
Unit #15 - Differential Equations

Some problems and solutions selected or adapted from Hughes-Hallett Calculus.

Basic Differential Equations

1. Show that y = x+ sin(x)− π satisfies the initial value problem

dy

dx
= 1 + cosx

To verify anything is a solution to an equation, we sub it in and verify that the left and right hand sides are equal after
the substitution.

Left side =
dy

dx
= 1 + cosx− 0 = 1 + cosx

Right side = 1 + cosx

Both sides are equal, so y = x+ sin(x)− π is a solution to the differential equation.

2. Find the general solution of the differential equation
dy

dx
= x3 + 5

We can simply integrate both sides:

y =
x4

4
+ 5x+ C is the general solution to the equation.

3. Find the solution of the differential equation

dq

dz
= 2 + sin z, that also satisfies q = 5 when z = 0.

Integrating both sides with respect to z,

q = 2z − cos z + C

If q(0) = 5, then 5 = 2(0)− cos(0) + C

so C = 6

meaningq = 2z − cos(z) + 6 satisfies the DE and initial condition.

4. A tomato is thrown upward from a bridge 25 m above the ground at 40 m/sec.

(a) Give formulas for the acceleration, velocity, and height of the tomato at time t. (Assume that the acceleration
due to gravity is g = 9.8 m/s2.)

(b) How high does the tomato go, and when does it reach its highest point?

(c) How long is it in the air, assuming it is landing on the ground at the base of the bridge?

(a) Let y(t) be the height of the tomato at any time t. The initial conditions are y(0) = 25 (bridge height), and y′(0) = 40
(initial velocity upwards).

The differential equation we use is F = ma = my′′. Since the only force acting on the tomato is gravity, with
magnitude −mg, the equation of motion is
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my′′ = −mg or y′′ = −g (acceleration)

Integrating both sides with respect to t: y′ = −gt+ C1

Solving for C1 using y′(0) = 40, 40 = −g(0) + C1

C1 = 40

so y′ = −gt+ 40 (velocity)

Integrating again: y = −gt
2

2
+ 40t+ C2

Solving for C2 using y(0) = 25, 25 = −g(0)

2
+ 40(0) + C2

C2 = 25

so y = −gt
2

2
+ 40t+ 25(position)

(b) The maximum height of the tomato occurs when y′(t) = 0, at t = 40/9.8 ≈ 4.08 seconds. The height at this time is
y(4.08) ≈ 106.6 meters.

(c) The tomato is in the air until it hits the ground, at height y = 0. Using the quadratic formula, landing t =

−40±
√

402 − 4(−4.9)(25)

−9.8
.

This gives t ≈ −0.583 and ≈ 8.75. We want the positive time, so the tomato lands on the ground approximately 8.75
seconds after it was thrown.

5. Ice is forming on a pond at a rate given by
dy

dt
= k
√
t where y is the thickness of the ice in inches at time t

measured in hours since the ice started forming, and k is a positive constant. Find y as a function of t.

Expressing using powers: y′ = kt1/2

Integrating both sides: y =
2

3
kt3/2 + C

The thickness of the ice as a function of time is y =
2

3
kt3/2 + C.

In this case, we can solve for C, since we were told t is measured in hours since the ice started forming, which means that
the thickness y = 0 when t = 0. Using this data point in the general solution,

0 =
2

3
k(0) + C

so C = 0

Thus the solution to the differential equation in the scenario given is

y =
2

3
kt3/2

6. If a car goes from 0 to 80 km/h in six seconds with constant acceleration, what is that acceleration?

You could just figure the acceleration out by a unit analysis: to get to 80 mph in 6 seconds, the car must be accelerating
at
80 km/h

6 sec
=

22.2 m/s

6 s
= 3.7 m/s

2

The more refined way to do this would be set up the differential equation for constant acceleration, a:

v′ = a, which, after integrating both sides, gives v = at+ C. If the initial velocity is v(0) = 0, then C = 0.

This means v(t) = at, and at t = 6, v(6) = 80 km/h ≈ 22.2 m/s, so 22.2 ≈ 6a, or a ≈ 22.2/6 ≈ 3.7 m/s2.
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7. Pick out which functions are solutions to which differential equations. (Note: Functions may be solutions to more
than one equation or to none; an equation may have more than one solution.)

(a)
dy

dx
= −2y (I) y = 2 sinx

(b)
dy

dx
= 2y (II) y = sin 2x

(c)
d2y

dx2
= 4y (III) y = e2x

(d)
d2y

dx2
= −4y (IV) y = e−2x

The most straightforward approach is to differentiate each solution to see if could satisfy any of the DEs.

y y′ y′′

(I) y = 2 sinx y′ = 2 cosx y′′ = −2 sinx
(II) y = sin 2x y′ = 2 cos 2x y′′ = −4 sin 2x
(III) y = e2x y′ = 2e2x y′′ = 4e2x

(IV) y = e−2x y′ = −2e−2x y′′ = 4e−2x

(a)
dy

dx
= −2y is satisfied by (IV)

(b)
dy

dx
= 2y is satisfied by (III)

(c)
d2y

dx2
= 4y is satisfied by (III) and (IV)

(d)
d2y

dx2
= −4y is satisfied by (II)

(I) is a solution to none of the DEs.

Modelling With Differential Equations

8. Match the graphs in the figure below with the
following descriptions.

(a) The temperature of a glass of ice water left
on the kitchen table.

(b) The amount of money in an interest- bear-
ing bank account into which $50 is de-
posited.

(c) The speed of a constantly decelerating car.

(d) The temperature of a piece of steel heated
in a furnace and left outside to cool.

(a) (III)

(b) (IV)

(c) (I)

(d) (II)

9. Match the graphs in the figure below with the
following descriptions.

(a) The population of a new species introduced
onto a tropical island

(b) The temperature of a metal ingot placed in
a furnace and then removed

(c) The speed of a car traveling at uniform
speed and then braking uniformly

(d) The mass of carbon-14 in a historical spec-
imen

(e) The concentration of tree pollen in the air
over the course of a year.
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(a) (III), although many graphs would be possible. Af-
ter eliminating the rest, we find that (III) is a rea-
sonable choice. The population will increase until
it reaches an equilibrium. Other possibilities could
have included catastrophic extinction, though, for
example if there was insufficient food or too much
competition.

(b) (V) - Temperature should go up (while in the fur-
nace), and then down (when removed). The only
graph that has this shape is (V)

(c) (I) - Uniform speed implies the speed graphs is flat.
Followed by constant deceleration means that the
speed is a straight line with negative slope.

(d) (II) - The mass of Carbon-14 in a sample will decay
exponentially.

(e) (IV) - Concentration will change over time, going
both up and down.

10. Show that y = A + Cekt is a solution to the

equation
dy

dt
= k(y −A).

To show a function is a solution to an equation, we
must show that the LHS and RHS of the equation are
always equal when we use this formula for y.

LHS =
dy

dt
=

d

dt
(A+ Cekt)

= C(kekt)

RHS = k(y −A) = k(A+ Cekt −A)

= kCekt

Since the LHS and RHS are equal for all values of t, k,
A and C, the function y = A + Cekt is a solution to
the given differential equation.

11. Show that y = sin(2t) satisfies the differential

equation
d2y

dt2
+ 4y = 0.

Check that when we select y = sin 2t, the left hand side
and right hand side of the equation are equal:

LH =
d2y

dt2
+ 4y

=

(
d2

dt2
sin 2t

)
+ 4 sin 2t

=

(
d

dt
2 cos 2t

)
+ 4 sin 2t

= (−4 sin 2t) + 4 sin 2t

= 0

This is equal to the right hand side of the equation, so
y = sin 2t is a solution to the equation.

12. Find the value(s) of ω for which y = cosωt sat-

isfies
d2y

dt2
+ 9y = 0.

We try to sub in y = cosωt into both sides of the equa-
tion, and see if there are any restrictions on ω.

LH =
d2y

dt2
+ 9y

=

(
d2

dt2
cosωt

)
+ 9 cosωt

=

(
d

dt
− ω sinωt

)
+ 9 cosωt

=
(
−ω2 cosωt

)
+ 9 cosωt

For this to equal the RHS, we must have(
−ω2 cosωt

)
+ 9 cosωt = 0

(9− ω2) cos(ωt) = 0

Since these two sides must be equal regardless of t or
for all values of t, the cosine term doesn’t help us. The
only way to make the LHS = 0 is to have 9 − ω2, or
ω = ±3.

The only solutions of the form y = cosωt are y =
cos(3t) and y = cos(−3t).

13. Estimate the missing values in the table below

if you know that
dy

dt
= 0.5y. Assume the rate of

growth given by
dy

dt
is approximately constant

over each unit time interval and that the initial
value of y is 8.

t y
0 8
1
2
3
4

We are using intervals of ∆t = 1.

To estimate the y values as we move to the right, we
use the relationship

y(b) = y(a) + ∆y ≈ y(a) +
dy

dt
∆t

= y(a) + 0.5y(a)∆t
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y(1) ≈ y(0) +
dy

dt
(0) · 1 = 8 + (0.5(8)) = 12

y(2) ≈ y(1) +
dy

dt
(1) · 1 = 12 + (0.5(12)) = 18

y(3) ≈ y(2) +
dy

dt
(2) · 1 = 18 + (0.5(18)) = 27

y(4) ≈ y(3) +
dy

dt
(3) · 1 = 27 + (0.5(27)) = 40.5

Filling in the table, we get

t y
0 8
1 12
2 18
3 27
4 40.5

14. (a) For what values of C and n (if any) is
y = Cxn a solution to the differential equa-
tion:

x
dy

dx
− 3y = 0?

(b) If the solution satisfies y = 40 when x = 2,
what more (if anything) can you say about
C and n?

(a) If y = Cxn is a solution to the given differen-

tial equation, then using that for y and
dy

dx
=

C(nxn−1),

LHS = x
dy

dx
− 3y

= x(Cnxn−1)− 3(Cxn)

= Cnxn − 3Cxn

= C(n− 3)xn

which must = RHS = 0

so C(n− 3)xn = 0

From this factored form, one of the three factors
must equal zero. Since x changes, xn 6= 0 for most
values of x, so we must have either

• C = 0, or

• n− 3 = 0, implying n = 3.

These two options lead to the solutions

• C = 0: y = 0 · xn = 0, or

• n = 3: y = Cx3

as the set of solutions to the differential equation

x
dy

dx
− 3y = 0.

(b) If we add the information that y(2) = 40, that
won’t be satistfied by the C = 0, y = 0 solution,
so we use the solution family y = Cx3:

40 = C(2)3

5 = C

so the more specific solution is now y = 5x3. Now
both C and n are fixed: C = 5 and n = 3.

Slope Fields

15. The slope field for the equation y′ = x(y− 1) is
shown in in the figure below.

(a) Sketch the solutions passing through the
points
(i) (0, 1) (ii) (0, -1) (iii) (0, 0)

(b) From your sketch, write down the equation
of the solution with y(0) = 1 .

(c) Check your solution to part (b) by substi-
tuting it into the differential equation.
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(a)

(b) The slope lines all look flat around y = 1, so the
solution would be the flat line y(x) = 1.

(c) To check, we sub in y = 1 into both sides of the
DE and check that the LHS = RHS:

Left side = y′ =
d

dx
1 = 0

Right side = x(y − 1) = x(1− 1) = 0

Left side = Right side

Therefore the constant solution y = 1 is a solution
to the DE.

16. The slope field for the equation y′ = x + y is
shown in Figure 11.17.

Figure 11.17: y′ = x+ y

(a) Sketch the solutions that pass through the
points
(i) (0, 0) (ii) (-3, 1) (iii) (-1, 0)

(b) From your sketch, write the equation of the
solution passing through (-1, 0).

(c) Check your solution to part (b) by substi-
tuting it into the differential equation.

(a)

(b) From the slope lines, it looks as if the solution
through (−1, 0) is following a line of constant slope
down at a 45o angle. This line would have slope
−1, or the equation y = −1− x.

(c) To check, we sub in y = −1− x into both sides of
the DE and check that the LHS = RHS:

Left side = y′ =
d

dx
(−1− x) = −1

Right side = x+ y = x+ (−1− x) = −1

Left side = Right side

Therefore the straight line solution y = −1 − x is
a solution to the DE.

17. One of the slope fields on the diagram below has
the equation y′ = (x+ y)/(x− y). Which one?

From an earlier question, we already know (c) is the
slope field for y′ = x(y− 1), so (c) can’t be the answer.
We can check a variety of other features to slopes to
determine which of (a) or (b) is correct. Here are the
first checks I would try.

• Along the x axis, or the line y = 0, we should
have slopes y′ = x/x = 1, except when x = 0.
This describes only (b).

• Along the y axis, or the line x = 0, we should have
slopes y′ = y/(−y) = −1, except at y = 0.

• Along the line y = −x, the numerator of y′ is zero,
so we should get horizontal slopes.

• Along the line y = x, the denominator of y′ is zero,
so we should get infinite slopes/vertical slopes.
This is only true for (b).

It seems as if (b) is the slope field for the DE y′ =
(x+ y)/(x− y).

Depending on the question, the strategies of looking
along the axes, as well as looking for where y′ = 0 or
y′ is undefined, can each be useful.
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18. The slope field for the equation dP/dt =
0.1P (10 − P ), for P ≥ 0, is in the figure be-
low.

2

4

6

8

10

12

−2

2 4 6 8−2−4−6−8

(a) Plot the solutions through the following
points:

(i) (0, 0)

(ii) (0, 2)

(iii) (0, 5)

(iv) (0, 8)

(v) (0, 12)

(b) For which positive values of P are the solu-
tions increasing? Decreasing? What is the
limiting value of P as t gets large?

(a)

2

4

6

8

10

12

−2

2 4 6 8−2−4−6−8

b

b

b

b

b

(b) P will be increasing (P ′ will be positive) when
0 < P < 10.

P will be decreasing (P ′ will be negative) when
P > 10 or P < 0.

As t→∞ , P → 10, if the starting value of P was
any value greater than zero.

19. Match the slope fields shown below with their
differential equations:

(a) y′ = −y
(b) y′ = y

(c) y′ = x

(d) y′ = 1/y

(e) y′ = y2

You will have to infer the vertical & horizontal
scaling on the graphs.

• (a) - (II). The slope should be the same for along
horizontal lines (constant y values), so (V) is out.
Along the x axis, y = 0 so y′ = 0, and (III) is
out. Slopes should be negative when y is positive,
and positive when y is negative. Only (II) satisfies
this.

• (b) - (I). Same as (a), except y′ is positive when y
is positive and y′ is negative when y is negative.

• (c) - (V). Slopes are the same along constant x
values, or vertical lines.

• (d) - (III). Slopes are vertical when y = 0, and
become flatter as y goes away from zero.

• (e) - (IV). Slopes are positive everywhere, and zero
along y = 0.
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20. Match the slope fields shown below with their
differential equations:

(a) y′ = 1 + y2

(b) y′ = x

(c) y′ = sinx

(d) y′ = y

(e) y′ = x− y
(f) y′ = 4− y

Each slope field is graphed for −5 ≤ x ≤ 5,
−5 ≤ y ≤ 5.

• (a) - (II). Slopes are positive everywhere. Slopes
are 1 along y = 0, and steeper as you move away
from y = 0.

• (b) - (VI). Slopes are constant when x is constant.
Slopes have same sign as x and get bigger as x gets
bigger.

• (c) - (IV). Slopes change with value of x. Slopes
are all between -1 and +1, and change sinu-
soidally. Since y′ = sinx, direct integration
tells us that the solution curves should look like
y = − cosx+ C.

• (d) - (I). Slopes are steeper for large y, and have
slope zero along y = 0.

• (e) - (III) . Slopes are zero along y = x. Slopes
are constant along y = x+ C

• (f) - (V). Along y = 4, the slopes should be zero.

Euler’s Method

21. Consider the differential equation y′ = x + y.
Use Euler’s method with ∆x = 0.1 to estimate
y when x = 0.4 for the solution curves satisfying

(a) y(0) = 1

(b) y(−1) = 0

(a)

x y dy
dx = x+ y ∆y = dy

dx∆x
0 1 1 0.1

0.1 1.1 1.2 0.12
0.2 1.22 1.42 0.142
0.3 1.362 1.662 0.1662
0.4 1.5282

So y(0.4) ≈ 1.5282.

(b) Keep in mind that we don’t usually ask questions
that require this many steps. If we do, it’s usually
because there is a simple repeating pattern, as in
this example.
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x y dy
dx = x+ y ∆y = dy

dx∆x
-1 0 -1 -0.1

-0.9 -0.1 -1 -0.1
-0.8 -0.2 -1 -0.1
-0.7 -0.3 -1 -0.1
-0.6 -0.4 -1 -0.1

...
0 -1 -1 -0.1
...

0.3 -1.3 -1 -0.1
0.4 -1.4

So y(0.4) ≈ −1.4.

22. Consider the differential equation y′ =
(sinx)(sin y).

(a) Calculate approximate y-values using Eu-
ler’s method with three steps and ∆x = 0.1,
starting at each of the following points:
(i) (0, 2) (ii)(0, π).

(b) Use the slope field below to explain your
solution to part (a)(ii).

(a) Remember to use radians in your calculator.

(i)

x y dy
dx = sin(x) sin(y) ∆y = dy

dx∆x
0 2 0 0

0.1 2 0.091 0.0091
0.2 2.009 0.18 0.018
0.3 2.027

(i)

x y dy
dx = sin(x) sin(y) ∆y = dy

dx∆x
0 π 0 0

0.1 π 0 0
0.2 π 0 0
0.3 π

(b) If we consider the slope field at height y = π,
the slopes will always be horizontal there because

sin(π) = 0, so
dy

dx
= sin(x) sin(y) = 0 for all y = π.

We see this constant solution coming out of Euler’s
method in (ii).

23. Consider the differential equation
dy

dx
= f(x)

with initial value y(0) = 0. Explain why us-
ing Euler’s method to approximate the solution
curve gives the same results as using left Rie-

mann sums to approximate

∫ x

0

f(t)dt.

If we use Euler’s method, with y′ = f(x), we will start
at some x = x0, and count up by intervals of ∆x. This
will produce estimates of y which will have the follow-
ing form:

y1 = y0 + f(x0)∆x

y2 = y1 + f(x1)∆x

. . .

yn = yn−1 + f(xn−1)∆x

where xn is where we want to stop, yn is our estimate
of the function there, and each xi+1 = xi + ∆x.

Note that if we combine all of these terms together, we
get

yn = yn−1 + f(xn−1)∆x

= (yn−2 + f(xn−2∆x))︸ ︷︷ ︸
yn−1

+f(xn−1)∆x

. . .

= y0 + f(x0)∆x+ f(x1)∆x+ . . .+ f(xn−1)∆x

= f(x0)∆x+ f(x1)∆x+ . . .+ f(xn−1)∆x since y(0) = 0

If instead we try to estimate the integral

∫ xn

0

f(x)dx

using rectangles, we will use

(a) height is f(x0) or f(x1), or . . ., or f(xn−1)

(b) width of ∆x

Adding up the area of these rectangles gives us the
Riemann sum

Area = f(x0)∆x+ f(x1)∆x+ . . .+ f(xn−1)∆x

which is exactly the same as the value calculated by
Euler’s method.
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24. Consider the solution of the differential equa-
tion y′ = y passing through y(0) = 1.

(a) Sketch the slope field for this differential
equation, and sketch the solution passing
through the point (0, 1).

(b) Use Euler’s method with step size ∆x =
0.1 to estimate the solution at x =
0.1, 0.2, . . . , 1.

(c) Plot the estimated solution on the slope
field; compare the solution and the slope
field.

(d) Check that y = ex is the solution of y′ = y
with y(0) = 1.

(a) The slopes are steeper further away from the x axis,
and zero along that axis. Slopes are positive above
and negative below the x axis.

(b)

x y dy
dx = y ∆y = dy

dx∆x
0 1 1 0.1

0.1 1.1 1.1 0.11
0.2 1.21 1.21 0.121
0.3 1.331 1.331 0.1331
0.4 1.4641 1.4641 0.14641
0.5 1.61051 1.61051 0.161051
0.6 1.77156 1.77156 0.177156
0.7 1.94872 1.94872 0.194872
0.8 2.14359 2.14359 0.214359
0.9 2.35795 2.35795 0.235795
1 2.59374

(c) The points seem to go up in the same way that the
graph does: small changes in y at first, followed by
gradually larger and larger steps.

(d) We can check that y = ex is the solution to
dy

dx
= y, y(0) = 1 by seeing that

y(0) = e0 = 1 (initial condition)

Left side =
dy

dx
=

d

dx
ex = ex = y = Right side

25. (a) Use Euler’s method to approximate the
value of y at x = 1 on the solution curve
to the differential equation

dy

dx
= x3 − y3

that passes through (0, 0). Use ∆x = 1/5
(i.e., 5 steps).

(b) Using the slope field shown below, sketch
the solution that passes through (0, 0).
Show the approximation you made in part
(a).

(c) Using the slope field, say whether your an-
swer to part (a) is an overestimate or an
underestimate.

Slope field for
dy

dx
= x3 − y3.

(a)

x y dy
dx = x3 − y3 ∆y = dy

dx∆x
0 0 0 0

0.2 0 0.008 0.0016
0.4 0.0016 0.064 0.0128
0.6 0.0144 0.216 0.0432
0.8 0.0576 0.51181 0.10236
1 0.15996

So y(1) ≈ 0.15996.

(b) It is too difficult to show the solution from part (a)
in such a small diagram. Here is a sketch of the
solution curve, though.

(c) Because the solution curve is convex up between
x = 0 and x = 1, the solution from part (a) will be
an underestimate of the real solution.
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26. Consider the differential equation
dy

dx
= 2x,

with initial condition y(0) = 1.

(a) Use Euler’s method with two steps to esti-
mate y when x = 1 . Then use four steps.

(b) What is the formula for the exact value of
y?

(a) With two intervals between x = 0 and x = 1, we
have ∆x = 0.5.
x y dy

dx = 2x ∆y = dy
dx∆x

0 1 0 0
0.5 1 1 0.5
1 1.5

With four intervals between x = 0 and x = 1, we
have ∆x = 0.25.

x y dy
dx = 2x ∆y = dy

dx∆x
0 1 0 0

0.25 1 0.5 0.125
0.50 1.125 1 0.25
0.75 1.375 1.5 0.375

1 1.75

(b) If
dy

dx
= 2x, we can integrate directly, so y =

x2 + C. Since we want a solution going through
y = 1, C = 1 so our analytic (exact) solution be-
comes y = x2 + 1.

Separable Differential Equations

27. Determine which of the following differential
equations is separable. Do not solve the equa-
tions.

(a) y′ = y

(b) y′ = x+ y

(c) y′ = xy

(d) y′ = sin(x+ y)

(e) y′ − xy = 0

(f) y′ = y/x

(g) y′ = ln(xy)

(h) y′ = (sinx)(cos y)

(i) y′ = (sinx)(cosxy)

(j) y′ = x/y

(k) y′ = 2x

(l) y′ = (x+ y)/(x+ 2y)

(a) Separable.
dy

dx
= y can be separated

as
1

y
dy = dx.

(b) Not separable.

(c) Separable.
dy

dx
= xy can be separated

as
1

y
dy = x dx.

(d) Not separable.

(e) Separable. (Rearrange to make y′ = xy, which is
separable.)

(f) Separable.
dy

dx
=
y

x
can be separated

as
1

y
dy =

1

x
dx.

(g) Not separable.

(h) Separable.
dy

dx
= (sinx)(cos y) can be separated

as
1

cos(y)
dy = sin(x) dx.

(i) Not separable.

(j) Separable.
dy

dx
=
x

y
can be separated

as y dy = x dx.

(k) Separable.
dy

dx
= 2x can be separated

as dy = 2x dx.

(l) Not separable.

For Questions 28-36, find the particular solution
to the differential equation.

28.
dP

dt
= −2P, P (0) = 1

dP

P
= −2dt

Int’te both sides:

∫
dP

P
=

∫
−2dt

ln |P | = −2t+ C

Exp’te both sides: eln |P | = e−2t+C

|P | = e−2teC

P = C1e
−2t where C1 = ±eC

We can remove the absolute value signs here, as the
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change can be factored into the sign of C1.

Use P (0) = 1: 1 = C1e
0

so C1 = 1

and P (t) = 1e−2t = e−2t

29.
dL

dp
=
L

2
, L(0) = 100

dL

L
=

1

2
dp

Int’te both sides:

∫
dL

L
=

∫
1

2
dp

ln |L| = 1

2
p+ C

Exp’te both sides: eln |L| = e
p
2+C

L = C1e
p
2 where C1 = ±eC

Use L(0) = 100: 100 = C1e
0

so C1 = 100

and L = 100e
p
2

30.
dy

dx
+
y

3
= 0, y(0) = 10

dy

dx
=
−y
3

dy

y
=
−1

3
dx

Int’te both sides:

∫
dy

y
=

∫
−1

3
dx

ln |y| = −1

3
x+ C

Exp’te both sides: |y| = e
−x
3 +C

y = C1e
−x
3 where C1 = ±eC

Use y(0) = 10: 10 = C1e
0

so C1 = 10

and y = 10e
−x
3

31.
dm

dt
= 3m, m = 5 when t = 1.

dm

m
= 3dt

Int’te both sides:

∫
dm

m
=

∫
3dt

ln |m| = 3t+ C

Exp’te both sides: |m| = e3t+C

m = C1e
3t where C1 = ±eC

Use m(1) = 5: 5 = C1e
3

so C1 = 5e−3

and m = 5e−3e3t = 5e3t−3

32.
1

z

dz

dt
= 5, z(1) = 5.

dz

z
= 5dt

Int’te both sides:

∫
dz

z
=

∫
5dt

ln |z| = 5t+ C

Exp’te both sides: |z| = e5t+C

z = C1e
5t where C1 = ±eC

Use z(1) = 5: 5 = C1e
5

so C1 = 5e−5

and z = 5e−5e5t = 5e5t−5

33.
dy

dt
= 0.5(y − 200), y = 50 when t = 0.

dy

(y − 200)
= 0.5dt

Int’te both sides:

∫
dy

(y − 200)
=

∫
0.5dt

ln |y − 200| = 0.5t+ C

Exp’te both sides: |y − 200| = e0.5t+C

y − 200 = C1e
0.5t where C1 = ±eC

y = C1e
0.5t + 200

Use y(0) = 50: 50 = C1e
0 + 200

so C1 = −150

and y = −150e0.5t + 200

34.
dm

dt
= 0.1m+ 200, m(0) = 1000.

Depending on how you group the constants (e.g. if you
factor out the 0.1 term), you may see different factors
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along the way in this solution. The final answer should
still be the same as the one given here.

dm

(0.1m+ 200)
= dt

Int’te both sides:∫
dm

(0.1m+ 200)
=

∫
dt

ln |0.1m+ 200|
0.1

= t+ C

ln |0.1m+ 200| = 0.1t+ C1 Let C1 = 0.1C

Exp’te both sides:

|0.1m+ 200| = e0.1t+C1

0.1m+ 200 = C2e
0.1t where C2 = ±eC1

0.1m = C2e
0.1t − 200

m = 10C2e
0.1t − 2000

Use m(0) = 1000: 1000 = 10C2e
0 − 2000

so 10C2 = 3000

and m = 3000e0.1t − 2000

35.
dz

dt
= tez, through the origin.

dz

ez
= t dt

Int’te both sides:

∫
e−z dz =

∫
t dt

−e−z =
t2

2
+ C

e−z = − t
2

2
− C

Use z(0) = 0: e0 = −02

2
− C

C = −1

Take ln of both sides: ln(e−z) = ln

(
− t

2

2
− (−1)

)
−z = ln

(
1− t2

2

)
z = − ln

(
1− t2

2

)

36.
dw

dθ
= θw2 sin(θ2), w(0) = 1.

dw

w2
= θ sin(θ2)dθ

Int’te both sides:

∫
w−2dw =

∫
θ sin(θ2)dθ

integrate by substitution, u = θ2, − w−1 = −1

2
cos(θ2) + C

Use w(0) = 1: − 1 = −1

2
cos(02) + C

C = −1

2

so − w−1 = −1

2
cos(θ2)− 1

2

w−1 =
1

2
cos(θ2) +

1

2
=

cos(θ2) + 1

2

and finally w =
2

cos(θ2) + 1

For Questions 37-40, find the general solution
to the differential equations. Assume a, b, and
k are nonzero constants.

37.
dR

dt
= kR

dR

R
= kdt

Int’te both sides:

∫
dR

R
=

∫
kdt

ln |R| = kt+ C

Exp’te both sides: eln |R| = ekt+C

R = C1e
kt where C1 = ±eC

38.
dP

dt
− aP = b
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dP

dt
= aP + b

dP

(aP + b)
= dt

Int’te both sides:∫
1

(aP + b)
dP =

∫
dt

1

a
ln |aP + b| = t+ C

ln |aP + b| = at+ aC

Exp’te both sides:

|aP + b| = eat+aC

Letting A = + or - eaC as needed for the absolute value,

P =
1

a

(
Aeat − b

)

39.
dy

dt
= ky2(1 + t2)

dy

y2
= k(1 + t2) dt

Int’te both sides:

∫
1

y2
dy =

∫
k(1 + t2)dt

−y−1 = kt+ k
t3

3
+ C

y = − 1

kt+ k t3

3 + C

40.
dx

dt
=
x lnx

t

Note that x > 0 because ln(x) is only defined for
those x values. You may further assume t > 0.

dx

x lnx
=

1

t
dt

Int’te both sides:

∫
1

x lnx
dx =

∫
1

t
dt

by substitution (let u = lnx) ln(lnx) = ln(t) + C

Exp’te both sides lnx = eln t+C = teC

Exponentiate again x = etC1

if we let C1 = eC
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