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Apache Mesos	


A common resource sharing layer for diverse frameworks	
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Implementation	


20,000+ lines of C++	



APIs in C, C++, Java, and Python	



Master failover using ZooKeeper	



Frameworks ported: Hadoop, MPI, Torque	



New specialized frameworks: Spark, Apache/HaProxy 	



Open source Apache project���
                     http://mesos.apache.org/  	
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Frameworks	



Ported frameworks:	


»  Hadoop (900 line patch)	


»  MPI (160 line wrapper scripts)	



New frameworks:	


»  Spark, Scala framework for iterative jobs (1300 lines)	



»  Apache+haproxy, elastic web server farm (200 lines)	
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Isolation	



Mesos has pluggable isolation modules to isolate 
tasks sharing a node	


	



Currently supports Linux Containers and Solaris 
projects 	


» Can isolate memory, CPU, IO, network bandwidth	



	



Could be a great place to use VMs	
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Apache ZooKeeper	



Multiple servers require coordination	


» Leader Election, Group Membership, Work Queues, Data 

Sharding, Event Notifications, Configuration, and Cluster 
Management	



Highly available, scalable, distributed coordination kernel	


» Ordered updates and strong persistence guarantees	


» Conditional updates (version), Watches for data changes	
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Master Failure	
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Resource Revocation	


Killing tasks to make room for other users	



Killing typically not needed for short tasks	


» If avg task length is 2 min, a new framework gets 10% of 

all machines within 12 seconds on avg	



	



Hadoop job and task durations at Facebook	
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Resource Revocation (2)	


Not the normal case because fine-grained tasks enable 
quick reallocation of resources 	



Sometimes necessary:	


» Long running tasks never relinquishing resources	


» Buggy job running forever	


» Greedy user who decides to makes his task long	



Safe allocation lets frameworks have long running tasks 
defined by allocation policy	


» Users will get at least safe share within specified time	


»  If stay below safe allocation, task won’t be killed	



11	





Resource Revocation (3)	



Dealing with long tasks monopolizing nodes	


» Let slaves have long slots and short slots	


» Short slots killed if used too long by a task	



Revoke only if a user is below its safe share and is 
interested in offers	


» Revoke tasks from users farthest above their safe share	


» Framework given a grace period before killing its tasks	
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Example: Running MPI on Mesos	



Users always told their safe share	


» Avoid revocation by staying below it	



Giving each user a small safe share may not be 
enough if jobs need many machines 	



Can run a traditional HPC scheduler as a user 
with a large safe share of the cluster, and have MPI 
jobs queue up on it	


» E.g. Torque gets 40% of cluster	
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Example: Torque on Mesos	
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Some Mesos Deployments	


1,000’s of nodes running over a dozen 
production services 	



Genomics researchers using Hadoop and 
Spark on Mesos	



Spark in use by Yahoo! Research	



Spark for analytics	



	



Hadoop and Spark used by machine learning 
researchers	
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Results	





Dynamic Resource Sharing	
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Web Framework Results	
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Scalability	


Task startup overhead with 200 frameworks	
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Fault Tolerance	


Mean time to recovery, 95% confidence	
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Deep Dive Experiments	



Macrobenchmark experiment	


» Test the benefits of using Mesos to multiplex a cluster 

between multiple diverse frameworks	



High level goals of experiment	


» Demonstrate increased CPU/memory utilization due to 

multiplexing available resources	


» Demonstrate job runtime speedups	
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Macrobenchmark setup	


100 Extra Large EC2 instances (4 cores/15GB ram 
per machine)	



Experiment length: ~25 minutes	



Realistic workload	


1.  A Hadoop instance running a mix of small and large 

jobs based on the workload at Facebook	


2.  A Hadoop instance running a set of large batch jobs	


3.  Spark running a series of machine learning jobs	


4.  Torque running a series of MPI jobs	
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Goal of experiment	



Run the four frameworks and corresponding 
workloads…	


» 1st on a cluster that is shared via Mesos	


»  2nd on 4 partitioned clusters, each ¼ the size of the 

shared cluster 	



Compare resource utilization and workload 
performance (i.e., job run times) on static 
partitioning vs. sharing with Mesos	
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Macrobenchmark Details: ���
Breakdown of the Facebook Hive 

(Hadoop) Workload mix	



Bin	
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Results: CPU Allocation	


100 node cluster	
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Hadoop (Batch Jobs)	



Hadoop (Facebook Mix)	





Sharing With Mesos vs.���
No-Sharing (Dedicated Cluster)	
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Cluster Utilization ���
Mesos vs. Dedicated Clusters	
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Job Run Times (and Speedup) ���
Grouped By Framework	



Framework	


Sum of Exec times on 
Dedicated Cluster (s)	



Sum of Exec Times 
on Mesos (s)	



Speedup	



Facebook Hadoop Mix	

 7235	

 6319	

 1.14	



Large Hadoop Mix	

 3143	

 1494	

 2.10	



Spark	

 1684	

 1338	

 1.26	



Torque / MPI	

 3210	

 3352	

 0.96	



2x speedup for 
Large Hadoop Mix	
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Job Run Times (and Speedup) ���
Grouped by Job Type	



Framework	

 Job Type	


Time on Dedicated 

Cluster (s)	


Avg. Speedup	



on Mesos	
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 ALS	
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 0.91	



large tachyon	

 822	

 0.88	
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Discussion: Facebook Hadoop Mix Results	



Smaller jobs perform worse on Mesos:	


» Side effect of interaction between fair sharing performed 

by Hadoop framework (among its jobs) and performed 
by Mesos (among frameworks)	


» When Hadoop has more than 1/4 of the cluster, Mesos 

allocates freed up resources to framework farthest below 
its share	


» Significant effect on any small Hadoop job submitted 

during this time (long delay relative to its length)	


» In contrast, Hadoop running alone can assign resources to 

the new job as soon as any of its tasks finishes	
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Discussion: Facebook Hadoop 
Mix Results	



Similar problem with hierarchical fair sharing 
appears in networks	


» Mitigation #1: run small jobs on a separate framework, or 	


» Mitigation #2: use lottery scheduling as the Mesos 

allocation policy	
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Discussion: Torque Results	



Torque is the only framework that performed 
worse, on average, on Mesos	


» Large tachyon jobs took on average 2 minutes longer	


» Small ones took 20s longer	
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Discussion: Torque Results	


Causes of delay	


» Partially due to Torque having to wait to launch 24 tasks on 

Mesos before starting each job – average delay is 12s	


» Rest of the delay may be due to stragglers (slow nodes)	


» In standalone Torque run, two jobs each took ~60s longer 

to run than others 	


» Both jobs used a node that performed slower on single-

node benchmarks than the others (Linux reported a 40% 
lower bogomips value on the node)	


» Since tachyon hands out equal amounts of work to 

each node, it runs as slowly as the slowest node	
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Macrobenchmark Summary	


Evaluated performance of diverse set of frameworks 
representing realistic workloads running on Mesos 
versus a statically partitioned cluster	



Showed 10% increase in CPU utilization, 18% 
increase in memory utilization	



Some frameworks show significant speed ups in job 
run time	



Some frameworks show minor slowdowns in job run 
time due to experimental/environmental artifacts	
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Summary	



Mesos is a platform for sharing data centers 
among diverse cluster computing frameworks	


» Enables efficient fine-grained sharing	


» Gives frameworks control over scheduling	



Mesos is	


» Scalable (50,000 slaves)	


» Fault-tolerant (MTTR 6 sec)	


» Flexible enough to support a variety of frameworks 

(MPI, Hadoop, Spark, Apache, …)	
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