
Mesos: A Platform for Fine-
Grained Resource Sharing

in Data Centers (II)	

UC	
 BERKELEY	

Anthony D. Joseph	

	

LASER Summer School	

September 2013	

My Talks at LASER 2013	

1.  AMP Lab introduction	

2.  The Datacenter Needs an Operating System	

3.  Mesos, part one	

4.  Dominant Resource Fairness	

5.  Mesos, part two	

6.  Spark	

2	

Collaborators	

•  Matei Zaharia	

•  Benjamin Hindman	

•  Andy Konwinski	

•  Ali Ghodsi	

•  Randy Katz	

•  Scott Shenker	

•  Ion Stoica	

3	

Apache Mesos	

A common resource sharing layer for diverse frameworks	

	

	

	

	

	

Run multiple instances of the same framework	

»  Isolate production and experimental jobs	

» Run multiple versions of the framework concurrently	

Support specialized frameworks for problem domains	

Node OS	

(e.g. Linux)	

Node OS	

(e.g. Windows)	

Node OS	

(e.g. Linux)	

…	

Sp
ar

k	

SCADS	

…	

Datacenter “OS” (e.g., Apache Mesos)	

H
ad

oo
p	

M
PI
	

H
yp

er
tb

al
e	

…	

C
as

sa
nd

ra
	

Hive	

 PIQL	

4	

Implementation	

20,000+ lines of C++	

APIs in C, C++, Java, and Python	

Master failover using ZooKeeper	

Frameworks ported: Hadoop, MPI, Torque	

New specialized frameworks: Spark, Apache/HaProxy 	

Open source Apache project���
 http://mesos.apache.org/ 	

5	

Frameworks	

Ported frameworks:	

»  Hadoop (900 line patch)	

»  MPI (160 line wrapper scripts)	

New frameworks:	

»  Spark, Scala framework for iterative jobs (1300 lines)	

»  Apache+haproxy, elastic web server farm (200 lines)	

6	

Isolation	

Mesos has pluggable isolation modules to isolate
tasks sharing a node	

	

Currently supports Linux Containers and Solaris
projects 	

» Can isolate memory, CPU, IO, network bandwidth	

	

Could be a great place to use VMs	

	

7	

Apache ZooKeeper	

Multiple servers require coordination	

» Leader Election, Group Membership, Work Queues, Data

Sharding, Event Notifications, Configuration, and Cluster
Management	

Highly available, scalable, distributed coordination kernel	

» Ordered updates and strong persistence guarantees	

» Conditional updates (version), Watches for data changes	

	

	

	

	

	

	

	

Server	

Server	

 Server	

Server	

Server	

Server	

Leader	

Client	

 Client	

Client	

Client	

Client	

 Client	

Client	

Mesos Master
3	

	

Master Failure	

Zoo	
 1	

Zoo	

2	

Zoo	

3	

Zoo	

4	

Zoo	

5	

Slave 1	

Hadoop
Executor	

MPI Executor	

Slave 2	

Hadoop
Executor	

Hadoop Executor	

Slave 3	

JVM Executor	

Mesos Master
1	

Scheduler	

Hadoop
JobTracker	

Scheduler	

MPI
Scheduler	

ZooKeeper	

Mesos Master
2	

ZooKeeper used to
elect one active
Mesos master	

Connect to
currently active

master	

Connect to
currently active

master	

9	

Resource Revocation	

Killing tasks to make room for other users	

Killing typically not needed for short tasks	

» If avg task length is 2 min, a new framework gets 10% of

all machines within 12 seconds on avg	

	

Hadoop job and task durations at Facebook	

10	

Resource Revocation (2)	

Not the normal case because fine-grained tasks enable
quick reallocation of resources 	

Sometimes necessary:	

» Long running tasks never relinquishing resources	

» Buggy job running forever	

» Greedy user who decides to makes his task long	

Safe allocation lets frameworks have long running tasks
defined by allocation policy	

» Users will get at least safe share within specified time	

»  If stay below safe allocation, task won’t be killed	

11	

Resource Revocation (3)	

Dealing with long tasks monopolizing nodes	

» Let slaves have long slots and short slots	

» Short slots killed if used too long by a task	

Revoke only if a user is below its safe share and is
interested in offers	

» Revoke tasks from users farthest above their safe share	

» Framework given a grace period before killing its tasks	

12	

Example: Running MPI on Mesos	

Users always told their safe share	

» Avoid revocation by staying below it	

Giving each user a small safe share may not be
enough if jobs need many machines 	

Can run a traditional HPC scheduler as a user
with a large safe share of the cluster, and have MPI
jobs queue up on it	

» E.g. Torque gets 40% of cluster	

13	

Example: Torque on Mesos	

MPI
Job	

40%	

Safe share
= 40%	

MPI
Job	

MPI
Job	

Torque	

MPI
Job	

Facebook.com	

Spam	

 Ads	

Job 1	

Job 2	

User 1	

Job 1	

User 2	

Job 4	

40%	

20%	

14	

Some Mesos Deployments	

1,000’s of nodes running over a dozen
production services 	

Genomics researchers using Hadoop and
Spark on Mesos	

Spark in use by Yahoo! Research	

Spark for analytics	

	

Hadoop and Spark used by machine learning
researchers	

15	

Results	

Dynamic Resource Sharing	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

1	

 31	

 61	

 91	

 121	

 151	

 181	

 211	

 241	

 271	

 301	

 331	

Sh
ar

e
of

 C
lu

st
er
	

Time (s)	

MPI	

Hadoop	

Spark	

17	

Load
calculation	

Mesos slave	

Elastic Web Server Farm	

Mesos master	

Mesos slave	

Web

executor	

task	

(Apache)	

Scheduler
(haproxy)	

Load gen
framework	

Load gen
executor	

task	

httperf	

Mesos slave	

Web

executor	

task	

(Apache)	

Load gen
executor	

task	

HTTP
request	

HTTP

request	

Load gen ���
	

task	

 task	

executor	

Web
executor	

task	

(Apache)	

HTTP
request	

resource
offer	

task	

status
update	

18	

Web Framework Results	

19	

Scalability	

Task startup overhead with 200 frameworks	

20	

Fault Tolerance	

Mean time to recovery, 95% confidence	

21	

Deep Dive Experiments	

Macrobenchmark experiment	

» Test the benefits of using Mesos to multiplex a cluster

between multiple diverse frameworks	

High level goals of experiment	

» Demonstrate increased CPU/memory utilization due to

multiplexing available resources	

» Demonstrate job runtime speedups	

22	

Macrobenchmark setup	

100 Extra Large EC2 instances (4 cores/15GB ram
per machine)	

Experiment length: ~25 minutes	

Realistic workload	

1.  A Hadoop instance running a mix of small and large

jobs based on the workload at Facebook	

2.  A Hadoop instance running a set of large batch jobs	

3.  Spark running a series of machine learning jobs	

4.  Torque running a series of MPI jobs	

23	

Goal of experiment	

Run the four frameworks and corresponding
workloads…	

» 1st on a cluster that is shared via Mesos	

»  2nd on 4 partitioned clusters, each ¼ the size of the

shared cluster 	

Compare resource utilization and workload
performance (i.e., job run times) on static
partitioning vs. sharing with Mesos	

24	

Macrobenchmark Details: ���
Breakdown of the Facebook Hive

(Hadoop) Workload mix	

Bin	

 Job Type	

 Map Tasks	

 Reduce Tasks	

 Jobs Run	

1	

 Selection	

 1	

 NA	

 38	

2	

 Text search	

 2	

 NA	

 18	

3	

 Aggregation	

 10	

 2	

 14	

4	

 Selection	

 50	

 NA	

 12	

5	

 Aggregation	

 100	

 10	

 6	

6	

 Selection	

 200	

 NA	

 6	

7	

 Text Search	

 400	

 NA	

 4	

8	

 Join	

 400	

 30	

 2	

25	

Results: CPU Allocation	

100 node cluster	

26	

Hadoop (Batch Jobs)	

Hadoop (Facebook Mix)	

Sharing With Mesos vs.���
No-Sharing (Dedicated Cluster)	

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 500 1000 1500 2000 2500 3000

Sh
ar

e
of

 C
lu

st
er

Time (s)

(b) Large Hadoop Mix

Dedicated Cluster
Mesos

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

Sh
ar

e
of

 C
lu

st
er

Time (s)

(a) Facebook Hadoop Mix

Dedicated Cluster
Mesos

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

Sh
ar

e
of

 C
lu

st
er

Time (s)

(d) Torque / MPI

Dedicated Cluster
Mesos

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

Sh
ar

e
of

 C
lu

st
er

Time (s)

(c) Spark

Dedicated Cluster
Mesos

27	

Cluster Utilization ���
Mesos vs. Dedicated Clusters	

 0
 20
 40
 60
 80

 100

 0 200 400 600 800 1000 1200 1400 1600C
PU

 U
til

iz
at

io
n

(%
)

Time (s)

Mesos Static

 0
 10
 20
 30
 40
 50

 0 200 400 600 800 1000 1200 1400 1600M
em

or
y

U
til

iz
at

io
n

(%
)

Time (s)

Mesos Static

28	

Job Run Times (and Speedup) ���
Grouped By Framework	

Framework	

Sum of Exec times on
Dedicated Cluster (s)	

Sum of Exec Times
on Mesos (s)	

Speedup	

Facebook Hadoop Mix	

 7235	

 6319	

 1.14	

Large Hadoop Mix	

 3143	

 1494	

 2.10	

Spark	

 1684	

 1338	

 1.26	

Torque / MPI	

 3210	

 3352	

 0.96	

2x speedup for
Large Hadoop Mix	

29	

Job Run Times (and Speedup) ���
Grouped by Job Type	

Framework	

 Job Type	

Time on Dedicated

Cluster (s)	

Avg. Speedup	

on Mesos	

Facebook Hadoop
Mix	

selection (1)	

 24	

 0.84	

text search (2)	

 31	

 0.90	

aggregation (3)	

 82	

 0.94	

selection (4)	

 65	

 1.40	

aggregation (5)	

 192	

 1.26	

selection (6)	

 136	

 1.71	

text search (7)	

 137	

 2.14	

join (8)	

 662	

 1.35	

Large Hadoop Mix	

 text search	

 314	

 2.21	

Spark	

 ALS	

 337	

 1.36	

Torque / MPI	

 small tachyon	

 261	

 0.91	

large tachyon	

 822	

 0.88	

30	

Discussion: Facebook Hadoop Mix Results	

Smaller jobs perform worse on Mesos:	

» Side effect of interaction between fair sharing performed

by Hadoop framework (among its jobs) and performed
by Mesos (among frameworks)	

» When Hadoop has more than 1/4 of the cluster, Mesos

allocates freed up resources to framework farthest below
its share	

» Significant effect on any small Hadoop job submitted

during this time (long delay relative to its length)	

» In contrast, Hadoop running alone can assign resources to

the new job as soon as any of its tasks finishes	

31	

Discussion: Facebook Hadoop
Mix Results	

Similar problem with hierarchical fair sharing
appears in networks	

» Mitigation #1: run small jobs on a separate framework, or 	

» Mitigation #2: use lottery scheduling as the Mesos

allocation policy	

32	

Discussion: Torque Results	

Torque is the only framework that performed
worse, on average, on Mesos	

» Large tachyon jobs took on average 2 minutes longer	

» Small ones took 20s longer	

33	

Discussion: Torque Results	

Causes of delay	

» Partially due to Torque having to wait to launch 24 tasks on

Mesos before starting each job – average delay is 12s	

» Rest of the delay may be due to stragglers (slow nodes)	

» In standalone Torque run, two jobs each took ~60s longer

to run than others 	

» Both jobs used a node that performed slower on single-

node benchmarks than the others (Linux reported a 40%
lower bogomips value on the node)	

» Since tachyon hands out equal amounts of work to

each node, it runs as slowly as the slowest node	

34	

Macrobenchmark Summary	

Evaluated performance of diverse set of frameworks
representing realistic workloads running on Mesos
versus a statically partitioned cluster	

Showed 10% increase in CPU utilization, 18%
increase in memory utilization	

Some frameworks show significant speed ups in job
run time	

Some frameworks show minor slowdowns in job run
time due to experimental/environmental artifacts	

	

 35	

Summary	

Mesos is a platform for sharing data centers
among diverse cluster computing frameworks	

» Enables efficient fine-grained sharing	

» Gives frameworks control over scheduling	

Mesos is	

» Scalable (50,000 slaves)	

» Fault-tolerant (MTTR 6 sec)	

» Flexible enough to support a variety of frameworks

(MPI, Hadoop, Spark, Apache, …)	

36	

My Talks at LASER 2013	

1.  AMP Lab introduction	

2.  The Datacenter Needs an Operating System	

3.  Mesos, part one	

4.  Dominant Resource Fairness	

5.  Mesos, part two	

6.  Spark	

37	

