Welcome to Copenhagen! Schedule:

	Monday	Tuesday	Wednesday	Thursday	Friday
3	Registration and welcome				
•	Crash course on Differential and Riemannian Geometry 1.1 (Feragen)	Crash course on Differential and Riemannian Geometry 3 (Lauze)	Introduction to Information Geometry 3.1 (Amari)	Information Geometry & Stochastic Optimization 1.1 (Hansen)	Information Geometry 8 Stochastic Optimizatior in Discrete Domains 1. (Målago)
10	Crash course on Differential and Riemannian Geometry 1.2 (Feragen)	Tutorial on numerics for Riemannian geometry 1.1 (Sommer)	Introduction to Information Geometry 3.2 (Amari)	Information Geometry & Stochastic Optimization 1.2 (Hansen)	
11	Crash course on Differential and Riemannian Geometry 1.3 (Feragen)	Tutorial on numerics for Riemannian geometry 1.2 (Sommer)	Introduction to Information Geometry 3.3 (Amari)	Information Geometry & Stochastic Optimization 1.3 (Hansen)	
12	Lunch	Lunch	Lunch	Lunch	Lunch
13	Crash course on Differential and Riemannian Geometry 2.1 (Lauze)	Introduction to Information Geometry 2.1 (Amari)	Information Geometry & Reinforcement Learning 1.1 (Peters)	Information Geometry & Stochastic Optimization 1.4 (Hansen)	Information Geometry 8 Cognitive Systems 1.1 (Ay)
14	Crash course on Differential and Riemannian Geometry 2.2 (Lauze)	Introduction to Information Geometry 2.2 (Amari)	Information Geometry & Reinforcement Learning 1.2 (Peters)		Information Geometry & Cognitive Systems 1.2 (Ay)
15	Introduction to Information Geometry 1.1 (Amari)	Introduction to Information Geometry 2.3 (Amari)	Information Geometry & Reinforcement Learning 1.3 (Peters)	Stochastic Optimization in Practice 1.1 (Hansen)	Information Geometry & Cognitive Systems 1.3 (Ay)
16	Introduction to	Introduction to Information Geometry	Social activity/	Stochastic Optimization	Information Geometry 8

Coffee breaks at 10:00 and 14:45 (no afternoon break on Wednesday)

Welcome to Copenhagen!

Social Programme!

- Today: Pizza and walking tour!
 - 17:15 Pizza dinner in lecture hall
 - 18:00 Departure from lecture hall (with Metro we have tickets)
 - 19:00 Walking tour of old university

- Wednesday: Boat tour, Danish beer and dinner
 - 15:20 Bus from KUA to Nyhavn
 - 16:00-17:00 Boat tour
 - 17:20 Bus from Nyhavn to NA
 _srrebro bryghus (NB, brewery)
 - 18:00 Guided tour of NB
 - 19:00 Dinner at NB

Welcome to Copenhagen!

- Lunch on your own canteens and coffee on campus
- Internet connection
 - Eduroam
 - Alternative will be set up ASAP
- Emergency? Call Aasa: +4526220498
- Questions?

A Very Brief Introduction to Differential and Riemannian Geometry

Aasa Feragen and François Lauze Department of Computer Science University of Copenhagen

Outline

Motivation

Nonlinearity Recall: Calculus in \mathbb{R}^n

- ② Differential Geometry Smooth manifolds Building Manifolds Tangent Space Vector fields Differential of smooth map
- Riemannian metrics
 Introduction to Riemannian metrics
 Recall: Inner Products
 Riemannian metrics
 Invariance of the Fisher information metric
 A first take on the geodesic distance metric
 A first take on curvature

Outline

Motivation Nonlinearity

Recall: Calculus in \mathbb{R}^n

- Differential Geometry Smooth manifolds Building Manifolds Tangent Space Vector fields Differential of smooth map
- 3 Riemannian metrics Introduction to Riemannian metrics Recall: Inner Products Riemannian metrics Invariance of the Fisher information metric A first take on the geodesic distance metric A first take on curvature

Why do we care about nonlinearity?

- Nonlinear relations between data objects
- True distances not reflected by linear representation

[&]quot;Topographic map example". Licensed under Public domain via Wikimedia Commons p://commons.wikimedia.org/wiki/File:Topographic_map_example.png#mediaviewer/File ographic_map_example.png

Mildly nonlinear: Nonlinear transformations between different linear representations

- Kernels!
- Feature map = nonlinear transformation of (linear?) data space X into linear feature space \mathcal{H}
- Learning problem is (usually) linear in \mathcal{H} , not in X.

Mildly nonlinear: Nonlinearly embedded subspaces whose intrinsic metric is linear

- · Manifold learning!
 - Find intrinsic dataset distances
 - Find an \mathbb{R}^d embedding that minimally distorts those distances

Mildly nonlinear: Nonlinearly embedded subspaces whose intrinsic metric is linear

- · Manifold learning!
 - Find intrinsic dataset distances
 - Find an \mathbb{R}^d embedding that minimally distorts those distances
- Searches for the folded-up Euclidean space that best fits the data
 - the embedding of the data in feature space is nonlinear
 - the recovered intrinsic distance structure is linear

More nonlinear: Data spaces which are intrinsically nonlinear

- Distances distorted in nonlinear way, varying spatially
- We shall see: the distances cannot always be linearized

[&]quot;Topographic map example". Licensed under Public domain via Wikimedia Commons p://commons.wikimedia.org/wiki/File:Topographic_map_example.png#mediaviewer/File ographic_map_example.png

Definition

A manifold is a set M with an associated one-to-one map $\varphi \colon U \to M$ from an open subset $U \subset \mathbb{R}^m$ called a *global chart* or a *global coordinate system* for M.

Definition

A manifold is a set M with an associated one-to-one map $\varphi \colon U \to M$ from an open subset $U \subset \mathbb{R}^m$ called a *global chart* or a *global coordinate system* for M.

- Open set $U \subset \mathbb{R}^m$ = set that does not contain its boundary
- Manifold M gets its topology (= definition of open sets) from U via φ

Definition

A manifold is a set M with an associated one-to-one map $\varphi \colon U \to M$ from an open subset $U \subset \mathbb{R}^m$ called a *global chart* or a *global coordinate system* for M.

- Open set $U \subset \mathbb{R}^m$ = set that does not contain its boundary
- Manifold M gets its topology (= definition of open sets) from U via φ
- What are the implications of getting the topology from *U*?

Definition

A *smooth* manifold is a pair (M, A) where

- M is a set
- \mathcal{A} is a family of one-to-one global charts $\varphi \colon U \to M$ from some open subset $U = U_{\varphi} \subset \mathbb{R}^m$ for M,
- for any two charts $\varphi \colon U \to \mathbb{R}^m$ and $\psi \colon V \to \mathbb{R}^m$ in \mathcal{A} , their corresponding *change of variables* is a smooth diffeomorphism $\psi^{-1} \circ \varphi \colon U \to V \subset \mathbb{R}^m$.

Outline

Motivation Nonlinearity

Recall: Calculus in \mathbb{R}^n

- Differential Geometry Smooth manifolds Building Manifolds Tangent Space Vector fields Differential of smooth map
- Riemannian metrics Introduction to Riemannian metrics Recall: Inner Products Riemannian metrics Invariance of the Fisher information metric A first take on the geodesic distance metric A first take on curvature

Differentiable and smooth functions

• f: U open $\subset \mathbb{R}^n \to \mathbb{R}^q$ continuous: write

$$(y_1,\ldots,y_q)=f(x_1,\ldots,x_n)$$

Differentiable and smooth functions

• f: U open $\subset \mathbb{R}^n \to \mathbb{R}^q$ continuous: write

$$(y_1,\ldots,y_q)=f(x_1,\ldots,x_n)$$

• f is of class C^r if f has continuous partial derivatives

$$\frac{\partial^{r_1+\cdots+r_n}y_k}{\partial x_1^{r_1}\cdots\partial x_n^{r_n}}$$

$$k=1\ldots q, r_1+\ldots r_n\leq r.$$

Differentiable and smooth functions

• f: U open $\subset \mathbb{R}^n \to \mathbb{R}^q$ continuous: write

$$(y_1,\ldots,y_q)=f(x_1,\ldots,x_n)$$

• f is of class C^r if f has continuous partial derivatives

$$\frac{\partial^{r_1+\cdots+r_n}y_k}{\partial x_1^{r_1}\cdots\partial x_n^{r_n}}$$

$$k=1\ldots q, r_1+\ldots r_n\leq r.$$

• When $r = \infty$, f is smooth. Our focus.

Differential, Jacobian Matrix

• Differential of f in \mathbf{x} : unique linear map (if exists) $d_{\mathbf{x}}f:\mathbb{R}^n\to\mathbb{R}^q$ s.t.

$$f(\mathbf{x}+\mathbf{h})=f(\mathbf{x})+d_{x}f(\mathbf{h})+o(\mathbf{h}).$$

Differential, Jacobian Matrix

Differential of f in x: unique linear map (if exists) d_xf : ℝⁿ → ℝ^q s.t.

$$f(\mathbf{x}+\mathbf{h})=f(\mathbf{x})+d_{x}f(\mathbf{h})+o(\mathbf{h}).$$

• Jacobian matrix of f: matrix $q \times n$ of partial derivatives of f:

$$J_{\mathbf{x}}f = \begin{pmatrix} \frac{\partial y_1}{\partial x_1}(\mathbf{x}) & \dots & \frac{\partial y_1}{\partial x_n}(\mathbf{x}) \\ \vdots & & \vdots \\ \frac{\partial y_q}{\partial x_1}(\mathbf{x}) & \dots & \frac{\partial y_q}{\partial x_n}(\mathbf{x}) \end{pmatrix}$$

Differential, Jacobian Matrix

Differential of f in x: unique linear map (if exists) d_xf : ℝⁿ → ℝ^q s.t.

$$f(\mathbf{x}+\mathbf{h})=f(\mathbf{x})+d_{x}f(\mathbf{h})+o(\mathbf{h}).$$

Jacobian matrix of f: matrix q × n of partial derivatives of f:

$$J_{\mathbf{x}}f = \begin{pmatrix} \frac{\partial y_1}{\partial x_1}(\mathbf{x}) & \dots & \frac{\partial y_1}{\partial x_n}(\mathbf{x}) \\ \vdots & & \vdots \\ \frac{\partial y_q}{\partial x_1}(\mathbf{x}) & \dots & \frac{\partial y_q}{\partial x_n}(\mathbf{x}) \end{pmatrix}$$

 What is the meaning of the Jacobian? The differential? How do they differ?

- When n = q:
 - If f is 1-1, f and f^{-1} both C^r
 - $\leadsto f$ is a C^r -diffeomorphism.
 - Smooth diffeomorphisms are simply referred to as a diffeomorphisms.

- When n = q:
 - If f is 1-1, f and f^{-1} both C^r
 - $\rightsquigarrow f$ is a C^r -diffeomorphism.
 - Smooth diffeomorphisms are simply referred to as a diffeomorphisms.
- Inverse Function Theorem:
 - f diffeomorphism \Rightarrow det $(J_{\mathbf{x}}f) \neq 0$.
 - $det(J_{\mathbf{x}}f) \neq 0 \Rightarrow f$ local diffeomorphism in a neighborhood of \mathbf{x} .

- When n = q:
 - If f is 1-1, f and f^{-1} both C^r
 - $\rightsquigarrow f$ is a C^r -diffeomorphism.
 - Smooth diffeomorphisms are simply referred to as a diffeomorphisms.
- Inverse Function Theorem:
 - f diffeomorphism \Rightarrow det $(J_x f) \neq 0$.
 - $det(J_{\mathbf{x}}f) \neq 0 \Rightarrow f$ local diffeomorphism in a neighborhood of \mathbf{x} .
- What is the meaning of $J_x f$? Of $det(J_x f) \neq 0$?

- f may be a local diffeomorphism everywhere but fail to be a global diffeomorphism. Examples:
 - Complex exponential:

$$f: \mathbb{R}^2 \backslash 0 \to \mathbb{R}^2, \quad (x, y) \to (e^x \cos(y), e^x \sin(y)).$$

Recall its inverse (the complex log) has infinitely many branches.

- f may be a local diffeomorphism everywhere but fail to be a global diffeomorphism. Examples:
 - Complex exponential:

$$f: \mathbb{R}^2 \backslash 0 \to \mathbb{R}^2, \quad (x, y) \to (e^x \cos(y), e^x \sin(y)).$$

Recall its inverse (the complex log) has infinitely many branches.

 If f is 1-1 and a local diffeomorphism everywhere, it is a global diffeomorphism.

[&]quot;Complex log" by Jan Homann; Color encoding image comment author Hal Lane, September 28, 2009 - Own work. This mathematical image was created with Mathematica. Licensed under Public domain via Wikimedia Commons -

- f may be a local diffeomorphism everywhere but fail to be a global diffeomorphism. Examples:
 - Complex exponential:

$$f: \mathbb{R}^2 \backslash 0 \to \mathbb{R}^2, \quad (x, y) \to (e^x \cos(y), e^x \sin(y)).$$

Recall its inverse (the complex log) has infinitely many branches.

- If f is 1-1 and a local diffeomorphism everywhere, it is a global diffeomorphism.
- What is the intuitive meaning of a diffeomorphism?

[&]quot;Complex log" by Jan Homann; Color encoding image comment author Hal Lane, September 28, 2009 - Own work. This mathematical image was created with Mathematica. Licensed under Public domain via Wikimedia Commons -

Outline

- Differential Geometry Smooth manifolds Building Manifolds Tangent Space Vector fields Differential of smooth map
- Riemannian metrics Introduction to Riemannian metrics Recall: Inner Products Riemannian metrics Invariance of the Fisher information metric A first take on the geodesic distance metric A first take on curvature

Definition

A *smooth* manifold is a pair (M, A) where

- M is a set
- A is a family of one-to-one global charts φ: U → M from some open subset U = U_φ ⊂ ℝ^m for M,
- for any two charts $\varphi \colon U \to \mathbb{R}^m$ and $\psi \colon V \to \mathbb{R}^m$, their corresponding *change of variables* is a smooth diffeomorphism $\psi^{-1} \circ \varphi \colon U \to V \subset \mathbb{R}^m$.

Definition

A *smooth* manifold is a pair (M, A) where

- M is a set
- A is a family of one-to-one global charts φ: U → M from some open subset U = U_φ ⊂ ℝ^m for M,
- for any two charts $\varphi \colon U \to \mathbb{R}^m$ and $\psi \colon V \to \mathbb{R}^m$, their corresponding *change of variables* is a smooth diffeomorphism $\psi^{-1} \circ \varphi \colon U \to V \subset \mathbb{R}^m$.

What are the implications of inheriting structure through A?

ullet φ and ψ are parametrizations of ${\it M}$

- φ and ψ are parametrizations of M
- Set $\varphi_j(P) = (y^1(P), ..., y^n(P))$, then

$$\varphi_j \circ \varphi_i^{-1}(x_1,\ldots,x_m) = (y_1,\ldots,y_m)$$

and the $m \times m$ Jacobian matrices $\left(\frac{\partial y^k}{\partial x^h}\right)_{k,h}$ are invertible.

Example: Euclidean space

• The Euclidean space \mathbb{R}^n is a manifold: take $\varphi = Id$ as global coordinate system!

Example: Smooth surfaces

- Smooth surfaces in \mathbb{R}^n that are the image of a smooth map $f \colon \mathbb{R}^2 \to \mathbb{R}^n$.
- A global coordinate system given by f

Example: Symmetric Positive Definite Matrices

 P(n) ⊂ GL_n consists of all symmetric n × n matrices A that satisfy

$$xAx^T > 0$$
 for any $x \in \mathbb{R}^n$, (positive definite – PD – matrices)

- $\mathcal{P}(n)$ = the set of covariance matrices on \mathbb{R}^n
- P(3) = the set of (diffusion) tensors on R³
- Global chart: $\mathcal{P}(n)$ is an open, convex subset of $\mathbb{R}^{(n^2+n)/2}$
 - $A, B \in \mathcal{P}(n) \to aA + bB \in \mathcal{P}(n)$ for all a, b > 0 so $\mathcal{P}(n)$ is a convex

Middle figure from Fillard et al., A Riemannian Framework for the Processing of Tensor-Valued Images, LNCS 3753, 2005, pp 112-123. Rightmost figure from Fletcher, Joshi, Principal Geodesic Analysis on Symmetric Spaces: Statistics of Diffusion Tensors, CVAMIA04

Example: Space of Gaussian distributions

- The space of *n*-dimensional Gaussian distributions is a smooth manifold
- Global chart: $(\mu, \Sigma) \in \mathbb{R}^n \times \mathcal{P}(n)$.

Example: Space of 1-dimensional Gaussian distributions

- The space of 1-dimensional Gaussian distributions is parametrized by $(\mu, \sigma) \in \mathbb{R} \times \mathbb{R}_+$, mean μ , standard deviation σ
- Also parametrized by $(\mu, \sigma^2) \in \mathbb{R} \times \mathbb{R}_+$, mean μ , variance σ^2
- Smooth reparametrization $\psi^{-1}\circ \varphi$

In general: Manifolds requiring multiple charts

The sphere $S^2 = \{(x, y, z), x^2 + y^2 + z^2 = 1\}$

For instance the projection from North Pole, given, for a point $P = (x, y, z) \neq N$ of the sphere, by

$$\varphi_N(P) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right)$$

is a (large) local coordinate system (around the south pole).

In general: Manifolds requiring multiple charts

The sphere $S^2 = \{(x, y, z), x^2 + y^2 + z^2 = 1\}$

For instance the projection from North Pole, given, for a point $P = (x, y, z) \neq N$ of the sphere, by

$$\varphi_N(P) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right)$$

is a (large) local coordinate system (around the south pole).

In these cases, we also require the charts to overlap "nicely"

In general: Manifolds requiring multiple charts

The Moebius strip

$$u \in [0, 2\pi], v \in [\frac{1}{2}, \frac{1}{2}]$$

$$\begin{pmatrix} \cos(u) \left(1 + \frac{1}{2}v\cos(\frac{u}{2})\right) \\ \sin(u) \left(1 + \frac{1}{2}v\cos(\frac{u}{2})\right) \\ \frac{1}{2}v\sin(\frac{u}{2}) \end{pmatrix}$$

The 2D-torus

$$(u, v) \in [0, 2\pi]^2, R \gg r > 0$$

$$\begin{pmatrix}
\cos(u)\left(R+r\cos(v)\right) \\
\sin(u)\left(R+r\cos(v)\right) \\
r\sin(v)
\end{pmatrix}$$

Smooth maps between manifolds

 f: M → N is smooth if its expression in any global coordinates for M and N is.

Smooth maps between manifolds

- f: M → N is smooth if its expression in any global coordinates for M and N is.
- φ global coordinates for M, ψ global coordinates for N

Smooth maps between manifolds

- f: M → N is smooth if its expression in any global coordinates for M and N is.
- φ global coordinates for $\emph{M},$ ψ global coordinates for \emph{N}

$$\varphi^{-1} \circ f \circ \psi$$
 smooth.

Smooth diffeomorphism between manifolds

 f: M → N is a smooth diffeomorphism if its expression in any global coordinates for M and N is.

Smooth diffeomorphism between manifolds

- f: M → N is a smooth diffeomorphism if its expression in any global coordinates for M and N is.
- φ global coordinates for $\emph{M},\,\psi$ global coordinates for \emph{N}

Smooth diffeomorphism between manifolds

- f: M → N is a smooth diffeomorphism if its expression in any global coordinates for M and N is.
- φ global coordinates for $\emph{M},\,\psi$ global coordinates for \emph{N}

 $\varphi^{-1}\circ f\circ \psi$ smooth diffeomorphism .

Outline

- 1 Motivation
 Nonlinearity
 Recall: Calculus in \mathbb{R}^n
- 2 Differential Geometry Smooth manifolds Building Manifolds Tangent Space Vector fields
 Differential of smooth man
- Riemannian metrics Introduction to Riemannian metrics Recall: Inner Products Riemannian metrics Invariance of the Fisher information metric A first take on the geodesic distance metric A first take on curvature

• Take $f: U \in \mathbb{R}^m \to \mathbb{R}^n$, $n \le m$ smooth.

- Take $f: U \in \mathbb{R}^m \to \mathbb{R}^n$, $n \le m$ smooth.
- Set $M = f^{-1}(0)$.

- Take $f: U \in \mathbb{R}^m \to \mathbb{R}^n$, $n \le m$ smooth.
- Set $M = f^{-1}(0)$.
- If for all $\mathbf{x} \in M$, f is a submersion at \mathbf{x} ($d_{\mathbf{x}}f$ has full rank), M is a manifold of dimension m n.

- Take $f: U \in \mathbb{R}^m \to \mathbb{R}^n$, $n \leq m$ smooth.
- Set $M = f^{-1}(0)$.
- If for all $\mathbf{x} \in M$, f is a submersion at \mathbf{x} ($d_{\mathbf{x}}f$ has full rank), M is a manifold of dimension m n.
- Example:

$$f(x_1,\ldots,x_m)=1-\sum_{i=1}^m x_i^2$$
:

 $f^{-1}(0)$ is the (m-1)-dimensional unit sphere S^{m-1} .

- Take $f: U \in \mathbb{R}^m \to \mathbb{R}^n$, $n \leq m$ smooth.
- Set $M = f^{-1}(0)$.
- If for all $\mathbf{x} \in M$, f is a submersion at \mathbf{x} ($d_{\mathbf{x}}f$ has full rank), M is a manifold of dimension m n.
- Example:

$$f(x_1,\ldots,x_m)=1-\sum_{i=1}^m x_i^2$$
:

 $f^{-1}(0)$ is the (m-1)-dimensional unit sphere S^{m-1} .

• The graph $\Gamma = (x, f(x)) \in \mathbb{R}^m \times \mathbb{R}^n$ is smooth for any smooth map $f \colon \mathbb{R}^m \to \mathbb{R}^n$.

- Take $f: U \in \mathbb{R}^m \to \mathbb{R}^n$, $n \leq m$ smooth.
- Set $M = f^{-1}(0)$.
- If for all $\mathbf{x} \in M$, f is a submersion at \mathbf{x} ($d_{\mathbf{x}}f$ has full rank), M is a manifold of dimension m n.
- Example:

$$f(x_1,\ldots,x_m)=1-\sum_{i=1}^m x_i^2$$
:

 $f^{-1}(0)$ is the (m-1)-dimensional unit sphere \mathcal{S}^{m-1} .

- The graph $\Gamma = (x, f(x)) \in \mathbb{R}^m \times \mathbb{R}^n$ is smooth for any smooth map $f \colon \mathbb{R}^m \to \mathbb{R}^n$.
 - $\Gamma = F^{(0)}$ for $F : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^n$, F(x, y) = y f(x).

- Take $f: U \in \mathbb{R}^m \to \mathbb{R}^n$, $n \le m$ smooth.
- Set $M = f^{-1}(0)$.
- If for all $\mathbf{x} \in M$, f is a submersion at \mathbf{x} ($d_{\mathbf{x}}f$ has full rank), M is a manifold of dimension m n.
- Example:

$$f(x_1,\ldots,x_m)=1-\sum_{i=1}^m x_i^2$$
:

 $f^{-1}(0)$ is the (m-1)-dimensional unit sphere \mathcal{S}^{m-1} .

- The graph $\Gamma = (x, f(x)) \in \mathbb{R}^m \times \mathbb{R}^n$ is smooth for any smooth map $f \colon \mathbb{R}^m \to \mathbb{R}^n$.
 - $\Gamma = F^{(0)}$ for $F : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^n$, F(x, y) = y f(x).
- Many common examples of manifolds in practice are of that type.

• M and N manifolds, so is $M \times N$.

- M and N manifolds, so is M × N.
- Just consider the products of charts of M and N!

- M and N manifolds, so is M × N.
- Just consider the products of charts of M and N!
- Example: $M = S^1$, $N = \mathbb{R}$: the cylinder

- M and N manifolds, so is $M \times N$.
- Just consider the products of charts of M and N!
- Example: $M = S^1$, $N = \mathbb{R}$: the cylinder

• Example: $M = N = S^1$: the torus

Outline

- 1 Motivation
 Nonlinearity
 Recall: Calculus in \mathbb{R}^n
- ② Differential Geometry Smooth manifolds Building Manifolds Tangent Space Vector fields Differential of smooth map
- 3 Riemannian metrics Introduction to Riemannian metrics Recall: Inner Products Riemannian metrics Invariance of the Fisher information metric A first take on the geodesic distance metric A first take on curvature

Tangent vectors informally

How can we quantify tangent vectors to a manifold?

Tangent vectors informally

How can we quantify tangent vectors to a manifold?

Tangent vectors informally

- How can we quantify tangent vectors to a manifold?
- Informally: a tangent vector at P ∈ M: draw a curve
 c: (-ε, ε) → M, c(0) = P, then c(0) is a tangent vector.

• $c: (-\varepsilon, \varepsilon) \to M$, c(0) = P. In chart φ , the map $t \mapsto \varphi \circ c(t)$ is a curve in Euclidean space, and so is $t \mapsto \psi \circ c(t)$.

- $c: (-\varepsilon, \varepsilon) \to M$, c(0) = P. In chart φ , the map $t \mapsto \varphi \circ c(t)$ is a curve in Euclidean space, and so is $t \mapsto \psi \circ c(t)$.
- set $v = \frac{d}{dt}(\varphi \circ c)|_0$, $w = \frac{d}{dt}(\psi \circ c)|_0$ then

$$\mathbf{w} = \mathbf{J}_0 \left(\varphi^{-1} \circ \psi \right) \mathbf{v}.$$

 $(J_0 f = \text{Jacobian of } f \text{ at } 0)$

- $c: (-\varepsilon, \varepsilon) \to M$, c(0) = P. In chart φ , the map $t \mapsto \varphi \circ c(t)$ is a curve in Euclidean space, and so is $t \mapsto \psi \circ c(t)$.
- set $v = \frac{d}{dt}(\varphi \circ c)|_0$, $w = \frac{d}{dt}(\psi \circ c)|_0$ then

$$\mathbf{w} = \mathbf{J_0} \left(\varphi^{-1} \circ \psi \right) \mathbf{v}.$$

 $(J_0 f = \text{Jacobian of } f \text{ at } 0)$

 Use this relation to identify vectors in different coordinate systems!

 The set of tangent vectors to the m-dimensional manifold M at point P is the tangent space of M at P denoted T_PM.

- The set of tangent vectors to the m-dimensional manifold M at point P is the tangent space of M at P denoted T_PM.
- It is a vector space of dimension *m*:

- The set of tangent vectors to the m-dimensional manifold M at point P is the tangent space of M at P denoted T_PM.
- It is a vector space of dimension m:
 - Let φ be a global chart for M

- The set of tangent vectors to the m-dimensional manifold M at point P is the tangent space of M at P denoted T_PM.
- It is a vector space of dimension *m*:
 - Let φ be a global chart for M
 - $\varphi(x_1,\ldots,x_m)\in M$ with $\varphi(0)=P$.

- The set of tangent vectors to the m-dimensional manifold M at point P is the tangent space of M at P denoted T_PM.
- It is a vector space of dimension *m*:
 - Let φ be a global chart for M
 - $\varphi(x_1,\ldots,x_m)\in M$ with $\varphi(0)=P$.
 - Define curves

$$c_i$$
: $t \mapsto \varphi(0,\ldots,0,t,0,0)$.

Tangent space

- The set of tangent vectors to the m-dimensional manifold M at point P is the tangent space of M at P denoted T_PM.
- It is a vector space of dimension *m*:
 - Let φ be a global chart for M
 - $\varphi(x_1,\ldots,x_m)\in M$ with $\varphi(0)=P$.
 - Define curves

$$c_i \colon t \mapsto \varphi(0,\ldots,0,t,0,0).$$

• They go through P when t = 0 and follow the axes.

Tangent space

- The set of tangent vectors to the m-dimensional manifold M at point P is the tangent space of M at P denoted T_PM.
- It is a vector space of dimension *m*:
 - Let φ be a global chart for M
 - $\varphi(x_1,\ldots,x_m)\in M$ with $\varphi(0)=P$.
 - Define curves

$$c_i \colon t \mapsto \varphi(0,\ldots,0,t,0,0).$$

- They go through P when t = 0 and follow the axes.
- Their derivative at 0 are denoted ∂_{x_i} , or sometimes $\frac{\partial}{\partial x_i}$.

Tangent space

- The set of tangent vectors to the m-dimensional manifold M at point P is the tangent space of M at P denoted T_PM.
- It is a vector space of dimension *m*:
 - Let φ be a global chart for M
 - $\varphi(x_1,\ldots,x_m)\in M$ with $\varphi(0)=P$.
 - Define curves

$$c_i \colon t \mapsto \varphi(0,\ldots,0,t,0,0).$$

- They go through P when t = 0 and follow the axes.
- Their derivative at 0 are denoted ∂_{x_i} , or sometimes $\frac{\partial}{\partial x_i}$.
- The ∂_{x_i} form a basis of $T_P M$.

Outline

- 1 Motivation
 Nonlinearity
 Recall: Calculus in \mathbb{R}^n
- ② Differential Geometry Smooth manifolds Building Manifolds Tangent Space Vector fields Differential of smooth man
- Riemannian metrics
 Introduction to Riemannian metrics
 Recall: Inner Products
 Riemannian metrics
 Invariance of the Fisher information metric
 A first take on the geodesic distance metric
 A first take on curvature

Vector fields

• A vector field is a smooth map that sends $P \in M$ to a vector $v(P) \in T_P M$.

Outline

- 1 Motivation
 Nonlinearity
 Recall: Calculus in \mathbb{R}^n
- Differential Geometry Smooth manifolds Building Manifolds Tangent Space Vector fields Differential of smooth map
- 3 Riemannian metrics Introduction to Riemannian metrics Recall: Inner Products Riemannian metrics Invariance of the Fisher information metric A first take on the geodesic distance metric A first take on curvature

Differential of a smooth map

• $f: M \rightarrow N$ smooth, $P \in M$, $f(P) \in N$

Differential of a smooth map

- $f: M \rightarrow N$ smooth, $P \in M$, $f(P) \in N$
- $d_P f: T_P M \to T_{f(P)} N$ linear map corresponding to the Jacobian matrix of f in local coordinates.

Differential of a smooth map

- $f: M \to N$ smooth, $P \in M$, $f(P) \in N$
- d_Pf: T_PM → T_{f(P)}N linear map corresponding to the Jacobian matrix of f in local coordinates.
- When $N = \mathbb{R}$, $d_P f$ is a linear form $T_P M \to \mathbb{R}$.

Outline

- 1 Motivation
 Nonlinearity
 Recall: Calculus in \mathbb{R}^n
- Differential Geometry Smooth manifolds Building Manifolds Tangent Space Vector fields Differential of smooth map
- Riemannian metrics Introduction to Riemannian metrics

Recall: Inner Products
Riemannian metrics
Invariance of the Fisher information metric
A first take on the geodesic distance metric
A first take on curvature

Comparison of objects in a nonlinear space?

- Comparison of objects in a nonlinear space?
 - Distance metric? Kernel?
 - Varying local inner product = Riemannian metric!

- Comparison of objects in a nonlinear space?
 - Distance metric? Kernel?
 - Varying local inner product = Riemannian metric!
- Optimization over such spaces?

[&]quot;Topographic map example". Licensed under Public domain via Wikimedia Commons -:://commons.wikimedia.org/wiki/File:Topographic_map_example.png#mediaviewer/File: wgraphic_map_example.pd

- Comparison of objects in a nonlinear space?
 - Distance metric? Kernel?
 - Varying local inner product = Riemannian metric!
- Optimization over such spaces?
 - Gradients!

[&]quot;Topographic map example". Licensed under Public domain via Wikimedia Commons p://commons.wikimedia.org/wiki/File:Topographic_map_example.png#mediaviewer/File:

- Comparison of objects in a nonlinear space?
 - Distance metric? Kernel?
 - Varying local inner product = Riemannian metric!
- Optimization over such spaces?
 - Gradients!
- ~ Riemannian geometry

"Topographic map example". Licensed under Public domain via Wikimedia Commons -//commons.wikimedia.org/wiki/File:Topographic_map_example.png#mediaviewer/File: rraphic map example.png

Outline

- 1 Motivation
 Nonlinearity
 Recall: Calculus in \mathbb{R}^n
- Differential Geometry Smooth manifolds Building Manifolds Tangent Space Vector fields Differential of smooth map
- 3 Riemannian metrics Introduction to Riemannian metrics

Recall: Inner Products
Riemannian metrics
Invariance of the Fisher information metric
A first take on the geodesic distance metric
A first take on curvature

• Euclidean/Hilbertian Inner Product on vector space E: bilinear, symmetric, positive definite mapping $\langle \mathbf{x}, \mathbf{y} \rangle \in \mathbb{R}$.

- Euclidean/Hilbertian Inner Product on vector space E: bilinear, symmetric, positive definite mapping $\langle \mathbf{x}, \mathbf{y} \rangle \in \mathbb{R}$.
- Simplest example: usual dot-product on \mathbb{R}^n : $\mathbf{x} = (x_1, \dots, x_n)^t$, $\mathbf{y} = (y_1, \dots, y_n)^t$,

$$\mathbf{x} \cdot \mathbf{y} = \langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i = \mathbf{x}^t I d \mathbf{y}$$

Id $n \times n$ identity matrix.

- Euclidean/Hilbertian Inner Product on vector space E: bilinear, symmetric, positive definite mapping $\langle \mathbf{x}, \mathbf{y} \rangle \in \mathbb{R}$.
- Simplest example: usual dot-product on \mathbb{R}^n : $\mathbf{x} = (x_1, \dots, x_n)^t$, $\mathbf{y} = (y_1, \dots, y_n)^t$,

$$\mathbf{x} \cdot \mathbf{y} = \langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i = \mathbf{x}^t I d \mathbf{y}$$

Id $n \times n$ identity matrix.

• $\mathbf{x}^T A \mathbf{y}$, A symmetric, positive definite: inner product, $\langle \mathbf{x}, \mathbf{y} \rangle_A$.

- Euclidean/Hilbertian Inner Product on vector space E: bilinear, symmetric, positive definite mapping $\langle \mathbf{x}, \mathbf{y} \rangle \in \mathbb{R}$.
- Simplest example: usual dot-product on \mathbb{R}^n : $\mathbf{x} = (x_1, \dots, x_n)^t$, $\mathbf{y} = (y_1, \dots, y_n)^t$,

$$\mathbf{x} \cdot \mathbf{y} = \langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i = \mathbf{x}^t \operatorname{Id} \mathbf{y}$$

Id $n \times n$ identity matrix.

- $\mathbf{x}^T A \mathbf{y}$, A symmetric, positive definite: inner product, $\langle \mathbf{x}, \mathbf{y} \rangle_A$.
- Without subscript ⟨-,-⟩ will denote standard Euclidean dot-product (i.e. A = Id).

Orthogonality - Norm - Distance

• Orthogonality, vector norm, distance from inner products.

$$\mathbf{x}\perp_{A}\mathbf{y}\iff \langle\mathbf{x},\mathbf{y}\rangle_{A}=0,\quad \|\mathbf{x}\|_{A}^{2}=\langle\mathbf{x},\mathbf{x}\rangle_{A},\quad d_{A}(\mathbf{x},\mathbf{y})=\|\mathbf{x}-\mathbf{y}\|_{A}.$$

Orthogonality – Norm – Distance

Orthogonality, vector norm, distance from inner products.

$$\mathbf{x} \bot_A \mathbf{y} \iff \langle \mathbf{x}, \mathbf{y} \rangle_A = 0, \quad \|\mathbf{x}\|_A^2 = \langle \mathbf{x}, \mathbf{x} \rangle_A, \quad \textit{d}_A(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_A.$$

Inner Products and Duality

Linear form $h = (h_1, \dots, h_n) : \mathbb{R}^n \to \mathbb{R}$: $h(\mathbf{x}) = \sum_{i=1}^n h_i x_i$.

inner product ⟨-,-⟩_A on ℝⁿ: h represented by a unique vector h_A s.t

$$h(\mathbf{x}) = \langle \mathbf{h}_A, \mathbf{x} \rangle_A$$

 \mathbf{h}_A is the dual of h (w.r.t $\langle -, - \rangle_A$).

Inner Products and Duality

Linear form $h = (h_1, \dots, h_n) : \mathbb{R}^n \to \mathbb{R}$: $h(\mathbf{x}) = \sum_{i=1}^n h_i x_i$.

• inner product $\langle -, - \rangle_A$ on \mathbb{R}^n : h represented by a unique vector \mathbf{h}_A s.t

$$h(\mathbf{x}) = \langle \mathbf{h}_A, \mathbf{x} \rangle_A$$

 \mathbf{h}_{A} is the dual of h (w.r.t $\langle -, - \rangle_{A}$).

for standard dot product:

$$\mathbf{h} = \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix} = h^T!$$

Inner Products and Duality

Linear form $h = (h_1, \dots, h_n) : \mathbb{R}^n \to \mathbb{R}$: $h(\mathbf{x}) = \sum_{i=1}^n h_i x_i$.

inner product ⟨-,-⟩_A on ℝⁿ: h represented by a unique vector h_A s.t

$$h(\mathbf{x}) = \langle \mathbf{h}_A, \mathbf{x} \rangle_A$$

 \mathbf{h}_A is the dual of h (w.r.t $\langle -, - \rangle_A$).

for standard dot product:

$$\mathbf{h} = \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix} = h^T!$$

• for general inner product $\langle -, - \rangle_{\mathcal{A}}$

$$\mathbf{h}_{A} = A^{-1}\mathbf{h} = A^{-1}h^{T}.$$

Outline

- ② Differential Geometry Smooth manifolds Building Manifolds Tangent Space Vector fields Differential of smooth map
- Riemannian metrics
 Introduction to Riemannian metrics

Recall: Inner Products Riemannian metrics

Invariance of the Fisher information metric A first take on the geodesic distance metric A first take on curvature

- Riemannian metric on an m-dimensional manifold = smooth family g_P of inner products on the tangent spaces T_PM of M
 - $u, v \in T_PM \mapsto g_p(u, v) := \langle u, v \rangle_P \in \mathbb{R}$
 - With it, one can compute length of vectors in tangent spaces, check orthogonality, etc...

- Riemannian metric on an m-dimensional manifold = smooth family g_P of inner products on the tangent spaces T_PM of M
 - $u, v \in T_PM \mapsto g_p(u, v) := \langle u, v \rangle_P \in \mathbb{R}$
 - With it, one can compute length of vectors in tangent spaces, check orthogonality, etc...
- Given a global parametrization
 φ: (x) = (x₁,...,x_n) → φ(x) ∈ M, it corresponds to a smooth family of symmetric positive definite matrices:

$$g_{\mathbf{x}} = \begin{pmatrix} g_{\mathbf{x}11} & \cdots & g_{\mathbf{x}1n} \\ \vdots & & \vdots \\ g_{\mathbf{x}n1} & \cdots & g_{\mathbf{x}nn} \end{pmatrix}$$

- Riemannian metric on an m-dimensional manifold = smooth family g_P of inner products on the tangent spaces T_PM of M
 - $u, v \in T_PM \mapsto g_p(u, v) := \langle u, v \rangle_P \in \mathbb{R}$
 - With it, one can compute length of vectors in tangent spaces, check orthogonality, etc...
- Given a global parametrization
 φ: (x) = (x₁,...,x_n) → φ(x) ∈ M, it corresponds to a smooth family of symmetric positive definite matrices:

$$g_{\mathbf{x}} = \begin{pmatrix} g_{\mathbf{x}11} & \cdots & g_{\mathbf{x}1n} \\ \vdots & & \vdots \\ g_{\mathbf{x}n1} & \cdots & g_{\mathbf{x}nn} \end{pmatrix}$$

•
$$u = \sum_{i=1}^{n} u_i \partial_{x_i}, v = \sum_{i=1}^{n} v_i \partial_{x_i} \langle u, v \rangle_{\mathbf{x}} = (u_1, \dots, u_n) g_{\mathbf{x}}(v_1, \dots, v_n)^t$$

- Riemannian metric on an m-dimensional manifold = smooth family g_P of inner products on the tangent spaces T_PM of M
 - $u, v \in T_PM \mapsto g_p(u, v) := \langle u, v \rangle_P \in \mathbb{R}$
 - With it, one can compute length of vectors in tangent spaces, check orthogonality, etc...
- Given a global parametrization
 φ: (x) = (x₁,...,x_n) → φ(x) ∈ M, it corresponds to a smooth family of symmetric positive definite matrices:

$$g_{\mathbf{x}} = \begin{pmatrix} g_{\mathbf{x}11} & \cdots & g_{\mathbf{x}1n} \\ \vdots & & \vdots \\ g_{\mathbf{x}n1} & \cdots & g_{\mathbf{x}nn} \end{pmatrix}$$

- $u = \sum_{i=1}^{n} u_i \partial_{x_i}, v = \sum_{i=1}^{n} v_i \partial_{x_i}$ $\langle u, v \rangle_{\mathbf{x}} = (u_1, \dots, u_n) g_{\mathbf{x}}(v_1, \dots, v_n)^t$
- A smooth manifold with a Riemannian metric is a Riemannian manifold.

Example: Induced Riemannian metric on submanifolds of \mathbb{R}^n

• Inner product from \mathbb{R}^n restricts to inner product on $M \subset \mathbb{R}^n$

- Frobenius metric on $\mathcal{P}(n)$
 - $\mathcal{P}(n)$ is a convex subset of $\mathbb{R}^{(n^2+n)/2}$
 - The Euclidean inner product defines a Riemannian metric on $\mathcal{P}(\textit{n})$

Example: Fisher information metric

- Smooth manifold $M = \varphi(U)$ represents a family of probability distributions (M is a *statistical model*), $U \subset \mathbb{R}^m$
- Each point $P = \varphi(x) \in M$ is a probability distribution $P \colon \mathcal{Z} \to \mathbb{R}_{>0}$

$$\begin{array}{ll} M = \text{probability distributions } P \text{ on set } \mathcal{Z} \\ P \colon \mathcal{Z} \to \mathbb{R}_{>0} & \int_{\mathcal{Z}} P(z) dz = 1 \end{array}$$

The Fisher information metric of M at P_x = φ(x) in coordinates φ defined by:

$$g_{ij}(x) = \int_{\mathcal{Z}} \frac{\partial \log P_x(z)}{\partial x_i} \frac{\partial \log P_x(z)}{\partial x_j} P_x(z) dz$$

Outline

- 1 Motivation Nonlinearity Recall: Calculus in \mathbb{R}^n
- Differential Geometry Smooth manifolds Building Manifolds Tangent Space Vector fields Differential of smooth map
- 3 Riemannian metrics

Introduction to Riemannian metrics

Recall: Inner Products
Riemannian metrics

Invariance of the Fisher information metric

A first take on the geodesic distance metric

A first take on curvature

Invariance of the Fisher information metric

• Obtaining a Riemannian metric g on the left chart by pulling \tilde{g} back from the right chart:

$$g_{ij} = g(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_i}) = \tilde{g}\left(d(\psi^{-1} \circ \varphi)(\frac{\partial}{\partial x_i}), d(\psi^{-1} \circ \varphi)(\frac{\partial}{\partial x_j})\right).$$

• Claim: $g_{ij} = \sum_{k=1}^m \sum_{l=1}^m \tilde{g}_{kl} rac{\partial v_k}{\partial x_i} rac{\partial v_l}{\partial x_i}$

Invariance of the Fisher information metric

- Claim: $g_{ij} = \sum_{k=1}^{m} \sum_{l=1}^{m} \tilde{g}_{kl} \frac{\partial v_k}{\partial x_i} \frac{\partial v_l}{\partial x_j}$
- Proof:

$$g_{ij} = g\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right)$$

$$= \tilde{g}\left(\sum_{k=1}^{m} \frac{\partial v_{k}}{\partial x_{i}} \frac{\partial}{\partial v_{k}}, \sum_{l=1}^{m} \frac{\partial v_{l}}{\partial x_{j}} \frac{\partial}{\partial v_{l}}\right)$$

$$= \sum_{k=1}^{m} \sum_{l=1}^{m} \frac{\partial v_{k}}{\partial x_{i}} \frac{\partial v_{k}}{\partial x_{j}} \tilde{g}\left(\frac{\partial}{\partial v_{k}}, \frac{\partial}{\partial v_{l}}\right)$$

$$= \sum_{k=1}^{m} \sum_{l=1}^{m} \tilde{g}_{kl} \frac{\partial v_{k}}{\partial x_{i}} \frac{\partial v_{l}}{\partial x_{j}}$$

Invariance of the Fisher information metric

- Fact: $g_{ij} = \sum_{k=1}^m \sum_{l=1}^m \tilde{g}_{kl} \frac{\partial v_k}{\partial x_i} \frac{\partial v_l}{\partial x_j}$
- Pulling the Fisher information metric \tilde{g} from right to left:

$$\begin{array}{ll} g_{ij} &= \sum_{k=1}^{m} \sum_{l=1}^{m} \tilde{g}_{kl} \frac{\partial v_{k}}{\partial x_{i}} \frac{\partial v_{l}}{\partial x_{i}} \\ &= \sum_{k=1}^{m} \sum_{l=1}^{m} \int \frac{\partial \log P_{v}(z)}{\partial v_{k}} \frac{\partial \log P_{v}(z)}{\partial v_{l}} P_{v}(z) dz \cdot \frac{\partial v_{k}}{\partial x_{i}} \frac{\partial v_{l}}{\partial x_{j}} \\ &= \int \left(\sum_{k=1}^{m} \frac{\partial \log P_{v}(z)}{\partial v_{k}} \frac{\partial v_{k}}{\partial x_{i}} \right) \left(\sum_{l=1}^{m} \frac{\partial \log P_{v}(z)}{\partial v_{l}} \frac{\partial v_{l}}{\partial x_{j}} \right) P_{v}(z) dz \\ &= \int \frac{\partial \log P_{x}(z)}{\partial x_{i}} \frac{\partial \log P_{x}(z)}{\partial x_{j}} \frac{\partial \log P_{x}(z)}{\partial x_{j}} P_{x}(z) dz \end{array}$$

• Result: Formula invariant of parametrization

Outline

- Differential Geometry Smooth manifolds Building Manifolds Tangent Space Vector fields Differential of smooth map
- 3 Riemannian metrics

Introduction to Riemannian metrics

Recall: Inner Products Riemannian metrics

Invariance of the Fisher information metric

A first take on the geodesic distance metric

A first take on curvature

Path length in metric spaces:

• Let (X, d) be a metric space. The length of a curve $c: [a, b] \to X$ is

$$I(c) = \sup_{a=t_0 \le t_1 \le \dots \le t_n=b} \sum_{i=0}^{n-1} d(c(t_i, t_{i+1})).$$
 (3.1)

Path length in metric spaces:

• Let (X, d) be a metric space. The length of a curve $c: [a, b] \to X$ is

$$I(c) = \sup_{a=t_0 \le t_1 \le \dots \le t_n=b} \sum_{i=0}^{n-1} d(c(t_i, t_{i+1})).$$
 (3.1)

• Approach supremum through segments $c(t_i, t_{i+1})$ of length o 0

Path length in metric spaces:

• Let (X, d) be a metric space. The length of a curve $c: [a, b] \to X$ is

$$I(c) = \sup_{a=t_0 \le t_1 \le \dots \le t_n = b} \sum_{i=0}^{n-1} d(c(t_i, t_{i+1})).$$
 (3.1)

- Approach supremum through segments $c(t_i, t_{i+1})$ of length $\to 0$ Intuitive path length on Riemannian manifolds:
 - Riemannian metric g on M defines norm in T_PM

Path length in metric spaces:

• Let (X, d) be a metric space. The length of a curve $c: [a, b] \to X$ is

$$I(c) = \sup_{a=t_0 \le t_1 \le \dots \le t_n=b} \sum_{i=0}^{n-1} d(c(t_i, t_{i+1})).$$
 (3.1)

- Approach supremum through segments $c(t_i, t_{i+1})$ of length $\to 0$ *Intuitive* path length on Riemannian manifolds:
 - Riemannian metric g on M defines norm in T_PM
 - Locally a good approximation for use with (3.1)

Path length in metric spaces:

• Let (X, d) be a metric space. The length of a curve $c: [a, b] \to X$ is

$$I(c) = \sup_{a=t_0 \le t_1 \le \dots \le t_n = b} \sum_{i=0}^{n-1} d(c(t_i, t_{i+1})).$$
 (3.1)

• Approach supremum through segments $c(t_i, t_{i+1})$ of length $\to 0$ *Intuitive* path length on Riemannian manifolds:

- Riemannian metric g on M defines norm in T_PM
- Locally a good approximation for use with (3.1)
- This will be made precise in Francois' lecture!

• We have a concept of path length $\mathit{I}(c)$ for paths $c\colon [a,b]\to \mathit{M}$

- We have a concept of path length I(c) for paths $c: [a, b] \to M$
- A geodesic from P to Q in M is a path $c: [a, b] \to X$ such that c(a) = P, c(b) = Q and $l(c) = \inf_{c_{P \to Q}} l(c_{P \to Q})$.

- We have a concept of path length I(c) for paths $c: [a, b] \to M$
- A *geodesic* from P to Q in M is a path $c: [a,b] \to X$ such that c(a) = P, c(b) = Q and $I(c) = \inf_{c_{P \to Q}} I(c_{P \to Q})$.
- The distance function $d(P,Q) = \inf_{c_{P\to Q}} I(c_{P\to Q})$ is a *distance metric* on the Riemannian manifold (M,g).

- We have a concept of path length I(c) for paths $c: [a, b] \to M$
- A *geodesic* from P to Q in M is a path $c: [a,b] \to X$ such that c(a) = P, c(b) = Q and $I(c) = \inf_{c_{P \to Q}} I(c_{P \to Q})$.
- The distance function $d(P,Q) = \inf_{c_{P\to Q}} l(c_{P\to Q})$ is a distance metric on the Riemannian manifold (M,g). Can you see why?

- We have a concept of path length I(c) for paths $c: [a, b] \to M$
- A *geodesic* from P to Q in M is a path $c: [a, b] \to X$ such that c(a) = P, c(b) = Q and $I(c) = \inf_{c_{P \to Q}} I(c_{P \to Q})$.
- The distance function $d(P,Q) = \inf_{c_{P\to Q}} l(c_{P\to Q})$ is a distance metric on the Riemannian manifold (M,g). Can you see why?
- Do geodesics always exist?

Example: Riemannian geodesics between 1-dimensional Gaussian distributions

- Space parametrized by $(\mu, \sigma) \in \mathbb{R} \times \mathbb{R}_+$
- Metric 1: Euclidean inner product ⇒ Euclidean geodesics

Metric 2: Fisher information metric

Outline

- 1 Motivation
 Nonlinearity
 Recall: Calculus in \mathbb{R}^n
- Differential Geometry Smooth manifolds Building Manifolds Tangent Space Vector fields Differential of smooth map
- 3 Riemannian metrics

Recall: Inner Products
Riemannian metrics
Riemannian metrics
Invariance of the Fisher information metric
A first take on the geodesic distance metric

A first take on curvature

A first take on curvature

• Curvature in metric spaces defined by comparison with *model* spaces of known curvature.

A first take on curvature

- Curvature in metric spaces defined by comparison with model spaces of known curvature.
 - Positive curvature model spaces. Spheres of curvature $\kappa > 0$:
 - Flat model space: Euclidean plane
 - Negatively curved model spaces: Hyperbolic space of curvature $\kappa>0$

A first take on curvature

Figure : **Left:** Geodesic triangle in a negatively curved space. **Right:** Comparison triangle in the plane.

- A $CAT(\kappa)$ space is a metric space in which geodesic triangles are "thinner" than for their comparison triangles in the model space M_{κ} ; that is, $d(x,a) \leq d(\bar{x},\bar{a})$.
- A locally $CAT(\kappa)$ space has curvature bounded from above by κ .
- Geodesic triangles are useful for intuition and proofs!

Example: The two metrics on 1-dimensional Gaussian distributions

Metric 1: Euclidean inner product: FLAT

Metric 2: Fisher information metric: HYPERBOLIC

(OBS: Not hyperbolic for any family of distributions)

Example: The two metrics on 1-dimensional Gaussian distributions

Metric 1: Euclidean inner product: FLAT

Metric 2: Fisher information metric: HYPERBOLIC

(OBS: Not hyperbolic for any family of distributions)

Example: The two metrics on 1-dimensional Gaussian distributions

Metric 1: Euclidean inner product: FLAT

Metric 2: Fisher information metric: HYPERBOLIC

(OBS: Not hyperbolic for any family of distributions)

Relation to sectional curvature

- $CAT(\kappa)$ is a weak notion of curvature
- Stronger notion of sectional curvature (requires a little more Riemannian geometry)

Theorem

A smooth Riemannian manifold M is (locally) CAT(κ) if and only if the sectional curvature of M is $< \kappa$.

• Given a distance matrix $D_{ij} = d(x_i, x_j)$ for a dataset $X = \{x_1, \dots, x_n\}$ residing on a manifold M, where d is a geodesic metric.

- Given a distance matrix D_{ij} = d(x_i, x_j) for a dataset
 X = {x₁,...,x_n} residing on a manifold M, where d is a
 geodesic metric.
- Assume that $Z = \{z_1, \dots, z_n\} \subset \mathbb{R}^d$ is an embedding of X obtained through MDS or manifold learning.

- Given a distance matrix $D_{ij} = d(x_i, x_j)$ for a dataset $X = \{x_1, \dots, x_n\}$ residing on a manifold M, where d is a geodesic metric.
- Assume that $Z = \{z_1, \dots, z_n\} \subset \mathbb{R}^d$ is an embedding of X obtained through MDS or manifold learning.
- Common belief: If d large, then Z is a good (perfect?) representation of X.

• **Truth:** If there exists a map $f: M \to \mathbb{R}^d$ such that ||f(a) - f(b)|| = d(a, b) for all $a, b \in M$, then

- **Truth:** If there exists a map $f: M \to \mathbb{R}^d$ such that ||f(a) f(b)|| = d(a, b) for all $a, b \in M$, then
 - f maps geodesics to straight lines
 - *M* is *CAT*(0)
 - M is not $CAT(\kappa)$ for any $\kappa < 0$

- **Truth:** If there exists a map $f: M \to \mathbb{R}^d$ such that ||f(a) f(b)|| = d(a, b) for all $a, b \in M$, then
 - f maps geodesics to straight lines
 - *M* is *CAT*(0)
 - M is not $CAT(\kappa)$ for any $\kappa < 0$
 - \Rightarrow *M* is flat

- **Truth:** If there exists a map $f: M \to \mathbb{R}^d$ such that ||f(a) f(b)|| = d(a, b) for all $a, b \in M$, then
 - f maps geodesics to straight lines
 - M is CAT(0)
 - M is not $CAT(\kappa)$ for any $\kappa < 0$
 - \Rightarrow *M* is flat
- That is, if M is not flat, MDS and manifold learning lie to you

- **Truth:** If there exists a map $f: M \to \mathbb{R}^d$ such that ||f(a) f(b)|| = d(a, b) for all $a, b \in M$, then
 - f maps geodesics to straight lines
 - M is CAT(0)
 - *M* is not $CAT(\kappa)$ for any $\kappa < 0$
 - \Rightarrow *M* is flat
- That is, if *M* is not flat, MDS and manifold learning lie to you
- (but sometimes lies are useful)

A message from Stefan for tomorrow's practical

Check out course webpage for installation instructions!

http://image.diku.dk/MLLab/IG4.php

