Unit #15 - Differential Equations

Some problems and solutions selected or adapted from Hughes-Hallett Calculus.

Basic Differential Equations

To verify anything is a solution to an equation, we sub it in and verify that the left and right hand sides are equal after
the substitution.

d
Left sidezﬁ =1+4+cosz—0=1+cosx

Right side = 1 + cosz

Both sides are equal, so y = x + sin(x) — 7 is a solution to the differential equation.

We can simply integrate both sides:
4
Yy = % + 5x + C' is the general solution to the equation.

Integrating both sides with respect to z,

q=2z—cosz+C
If ¢(0) = 5, then 5 =2(0) — cos(0) + C
soC =6
meaningg = 2z — cos(z) + 6 satisfies the DE and initial condition.

(a) Let y(¢) be the height of the tomato at any time ¢. The initial conditions are y(0) = 25 (bridge height), and y'(0) = 40
(initial velocity upwards).
The differential equation we use is F' = ma = my”. Since the only force acting on the tomato is gravity, with
magnitude —mg, the equation of motion is



my” = —mg or y’" = —g (acceleration)

Integrating both sides with respect to t: ¢’ = —gt + C;
Solving for Cy using 3/(0) = 40, 40 = —g(0) + C4

C; =40
so y =—gt+40 (velocity)
. : gt?
Integrating again: y = -5 + 40t 4+ Cq
: : _ _ 900
Solving for Cy using y(0) =25, 25 = - +40(0) + Cs
Cy =25
gt? iy
o y=-"- + 40t + 25(position)

(b) The maximum height of the tomato occurs when y'(¢) = 0, at t = 40/9.8 ~ 4.08 seconds. The height at this time is
y(4.08) ~ 106.6 meters.
(¢) The tomato is in the air until it hits the ground, at height y = 0. Using the quadratic formula, landing ¢t =
—40 £ 1/40% — 4(—4.9)(25)
-9.8 '
This gives t ~& —0.583 and ~ 8.75. We want the positive time, so the tomato lands on the ground approximately 8.75
seconds after it was thrown.

d
5. Ice is forming on a pond at a rate given by = = kvt where y is the thickness of the ice in inches at time ¢

measured in hours since the ice started forming, and & is a positive constant. Find y as a function of ¢.

Expressing using powers: ¢ = kt'/?

2
Integrating both sides: y = §kt3/2 +C

2
The thickness of the ice as a function of time is y = gkt‘n’/z +C.

In this case, we can solve for C, since we were told t is measured in hours since the ice started forming, which means that
the thickness y = 0 when ¢ = 0. Using this data point in the general solution,

2
soC =0

Thus the solution to the differential equation in the scenario given is

2
= Zkt3/2
Y73

6. If a car goes from 0 to 80 km/h in six seconds with constant acceleration, what is that acceleration?

You could just figure the acceleration out by a unit analysis: to get to 80 mph in 6 seconds, the car must be accelerating

at

80 km/h  222m/s 2
Gsec  6s 3.7 m/s

The more refined way to do this would be set up the differential equation for constant acceleration, a:

v’ = a, which, after integrating both sides, gives v = at + C. If the initial velocity is v(0) = 0, then C' = 0.
This means v(t) = at, and at t = 6,v(6) = 80 km/h ~ 22.2 m/s, so 22.2 ~ 6a, or a ~ 22.2/6 ~ 3.7 m/s>.



The most straightforward approach is to differentiate each solution to see if could satisfy any of the DEs.

y y/ y//
(I) y=2sinz ¢y =2cosz y"=—-2snzx
(I) y=sin2z 3y =2cos2z vy’ = —4sin2x
(III) Y= 62:1: yl — 2e2m yll — 4621:
(IV) Y= e—2w y/ — _26—2w y// — 46—21‘
dy N
(a) I = —2y is satisfied by (IV)
d
(b) ﬁ = 2y is satisfied by (III)
d2
o) &Y _ 4y is satisfied by (III) and (IV
dz?
(d) Y _ 4y is satisfied by (T1
—oz = 4y is satisfie y (II)

(I) is a solution to none of the DEs.

Modelling With Differential Equations
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(a) (IIT), although many graphs would be possible. Af-
ter eliminating the rest, we find that (III) is a rea-
sonable choice. The population will increase until
it reaches an equilibrium. Other possibilities could
have included catastrophic extinction, though, for
example if there was insufficient food or too much
competition.

(b) (V) - Temperature should go up (while in the fur-
nace), and then down (when removed). The only
graph that has this shape is (V)

(¢) (I) - Uniform speed implies the speed graphs is flat.
Followed by constant deceleration means that the
speed is a straight line with negative slope.

(d) (II) - The mass of Carbon-14 in a sample will decay
exponentially.

(e) (IV) - Concentration will change over time, going
both up and down.

10. Show that y = A + Ce** is a solution to the

dy
equation — = k(y — A).
q o =~y —4)
To show a function is a solution to an equation, we
must show that the LHS and RHS of the equation are
always equal when we use this formula for y.

_dy _d ket
LHS = = = = (A4 Ce™)
= C(kek?)
RHS = k(y — A) = k(A + CeM — A)
= kCel?t

Since the LHS and RHS are equal for all values of ¢, k,
A and C, the function y = A + Ce** is a solution to
the given differential equation.

11. Show that y = sin(2¢t) satisfies the differential
2

dy
tion— + 4y = 0.
equation a2 + 4y
Check that when we select y = sin 2t, the left hand side
and right hand side of the equation are equal:

d?y

T ar

d2
= (dtz sin Qt) + 4sin 2t

LH + 4y

d
<d7§2 cos 2t> + 4sin 2t

—4sin 2t) 4+ 4sin 2t

Il
o —~

This is equal to the right hand side of the equation, so
y = sin 2t is a solution to the equation.

12. Find the value(s) of w for which y = coswt sat-

Ly

isfi
isfies —2

+ 9y = 0.

We try to sub in y = coswt into both sides of the equa-
tion, and see if there are any restrictions on w.

d?y

T

d2
= <dt2 coswt) + 9 coswt

LH + 9y

d
= (dt — wsinwt) + 9 coswt

= (fwz cos wt) + 9 coswt

For this to equal the RHS, we must have

(—w2 cos wt) +9coswt =0
(9 — w?) cos(wt) =0

Since these two sides must be equal regardless of t or
for all values of t, the cosine term doesn’t help us. The
only way to make the LHS = 0 is to have 9 — w?, or
w = %3.

The only solutions of the form y = coswt are y =
cos(3t) and y = cos(—3t).
13. Estimate the missing values in the table below

d
if you know that d_i{ = 0.5y. Assume the rate of

d
growth given by b is approximately constant
over each unit time interval and that the initial
value of y is 8.

t |y
]

=W N = O

We are using intervals of At = 1.

To estimate the y values as we move to the right, we
use the relationship

y(b) = y(a) + Ay ~ y(a) + ‘% At
= y(a) + 0.5y(a) At



y(1) ~ y(0) + % (0)-1=8+(0.5(8)) =12
y(2) ~ y(1) + % (1)-1=12+(0.5(12)) = 18
y(3) ~ y(2) + % (2)-1=18+(0.5(18)) =27

y(4) ~ y(3) + % (3)-1 =27+ (0.5(27)) = 40.5

Filling in the table, we get

WD = O

)
8

12

18

27
40.5

(a) If y = Cz™ is a solution to the given differen-

d
tial equation, then using that for y and d—y =
x

LHS = w@ — 3y
dx

= z(Cnz" 1) — 3(Cx™)
= Cna™ — 3Cz"
=C(n—3)a"

which must = RHS =0

so C(n—3)z" =0
From this factored form, one of the three factors

must equal zero. Since x changes, ™ # 0 for most
values of x, so we must have either

e C=0,o0r
e n— 3 =0, implying n = 3.
These two options lead to the solutions
e C=0:y=0-2"=0, or
en=23 y=Ca
as the set of solutions to the differential equation

dy
x% —3y=0.

(b) If we add the information that y(2) = 40, that

won’t be satistfied by the C = 0, y = 0 solution,
so we use the solution family y = Cx3:
40 = C(2)?
5=C

so the more specific solution is now y = 5z3. Now
both C' and n are fixed: C'=5 and n = 3.

Slope Fields




4

a

(b) The slope lines all look flat around y = 1, so the
solution would be the flat line y(x) = 1.

(c) To check, we sub in y = 1 into both sides of the
DE and check that the LHS = RHS:

Left side = ¢/ = i1 =0
dz

Right side=z(y—1)=2(1-1) =0
Left side = Right side

Therefore the constant solution y = 1 is a solution
to the DE.

16. The slope field for the equation 3y’ = x + y is
shown in Figure 11.17.
Y
4

—4
Figure 11.17: ¢ =z + vy

(a) Sketch the solutions that pass through the
points

(b) From your sketch, write the equation of the
solution passing through (-1, 0).

(¢) Check your solution to part (b) by substi-
tuting it into the differential equation.

(b) From the slope lines, it looks as if the solution
through (—1, 0) is following a line of constant slope
down at a 45° angle. This line would have slope
—1, or the equation y = —1 — .

(¢) To check, we sub in y = —1 — z into both sides of
the DE and check that the LHS = RHS:

d
Left side = ¢ = —(—1 —a) = —1
eft side =y dac( x)
Right side=z+y=a+ (-1—2z) =-1

Left side = Right side

Therefore the straight line solution y = —1 — x is
a solution to the DE.

17. One of the slope fields on the diagram below has
the equation ¢’ = (z + y)/(z — y). Which one?

(a) Y (b) ¥
|

(c) v

From an earlier question, we already know (c) is the
slope field for ' = x(y — 1), so (¢) can’t be the answer.
We can check a variety of other features to slopes to
determine which of (a) or (b) is correct. Here are the
first checks I would try.

e Along the z axis, or the line y = 0, we should
have slopes 3y’ = x/x = 1, except when = = 0.
This describes only (b).

e Along the y axis, or the line z = 0, we should have
slopes ¥ = y/(—y) = —1, except at y = 0.

e Along the line y = —z, the numerator of 4’ is zero,
so we should get horizontal slopes.

e Along the line y = x, the denominator of ¢’ is zero,
so we should get infinite slopes/vertical slopes.
This is only true for (b).

It seems as if (b) is the slope field for the DE ¢’ =
(@ +y)/(x—y)
Depending on the question, the strategies of looking

along the axes, as well as looking for where 3/ = 0 or
y' is undefined, can each be useful.
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P will be increasing (P’ will be
0 < P < 10.

P will be decreasing (P’ will be negative) when
P>10o0r P <O.

Ast — oo, P — 10, if the starting value of P was
any value greater than zero.

ositive) when

(a) - (IT). The slope should be the same for along
horizontal lines (constant y values), so (V) is out.
Along the z axis, y = 0 so ¢y = 0, and (III) is
out. Slopes should be negative when y is positive,
and positive when y is negative. Ouly (II) satisfies
this.

(b) - (I). Same as (a), except ¥’ is positive when y
is positive and ¥’ is negative when y is negative.

(c) - (V). Slopes are the same along constant x
values, or vertical lines.

(d) - (III). Slopes are vertical when y = 0, and
become flatter as y goes away from zero.

(e) - (IV). Slopes are positive everywhere, and zero
along y = 0.



are 1 along y = 0, and steeper as you move away

e (a) - (II). Slopes are positive everywhere. Slopes
from y = 0.

Slopes have same sign as x and get bigger as = gets

e (b) - (VI). Slopes are constant when x is constant.
bigger.

e (c) - (IV). Slopes change with value of z. Slopes

are all between -1 and 41, and change sinu-

sinz, direct integration

Since vy’
tells us that the solution curves should look like

y=—cosx+C.

soidally.

e (d) - (I). Slopes are steeper for large y, and have
slope zero along y = 0.

e (e) - (IIT) . Slopes are zero along y = z. Slopes

are constant along y =z + C'

the slopes should be zero.

Y

=4

Along y

) - (V).
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because there is a simple repeating pattern,

this example.
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So y(0.4) =~ 1.5282.



x Y % =x+y | Ay = %Aa:
-1 0 -1 -0.1
-0.9 | -0.1 -1 -0.1
-0.8 | -0.2 -1 -0.1
-0.7 | -0.3 -1 -0.1
-0.6 | -0.4 -1 -0.1
0 -1 -1 -0.1
0.3 | -1.3 -1 -0.1
04 | -14
So y(0.4) ~ —1.4.
22. Consider the differential equation 3y =
(sinz)(siny).

(a) Calculate approximate y-values using Eu-
ler’s method with three steps and Az = 0.1,
starting at each of the following points:

(i1) (0, 7).

(b) Use the slope field below to explain your
solution to part (a)(ii).

()

(0, 2)

(a) Remember to use radians in your calculator.

x y % = sin(z)sin(y) | Ay = %Am
0 2 0 0
i o1] 2 0.091 0.0091
0.2 | 2.009 0.18 0.018
0.3 | 2.027
x |y ZZ =sin(z)sin(y) | Ay = %Am
0 | 0 0
()] 01| 0 0
02| 0 0
03 | m

(b) If we consider the slope field at height y = m,

the slopes will always be horizontal there because
sin(m) = 0, so d—y = sin(z) sin(y) = 0 for all y = 7.
x

We see this constant solution coming out of Euler’s
method in (ii).

d
23. Consider the differential equation d_y = f(z)
s

with initial value y(0) = 0. Explain why us-
ing Euler’s method to approximate the solution
curve gives the same results as using left Rie-

x
mann sums to approximate / ft)dt.
0

If we use Euler’s method, with ¢ = f(x), we will start
at some x = g, and count up by intervals of Az. This
will produce estimates of y which will have the follow-
ing form:

Y1 =yo + f(zo)Ax
yo =y1 + fx1)Ax

Yn = Yn—1 + f(-rn—l)Al'

where x,, is where we want to stop, ¥y, is our estimate
of the function there, and each ;41 = z; + Ax.

Note that if we combine all of these terms together, we
get

Yn = Yn—1 + f($n,1)A$
= (yn—2 + f(xn—QAz)) +f(1'7,_1)ASC

Yn—1

=yo + f(zo)Ax + f(z1)Ax + ...+ f(zp_1)Ax
= f(zo)Az + f(z1)Az+ ...+ f(xp_1)Ax

Tn
If instead we try to estimate the integral / f(x)dx
0

using rectangles, we will use

(a) height is f(zo) or f(z1), or ..., or f(x,—1)

(b) width of Az

Adding up the area of these rectangles gives us the
Riemann sum

Area = f(zo)Az + f(z1)Az + ...+ f(zp_1)Az

which is exactly the same as the value calculated by
Euler’s method.

since y(0) = (
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x = 0 and z = 1, the solution from part (a) will be

(c) Because the solution curve is convex up between
an underestimate of the real solution.

10

Right side

initial condition)

(

=1
ac:ez:y

0
de
dzr

e

)

y(0
dy
dzr

Left side =



(a) With two intervals between z = 0 and x = 1, we

have Az = 0.5.
x y % =2z | Ay = Z—ZAI
0 1 0 0
051 1 1 0.5
1 1.5

With four intervals between £ = 0 and « = 1, we

have Az = 0.25.
x y % =2z | Ay = %Aw
0 1 0 0
0.25 1 0.5 0.125
0.50 | 1.125 1 0.25
0.75 | 1.375 1.5 0.375
1 1.75
dy

(b) If e = 2, we can integrate directly, so y =

2% 4+ C. Since we want a solution going through
y =1, C =1 so our analytic (exact) solution be-

comes y = 22 + 1.

Separable Differential Equations

(a) Separable.

(b) Not separable.

(c) Separable. Z—Z = xy can be separated

1
as —dy = z dzx.
Y

(d) Not separable.

(e) Separable. (Rearrange to make y' = xy, which is

separable.)

dy
f le. —
() Seplarab e —
as —dy = — dz.
y x

d
Yy _ y can be separated
dx

as ldy =dzx.
Y

) can be separated
x

11

(g) Not separable.

(h) Separable.g—z = (sinz)(cosy) can be separated

as mdy = sin(z) dz.

(i) Not separable.

dx
as y dy =z dzx.

d
(j) Separable. & _ % can be separated

(k) Separable.j—i = 2z can be separated
as dy = 2x dx.

(1) Not separable.

P
@ ot

P
Int’te both sides: / g = / —2dt

In|P|=-2t+C
Exp’te both sides: eIPl = g=2t4C

|P| _ e—2teC

P = Cie % where C) = +e¢

We can remove the absolute value signs here, as the



change can be factored into the sign of Cf.

Use P(0)=1: 1=Cy¢°
so C;1=1
and P(t) =le 2 =72

dL 1
T "2
dL 1
Int’ h sides: — = =
nt’te both sides / 17 / 2dp
1
ln|L|=§p+C

Exp’te both sides: e™!Hl = ¢5+C
L= Cleg where C; = +e©
Use L(0) = 100: 100 = C;¢°
SO C1 =100
and L =100e*

dy _—y
dx 3
dy -1
2 —_—d
Yy 3
-1
Int’te both sides: /d_y = /_ dx
Y 3
In | | = _lx +C
Y=g
Exp’te both sides: ly| = e TC
y=Cies where Oy = +¢©
Use y(0) = 10: 10 = Cye°
so (C1=10

and  y=10e3

12

dm _ 3dt
m
Int’te both sides: / d_m = / 3dt
m
In|m|=3t+C
Exp’te both sides: |m| = 3t+¢
m = C1e> where C; = +e©
Use m(1) = 5: 5=Cé?

so C) =5

and m = 5e et = 5e3t3

sy
z
. dz
Int’te both sides: ~ = [ 5dt
In|z| =5t +C
Exp’te both sides: |z| = e5t+C
2 = 16" where Oy = +¢e¢
Use z(1) =5: 5= 0C4e°

so Cp=5e"?

and  z =5he e =520

_dy
(y —200)

[ s

ln|y — 200] = 0.5¢ + C
|y _ 200| _ 60.5t+C

= 0.5dt

Int’te both sides:

Exp’te both sides:

y — 200 = 1% where € = +e€

y = C1e%5 + 200
Use y(0) =50: 50 = C1e® + 200
so (C;=-150
and  y = —150e%°* + 200

Depending on how you group the constants (e.g. if you
factor out the 0.1 term), you may see different factors



along the way in this solution. The final answer should
still be the same as the one given here.

dm J i—f — fsin(6%)d6
Pt —
(0.1m + 200) ' , .
Int’te both sides: Int’te both sides: /'LU_ dw = /651n(9 )d@

dm . _—r 2 -1 1 2
I integrate by substitution, u = 6*, —w™" = —=cos(6°) + C
/ (0.1m + 200) / % )
In[0.1m +200] _ Lo Use w(0) = 1: —1=-3 cos(0%) + C
0.1
1
ln|01m+200| =0.1t + Cy Let C; = 0.1C C= —5
Exp’te both sides:
|0.1m + 200] = €01t
0.1m + 200 = Cye®' where Cy = +e&
0.1m = Cae®* — 200
m = 100260'” — 2000 SO —wl=—Z COS(92) — %
= ]_ : ]_ = ]. 0 - 2
Use m(0) = 1000 000 = 10Cse 000 o — Lot 1 cos(62) + 1
so  10C% = 3000 2 B
and  m = 3000”1 — 2000 d finall 2
anc ihelly W= cos(0?) +1

Int’te both sides:

02
Use z(0) = 0: eoz—?—C
C=-1

2
Take In of both sides: In(e™*) =1In (—% — (—1))

t2
—z—ln(l—E)
t2
Z——ln(l—a)

13

dR
— = kdt
R
Int’te both sides: / dER = / kdt
In|R| =kt+C

Exp’te both sides: e Bl = ght+C

R = C1e** where O} = +¢¢



dP
— =aP+b
7 alP +

L
(aP+b)

Int’te both sides:

/ﬁdP=/dt

1
Eln|aP+b| =t+C
In|aP + b| = at + aC
Exp’te both sides:
|(1P + bl — eat—l—aC’

C

Letting A = + or - e*~ as needed for the absolute value,

_l at
P—a(Ae b)

14

dy 2
—2:k(1+t)dt

Y
1
Int’te both sides: /y_2 dy = /k(l + t3)dt

-1 3
—yT =kt kg +C
1
kt+ kY +C

y:

Int’te both sides:

1
/ da:=/ dt
zlnx t

by substitution (let v =Inz) In(lnz)=In(t)+C

Exp’te both sides  Inz = ™ = ¢e¢

Exponentiate again =~z = et
if we let O] = e



