 

memory, evaluate effective address, execute the operation, and return control 

to fetch phase again to start new cycle.  



 

 

The general configuration of a microprogrammed control unit is demonstrated in the block 

diagram of Fig. 7-1. The control memory is assumed to bea ROM, within which all control 

information is permanently stored. 

 
Control Address Register  

 Specifies address of microinstructions, and control data register holds 

microinstruction  

 Microinstruction contains control word that specifies one or more 

microoperations  

 Once these operations are executed, control must determines next address  

 Microinstructions contain bits for initiating microoperations and bits that 

determines the address sequence for the control memory  

Sequencer  
 Next address generator is called microprogram sequencer  

 Will do the following jobs which can be called next address calculation that 

comes from different sources:  

 In-line Sequencing  

 Branch  

 Conditional Branch  

 Subroutine  

 Loop  

 Instruction OP-code mapping  

Pipeline register 
The control data register holds the present microinstruction while thenext address is 

computed and read from memory. The data register is some pipeline register times called 

a pipeline register. It allows the execution of the microoperationsspecified by the control 

word simultaneously with the generation of the nextmicroinstruction. This configuration 

requires a two-phase clock, with one clockapplied to the address register and the other to 

the data register. 

2.9 Address Sequencing  
 We need a transformation from instruction code bits into address in control 

memory. Then the microinstruction that executes the instruction may be 

sequenced by incrementing the control address register (CAR).  

 Sometimes the sequence of microoperations depend on values of certain status 

bits.  

 Address sequence capability required in control memory are:  

o Incrementing CAR  

o Unconditional-Conditional branching depending on status bits  



 

 

o Mapping from bits of instruction to address in control memory  

o Subroutine call-return facility  

 See next Figure that shoes control memory and how next address is selected  

 
 

Conditional Branching  

 Branch logic of above Figure provides decision making capability in control unit.  

 Status conditions provide parameter data such as carry bit, sign bit, mode bit, 

and IO status bits. Those can be tested as 0/1  

 In branch logic circuit, the specified condition is tested and a branch to indicated 

address is carried on if condition is true; otherwise, ACR is incremented.  

 Conditions to Test: O(overflow), N(negative), Z(zero), C(carry), etc.  

 In Unconditional Branch, the value of one status bit at the input of the 

multiplexer is fixed to 1, to ensure always branching.  

Instruction Mapping  

 We assume an operation code of 4 bits that can specify up to 16 distinct 

instructions. Assume control memory has 128 words which requires 7 address 

bits  

 For each operation code we can reach to an address in control memory where 

we can start executing microinstruction of a routine  

 A simple mapping converts the 4 bits in op code to 7 bits address for control 

memory as shown next  

 This mapping places 0 in the most significant bit of the address, transferring the 

4 bits for op-code, and clearing the 2 least significant bits of CAR.  

 This will give a micro routine with capacity of 4 microinstructions 

 



 

 

 

 


 Mapping can be implemented using ROM concept: the bits of the instruction specify 

the address of ROM and the content (data) of ROM gives the address of CAR. By 

this way the Microprogram routine can be placed in any location in control memory.  

 Mapping sometimes can be implemented by programmable logic devices or PLD. 

The mapping function can be expressed in terms of Boolean expression that easily 

be implanted conveniently with PLD.  

Subroutines 

Subroutines are programs that are used by other routines to accomplish aparticular 

task. A subroutine can be called from any point within the main bodyof the microprogram. 

Frequently, many microprograms contain identical sections of code. Microinstructions can 

be saved by employing subroutines thatuse common sections of microcode. For example, 

the sequence of microoperations needed to generate the effective address of the operand 

for an instruction is common to all memory reference instructions. This sequence could bea 

subroutine that is called from within many other routines to execute theeffective address 

computation. 

Microprograms that use subroutines must have a provision for storing thereturn 

address during a subroutine call and restoring the address during asubroutine return. This 

may be accomplished by placing the incrementedsubroutine register output from the 

control address register into a subroutine register and branching to the beginning of the 

subroutine. The subroutine register can then become the source for transferring the 

address for the return to the mainroutine. The best way to structure a register file that 

stores addresses forsubroutines is to organize the registers in a last-in, first-out (LIFO) 

stack. 

 
 Microprogram Example  

 Next Figure shows 2 memory units: main unit for storing instructions and data, and 

a control memory for storing microprogram  



 

 

o 4 registers associated with processor unit (PC, AD, DR, and AC) and 2 

associated withcontrol memory (CAR control address register and SBR 

subroutine register).  

o Multiplexers are used to transfer data between registers rather than a bus.  

o DR receives data from AC, PC, or memory  

o AR receives data from PC or DR  

o PC receives data from AR only  

o ALU and shift unit perform its function on AC and DR and places results in 

AC  

o Memory address always comes from AR, Data written to memory comes 

from DR, and data read from memory goes to DR  

 

Instruction format  

 A next Figure shows, it consists of indirect bit, 4 op-code bits, and 11 address bits . 



 

 

 
 

 

 
Microinstruction Format  

 Microinstruction format of control memory is shown in next Figure. It shows 20 bit 

of microinstruction divided to:  

o F1, F2, F3 that specify 3 microoperations executed in same clock cycle  

o CD field for specifying branch status bit condition  

o BR field that determines type of branch.  

o AD which is 7-bit address field that can a location of 128 different addresses  

 

Microinstruction Field F1-F2-F3  

 The 3 bits field encoded to specify one of 7 distinct microoperation  

 If fewer than 3 microinstruction is needed then unneeded field(s) will be encoded 

with “000”  

 Not allowed to encode 2 or more conflicting operations   

Condition Field CD  

 Consists of 2 bits encoded to specify 4 status bit condition as shown in next figure.  

o First condition is always “1”, CD = “00”  

o I bit, CD = “01”  

o Z bit (of AC register), CD = “11”  

o S bit (MSB of AC register), CD = “10”  

 

Symbols and Binary Code for microinstruction Fields. 



 

 

 

Branch Field BR  

 Consists of 2 bits and it is used with conjunction of address bits AD to decide and choose 

address of next microinstruction  

o When BR = “00” then control performs JMP  

o When BR = “01” it performs a CALL to a subroutine. Stores return address in SBR        

register 

o When BR = “10” it performs RET operation. Moves return address from SBR to 

CAR  

o When BR = “11” it performs mapping from operation code bits of instruction into 

CAR address  

 

Symbolic Microinstructions  

 Each line of assembly line Microprogram defines a symbolic microinstruction. Each 

symbolic microinstruction is divided into 5 fields:  

label, microoperations, CD, BR, and AD. The fields specify the followinginformation. 

1. The label field may be empty or it may specify a symbolic address. Alabel is terminated 

with a colon (z). 

2. The microoperations field consists of one, two, or three symbols, separated by commas. 

There may be nomore than one symbol from each F field. The NOP symbol is used when 

themicroinstruction has no microoperations. This will be translated bythe assembler to nine 

zeros. 

3. The CD field has one of the letters U, I, S, or Z. 

4. The BR field contains one of the four symbols address field  



 

 

5. The AD field specifies a value for the address field of the microinstruction in one of three 

possible ways: 

a. With a symbolic address, which must also appear as a label. 

b. With the symbol NEXT to designate the next address in sequence. 

c. When the BR field contains a RET or MAP symbol, the AD field isleft empty and is 

converted to seven zeros by the assembler. 

ORG  

ORG is used to define the origin, or firstaddress, of a micr0program routine. Thus the 

symbol ORG 64 informs theassembler to place the next microinstruction in control memory 

at decimaladdress 64, which is equivalent to the binary address 1000000. 

 
The Fetch Routine 


 Control memory has 128 locations each with 20 bits inside  

 The first 64 words(0 to 63) are dedicated for routines for the 16 macro instructions 

(16 * 4)  

 The last 64 words can be used for other functions  

 From location 64 we will find routine for fetch cycle  

 

Fetch and Decode Routine  

 During a fetch routine, an instruction is read from memory, decoded, and PC is 

updated  

 See next figure to identify microinstructions for fetch cycle. 

 

 
The execution of the third MAP microinstruction in the fetch routine results in a branch to 

address 0XXXX00, where XXXX are the four bits of operation code. This gives 4 words in 

control memory for each routine  

 

Indirect Routine  

 We need to calculate the indirect procedure for accessing the address of operand in 

all memory-reference instructions  



 

 

 So INDRCT routine has been placed in a subroutine that can be called in every 

memory-reference instruction  

 It is only can be called if I=1 then a branch to NDRCT occurs (See Table)  

 So in this cycle memory is accessed to get the effective address of operand  

 
Execution of ADD instructions  

 For ADD instruction, the microinstructions in locations 1 and 2 will carry out.  

 Reads operand from memory into DR  

 Add contents of DR to AC  

 Jumps to fetch routine  

Execution of BRANCH instructions  

 It causes a branch to effective address of instruction if AC < 0 which means S = 1  

 Starts by checking the value of S. if S=0 then no branch occurs and next 

microinstruction causes a jump to fetch routine  

 If S=1 then control goes to location OVER where a call to INDRCT takes 

place first if I=1 then control goes to where AR register points to  
 
 

Execution of STORE instructions  

 Uses INDRCT routine if I=1  

 Content of AC is transferred to DR then memory write operation is initiated to store 

DR into MEM(AR)  

 

Execution of EXCHANGE instructions  

 Exchange content of MEM(AR) with AC  

 Jumps to INDRCT routine to get the effective operand address  

 Reads from memory the operand and direct it to DR  

 AC and DR are exchanged in third microinstruction  

 DR is written to memory MEM(AR)  

 

Next Figure shows partial symbolic microprogram for selected instructions 



 

 

 

 

2.10 Design of Control Unit: 

The number of control bits that initiate microoperations can be reduced by grouping 

mutually exclusive variables into fields and encode k bits into 2k microoperations  

F-fields decoding  

 Next figure shows 3 decoders of 3X8 type, so each field gives 8control lines  

 Each of these 24 outputs will be connected into proper circuit to initiated 

microoperations as specified in Table 7.1.  



 

 

 

Arithmetic-Logic-shift Unit 

Instead of using gates to generate the control signals marked by the symbols AND, ADD, 

and DR in Fig. 5-19, these inputs will now come from the outputs of the decoders 

associated with the symbols AND, ADD, and DRTAC, respectively. The other outputs of the 

decoders that are associated with an AC operation must also be connected to the 

arithmetic logic shift unit in a similar fashion. 

 

Microprogram Sequencer  

 Address selection part is called microprogram sequencer  

 The purpose of the sequencer is to present address of control memory so to fetch 

next microinstruction to be executed  

 The choice of address source is controlled by next address information bits from 

present microinstruction  

 Next figure shows a microprogram sequencer for control memory  

o 2 multiplexers, one to select address from one of four address sources to 

CAR, and the second for testing value for selected status bit  

o CAR always provide address to control memory  



 

 

 

The input logic circuit in Fig. 7-8 has three inputs, I0, I1, and T, and threeoutputs, 

So, S1, and L. Variables So and 51 select one of the source addressesfor CAR. Variable L 

enables the load input in SBR. The binary values of the twoselection variables determine 

the path in the multiplexer. For example, withS1 So = 10, multiplexer input number 2 is 

selected and establishes a transferpath from SBR to CAR. Note that each of the four inputs 

as well as the outputof MUX 1 contains a 7-bit address. 

The truth table for the input logic circuit is shown in Table 7-4. Inputs 11and Io are 

identical to the bit values in the BR field. The function listed in eachentry was defined in 

Table 7-1. The bit values for S1 and So are determined fromthe stated function and the 

path in the multiplexer that establishes the requiredtransfer. The subroutine register is 

loaded with the incremented value of CARduring a call microinstruction (BR = 01) provided 

that the status bit conditionis satisfied (T = 1). The truth table can be used to obtain the 

simplified Booleanfunctions for the input logic circuit: 

 

 



 

 

 

The circuit can be constructed with three AND gates, an OR gate, and aninverter. 

 

2.11 Hardwired Control  

The control units use fixed logic circuits to interpret instructions and generate 

control signals from them.  

The fixed logic circuit block includes combinational circuit that generates the 

required control outputs for decoding and encoding functions. 

 



 

 

 



 

 

Instruction decoder  

It decodes the instruction loaded in the IR.  

If IR is an 8 bit register then instruction decoder generates 28(256 lines); one for each 

instruction.  

According to code in the IR, only one line amongst all output lines of decoder goes high 

(set to 1 and all other lines are set to 0).  

Step decoder  

It provides a separate signal line for each step, or time slot, in a control sequence.  

Encoder  

It gets in the input from instruction decoder, step decoder, external inputs and condition 

codes.  

It uses all these inputs to generate the individual control signals.  

After execution of each instruction end signal is generated this resets control step counter 

and make it ready for generation of control step for next instruction.  

The encoder circuit implements the following logic function to generate Yin  

Yin = T1 + T5 . Add + T . BRANCH+…  

The Yin signal is asserted during time interval T1 for all instructions, during T5 for an ADD 

instruction, during T4 for an unconditional branch instruction, and so on.  

As another example, the logic function to generate Zout signal can given by  

Zout = T2 + T7 . ADD + T6 . BRANCH +….  

The Zout signal is asserted during time interval T2 of all instructions, during T7 for an ADD 

instruction, during T6 for an unconditional branch instruction, and so on.  

A Complete processor  

It consists of  

Instruction unit  

Integer unit  

Floating-point unit  

Instruction cache  

Data cache  

Bus interface unit  

Main memory module  

Input/Output module.  

 

Instruction unit- It fetches instructions from an instruction cache or from the main 

memory when the desired instructions are not available in the cache.  

Integer unit – To process integer data  

Floating unit – To process floating –point data  

Data cache – The integer and floating unit gets data from data cache  

The 80486 processor has 8-kbytes single cache for both instruction and data whereas the 

Pentium processor has two separate 8 kbytes caches for instruction and data. 

 

The processor provides bus interface unit to control the interface of processor to system 

bus, main memory module and input/output module. 



 

 

 
2.12 Microprogrammed Control  

 Every instruction in a processor is implemented by a sequence of one or more sets 

of concurrent micro operations.  

 Each micro operation is associated with a specific set of control lines which, when 

activated, causes that micro operation to take place.  

 Since the number of instructions and control lines is often in the hundreds, the 

complexity of hardwired control unit is very high.  

 Thus, it is costly and difficult to design. The hardwired control unit is relatively 

inflexible because it is difficult to change the design, if one wishes to correct design 

error or modify the instruction set.  

 Microprogramming is a method of control unit design in which the control signal 

memory CM.  

 The control signals to be activated at any time are specified by a microinstruction, 

which is fetched from CM.  

o A sequence of one or more micro operations designed to control specific 

operation, such as addition, multiplication is called a micro program. 

o The micro programs for all instructions are stored in the control memory. 



 

 

 

 The address where these microinstructions are stored in CM is generated by 

microprogram sequencer/microprogram controller.  

 The microprogram sequencer generates the address for microinstruction according 

to the instruction stored in the IR.  

 The microprogrammed control unit,  

- control memory  

- control address register  

- micro instruction register  

- microprogram sequencer  

- The components of control unit work together as follows: 

 The control address register holds the address of the next microinstruction to be 

read.  

 When address is available in control address register, the sequencer issues READ 

command to the control memory.  

 After issue of READ command, the word from the addressed location is read into 

the microinstruction register.  

 Now the content of the micro instruction register generates control signals and next 

address information for the sequencer.  

 The sequencer loads a new address into the control address register based on the 

next address information.  

 

Advantages of Microprogrammed control  

 It simplifies the design of control unit. Thus it is both, cheaper and less error 

phrone implement.  

 Control functions are implemented in software rather than hardware.  

 The design process is orderly and systematic  

 More flexible, can be changed to accommodate new system specifications or to 

correct the design errors quickly and cheaply.  



 

 

 Complex function such as floating point arithmetic can be realized efficiently.  

 

Disadvantages  

 A microprogrammed control unit is somewhat slower than the hardwired control 

unit, because time is required to access the microinstructions from CM.  

 The flexibility is achieved at some extra hardware cost due to the control memory 

and its access circuitry.  

 

Comparison between Hardwired and Microprogrammed Control 

 

 


