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Welcome to Copenhagen!

Social Programme!
o Today: Pizza and walking tour!

e 17:15 Pizza dinner in lecture hall
¢ 18:00 Departure from lecture hall (with Metro — we have tickets)
e 19:00 Walking tour of old university

15:20 Bus from KUA to Nyhavn

16:00-17:00 Boat tour

17:20 Bus from Nyhavn to NA rrebro bryghus (NB, brewery)
18:00 Guided tour of NB

19:00 Dinner at NB
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Welcome to Copenhagen!

Lunch on your own — canteens and coffee on campus
Internet connection

e Eduroam
o Alternative will be set up ASAP

Emergency? Call Aasa: +4526220498
Questions?
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Outline

@ Motivation
Nonlinearity
Recall: Calculus in R”

@® Differential Geometry
Smooth manifolds
Building Manifolds
Tangent Space
Vector fields
Differential of smooth map

@® Riemannian metrics
Introduction to Riemannian metrics
Recall: Inner Products
Riemannian metrics
Invariance of the Fisher information metric
A first take on the geodesic distance metric
A first take on curvature
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Outline

@ Motivation
Nonlinearity
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Why do we care about nonlinearity?

¢ Nonlinear relations between data objects
¢ True distances not reflected by linear representation

lomain via Wikimedia Commons -
ng#mediaviewer/File:

"Topographic map example”. Licensed under Publ
ik a raphic_map_example.

exampl
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Mildly nonlinear: Nonlinear transformations
between different linear representations

e Kernels!

e Feature map = nonlinear transformation of (linear?) data space
X into linear feature space H

e Learning problem is (usually) linear in #, not in X.
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Mildly nonlinear: Nonlinearly embedded
subspaces whose intrinsic metric is linear

¢ Manifold learning!

e Find intrinsic dataset distances
e Find an R embedding that minimally distorts those distances
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Mildly nonlinear: Nonlinearly embedded
subspaces whose intrinsic metric is linear

¢ Manifold learning!
e Find intrinsic dataset distances
e Find an R embedding that minimally distorts those distances
e Searches for the folded-up Euclidean space that best fits the
data

o the embedding of the data in feature space is nonlinear
e the recovered intrinsic distance structure is linear
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More nonlinear: Data spaces which are
intrinsically nonlinear
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e Distances distorted in nonlinear way, varying spatially
o We shall see: the distances cannot always be linearized

"Topographic map example”. Licensed under Public domain via Wikimedia Commons - @
kimedia.org/wiki/File:Topographic_map_example.png#mediaviewer/File: .
ple.png

commor

phic_m
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Intrinsically nonlinear data spaces:
Smooth manifolds

A manifoldis a set M with an associated one-to-one map ¢: U - M
from an open subset U c R™ called a global chart or a global

coordinate system for M.

U = R?

Slide 9/57 — Aasa Feragen and Frangois Lauze — Differential Geometry — September 22



UNIVERSITY OF COPENHAGEN UNIVERSITY OF COPENHAGEN

Intrinsically nonlinear data spaces:
Smooth manifolds
Definition

A manifoldis a set M with an associated one-to-one map ¢: U - M
from an open subset U c R™ called a global chart or a global

coordinate system for M.

U = R?

e Open set U C R™ = set that does not contain its boundary
o Manifold M gets its topology (= definition of open sets) from U
via ¢
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Intrinsically nonlinear data spaces:
Smooth manifolds
Definition

A manifoldis a set M with an associated one-to-one map ¢: U - M
from an open subset U c R™ called a global chart or a global

coordinate system for M.

U = R?

e Open set U C R™ = set that does not contain its boundary

o Manifold M gets its topology (= definition of open sets) from U
via ¢

e What are the implications of getting the topology from U?
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Intrinsically nonlinear data spaces:
Smooth manifolds

A smooth manifold is a pair (M, A) where
e Mis aset
e Ais a family of one-to-one global charts ¢: U — M from some
open subset U = U, C R™ for M,

e for any two charts ¢: U — R™ and ¢): V — R™in A, their
corresponding change of variables is a smooth diffeomorphism
v lop: U= VCR™.
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Outline

@ Motivation

Recall: Calculus in R”
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Differentiable and smooth functions

e f: Uopen C R"” — R continuous: write

(y17'~-a}/q):f(X1,...,Xn)
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Differentiable and smooth functions

e f: Uopen C R"” — R continuous: write

(y17'~-a}/q):f(X1,...,Xn)

o fis of class C' if f has continuous partial derivatives

ar1+"'+rnyk
ox{*...oxy

k=1...q,n+...mm<r.
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Differentiable and smooth functions

e f: Uopen C R"” — R continuous: write

(y1a-~-,}/q):f(X1,...7Xn)

o fis of class C' if f has continuous partial derivatives

ar1+"'+rnyk
ox{" ..oy

k=1...q,n+...mm<r.
e When r = o, f is smooth. Our focus.
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Differential, Jacobian Matrix

o Differential of f in x: unique linear map (if exists) dyf : R" — R¢
s.t.
f(x+ h) = f(x) + dxf(h) + o(h).
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Differential, Jacobian Matrix

o Differential of f in x: unique linear map (if exists) dyf : R" — R¢
s.t.
f(x+ h) = f(x) + dxf(h) + o(h).

e Jacobian matrix of f: matrix g x n of partial derivatives of f:

g—ﬁ(x) e g—g(x)
Jif = : :

a a

a—‘)‘(/?(x) a—ﬁz(x)
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Differential, Jacobian Matrix

o Differential of f in x: unique linear map (if exists) dyf : R" — R¢

s.t.
f(x + h) = f(x) + dyf(h) + o(h).

e Jacobian matrix of f: matrix g x n of partial derivatives of f:

g—ﬁ(x) e g—g(x)
Jif = : :

a a

a—‘)‘(/:’(x) a—ﬁz(x)

e What is the meaning of the Jacobian? The differential? How do
they differ?
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Diffeomorphism

e Whenn=gq:
e Iffis 1-1, fand f~' both C"
e ~ fis a C’'-diffeomorphism.
e Smooth diffeomorphisms are simply referred to as a
diffeomorphisms.
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Diffeomorphism

e Whenn=gq:
e Iffis 1-1, fand f~' both C"
e ~ fis a C’'-diffeomorphism.
e Smooth diffeomorphisms are simply referred to as a
diffeomorphisms.
e Inverse Function Theorem:
o f diffeomorphism = det(Jf) # 0.
o det(JUxf) # 0 = f local diffeomorphism in a neighborhood of x.
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Diffeomorphism

e Whenn=gq:
e Iffis 1-1, fand f~' both C"
e ~ fis a C’'-diffeomorphism.
e Smooth diffeomorphisms are simply referred to as a
diffeomorphisms.
e Inverse Function Theorem:
o f diffeomorphism = det(Jf) # 0.
o det(JUxf) # 0 = f local diffeomorphism in a neighborhood of x.

e What is the meaning of Jxf? Of det(Jxf) # 0?
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Diffeomorphism

e f may be a local diffeomorphism everywhere but fail to be a
global diffeomorphism. Examples:

o Complex exponential:
f:R?\0 — R (x,y) — (e"cos(y), e'sin(y)).

Recall its inverse (the complex log) has infinitely many branches.

"Complex log” by Jan Homann; Color encoding image comment author Hal Lane, September 28, 2009 - Own work. This @
mathematical image was created with Mathematica. Licensed under Public domain via Wikimedia Commons - .
http://commons.wikimedia.org/wiki/File:Complex_log.jpg#mediaviewer/File:Complex_log.jpg

Y
@
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Diffeomorphism

e f may be a local diffeomorphism everywhere but fail to be a
global diffeomorphism. Examples:

o Complex exponential:
f:R?\0 — R (x,y) — (e"cos(y), e'sin(y)).

Recall its inverse (the complex log) has infinitely many branches.

o If fis 1-1 and a local diffeomorphism everywhere, it is a global
diffeomorphism.

"Complex log” by Jan Homann; Color encoding image comment author Hal Lane, September 28, 2009 - Own work. This @
mathematical image was created with Mathematica. Licensed under Public domain via Wikimedia Commons - ‘
http://commons.wikimedia.org/wiki/File:Complex_log.jpg#mediaviewer/File:Complex_log.jpg

Y
@
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Diffeomorphism

e f may be a local diffeomorphism everywhere but fail to be a
global diffeomorphism. Examples:

o Complex exponential:
f:R?\0 — R (x,y) — (e"cos(y), e'sin(y)).

Recall its inverse (the complex log) has infinitely many branches.

o If fis 1-1 and a local diffeomorphism everywhere, it is a global
diffeomorphism.

e What is the intuitive meaning of a diffeomorphism?

"Complex log” by Jan Homann; Color encoding image comment author Hal Lane, September 28, 2009 - Own work. This @
mathematical image was created with Mathematica. Licensed under Public domain via Wikimedia Commons - ‘
http://commons.wikimedia.org/wiki/File:Complex_log.jpg#mediaviewer/File:Complex_log.jpg

Y
@
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Outline

® Differential Geometry
Smooth manifolds
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Back to smooth manifolds

Definition
A smooth manifold is a pair (M, .A) where
o Mis a set
e Ais a family of one-to-one global charts ¢: U — M from some
open subset U = U, C R™ for M,
e for any two charts ¢: U — R™ and ¢: V — R™, their
corresponding change of variables is a smooth diffeomorphism
v lop: U— VCR™

SN
WAL
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Back to smooth manifolds

A smooth manifold is a pair (M, A) where
e Mis a set
e Ais a family of one-to-one global charts ¢: U — M from some
open subset U = U, C R™ for M,

e for any two charts ¢: U — R™ and ¢): V — R™, their
corresponding change of variables is a smooth diffeomorphism
v lop: U— VCR™

SN
WAL

e What are the implications of inheriting structure through A?
[
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Back to smooth manifolds

e o and v are parametrizations of M
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Back to smooth manifolds

e o and v are parametrizations of M
e Set g;(P) = (y'(P),...,y"(P)), then

@iowi Xty Xm) = Y1y s Ym)

. . K . .
and the m x m Jacobian matrices (%ﬁ)k . are invertible.

s
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Euclidean space

Example

take ¢ = Id as global

fold

e The Euclidean space R" is a man

coordinate system

‘Aasa Feragen and Frangois Lauze — Differential Geometry — September 22
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Example: Smooth surfaces

e Smooth surfaces in R” that are the image of a smooth map
f: R? — R".
e A global coordinate system given by f

A
/“t\\\
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Example: Symmetric Positive Definite Matrices

e P(n) C GL, consists of all symmetric n x n matrices A that
satisfy

xAxT > 0 for any x € R”, (positive definite — PD — matrices)
o P(n) = the set of covariance matrices on R”
 P(3) = the set of (diffusion) tensors on R®

« Global chart: P(n) is an open, convex subset of R("+7/2
e A BeP(n)— aA+ bB e P(n)forall a,b> 0so P(n)is aconvex
cone in R(™+1/2,

Middle figure from Fillard et al., A Riemannian Framework for the Processing of Tensor-Valued Images, LNCS 3753, 2005, pp @
112-1283. Rightmost figure from Fletcher, Joshi, Principal Geodesic Analysis on Symmetric Spaces: Statistics of Diffusion Tensors,
CVAMIA04

o
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Example: Space of Gaussian distributions

e The space of n-dimensional Gaussian distributions is a smooth
manifold

e Global chart: (i, X) € R" x P(n).
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Example: Space of 1-dimensional Gaussian
distributions

e The space of 1-dimensional Gaussian distributions is
parametrized by (i, 0) € R x R, mean p, standard deviation o

o Also parametrized by (,02) € R x R, mean p, variance o2
e Smooth reparametrization ¢)~" o ¢

Space of 1-dimensional
Gaussian distributions

so/ \1/)
o vloy o?
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In general: Manifolds requiring multiple charts

The sphere 82 = {(x,y,z), x>+ y?> + 22 = 1}

For instance the projection from North Pole, given, for a point
P = (x,y,z) # N of the sphere, by

on(P) = (25755

is a (large) local coordinate system (around the south pole).
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In general: Manifolds requiring multiple charts

The sphere 82 = {(x,y,z), x>+ y?> + 22 = 1}

For instance the projection from North Pole, given, for a point
P = (x,y,z) # N of the sphere, by

on(P) = (25755

is a (large) local coordinate system (around the south pole).

In these cases, we also require the charts to overlap "nicely”
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In general: Manifolds requiring multiple charts

The Moebius strip The 2D-torus

11
ue[0,27r],ve[§,§] (u,v) €[0,27]2,R>r >0
cos(u) (1 + 1%VCOS(%)) cos(u) (R + rcos(v))
sin(u) (11 +3vcos(3)) sin(u) (R + rcos(v))
zvsin(z) rsin(v)
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Smooth maps between manifolds

i
W
Ay

/{///. /.

e f: M — N is smooth if its expression in any global coordinates
for M and N is.
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Smooth maps between manifolds

M

D)
i

A0
o'i"’%/
ol
s

) ““\\\ o
““““'(’('f‘*" =

"O‘ v
2SS
LA

e f: M — N is smooth if its expression in any global coordinates
for M and N is.

¢ ¢ global coordinates for M, v global coordinates for N
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Smooth maps between manifolds

M

D)
i

A0
o'i"’%/
ol
s

) ““\\\ o
““““'(’('f‘*" =

"O‘ v
2SS
LA

e f: M — N is smooth if its expression in any global coordinates
for M and N is.

¢ ¢ global coordinates for M, v global coordinates for N

©~ ' o fo smooth.
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Smooth diffeomorphism between manifolds

&0
W
S
ST
//(/1. /!

e f: M — N is a smooth diffeomorphism if its expression in any
global coordinates for M and N is.
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Smooth diffeomorphism between manifolds

XA
KK
s
AKXl
ST

e f: M — N is a smooth diffeomorphism if its expression in any
global coordinates for M and N is.

¢ ¢ global coordinates for M, v global coordinates for N
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Smooth diffeomorphism between manifolds

X
'@j'/'//,,
S w,'/:/’//’é/

e f: M — N is a smooth diffeomorphism if its expression in any
global coordinates for M and N is.

¢ ¢ global coordinates for M, v global coordinates for N

¢~ o f o 1) smooth diffeomorphism .
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Outline

® Differential Geometry

Building Manifolds
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Submanifolds of RV

e Take f: U € R™ — R", n < m smooth.
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Submanifolds of RV

e Take f: U € R™ — R", n < m smooth.
e Set M = f~(0).
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Submanifolds of RN

e Take f: U € R™ — R", n < m smooth.
e Set M = f~(0).

o |fforall x € M, fis a submersion at x (dxf has full rank), M is a
manifold of dimension m — n.

Slide 26/57 — Aasa Feragen and Frangois Lauze — Differential Geometry — September 22



Submanifolds of RN

Take f: U € R™ — R", n < m smooth.
Set M = =1(0).

If for all x € M, f is a submersion at x (dxf has full rank), M is a
manifold of dimension m — n.

Example:

m
f(xt,. .., Xm)=1-> xF:
i=1

f~1(0) is the (m — 1)-dimensional unit sphere S™~1.

Slide 26/57 — Aasa Feragen and Frangois Lauze — Differential Geometry — September 22



Submanifolds of RN

e Take f: U € R™ — R", n < m smooth.
e Set M = f~(0).

o If for all x € M, fis a submersion at x (dxf has full rank), M is a
manifold of dimension m — n.

e Example:

m
f(xt,. .., Xm)=1-> xF:
i=1

f~1(0) is the (m — 1)-dimensional unit sphere S™~1.

e The graph ' = (x, f(x)) € R™ x R" is smooth for any smooth
map f: R™ — R".
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Submanifolds of RN

e Take f: U € R™ — R", n < m smooth.
e Set M = f~(0).

o If for all x € M, fis a submersion at x (dxf has full rank), M is a
manifold of dimension m — n.

e Example:

m
f(xt,. .., Xm)=1-> xF:
i=1

f~1(0) is the (m — 1)-dimensional unit sphere S™~1.
e The graph ' = (x, f(x)) € R™ x R" is smooth for any smooth
map f: R™ — R".
o [=F)for F: R™ x R" — R", F(x,y) = y — f(x).
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Submanifolds of RN

e Take f: U € R™ — R", n < m smooth.
e Set M = f~(0).

o |fforall x € M, fis a submersion at x (dxf has full rank), M is a
manifold of dimension m — n.

e Example:

m
f(xt,. .., Xm)=1-> xF:
i=1

f~1(0) is the (m — 1)-dimensional unit sphere S™~1.
e The graph ' = (x, f(x)) € R™ x R" is smooth for any smooth
map f: R™ — R".
o [=F)for F: R™ x R" — R", F(x,y) = y — f(x).
o Many common examples of manifolds in practice are of that type.
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Product Manifolds

e M and N manifolds, sois M x N.
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Product Manifolds

e M and N manifolds, so is M x N.
¢ Just consider the products of charts of M and N!
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Product Manifolds

e M and N manifolds, so is M x N.
¢ Just consider the products of charts of M and N!
e Example: M = S', N = R: the cylinder
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Product Manifolds

M and N manifolds, so is M x N.
Just consider the products of charts of M and N!
Example: M = S', N = R: the cylinder

Q X / : O
Example: M = N = S': the torus

OO GT—>
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Outline

® Differential Geometry

Tangent Space
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Tangent vectors informally

e How can we quantify tangent vectors to a manifold?
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Tangent vectors informally

e How can we quantify tangent vectors to a manifold?
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Tangent vectors informally

e How can we quantify tangent vectors to a manifold?

o Informally: a tangent vector at P € M: draw a curve
c:(—e,e) = M, ¢(0) = P, then ¢(0) is a tangent vector.
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A bit more formally
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A bit more formally

o C:(—g,6) > M, c(0)=P.Inchart o, themap t — poc(t)isa
curve in Euclidean space, and so is t — ¢ o ¢(1).
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A bit more formally

o C:(—g,6) > M, c(0)=P.Inchart o, themap t — poc(t)isa
curve in Euclidean space, and so is t — ¢ o ¢(1).
o setv=%(poC)o, w=g(¢oc)othen

w=dJo (¢ "oy v.
(Jof = Jacobian of f at 0)
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A bit more formally

o C:(—g,6) > M, c(0)=P.Inchart o, themap t — poc(t)isa
curve in Euclidean space, and so is t — ¢ o ¢(1).
o setv=%(poC)o, w=g(¢oc)othen

w=dJo (¢ "oy v.

(Jof = Jacobian of f at 0)
o Use this relation to identify vectors in different coordinate @
systems! ®
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Tangent space

¢ The set of tangent vectors to the m-dimensional manifold M at
point P is the tangent space of M at P denoted TpM.

Z2
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Tangent space

e The set of tangent vectors to the m-dimensional manifold M at
point P is the tangent space of M at P denoted TpM.
e |t is a vector space of dimension m:

X2
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Tangent space

e The set of tangent vectors to the m-dimensional manifold M at
point P is the tangent space of M at P denoted TpM.
e |t is a vector space of dimension m:
e Let ¢ be a global chart for M

T2
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Tangent space

e The set of tangent vectors to the m-dimensional manifold M at
point P is the tangent space of M at P denoted TpM.
e |t is a vector space of dimension m:

e Let ¢ be a global chart for M
o o(X1,...,Xm) € Mwith p(0) = P.
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Tangent space

e The set of tangent vectors to the m-dimensional manifold M at
point P is the tangent space of M at P denoted TpM.
e |t is a vector space of dimension m:
e Let ¢ be a global chart for M
o o(X1,...,Xm) € Mwith ¢(0) = P.
¢ Define curves

ci: t— ¢(0,...,0,t0,0).
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Tangent space

e The set of tangent vectors to the m-dimensional manifold M at
point P is the tangent space of M at P denoted TpM.
e |t is a vector space of dimension m:
e Let ¢ be a global chart for M
o o(X1,...,Xm) € Mwith ¢(0) = P.
¢ Define curves
ci: t— ¢(0,...,0,t0,0).
e They go through P when t = 0 and follow the axes.
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Tangent space

e The set of tangent vectors to the m-dimensional manifold M at
point P is the tangent space of M at P denoted TpM.
e |t is a vector space of dimension m:
e Let ¢ be a global chart for M
o o(X1,...,Xm) € Mwith ¢(0) = P.
¢ Define curves
ci: t— ¢(0,...,0,t0,0).
e They go through P when t = 0 and follow the axes.
e Their derivative at 0 are denoted 9y,, or sometimes 6%.
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Tangent space

e The set of tangent vectors to the m-dimensional manifold M at
point P is the tangent space of M at P denoted TpM.

e |t is a vector space of dimension m:

e Let ¢ be a global chart for M

o o(X1,...,Xm) € Mwith ¢(0) = P.

¢ Define curves

ci: t— ¢(0,...,0,t0,0).

They go through P when t = 0 and follow the axes.
Their derivative at 0 are denoted 9y,, or sometimes 6%.
The 0y, form a basis of TpM.
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® Differential Geometry

Vector fields
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Vector fields

e A vector field is a smooth map that sends P € M to a vector
v(P) € TpM.
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Outline

® Differential Geometry

Differential of smooth map
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Differential of a smooth map

e f:M— Nsmooth, Pe M, f(P) e N
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Differential of a smooth map

e f:M— Nsmooth, Pe M, f(P) e N

e dpf: TpM — Typ)N linear map corresponding to the Jacobian
matrix of f in local coordinates.
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Differential of a smooth map

e f:M— Nsmooth, Pe M, f(P) e N

e dpf: TpM — Typ)N linear map corresponding to the Jacobian
matrix of f in local coordinates.

e When N =R, dpfis alinear form TpM — R.
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Outline

@® Riemannian metrics
Introduction to Riemannian metrics
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j

s

Tools needed in intrinsically nonlinear spaces?

~

e Comparison of objects in a nonlinear space?

"Topographic map example”. Licensed under Public domain via Wikimedia Commons - @
o kimedia.org/wiki/File:Topographic_map_example.png#mediaviewer/File: .
xample.png
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e Comparison of objects in a nonlinear space?
¢ Distance metric? Kernel?
e Varying local inner product = Riemannian metric!

"Topographic map example”. Licensed under Public domain via Wikimedia Commons - e
t comm kimedia.org/wiki/File:Topographic_map_example.png#mediaviewer/File: .
xample.png
Y
@
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Tools needed in intrinsically nonlinear spaces?

)2
7

Ay W

,( s /8
2 frf//é(f(//

e Comparison of objects in a nonlinear space?

¢ Distance metric? Kernel?

e Varying local inner product = Riemannian metric!
e Optimization over such spaces?

"Topographic map example”. Licensed under Public domain via Wikimedia Commons - @
kimedia.org/wiki/File:Topographic_map_example.png#mediaviewer/File: .
xample.png

Y
@
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Tools needed in intrinsically nonlinear spaces?

)2
7

Ay W

,( s /8
2 frf//é(f(//

e Comparison of objects in a nonlinear space?

¢ Distance metric? Kernel?

e Varying local inner product = Riemannian metric!
e Optimization over such spaces?

e Gradients!

"Topographic map example”. Licensed under Public domain via Wikimedia Commons - @
kimedia.org/wiki/File:Topographic_map_example.png#mediaviewer/File: .
xample.png

Y
@
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Tools needed in |ntr|nS|caIIy nonlinear spaces?

'{ s

e Comparison of objects in a nonlinear space?
¢ Distance metric? Kernel?
e Varying local inner product = Riemannian metric!
e Optimization over such spaces?
e Gradients!
e ~ Riemannian geometry @

Topograph\c map example L\censed under P
wiki/File

ic domain via Wikimedia Commons -
ographic_map_example.png#mediaviewer/File: .

umple.png
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@® Riemannian metrics

Recall: Inner Products
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Recall: Inner Products

o Euclidean/Hilbertian Inner Product on vector space E: bilinear,
symmetric, positive definite mapping (x,y) € R.
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Recall: Inner Products

o Euclidean/Hilbertian Inner Product on vector space E: bilinear,
symmetric, positive definite mapping (x,y) € R.

» Simplest example: usual dot-product on R™: x = (x1,. .., Xp)',
y = (y17' . 7Yn)ta

n
X-y=Xy) =Y xy=xldy

i=1

Id n x nidentity matrix.
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Recall: Inner Products

o Euclidean/Hilbertian Inner Product on vector space E: bilinear,
symmetric, positive definite mapping (x,y) € R.

» Simplest example: usual dot-product on R™: x = (x1,. .., Xp)',
y = (y17' . 7Yn)ta

n
X-y=Xy) =Y xy=xldy
i=1

Id n x nidentity matrix.
« x" Ay, A symmetric, positive definite: inner product, (X,y) 5.
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Recall: Inner Products

o Euclidean/Hilbertian Inner Product on vector space E: bilinear,
symmetric, positive definite mapping (x,y) € R.

» Simplest example: usual dot-product on R™: x = (x1,. .., Xp)',
y = (y17' . 7Yn)ta

n
X-y=(xy) =Y xy =xdy
i=1
Id n x nidentity matrix.
« x" Ay, A symmetric, positive definite: inner product, (X,y) 5.

o Without subscript (—, —) will denote standard Euclidean
dot-product (i.e. A = Id).
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Orthogonality — Norm — Distance

¢ Orthogonality, vector norm, distance from inner products.

xLay <= (XY}, =0, [x|a=(xx%),, daxy)=[x-yla
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Orthogonality — Norm — Distance

¢ Orthogonality, vector norm, distance from inner products.
xLay <= (x,¥)4=0, [x[Z2=(X%)s, da(x,y)=Ix-y]a.

o @ There are norms and distances not from an inner product.
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Inner Products and Duality

Linear form h = (hy, ..., hy) : R" — R: h(x) = "7, hix.
e inner product (—, —) , on R": h represented by a unique vector
h, s.t
h(x) = (ha, X)
h, is the dual of h (w.r.t (—, —)4).
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Inner Products and Duality

Linear form h = (hy, ..., hy) : R" — R: h(x) = "7, hix.
e inner product (—, —) , on R": h represented by a unique vector
h, s.t
h(x) = (ha, X) 4
h, is the dual of h (w.r.t (—, —)4).
o for standard dot product:

hy
h=|: | =hn"
hn
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Inner Products and Duality

Linear form h = (hy, ..., hy) : R" — R: h(x) = "7, hix.
e inner product (—, —) , on R": h represented by a unique vector
h, s.t
h(x) = (ha, X) 4
h, is the dual of h (w.r.t (—, —)4).
o for standard dot product:

hy
h=|: | =h"
hn,

o for general inner product (—, —) ,

hy=A""h=A"h".
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Riemannian metrics
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Riemannian Metric

e Riemannian metric on an m—dimensional manifold = smooth
family gp of inner products on the tangent spaces TpM of M
e u,ve TpM— gp(u,v) :=(u,v)p €R
e With it, one can compute length of vectors in tangent spaces,
check orthogonality, etc...
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Riemannian Metric

e Riemannian metric on an m—dimensional manifold = smooth
family gp of inner products on the tangent spaces TpM of M

e u,ve TpM— gp(u,v) :=(u,v)p €R
e With it, one can compute length of vectors in tangent spaces,
check orthogonality, etc...

e Given a global parametrization
©: (X) = (x1,...,Xy) — p(X) € M, it corresponds to a smooth
family of symmetric positive definite matrices:

Ox11 cee Ox1n
= : :
Oxn ce Oxnn

Slide 43/57 — Aasa Feragen and Frangois Lauze — Differential Geometry — September 22



Riemannian Metric

e Riemannian metric on an m—dimensional manifold = smooth
family gp of inner products on the tangent spaces TpM of M
e u,ve TpM— gp(u,v) :=(u,v)p €R
e With it, one can compute length of vectors in tangent spaces,
check orthogonality, etc...

e Given a global parametrization
©: (X) = (x1,...,Xy) — p(X) € M, it corresponds to a smooth
family of symmetric positive definite matrices:

Ox11 cee Ox1n
= : :
Oxn ce Oxnn

o U=3"1,Udy, v=""14 vidy
<U, V>x = (U1, RN Un)gx(V1 gy Vn)t
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Riemannian Metric

e Riemannian metric on an m—dimensional manifold = smooth
family gp of inner products on the tangent spaces TpM of M
e u,ve TpM— gp(u,v) :=(u,v)p €R
e With it, one can compute length of vectors in tangent spaces,
check orthogonality, etc...

e Given a global parametrization
©: (X) = (x1,...,Xy) — p(X) € M, it corresponds to a smooth
family of symmetric positive definite matrices:

Oxi1 ... Gxin
Ix=1 :
ngﬂ e gxnn
o U=, Uy, V=314 ViOx
<U, V>x = (U1, R Un)gx(V1 gy Vn)t

¢ A smooth manifold with a Riemannian metric is a Riemannian
manifold.
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Example: Induced Riemannian metric on
submanifolds of R”

¢ Inner product from R” restricts to inner product on M C R"

e Frobenius metric on P(n)

e P(n)is a convex subset of R
e The Euclidean inner product defines a Riemannian metric on P(n)

(mP+n)/2

Rightmost figure from Fletcher, Joshi, Principal Geodesic Analysis on Symmetric Spaces: Statistics of Diffusion Tensors, CVAMIA04 .
Y

Slide 44/57 — Aasa Feragen and Frangois Lauze — Differential Geometry — September 22 e



UNIVERSITY OF COPENHAGEN UNIVERSITY OF COPENHAGEN

Example: Fisher information metric
e Smooth manifold M = p(U) represents a family of probability
distributions (M is a statistical model), U C R™
e Each point P = ¢(x) € M is a probability distribution
P:Z— R<o

M = probability distributions P on set Z
P: Z—5 Ry [z P(z)dz=1

e The Fisher information metric of M at Py = (x) in coordinates ¢
defined by:

o\ [ dlog Py(z) dlog Py(2)
o) = [ FIHDI B p (2)ae &
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@® Riemannian metrics

Invariance of the Fisher information metric
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Invariance of the Fisher information metric

e Obtaining a Riemannian metric g on the left chart by pulling g
back from the right chart:

fo

)
i

N\
PR

@
T
—1 OQD
P m m =~ 9vg OV
e Claim: g; =37, >°)%1 Okge oy @
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Invariance of the Fisher information metric

e m m = 9vg 9V

e Claim: g; =3, > /.4 Qk/mfmf

e Proof:

o o 0
g9i =9 6_)(;’3_)(/)

_ = m dvg 9 M 9y
=0 (> k=1 X 8Vk’2l:1 9%
_ Zm m Ovg ovig (_0_
= Zuk=1 2u1=1 Ox; Bx,-g vy’
_ m m = 9y dv
= D ok=t1 2211 TGy oy o
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Invariance of the Fisher information metric

* Fact: g; = "1 274 Qk/%;@%j
e Pulling the Fisher information metric g from right to left:

9 =kt e O oy
—Zk 121 1falogP,,( ) 8log Py ( Z)PV(Z)dZ vk vy

Ovk ov; ox; O0X;
9dlog Py(2) dvi m dlog P,(2) dv,
=/ Zk 17 0w X =178y Bx Pv(2)dz

= a|oga Px(2) alog PX(Z) P,(z)dz

o Result: Formula invariant of parametrization
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@® Riemannian metrics

A first take on the geodesic distance metric
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Riemannian metrics and distances
Path length in metric spaces:

o Let (X, d) be a metric space. The length of a curve c: [a,b] — X
is

n—1
I(€) = SUPazp<ti<...<ti=b Y _ A(C(tis ti41))- (31)
i=0
C(tl) C(t2)
c(to) c(t:;) c(tq)
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Riemannian metrics and distances
Path length in metric spaces:

o Let (X, d) be a metric space. The length of a curve c: [a,b] — X

1S
n—1
I(C) = SUPa=iy<ti<...<ty=b Y _ d(C(ti, ti1)). (31)
i=0
C(tl) C(tz)
e(to) c(ts) cltq)

e Approach supremum through segments c(, 1) of length — 0
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Riemannian metrics and distances
Path length in metric spaces:

o Let (X, d) be a metric space. The length of a curve c: [a,b] — X
is

n—1
I(€) = SUPazp<ti<...<ti=b Y _ A(C(tis ti41))- (31)
i—0
o(tr) oltz)
e(to) cts) cltq)

e Approach supremum through segments c(, 1) of length — 0
Intuitive path length on Riemannian manifolds:
¢ Riemannian metric g on M defines norm in TpM
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Riemannian metrics and distances
Path length in metric spaces:

o Let (X, d) be a metric space. The length of a curve c: [a,b] — X
is

n—1
I(€) = SUPazp<ti<...<ti=b Y _ A(C(tis ti41))- (31)
i—0
o(tr) oltz)
e(to) cts) cltq)

e Approach supremum through segments c(, 1) of length — 0
Intuitive path length on Riemannian manifolds:

¢ Riemannian metric g on M defines norm in TpM

e Locally a good approximation for use with (3.1)
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Riemannian metrics and distances
Path length in metric spaces:

e Let (X, d) be a metric space. The length of a curve c: [a, b] — X

is
n—1
I(C) = SUPa—ty<ti<..<ti=b Y _ A(C(ti, ti1))- 3.1)
=0
C(t]) C(tz)

elto) (t)

e Approach supremum through segments c(, 1) of length — 0
Intuitive path length on Riemannian manifolds:

¢ Riemannian metric g on M defines norm in TpM

e Locally a good approximation for use with (3.1)

o This will be made precise in Francois’ lecture!
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Geodesics as length-minimizing curves

e We have a concept of path length /(c) for paths ¢: [a, b] — M
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Geodesics as length-minimizing curves

e We have a concept of path length /(c) for paths ¢: [a, b] — M

e A geodesic from P to Qin M is a path c: [a, b] — X such that
c(a) = P,c(b) = Qand /(¢c) =infe, , I(cp—q).
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Geodesics as length-minimizing curves

e We have a concept of path length /(c) for paths ¢: [a, b] — M

e A geodesic from P to Qin M is a path c: [a, b] — X such that
c(a) = P,c(b) = Qand /(¢c) =infe, , I(cp—q).

» The distance function d(P, Q) = inf.,_, I(cr—,q) is a distance
metric on the Riemannian manifold (M, g).
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Geodesics as length-minimizing curves

e We have a concept of path length /(c) for paths ¢: [a, b] — M

e A geodesic from P to Qin M is a path c: [a, b] — X such that
c(a) = P,c(b) = Qand /(¢c) =infe, , I(cp—q).

» The distance function d(P, Q) = inf.,_, I(cr—,q) is a distance
metric on the Riemannian manifold (M, g). Can you see why?
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Geodesics as length-minimizing curves

We have a concept of path length /(c) for paths c: [a,b] = M
A geodesic from Pto Qin Mis a path c: [a, b] — X such that
c(a) = P,c(b) = Qand /(¢c) =infe, , I(cp—q).

The distance function d(P, Q) = inf.,_, I(cr_,q) is a distance
metric on the Riemannian manifold (M, g). Can you see why?
Do geodesics always exist?
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Example: Riemannian geodesics between

1-dimensional Gaussian distributions

e Space parametrized by (u,0) € R x Ry
e Metric 1: Euclidean inner product = Euclidean geodesics

o View in plane:

Middle figure from Costa et al, Fisher information distance: a geometrical reading ‘
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Outline

@® Riemannian metrics

A first take on curvature @
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A first take on curvature

e Curvature in metric spaces defined by comparison with mode/
spaces of known curvature.
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A first take on curvature

e Curvature in metric spaces defined by comparison with mode/
spaces of known curvature.
o Positive curvature model spaces. Spheres of curvature « > 0:
o Flat model space: Euclidean plane
¢ Negatively curved model spaces: Hyperbolic space of curvature
k>0
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A first take on curvature

b z c b - c
T

Figure : Left: Geodesic triangle in a negatively curved space. Right:
Comparison triangle in the plane.

e A CAT (k) space is a metric space in which geodesic triangles
are "thinner” than for their comparison triangles in the model
space M,;; thatis, d(x, a) < d(x, a).

o Alocally CAT(x) space has curvature bounded from above by .

e Geodesic triangles are useful for intuition and proofs!
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Example: The two metrics on 1-dimensional

Gaussian distributions
o Metric 1: Euclidean inner product: FLAT

AT
kY

s ~ s

(OBS: Not hyperbolic for any family of distributions)

e View in plane:
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Example: The two metrics on 1-dimensional

Gaussian distributions
o Metric 1: Euclidean inner product: FLAT

AT
kY

s ~ s

(OBS: Not hyperbolic for any family of distributions)

e View in plane:
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Example: The two metrics on 1-dimensional

Gaussian distributions
o Metric 1: Euclidean inner product: FLAT

(OBS: Not hyperbolic for any family of distributions)
e View in plane:

o

7N
l ' M
¢ You will see these again with Stefan'
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Relation to sectional curvature

e CAT (k) is a weak notion of curvature

e Stronger notion of sectional curvature (requires a little more
Riemannian geometry)

A smooth Riemannian manifold M is (locally) CAT () if and only if the
sectional curvature of M is < k. O
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Example of insight with CAT (x):
MDS and manifold learning lie to you

« Given a distance matrix D; = d(x;, x;) for a dataset
X ={x1,...,Xn} residing on a manifold M, where d is a
geodesic metric.
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Example of insight with CAT (x):
MDS and manifold learning lie to you

« Given a distance matrix D; = d(x;, x;) for a dataset

X ={x1,...,Xn} residing on a manifold M, where d is a
geodesic metric.
e Assume that Z = {z,...,z,} C RY is an embedding of X

obtained through MDS or manifold learning.
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Example of insight with CAT (x):
MDS and manifold learning lie to you

« Given a distance matrix D; = d(x;, x;) for a dataset

X ={x1,...,Xn} residing on a manifold M, where d is a
geodesic metric.
e Assume that Z = {z,...,z,} C RY is an embedding of X

obtained through MDS or manifold learning.

e Common belief: If d large, then Z is a good (perfect?)
representation of X.

Slide 56/57 — Aasa Feragen and Frangois Lauze — Differential Geometry — September 22



UNIVERSITY OF COPENHAGEN UNIVERSITY OF COPENHAGEN

Example of insight with CAT (x):
MDS and manifold learning lie to you

e Truth: If there exists a map f: M — R such that
If(a) — f(b)|| = d(a, b) for all a,b € M, then
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Example of insight with CAT (x):
MDS and manifold learning lie to you

e Truth: If there exists a map f: M — R such that
If(a) — f(b)|| = d(a, b) for all a,b € M, then
e f maps geodesics to straight lines
o Mis CAT(0)
e Mis not CAT (k) forany x < 0
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Example of insight with CAT (x):
MDS and manifold learning lie to you

e Truth: If there exists a map f: M — R such that
If(a) — f(b)|| = d(a, b) for all a,b € M, then
e f maps geodesics to straight lines
« Mis CAT(0)
e Mis not CAT (k) forany x < 0
e = Mis flat
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Example of insight with CAT (x):
MDS and manifold learning lie to you

e Truth: If there exists a map f: M — R such that
If(a) — f(b)|| = d(a, b) for all a, b € M, then
e f maps geodesics to straight lines
« Mis CAT(0)
e Mis not CAT (k) forany x < 0
e = Mis flat

e Thatis, if M is not flat, MDS and manifold learning lie to you @
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Example of insight with CAT (x):
MDS and manifold learning lie to you

e Truth: If there exists a map f: M — R such that
If(a) — f(b)|| = d(a, b) for all a,b € M, then
e f maps geodesics to straight lines
o Mis CAT(0)
e Mis not CAT (k) forany x < 0
e = Mis flat
e Thatis, if M is not flat, MDS and manifold learning lie to you

e (but sometimes lies are useful)
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A message from Stefan for tomorrow’s practical

Check out course webpage for installation instructions!
http://image.diku.dk/MLLab/IG4.php
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