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Two-dimensional optical three-pulse photon echo spectroscopy.
II. Signatures of coherent electronic motion and exciton population
transfer in dimer two-dimensional spectra

Andrei V. Pisliakov, Tomáš Mančal, and Graham R. Fleminga�

Department of Chemistry, University of California, Berkeley, California 94720
and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

�Received 2 May 2005; accepted 6 April 2006; published online 16 June 2006�

Using the nonperturbative approach to the calculation of nonlinear optical spectra developed in a
foregoing paper �Mančal et al., J. Chem. Phys. 124, 234504 �2006�, preceding paper�, calculations
of two-dimensional electronic spectra of an excitonically coupled dimer model system are
presented. The dissipative exciton transfer dynamics is treated within the Redfield theory and
energetic disorder within the molecular ensemble is taken into account. The manner in which the
two-dimensional spectra reveal electronic couplings in the aggregate system and the evolution of the
spectra in time is studied in detail. Changes in the intensity and shape of the peaks in the
two-dimensional relaxation spectra are related to the coherent and dissipative dynamics of the
system. It is shown that coherent electronic motion, an electronic analog of a vibrational wave
packet, can manifest itself in two-dimensional optical spectra of molecular aggregate systems as a
periodic modulation of both the diagonal and off-diagonal peaks. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2200705�
I. INTRODUCTION

The requirement for optical spectroscopy to provide use-
ful information on increasingly complex, multicomponent
systems is fueled by advances over a wide range of areas
from biology to materials science. In response, multidimen-
sional techniques have been developed initially for nuclear
motions �infrared and Raman�1–14 and more recently for elec-
tronic interactions.15–23 Theory and computational methods
have been quite extensively developed for the infrared and
Raman spectroscopies2,4,8,24–26 and even for optical spec-
troscopies of multilevel electronic systems.27,28 However, the
level structure and dynamical mechanisms relevant to multi-
chromophore electronic spectroscopy are quite distinct from
their vibrational relatives or relaxation free electronic state
manifold, and new methods must be developed for prediction
and analysis of spectral features.

Recently, Brixner et al.23 and Cho et al.29 have described
experiments and theoretical analysis of two-dimensional
�2D� photon echo spectra of the seven-bacteriochlorophyll
containing Fenna-Matthews-Olson �FMO� complex.30,31 In
related work, the connection between the two-color photon
echo peak shift32,33 and the 2D photon echo spectra was
explored.34 The theoretical approach in both cases was based
on the perturbative approach which, largely as a result of
Mukamel’s classic text,35 enabled rapid and efficient calcu-
lation of the dynamics and 2D spectral evaluation. Because
of the approximation made in Ref. 29, the very short-time
dynamics could not be calculated. In this paper we take a
different approach to the calculation of 2D spectra based on
the nonperturbative approach described in the companion
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paper36 �Paper I�. The main advantage of the nonperturbative
�NP� method is that it allows description of system dynamics
in a very flexible way including a rather general description
of relaxation and dephasing processes and a numerically ex-
act treatment of the system-field interaction. In the present
paper we apply the NP approach to calculate 2D optical pho-
ton echo spectra of an excitonically coupled molecular
dimer. We study the 2D spectrum of the dimer as the sim-
plest molecular aggregate, in order to clarify the relation be-
tween the content of 2D spectrum and the system dynamics
when both coherent and dissipative features are present.
Since we are interested in coherent effects, the Förster theory
cannot be used to describe ultrafast photoinduced exciton
dynamics which is a nonequilibrium process. In this case one
needs a more detailed dynamical description such as the
Redfield theory. We model the dissipative exciton dynamics
using the Frenkel-exciton model and Redfield theory.

Although coherent nuclear motion �vibrational wave
packets� is a standard feature of ultrafast optical
spectroscopy,37–47 the observation of electronic coherence in
molecular systems does not appear to have been definitively
reported. A number of theoretical studies have suggested that
electronic coherence might also be observable in, for ex-
ample, ultrafast electron transfer �ET� reactions.48–54 In the
short-time dynamics of such systems, large amplitude quan-
tum beats are potentially observable, but to the best of our
knowledge they have not been reported in spectroscopic sig-
nals. This is perhaps not surprising as there are a number of
natural obstacles to such an observation: �i� in the so-called
internal case where the ET occurs between the same elec-
tronically coupled states as the optical transition, the elec-
tronic coherence �EC� period is very short �a few femtosec-

onds� and the effect cannot be resolved with currently
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available techniques and �ii� in the case of a three-state ET
system with an optical transition between a ground state and
an excited state which in turn consists of two coupled elec-
tronic states, one usually has a rather long EC period �typi-
cally few hundred femtoseconds�; however, the very fast
dephasing time present in real systems �typically 10–100 fs�
destroys the coherent superposition and precludes its obser-
vation. The situation in an excitonic manifold of a coupled
multichromophore aggregate may be more favorable for the
observation of electronic coherence. First, the oscillation pe-
riods corresponding to the energy gaps between pairs of ex-
citon states can often be in an intermediate time regime:
short enough to survive dephasing and long enough to be
resolved with femtosecond 2D spectroscopy. Second, in pho-
tosynthetic light harvesting complexes, the reorganization
energy is remarkably small55 which makes such systems at-
tractive candidates for the observation of electronic coher-
ence. By means of nonperturbative calculations on a model
dimer system, we explore how electronic coherence is mani-
fested in 2D photon echo spectroscopy with the aim of guid-
ing experimental studies.

The paper is organized as follows. In Sec. II we briefly
review the main ideas of NP approach and give definitions of
the spectroscopic signals. The Hamiltonian of the dimer
model system and the equations of motion including the
Redfield theory for the description of the dissipation are in-
troduced in Secs. III and IV, respectively. Section V presents
the results of our calculations of 2D spectra of the dimer for
different values of the system parameters and the discussion
of the 2D spectral features that reflect the dimer dynamics
with an emphasis on electronic coherence effects. Some es-
timations of the possible appearance of coherent effects in
the 2D spectra of large aggregates are offered in that section,
too. All details of the description of relaxation and dephasing
in the dimer system within the Redfield theory are summa-
rized in Appendices.

II. NONPERTURBATIVE CALCULATION
OF NONLINEAR SIGNALS AND DEFINITION
OF 2D OPTICAL SPECTRUM

In the foregoing paper36 �Paper I� we presented a general
nonperturbative approach to the calculation of nonlinear
spectroscopic signals. The main idea of the method is to treat
the system-field interaction �numerically� exactly by its ex-
plicit inclusion into the Hamiltonian

Htot�t� = Hmol − �̂ · E�t� , �1�

in contrast to standard perturbative treatments.35 We start
with a short overview of the NP method; the details can be
found in Paper I.

The main problem in NP approach is to extract the
direction-resolved components from the total polarization
obtained as the expectation value of the dipole operator:

P�t� � Tr��̂��t�� . �2�

In Paper I �Ref. 36� we extended the method developed by
Seidner et al.56 to the most general case of four-wave-mixing

�FWM� experiments. We assume that the external electric
icle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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field consists of three laser pulses: E�t�=�n=1
3 En�t�, each

pulse En�t�=enEn�t�exp�−i��nt��+c.c. is characterized by its
frequency �n, phase, �n�knr, polarization direction en, and
envelope En�t�. The overall nonlinear polarization consists of
a number of contributions with different directions of propa-
gation in space as a result of the interaction of the system
with the fields having different wave vectors. The central
result on which the NP approach is based is that in a general
FWM experiment, a nonlinear signal of �2N+1�th order can
only travel into directions given by a wave vector

ks − n1�k1 − k3� + n2�k2 − k3� , �3�

where n1+n2=−�N+1� , . . . ,N. Consequently the signal de-
pends only on the phase difference between the first and the
third ��1� and the second and third ��2� pulses in the FWM
sequence. By calculating the nonlinear signal with varying
phase relations among the pulses, we can separate the spatial
components of the nonlinear signal.

In Paper I we illustrated the method by its implementa-
tion for the calculation of 2D three-pulse photon echo spec-
tra. The photon echo signal Eks

is proportional to the com-
ponent of the nonlinear polarization in the direction ks=
−k1+k2+k3 �see Fig. 1� and can be detected using a hetero-
dyne detection scheme.22 Two-dimensional spectra are re-
corded for a given value of the delay T between the second
and the third pulses �the population time, see Fig. 1� by
successive frequency-resolved measurements of the photon
echo signal for different values of the delay � between the
first and the second pulses �the coherence time�. A conven-
tional 2D spectrum is obtained by switching to the frequency
domain via numerical Fourier transform:

S2D���,T,�t� � 	
−�

�

dt exp�− i�tt�

�	
−�

�

d� exp�i����Eks
��,T,t� . �4�

III. DIMER MODEL SYSTEM

A dimer is the simplest prototype of a molecular aggre-
gate. To describe correctly the third-order nonlinear spectro-

FIG. 1. The pulse scheme of a photon echo experiment. Three pulses with
successive delays � and T are applied to the system. The time origin is
conventionally set to the middle of the third pulse. The photon echo signal
arises at times t	0. In 2D spectroscopy we vary the first delay � to record
a two-dimensional signal �in � and t� for a given delay T.
scopic experiment on molecular aggregates, one has to ac-
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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count for one- and two-exciton states. We consider two
molecules A and B with intermolecular coupling J �see Fig.
2�, and the system Hamiltonian formulated in terms of mo-
lecular electronic states is written using the standard Frenkel-
exciton model as

Hdimer = �HA
g�Q� + HB

g�Q��
0��0
 + HA
e �Q�
A��A


+ HB
e �Q�
B��B
 + J�
A��B
 + 
B��A
�

+ �HA
e �Q� + HB

e �Q��
AB��AB
 . �5�

Here 
0� denotes the collective state of the dimer with both
molecules in the ground state, 
A� �
B�� denotes the electronic
state when the molecule A�B� is excited, and Hi

g�Q� and
Hi

e�Q� are the nuclear Hamiltonians of ith molecule �i
=A ,B� in the ground and excited states, respectively. Further,

AB� denotes the electronic state when two molecules are
excited simultaneously �doubly excited state�, and coupling J
describes the Coulombic interaction between excitations lo-
cated on sites A and B. The nuclear Hamiltonians read

HA
g�Q� = 
A

g + TA + VA
g�Q� , �6�

HA
e �Q� = 
A

e + TA + VA
e �Q� , �7�

and similarly for B, where 
A
g�=0� and 
A

e are the electronic
energies of molecule A in the ground and excited �i.e., exci-
tation energy� states, respectively. The quantities VA

g�Q� and
VA

e �Q� are the ground- and excited-state nuclear potential en-
ergy surfaces, respectively, and TA is the kinetic energy of
the nuclei. The molecular electronic states form a complete
basis set: 
0��0
+�i=A,B
i��i
+ 
AB��AB
=1.

For the description of the system-field and system-bath
interactions, we switch to the eigenstate representation, the
so-called exciton basis. After diagonalization of the Hamil-
tonian with respect to the electronic energies, we obtain a set
of eigenstates: two single-exciton states 
�� and one two-
exciton state 
�̄� with energies 
� and 
�̄, respectively. The
exciton states are constructed from the molecular states as


�� = 

i

Ci
���
i� = CA

���
A� + CB
���
B�, � = 1,2, �8�


�̄� = 

i	j

Cij
��̄�
ij� = 
AB� . �9�

The diagonalization of the dimer Hamiltonian can be easily
performed analytically. The elements of the transformation

FIG. 2. The electronic-level scheme of the model dimer system. �a� Het-
erodimer in the molecular electronic states representation, with transition
moments 
A and 
B and the excitonic coupling J. �b� Heterodimer complex
after diagonalization, i.e., in the eigenstate �exciton� representation.
matrix are
icle is copyrighted as indicated in the abstract. Reuse of AIP content is sub

128.32.208.2 On: Wed, 0
CA
�2� = cos �, CB

�2� = sin � ,

CA
�1� = − sin �, CB

�1� = cos � , �10�

with

tan 2� =
2J


A − 
B
, �11�

and the eigenenergies read


2,1 = 1
2 �
A + 
B� ± 1

2
��
A − 
B�2 + 4J2, �12�


�̄ = 
A + 
B. �13�

In the exciton basis the dipole operator takes the form


 = 

�


�0
���0
 + 
�̄�
�̄���
 + c.c., �14�

with the matrix elements between the ground and one-
exciton states given by


20 = cos �
A + sin �
B,


10 = − sin �
A + cos �
B, �15�

where 
i describes an optical transition in the ith molecule.
For transitions between the one- and two-exciton states, we
obtain


�̄2 = cos �
B + sin �
A,


�̄1 = − sin �
B + cos �
A. �16�

An analogous transformation to that of the electronic
energies from the diagonalization also operates on the
nuclear potentials VA

g�Q�, etc. Since we diagonalized only
with respect to the electronic energies, certain off-diagonal
terms remain nonzero. These terms lead to the transitions
between the eigenstates and they will be treated within the
Redfield theory57 as described in the next section.

IV. EQUATIONS OF MOTION

As we stressed before, the NP approach has the advan-
tage of including the system-field interaction explicitly into
the equations of motion and thus avoiding the cumbersome
numerical evaluation of multitime response functions. The
conventional approach to account for dissipative effects in
complex systems is the reduced density matrix �RDM� for-
malism leading to the Redfield equations. In this section, we
outline the RDM approach and present its application to the
dimer system.

A. Reduced density matrix description

In photosynthetic systems, excitation energy is trans-
ported between pigments of the antenna to allow the energy
to reach the reaction centers. The optical excitation process is
much faster than the response of the nuclear degrees of free-
dom resulting in a creation of a nonequilibrium nuclear wave
packet in the excited electronic state. The motion of vibra-
tional wave packets has been observed as coherent oscilla-

tions in pump-probe signals during energy transfer in the
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

6 Nov 2013 22:30:35



234505-4 Pisliakov, Mančal, and Fleming J. Chem. Phys. 124, 234505 �2006�

 This art
photosynthetic reaction center and antenna complexes of
bacteria.37–40,58 Naturally, with short femtosecond pulses, it
is also possible to create a coherent �electronic� excitonic
superposition of states. In this paper we discuss the possibil-
ity of such an effect—electronic or excitonic coherence—in
the ultrafast energy transfer in molecular aggregates.

During the equilibration process part of the excitation
energy is dissipated into the surroundings. To describe dissi-
pation in the system, it is a conventional practice to adopt a
system-bath approach that assumes a separation of the prob-
lem into a relevant �system� part and an irrelevant �bath� part
that is regarded as a dissipative environment. The approach
leads to a RDM description �see Ref. 57 for details�. This
theory has been successfully applied to many problems, the
most intensively studied being the photoinduced ultrafast
electron48,52,59 and energy transfer60–63 problems. For the
Hamiltonian �5� it is possible to separate system �electronic�,
bath �nuclear�, and the interaction parts and write formally

Hmol = HS + HB + HSB. �17�

Since we concentrate here only on excitonic wave packets,
the separation is natural: The system consists only of the
electronic part of the molecular Hamiltonian, while it is as-
sumed that the nuclear �vibrational/phonon� modes are only
weakly coupled to the system and can be described as a heat
bath. If one wants to study the �coherent� vibrational effects
in exciton dynamics, then the system has to be redefined to
include one �or several� vibrational modes explicitly64,65 as it
is done in the electron transfer problem.48,52,59

In the system-bath approach, in order to derive the equa-
tion of motion for the system, we can switch from the entire
�system plus bath� phase space to that of the system only.
Neglecting the effect of the field-matter coupling on dissipa-
tion and employing perturbation theory with respect to the
system-bath interaction, the bath variables can be averaged
out in the standard way.57 Thus, one arrives at an equation
for the reduced density matrix �, which is defined as the
trace over all bath variables of the full density matrix, W :�
=TrB�W�, and depends only on system degrees of freedom.
The RDM ��t� is the primary quantity describing the relevant
system dynamics. A dissipative equation of motion for the
RDM, in a general form, reads

�t��t� = − iL��t� + D�t;��t�� , �18�

where L is an effective system Liouvillian and the operator
D�t ;��t�� describes the relaxation dynamics induced by the
system-bath interaction. Furthermore, introducing the Mar-
kovian approximation for the relaxation operators �see Refs.
57 and 66 for details�, we obtain the well-known Redfield
equation for the reduced density matrix which is written ex-
plicitly as follows:

�t��t� = − i��HS − 
E�t��,��t�� + R��t� , �19�

where R is the relaxation or Redfield operator which is speci-
fied in detail in Appendix A. The Redfield operator contains
the relaxation and dephasing rates that are calculated directly
from the interaction Hamiltonian HSB. We further employ the
so-called secular approximation and the Redfield tensor re-

duces to two rate matrices—one for relaxation and the other
icle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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for dephasing rates �see Appendix B�. The presence of the
system-field interaction term in the Liouvillian �commutator
part of Eq. �19�� underlines the fact that we work within the
NP approach.

B. Rotating wave approximation

With the general equation of motion for the RDM �19� in
hand, we can calculate the dynamics of the system under the
influence of any type of laser field. From the general form
we can derive equations of motion for the RDM elements �0�

and ���̄ which are relevant to the calculation of the polariza-
tion �see Eq. �24��. We introduce the rotating wave approxi-
mation �RWA� into the equations of motion to avoid rapidly
oscillating terms in Eq. �19� that would present a problem in
the numerical solution of the equations and to obtain the total
polarization from which the spatial components of the signal
can be extracted. As discussed in Ref. 36, the method for
extraction of the polarization components requires the RWA.
We assume in addition that all laser pulses have the same
carrier frequency: �n=� for n=1,2 ,3. �The generalization
for the case of different frequencies is rather straightfor-
ward.� Thus, the electric field can be written as

E�t� = E�t�e−i�t + E*�t�ei�t, �20�

where

E�t� = 

n=1

3

eEn�t�e−i�n. �21�

The RWA means neglecting all the terms in the equation of
motion that oscillate faster than e±i�t. Therefore we use the
following ansartz for the off-diagonal elements of the RDM:

��0 = ��0e−i�t, ��̄� = ��̄�e−i�t, ��̄0 = ��̄0e−i2�t. �22�

We then obtain the equations of motion where only the
slowly varying functions �pulse envelope function E�t� and
RDM elements �ij and �ii� are present. The particular equa-
tions of motion for our dimer problem can be found in Ap-
pendix D.

The closed set of Eqs. �D1�–�D6� is solved by standard
methods with the initial condition �before the first interaction
with a field�

��0� = 
0��0
 . �23�

The relaxation and dephasing rates entering these equations
are given in Appendix C. A similar type of analysis can be
performed for any type of molecular system.

C. Calculation scheme

The key quantity for the calculation of the nonlinear op-
tical signals of the system is the polarization. For the specific
form of the dipole operator �14�, the polarization �2� be-
comes

P�t� = 

�


�0�0��t� + 

�,�̄


�̄����̄�t� . �24�

In Paper I we described how to calculate 2D spectra using

the NP method. The application of the method to molecular
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aggregates can be summarized in the following recipe: �1�
define the molecular Hamiltonian �site energies and cou-
plings�, �2� diagonalize the Hamiltonian and obtain the exci-
ton states, �3� calculate the Redfield tensor �relaxation and
dephasing rates�, �4� solve the Redfield equation �19� with a
selected set of laser pulse phases �1 and �2 and get RDM
��t�, �5� calculate P�t ;�1 ,�2� �Eq. �24��, �6� repeat steps 1–5
for different values of �1 and �2 and extract the component
Pks

according to the method described in Sec. II, and �7�
calculate the desired spectroscopic signal, for example, the
2D photon echo spectrum �Eq. �4��. Static inhomogeneity is
taken into account by averaging the results over an ensemble
of different realizations of the Hamiltonian. As we discussed
in Paper I, the presence of inhomogeneity in the system is
vital for the delayed time domain photon echo effect to
appear.35 The inhomogeneous width describes the distribu-
tion of transition energies of the monomers in the ensemble.
We might expect the distributions of the two monomers
forming the dimer to be correlated to some degree. In the
present work we will only study limiting cases of noncorre-
lated and fully correlated/anticorrelated monomers.

V. 2D SPECTRA OF A DIMER MODEL SYSTEM:
NUMERICAL RESULTS AND DISCUSSION

In this section we utilize the NP calculation scheme
given above for the numerical calculations of 2D photon
echo spectra of a model dimer system. We discuss various
spectral features in the 2D spectrum calculated by the NP
method. Some of these features, such as the appearance of
cross peaks in the 2D spectrum due to the excitonic coupling
and the shapes of the peaks, are the generic properties of the
two-dimensional spectra �both optical and IR� which have
been discussed in detail in many experimental and theoreti-
cal �within a perturbative approach� works �see review
papers.3,8,25,26,29,67 We also show several features in the cal-
culated 2D relaxation spectrum that appear to be novel and
had not been reported before; they originate from the com-
plex interplay of coherent and dissipative excitonic dynam-
ics.

As in Ref. 36, we use a simple fourth-order Runge-Kutta
�RK� method68 with fixed time step to solve the equations of
motion. The total complex polarization is outputted with a
step of 2 fs over the time delays � and t in the interval from
0 to 600 fs. The time step of the RK method is chosen as an
integer fraction of the output time and tested for cumulative
error by comparing calculations with a different time step.
The photon echo signal is then extracted using the discrete
Fourier transform method described in Ref. 36. The 2D trace
is calculated by a standard fast Fourier transform algorithm
with suitable zero padding for times higher then 600 fs. As in
Ref. 36, the intensity of the electric field is chosen so that the
population of the excited state is less than 1% to ensure that
contributions from higher nonlinearities remain negligible.

A. Dimer versus two uncoupled two-level
systems

We start with a simple example which illustrates one of

the main advantages of 2D optical spectroscopy. In Fig. 3 we
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compare the 2D spectra of two uncoupled monomers �J=0�
and of the dimer �excitonically coupled monomers, J
=300 cm−1� calculated at T=0. The parameters have been
chosen to produce the same energy separation between the
two diagonal peaks in both spectra and, since the diagonal
slice reflects the linear absorption spectrum, this leads to
similar linear absorption spectra, each showing a doublet
structure. In the calculation we used the following system
parameters: 
A=16 360 cm−1, 
B=15 640 cm−1, and dA=dB

=1 ��A=dAn and �B=dBn, where n is a unity vector in the
direction of the dipole moment� in case of two monomers
and 
A=16 200 cm−1, 
B=15 800 cm−1, J=300 cm−1, dA=1,
and dB=−0.23 for the dimer. The other parameters are the
inhomogeneous distribution width of the monomer transi-
tions, �=200 cm−1, the pulse-carrier frequency �
=16 000 cm−1 �excitation in the center of one-exciton mani-
fold�, and the pulse duration �pulse=5 fs. As this laser pulse is
very short the validity of the RWA needs to be discussed. At
�=16 000 cm−1 the laser pulse completes about 2.5 optical
cycles during its full width at half maximum �FWHM� and
the RWA neglects contributions that oscillate with frequency
about 2�, i.e., those that complete about five optical cycles,
against those arising from the relatively slowly varying en-
velope. In Ref. 69, Ferro et al. showed by reformulating the
RWA in the frequency domain that the RWA neglects the
frequency overlap between the negative frequency field and
the positive frequency susceptibility. If the laser pulse spec-
trum is well confined to its expected side of zero, it is not
responsible for the breakdown of the approximation. The fre-
quency FWHM of a 5 fs laser pulse is about 6000 cm−1

which is significantly less then the energy gap of
16 000 cm−1 and the RWA can be assumed to be still valid
for these parameters.

Let us first consider the uncoupled system �Fig. 3�a��: It

FIG. 3. Comparison of the 2D spectra �a� of two uncoupled monomers �J
=0� and �b� of the dimer �J=300 cm−1�. The parameters have been chosen
to produce the same energy separation between two diagonal peaks. The
electronic coupling between two monomers is revealed by the appearance of
the cross peaks 21 and 12 in the 2D spectrum. Contour lines are drawn in
10% intervals at −95%, −85% , . . . ,5% ,5% , . . . ,95% for the absorptive
real parts �left column� and refractive imaginary parts �right column� of
S2D��� ,T ,�t�. The level of 100% is determined from the highest peak value
within the spectrum. Solid contour lines correspond to positive and dashed
lines to negative amplitudes.
is simply two two-level systems having different excited-
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state energies. The 2D spectrum of the two-level system was
discussed in detail in a previous paper.36 The 2D spectrum
contains only two diagonal peaks appearing along the diag-
onal axis, ��=�t, which can be obtained as a combination of
two spectra of two-level system shifted along the diagonal by
the value �
21. The figure shows that, for example, excita-
tion at �20 causes emission only at �20 but not at �10. Some
features which one may erroneously attribute to the cross
peaks appear because of the overlap of the two spectra.

In the 2D spectrum of the dimer �J=300 cm−1, Fig. 3�b��
additional—cross �or off diagonal�—peaks appear due to the
coupling between the monomers. The 2D spectra are very
informative; they show how excitation at one frequency af-
fects the spectrum �e.g., increased emission or absorption� at
other frequencies �see, e.g., recent reviews25,26�. In the dimer,
for example, excitation at �20 may cause emission not only
at the same frequency but, because of the coupling, also at
�10. This leads to the appearance of cross peak at the posi-
tion we denote by 21. In the present paper we use the peak
notation where the first number indicates the position of the
peak on the excitation frequency axis �� and the second on
the emission frequency axis �� �see Fig. 3�b��. In general, for
aggregates consisting of many molecules, the positions of the

FIG. 4. 2D relaxation spectra of the dimer calculated at population times �a
T=140 fs, and �h� T=310 fs. The exciton energy splitting corresponds to the
and �g� correspond to the maxima and minima of periodic modulations �elec
the intensity is transferred from the diagonal peak 22 to the cross peak 21
population time �see the discussion in the text�.
cross peaks, if they appear in the spectrum, show immedi-
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ately the presence of couplings between the corresponding
chromophores. A full interpretation of a 2D spectrum can
give quantitative information about the system parameters:
The intensity of the cross peaks depends on the electronic
coupling strength J and on dipole moments �absolute values
and mutual orientations� of the transitions contributing to
this peak. One cannot obtain such type of information from,
e.g., pump-probe spectra.

B. Dimer relaxation spectra

Next, we focus on the evolution of the dimer 2D spectra
with increasing population time T. In Fig. 4 we present a
series of 2D spectra calculated for a series of population
times: T=0, 16, 30, 46, 62, 108, 140, and 310 fs; we will
refer to these as 2D relaxation spectra.8,16 The dynamics of
the density matrix is obtained from the Redfield equation as
described in Sec. V. The system parameters are 
A

=16 200 cm−1, 
B=15 800 cm−1, J=500 cm−1, dA=1, and
dB=−0.15. Other parameters are the same as in the previous
example �Fig. 3�b��. The chosen system parameters produce
an initial 2D spectrum �T=0 fs, Fig. 4�a�� with two diagonal
peaks of roughly equal intensities and two well-resolved

0 fs, �b� T=16 fs, �c� T=30 fs, �d� T=46 fs, �e� T=62 fs, �f� T=108 fs, �g�
ulation period of 31 fs. Population times in �a�, �c�, and �e� and �b�, �d�, �f�,
c coherence effect�, respectively. At longer population times, T=310 fs �h�,
to the population relaxation. The shape of the peaks also varies with the
� T=
mod
troni
due
cross peaks. After the system has an opportunity to evolve
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

6 Nov 2013 22:30:35



234505-7 Two-dimensional photon echo spectroscopy J. Chem. Phys. 124, 234505 �2006�

 This art
during the population period �T	0, Figs. 4�b�–4�h��, a num-
ber of features can be observed in the 2D relaxation spectra:
appearance and disappearance of cross peaks, modulations of
the diagonal peak intensities, intensity redistribution between
the peaks, and changes of the peak shapes as T increases.
Looking at the spectra in more detail, we notice that there are
two processes with different dependences on T: a periodic
behavior �appearance and disappearance of cross peaks and
smaller intensity modulations of diagonal peaks� at short
times and a monotonous transfer of the intensity from the
diagonal peak 22 to the cross peak 21 at longer population
times.

1. Coherent electronic motion

Let us first consider the short-time periodic behavior of
the peaks. Figure 4�b� shows that a very strong negative
cross peak, 12, quickly grows and reaches its maximum at
T=16 fs and on the same time scale the second cross peak,
21, loses its intensity and becomes negative. Correspond-
ingly, the absolute value spectrum �not shown here� would
show the appearance of a new peak 21 and the disappearance
of a peak 12. When T exceeds 16 fs, the process is reversed:
The negative peak 12 quickly loses its intensity and peak 21
grows back �see Fig. 4�a� which corresponds to T=30 fs�.
The observed features cannot be attributed to the pulse over-
lap effect: Calculations performed for different pulse dura-
tions, �pulse=30 fs and �pulse=2 fs, show the same behavior
�maximum of the negative peak 12 at a population time T of
16 fs� irrespective of the pulse duration.

Figures 4�d�–4�g� which correspond to values of T be-
yond the pulse overlap region, also show strikingly periodic
behavior. Clearly, the effect is entirely due to the system
dynamics. The periodic behavior of peaks �“quantum beats”�
in the dimer 2D spectrum is the manifestation of coherent
electronic motion. Similar quantum beats associated with
electronic coherence have been shown theoretically to be
present in the population dynamics in the electron transfer
problem.52,54 In excitonically coupled molecular complexes,
short excitation pulses prepare a coherent superposition of
excitonic states. Oscillatory responses observed earlier in the
photosynthetic complexes37–40 are associated with the mo-
tion of vibrational wave packets. Here one could speak of
excitonic wave packets or electronic coherence �determined
by the off-diagonal elements of the density matrix�. A
complementary interpretation can be given in terms of the
molecular states. Because of the presence of strong coupling
between two monomers, the probability of find the system,
for example, in the state 
A� when initially it was in the state

B� is a periodic function with a period corresponding to the
exciton energy splitting �
21=��
A−
B�2+4J2. The observed
modulation period of the peaks in the dimer 2D spectrum,
TEC=31 fs, exactly corresponds to the �
21 value. The peri-
odic behavior is clearly seen from Figs. 4�b�–4�g� where the
population times were chosen to correspond to minima and
maxima of the oscillations. A similar modulation rule was
determined recently by Khalil et al.70 from experimentally
measured 2D infrared �IR� spectra. In that case, obviously,
the modulation of the peaks resulted from vibrational wave

packet motion. System parameters which give a large exciton
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splitting �and consequently a short modulation period� have
been chosen to emphasize the periodic behavior. Changing
the exciton splitting �via �
AB and/or J� changes the modu-
lation period, as described above.

For an intuitive explanation of the appearance of quan-
tum beats in 2D spectra, it is helpful to use “perturbative”
language.2,6,26,71 Let us first consider the appearance/
disappearance of cross peaks. There are two types of contri-
butions to the cross peaks: �i� those not dependent on T that
involve Feynman diagrams when the system is in the exciton
population state ��22, �11, and �00� during the population pe-
riod and �ii� oscillating contributions which involve the dia-
grams describing the system in an exciton-coherence state
��12 and �21; note that these are coherences within the one-
exciton manifold but not inter-band coherences�. Constant
contributions are better seen in the real part of the 2D spec-
trum at T= �2k+1�TEC/2, k=0,1 , . . ., �Figs. 4�b�, 4�d�, and
4�f�� when the oscillating contributions disappear. The inten-
sities of these constant contributions �strong negative peak
12 and weak positive peak 21� are determined by the system
parameters, in particular, by combination of all dipole
moments.2,8,29 At T=2kTEC/2 �Figs. 4�a�, 4�c�, and 4�e�� the
oscillating contributions reach their maximum values and we
see an amplitude decrease of the negative peak, 12, in paral-
lel with a growth of the positive peak, 21. In the absolute
value spectrum this effect would manifest itself as a periodic
appearance/disappearance of cross peaks.

The EC also modulates the diagonal peaks, though this is
not clearly seen in Fig. 4. The 2D spectra shown here are
contour plots which have been scaled to the maximum value
for each value of T. Therefore, as long as the intensity of the
diagonal peak is the largest in the spectrum, the diagonal
peaks appear unchanged even though they might undergo
significant amplitude changes. Some indications of the dy-
namics in the diagonal peaks come from changes in their
shape �see Sec. V B 3 below�. To show that diagonal peaks
are also sensitive to the motion of the excitonic wave packet,
in Fig. 5 we have plotted a cut of the 2D spectrum along the
diagonal using absolute amplitudes �without normalization�.
We see that the diagonal peaks exhibit oscillatory behavior
with the same modulation period �but much smaller ampli-
tude than the cross peaks�. A detailed explanation of the pe-
riodic behavior of the diagonal peaks can be obtained in the
same way it was outlined for cross peaks. Depending on the
amplitudes and resolution of the cross peaks, it may be
easier, in some systems, to observe coherent excitonic mo-
tion from diagonal peak amplitudes, rather than cross-peak
modulation.

The spectrum at T=0 �Fig. 4�a�� does not follow exactly
the modulation behavior of the later-time spectra �there is a
strong cross peak 12� because of the pulse overlap effect as
described in Paper I for a two-level system. At T�0 all three
pulses �of finite duration� overlap and pulse sequences such
as 2-3-1 contribute to the signal. These contributions are im-
portant only in the overlap region and quickly disappear as T
increases.

The influence of electronic coherence gradually disap-
pears at longer population times �Figs. 4�f�–4�h��. Firstly, the

coherent superposition is destroyed on the dephasing time
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T2=1/�12 due to destructive influence of the bath. Another
process also becomes important, namely, population transfer
which proceeds in the one-exciton manifold with a popula-
tion relaxation time T1=1/�22. These two processes are re-
lated as demonstrated by the rate expression �C4�. The
dephasing and relaxation times in the system which we used
in the calculation were defined to be 350 and 200 fs, corre-
spondingly, to allow the observation of the motion of the
excitonic wave packet for at least several periods.

At this point it is appropriate to note some important
differences between 2D infrared and 2D optical spectra. Al-
though the formal description of these two is very similar,
there are significant differences between the vibrational and
electronic spectroscopies. Most importantly, in the IR case
one always has a ladder of states �e.g., for the simplest pos-
sible system, two coupled vibrations, there are two one-
exciton states and three states in the two-exciton manifold—
two overtones and one combination mode� and all possible
transitions between these states have the oscillator strength
of the same order of magnitude.2,6,9,26,71,72 Consequently,
many contributions nearly cancel each other; if anharmonic-
ity is absent in the system, the cancellation is complete and
the total signal is zero. This results in a nearly symmetric
shape of 2D IR spectra. The situation is different in the case
of 2D optical spectroscopy: The structure of the two-exciton
manifold is qualitatively different, oscillator strengths of
transitions could differ by order�s� of magnitude, and there-
fore there is no cancellation of various contributions. 2D
optical spectra display some, often a considerable, degree of
asymmetry about the diagonal as compared with typical 2D
IR spectra.23,29

C. Population transfer

Population relaxation dynamics becomes dominant at

FIG. 5. The diagonal cuts of the real-part 2D relaxation spectra; absolute
intensities �without scaling to the maximum value� are shown. Cuts corre-
spond to the same population times �a� T=0 fs, �b� T=16 fs, �c� T=30 fs,
�d� T=46 fs as in Fig. 4. The figure shows that diagonal peaks are also
modulated by the motion of the excitonic wave packet.
longer population times. It induces intensity redistribution
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between the peaks as illustrated by Figs. 4�f�–4�h�: The in-
tensity of the diagonal peak 22 decreases while the intensity
of the cross peak 21 peak increases with T. This “transfer” of
the intensity reflects the exciton population relaxation: Since
the downhill relaxation rate is larger than the uphill one �see
Appendix C�, the relaxation results in a larger population of
the lower one-exciton state, �11�T�	�22�T�. Consequently,
the probability of the emission from state 
2�, after initial
excitation at �2, decreases while the same from state 
1�
increases. Within a perturbative approach this effect is de-
scribed by the introduction of several additional Feynman
diagrams involving a transfer process within the population
period.71,73,74

In contrast to the coherent electronic motion, within our
model, the population transfer is an incoherent process and
proceeds irreversibly. Correspondingly, in the 2D spectra it
appears as a monotonic transfer of the intensity. The effect of
population relaxation becomes notable in 2D spectra at times
T	100 fs. When the oscillations due to the EC effect are not
yet damped completely, one can observe a “competition” be-
tween relaxation and electronic coherence. For example, the
2D spectra calculated at times T=108 and 140 fs �Figs. 4�f�
and 4�g��, which correspond to the “minima” of the EC ef-
fect, T=7TEC/2 and T=9TEC/2, respectively, show a small-
amplitude �compared to Fig. 4�b�� growth of the negative
peak 12 along with a rather strong positive peak 21 and a
weakened diagonal peak 22 �the manifestation of the popu-
lation transfer�. For population times larger than the relax-
ation time �T	T1�, the system reaches equilibrium in the
one-exciton manifold. If the energy splitting between two
eigenstates is large �compared to kBT �, the system relaxes
completely to the lower eigenstate, i.e., �22�T�=0, and we
can neglect the contribution to the signal from the higher
one-exciton state. Then emission is possible only at �10: In
Fig. 4�h� �T=310 fs� the spectrum is dominated by the two
peaks 11 and 21. There is no correlation between excitation
and emission frequencies. In this case, the 2D spectrum can
be obtained as a product of the linear �one dimensional� ab-
sorption and emission spectra.16 If, furthermore, the prob-
abilities of excitation of both eigenstates were the same at
T=0 fs, then we can expect equal intensities of the cross
peak 21 and of the diagonal peak 11 as T→�. As we men-
tioned, the 2D spectra are scaled to the maximum value for
every time T; the absolute intensity of the peaks decays due
to dephasing.

For this simple model system there are three main pa-
rameters obtained from the Redfield theory �see Appendices
B and C�: the population relaxation time T1=1/�22, the
dephasing time T2=1/�12, and the homogeneous dephasing
rate which is determined by the intraband coherence dephas-
ing rate, e.g., �01. We studied how these parameters influence
the relaxation dynamics and manifest themselves in 2D spec-
tra. Clearly a larger value for the population relaxation time
T1 simply shifts the peak intensity redistribution to a longer
time scale. A longer dephasing time T2 allows the electronic
coherence effect �periodic behavior� to survive to longer
population times, while a larger homogeneous dephasing rate
broadens the peaks along both frequency axes, which results

in larger overlap of the peaks.
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1. Shape of the peaks

The peaks change not only in intensity but also in their
form. Remarkably, diagonal and cross peaks do this in a very
different manner. Before population transfer becomes impor-
tant �Figs. 4�b�–4�e��, the cross peaks are always diagonally
elongated; only one of two peaks can be seen in the spectrum
at a particular time and they appear/disappear with the oppo-
site phase. As long as coherent electronic motion is present
in the system, we also observe periodic behavior in the shape
of the diagonal peaks. The effect is clearly seen from, e.g.,
Figs. 4�d� and 4�e� which represent the two opposite phases
of the peak modulations �i.e., the two turning points of the
electronic wave packet�: When T corresponds to the mini-
mum of the EC modulation, the diagonal peaks are strongly
elongated along the diagonal �see both real and imaginary
parts in Fig. 4�d�, T=46 fs�, and when T corresponds to the
maximum of the EC modulation, the peaks are highly sym-
metric �Fig. 4�e�, T=62 fs�. To explain the shapes of the
spectral features of the inhomogeneously broadened spectra,
one can utilize calculations without inhomogeneity in the
way we did for the two-level system.36 In Fig. 6 we present
the calculated homogeneously broadened ��=0� spectra for
T=46 fs and T=62 fs corresponding to Figs. 4�d� and 4�e�.
Using these figures as elemental shapes for the dimer spec-
trum, we can predict the form of the spectral features for the
inhomogeneously disordered system depending on the type
of correlation between the fluctuations of the transition ener-
gies of the molecules forming the dimer.

At short times the shape changes of the diagonal peaks
clearly arise from the electronic coherence. At longer times
population transfer becomes important. The signature of this
process can be seen first in Fig. 4�f�: The negative cross
peak, 12, starts to loose its diagonal orientation �compare

FIG. 6. Dimer homogeneously broadened ��=0� 2D spectra which corre-
spond to inhomogeneous ��=200 cm−1� case depicted on Figs. 4�d� and
4�e�. Comparison shows that the form of 2D �inhomogeneous� spectrum can
be obtained from elemental �homogeneous� spectral shapes. The presence of
inhomogeneity can be understood in the way shown schematically on Fig. 7.
with Fig. 4�d�� and the new �population-transfer-induced�
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cross peak 21 is entirely symmetric. At longer population
times, this process evolves �Fig. 4�g�� and results in the “fi-
nal” 2D spectrum form �Fig. 4�h��. �This is valid as long as
the inhomogeneity remains static.� The final shape of the
diagonal peak can be understood in the same way as dis-
cussed for the two-level system �see the detailed discussion
in Paper I�: Due to the presence of inhomogeneous broaden-
ing in the system, peaks in the real part and the nodal line
between the positive and negative regions in the imaginary
part of the 2D spectrum are oriented along the diagonal, and
the diagonal cut characterizes the inhomogeneous distribu-
tion.

Two-dimensional spectra contain information not only
on line broadening mechanisms but also on correlation in the
distribution of the transition energies of the coupled mono-
mers. In particular, the form of the cross peaks is determined
to a large extent by the correlation type.4,8,75 This is illus-
trated schematically by Fig. 7 for the situation of two equal
diagonal peaks. We consider three possible correlation types
of fluctuations of the transition frequencies of two mono-
mers, ��10 and ��20: �i� positively correlated, ��10=��20,
�ii� negatively correlated, ��10=−��20, and �iii� independent
�uncorrelated� fluctuations. �In the calculations throughout
the paper we assumed the latter case.� When the energy fluc-
tuations on both monomers are fully correlated, ��10=��20,
any change of the energy in one diagonal peak results in the
same �direction and magnitude� change in the other peak.
This shifts the position of the off-diagonal peak parallel to
the diagonal and results in the diagonal-elongated shape of
the cross peak as illustrated schematically by Fig. 7. In a
similar manner one can understand the antidiagonal orienta-
tion of the cross peak in the case of negatively correlated
fluctuations �the energetic changes in the diagonal peaks re-
sult in a shift of the cross peak that is orthogonal to the
diagonal� and the symmetric shape of the cross peak in the
uncorrelated case �the shift of the transition energy �20 is
combined with an arbitrary, i.e., same or the opposite sign,

FIG. 7. The schematic explanation of the peak-shape formation for different
correlation broadening cases. In the case where the energy fluctuations on
both monomers are fully correlated �shown on the cross peak in the lower-
right part of the figure�, any change of the energy in one diagonal peak
results in the same direction change in the other one. This shifts the position
of the off-diagonal peak parallel with the diagonal. In the anticorrelated case
�upper-left cross peak�, the energetic changes in the diagonal peaks result in
a shift of the cross peak that is orthogonal to the diagonal.
larger or smaller magnitude shift in �10�.
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In the calculation of 2D spectra, the described effect is
combined with the actual elemental shapes �i.e., homoge-
neous spectra� to produce inhomogeneously broadened 2D
spectra for a given type of correlation. As an example, ho-
mogeneous ��=0� and inhomogeneous ��=400 cm−1� cor-
related, uncorrelated, and anticorrelated 2D spectra calcu-
lated at time T=310 fs are depicted on Fig. 8. The elemental
shapes are slightly elongated peaks: diagonal peak oriented
along the antidiagonal and cross peak along the diagonal
�Fig. 8�a��. The calculations confirm our qualitative analysis
given above: Adding inhomogeneity to these elemental
shapes, one gets remarkably different shapes of the peaks for
the different correlation cases �Figs. 8�b�–8�d��. In all three
cases diagonal peaks become �to a different extent� diago-
nally elongated. In contrast, differently correlated transitions
show different shapes of the cross peak:8 Cross peak be-
comes elongated along the diagonal �Fig. 8�b��, keeps its
shape but simply becomes broader symmetrically in all di-
rections �Fig. 8�c��, and gets the antidiagonal orientation
�Fig. 8�d�� in the cases of correlated, uncorrelated, and anti-
correlated transitions, respectively. Thus, analysis of the
form �ellipticity and orientation� of the peaks in experimen-
tally measured 2D spectra should allow the degree of corre-
lation between different transitions in the system to be quali-
fied. It seems likely that such correlated fluctuations could
significantly influence dynamical behavior in molecular
complexes.

FIG. 8. The effect of correlated broadening on the dimer 2D spectra: real
parts of the �a� homogeneous ��=0� and inhomogeneous ��=400 cm−1�
spectra calculated at time T=310 fs for the �b� fully correlated, �c� uncorre-
lated, and �d� fully anticorrelated fluctuations. Compare the shapes of the
diagonal and cross peaks in different cases �see the discussion in the text�.

TABLE I. Difference frequencies ����� �cm−1�/corre

Exciton energy En �cm−1� 1 2

1.121 12 0 150/222 243
2.122 62 0 92
3.123 55
4.124 14
5.124 48
6.126 11
7.126 49
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2. Summary and outlook

Our calculations reveal the influence of both coherent
�excitonic wave packet motion� and incoherent �population
transfer� effects in the photoinduced exciton dynamics of a
model dimer system and their manifestation in 2D photon
echo optical spectra. Similar phenomena should be found in
larger complexes: periodic modulation �or even appearance/
disappearance� of certain peaks after coherent excitation and
intensity transfer from diagonal peaks to �possibly new�
cross peaks as the result of population transfer. In multistate
systems, new cross peaks may arise also due to coherence
transfer between the pairs of eigenstates.70,71 We will address
these issues in a greater detail �including coherence transfer
and a more general form of the Redfield equation� for larger
systems in future work.

The first 2D optical spectrum of a molecular complex
revealing resolvable and time-dependent cross-peak features
has recently been reported by Brixner and co-workers23,29 for
the seven-bacteriochlorophyll-protein complex known as the
FMO complex.76 The analysis in Refs. 23 and 29 used a
perturbative approach developed by Cho et al. and described
in detail in Ref. 29. Within the limitations of the current
Hamiltonian29,76 the intermediate and long-time behavior of
the FMO 2D spectra was quite well described. However, the
very short-time behavior cannot be calculated with the ap-
proach of Cho et al.29 because of the approximations used to
obtain analytical approximations for the response functions.
The nonperturbative approach described here can be used to
investigate the short-time behavior of such a system.

The experimental data on the FMO complex show a very
striking change in the amplitude of the lowest energy diago-
nal peak at T=0, 50, and 100 fs. This peak is very strong at
T=0 fs, not detected at T=50 fs, and present with moderate
intensity at T=100 fs.23 Of course, these time intervals were
selected for experimental convenience rather than with
knowledge of the electronic coherence frequencies of the
system, but such an oscillation of amplitude is strongly sug-
gestive of the electronic coherence effects described here for
the model dimer system. Numerical simulations and detailed
analysis of the experimental data are underway, but in ad-
vance of this we can make estimates of the periods and upper
limits of dephasing times expected in the FMO complex,
based on the parameters used for the perturbative
treatment.29

Table I shows the exciton splitting �difference� frequen-
cies and their corresponding periods of pairs of eigenstates
based on the Hamiltonian of Vulto et al.76 The periods range
from 60 to 980 fs. An upper limit to the dephasing time can

ing periods T�� �fs� in the FMO complex.

4 5 6 7

302/111 336/100 499/67 537/64
152/220 186/180 349/96 387/88
59/564 93/360 256/130 294/113

0 34/980 197/168 235/141
0 163/204 201/164

0 38/877
0

spond

3

/138
/365

0
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be obtained from the relaxation rates between levels:
�����min= 1

2 ����+����. This corresponds to an upper limit
because pure dephasing ����

* � is neglected �see Eq. �C4��.
The experiments were performed at 77 K, making pure
dephasing likely to be slower than at room temperature. Re-
laxation rates taken from a modified Forster/Redfield
calculation29 produce dephasing times in the range of
100–300 fs. Taking into account that the first minimum of
the electronic coherence occurs at a half of the T�� period, it
seems very likely that the manifestation of electronic coher-
ence will be observable even in a system with seven one-
exciton states. Whether this phenomenon survives at physi-
ological temperatures remains an open question, and detailed
numerical calculations are clearly necessary to provide a de-
finitive answer on the role of multiple states, temperature,
coherence transfer, and the correlation of nuclear fluctuations
on such a complex system. However, the level spacing �and
thus the moderate oscillation frequencies� and the weak
electron-phonon coupling common to all photosynthetic
complexes55,77 make photosynthetic pigment-protein com-
plexes particularly favorable systems for the study of mo-
lecular electronic coherence.

VI. CONCLUSIONS

In this paper we have applied the nonperturbative
method developed in Paper I �Ref. 36� to calculate 2D pho-
ton echo spectra of model dimer system and demonstrated
the feasibility of including a sophisticated form of dissipative
dynamics in the calculations. The different processes ob-
served in the 2D spectra at different population times �peri-
odic appearance/disappearance of cross peaks, intensity re-
distribution between the peaks, and changes of the peak
shapes� were described in terms of two effects: coherent
electronic motion and exciton population transfer. A qualita-
tive understanding of the system dynamics is obtainable by a
simple analysis of the time-dependent 2D spectra, and de-
tailed numerical studies should enable extraction of quanti-
tative information about the coherent and dissipative pro-
cesses in multilevel molecular systems.
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APPENDIX A: REDFIELD EQUATIONS

In the eigenstate representation, the Redfield equation
�19� takes the form

�t�ij�t� = − i�ij�ij�t� + 

kl

Rijkl�kl�t�

+ iE�t�

k

�
ik�kj − �ik
kj� �A1�

with frequencies

�ij = 
i − 
 j, i, j = 0,�,�̄ . �A2�

The first term on the right-hand side of Eq. �A1� describes
the isolated system evolution, while the second and third

represent its interaction with the dissipative environment
icle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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�with the Redfield tensor responsible for system relaxation�
and the external field, respectively.

The Redfield tensor elements R��
� can be expressed
as48,52

R
��� = ���
�
+ + ���
�

− − ���

�

�
���
+ − �
�


�

�����
− ,

�A3�

where

���
�
+ = 	

0

�

dt���
HSB�t�
���

HSB
���Be−i�
�t, �A4�

���
�
− = 	

0

�

dt���
HSB
���

HSB�t�
���Be−i���t, �A5�

HSB�t� = eiHBtHSBe−iHBt, �A6�

and �¯�B denotes a thermal average over the bath.
For the dimer, the system-bath coupling is written in a

general form as

HSB = 

i=A,B

Fi
i��i
 + �FA + FB�
AB��AB
 , �A7�

where the coupling function Fi describes the interaction of an
excitation at site 
i� with the bath. The damping matrices
�A4� and �A5� are expressed in terms of the exciton overlap
integrals �analogs of the Frank-Condon factors� and the Fou-
rier transforms of the bath coupling functions �CFs�. To cal-
culate the elements of the Redfield tensor, we have to specify
the form of the coupling function. We make the following
simplifying assumptions about the nature of the system-bath
�SB� interaction.

�i� The SB interactions at different sites are not corre-
lated, i.e., each monomer is coupled only to localized
vibrations. Thus, the two-site bath CF becomes
�Fi�t�Fj�B=�ij �Fi�t�Fi�B.

�ii� The SB interaction is treated within a linear response
theory: The monomers are linearly coupled to the bath
oscillators and the coupling function Fi is specified as

Fi = 

x

gx
�i�qx, �A8�

where the coupling parameters gx
�i� describe the inter-

action of an excitation at site 
i� with mode x of the
bath. The more general case of the SB interaction,
which includes the effect of finite correlation length
and terms that are quadratic in the bath coordinate,
has been discussed by Kühn and Sundström,60 May
and co-workers.78,79

For a bath of harmonic oscillators, analytic expressions
for the bath CF and its Fourier transform can be obtained57

�we neglect the imaginary part of the Redfield tensor, the
so-called Lamb shift, which describes a spectral shift of sys-

tem transitions due to dephasing�:
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�Fi�t�Fi�B = 1
2


x

gx
�i�2�n��x�ei�xt + �1 + n��x��e−i�xt� ,

�A9�

C̃i��� = Re 	
0

�

dt�Fi�t�Fi�Be−i�t

= n���Ji��� + �1 + n�− ���Ji�− ��

= � n���Ji��� if � 	 0

�1 + n�− ���Ji�− �� if � � 0.
� �A10�

Here, n���=1/ �e�/kT−1� is the Bose thermal distribution
function, and the spectral density function, Ji���, which en-
tirely describes the parameters of the bath, is defined for each
monomer as

Ji��� =
�

2 

x

gx
�i�2��� − �x� . �A11�

For convenience we assume that the spectral density for both
monomers is equivalent. For the calculations in this paper,
the spectral density is taken to be of the form

J��� = g2 �

�c
exp�− �/�c� , �A12�

where �c is a cutoff frequency and g2 is a dimensionless
coupling strength parameter.

APPENDIX B: SECULAR APPROXIMATION

Next we employ a secular approximation that is widely
accepted in Redfield theory for relaxation processes. We con-
sider only so-called secular terms of the Redfield tensor sat-
isfying


�
� − ���
 = 0. �B1�

In this case the equations of motion for populations and co-
herences are decoupled: Populations obey the Pauli master
equation �rate equations�


�t�

�t�
diss = − �

�

�t� + 

��


�
�����t� , �B2�

where �
���
←� is the relaxation rate from state � to state

 and

�

 = 

��


��
, �B3�

while coherences show an exponential decay


�t�
��t�
diss = − �
��
��t� . �B4�

The Redfield tensor reduces to the rate matrices57

�
� � R

�� = ��

�
+ + ��

�

− for 
 � � , �B5�
describing population relaxation, and
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�
� � − R
�
� = − ���


+ − ���



− + 

�

�
��

+ + 


�

�����
−

= �̂
� + 1
2 


��


��
 + 1
2 


���

���, �B6�

describing coherence dephasing. The latter consists of popu-
lation relaxation rates and so-called pure dephasing,

�̂
� = − ���


+ − ���



− + �����
+ + �





−

= Re 	
0

�

dt���

HSB�t�

� − ��
HSB�t�
���

���

HSB

� − ��
HSB
����B, �B7�

which is a generalization of the well-known relation between
the relaxation times T1 and T2. The elements of the transfor-
mation matrix which diagonalize the dimer Hamiltonian �5�
have a simple form �Eq. �10��, and all rates �
� and �
� are
written explicitly in Appendix C.

APPENDIX C: DIMER RELAXATION AND DEPHASING
RATES

In this appendix, we give the relaxation and dephasing
rates for the dimer. The population relaxation and pure
dephasing rates between one-exciton states are

��� = 2

i


Ci
�
2
Ci

�
2C̃����� = sin2 2�C̃�����,

�,� = 1,2, �C1�

�̂�� = 

i

�
Ci
�
2 − 
Ci

�
2�2C̃�0� = 2 cos2 2�C̃�0� . �C2�

For the spectral density �A12�, a zero-frequency limit that

determines the pure dephasing rate is C̃�0�=g2kT /�c. Note
that the detailed balance condition �the relation between the
downhill, �12, and uphill, �21, rates� is satisfied: �12

=e�21/kT�21, i.e., �12	�21. Obviously, if there are only two
states in the manifold then �11=�21 and �22=�12.

Coherence dephasing rates that appear in the equations
of motion ��D1�–�D6�� are defined as follows:

��0 = �̂�0 + 1
2���, �C3�

��� = �̂�� + 1
2 ���� + ���� , �C4�

��̄� = �̂�̄� + 1
2���, �C5�

��̄0 = �̂�̄0. �C6�

The explicit expressions for pure dephasing rates in the
dimer are

�̂�0 = 

i


Ci
�
4C̃�0� = �1 − 1

2 sin2 2��C̃�0� �C7�

for the coherence connecting one-exciton states with the

ground state and
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�̂�̄0 = 

i	j


Cij
�̄
2�


i	k


Cik
�̄ 
2 + 


i�k


Cki
�̄ 
2 + 


j	k


Cjk
�̄ 
2

+ 

j�k


Ckj
�̄ 
2�C̃�0� = 2C̃�0� �C8�

for the two-exciton coherence. Finally, the pure dephasing
rate for the one-two-exciton coherence is the same as for the
one-exciton coherence �this holds only for the dimer�:

�̂�̄� = �̂�0. �C9�

APPENDIX D: EQUATIONS OF MOTION
FOR THE DIMER IN RWA

Introducing the ansatz �22� into the Liouville equation
�19� we find the following equations for one-exciton coher-
ence:

�t�10 = − i��10 − ���10 − �10�10 + iE�t��
10��00 − �11�

− 
20�12� + iE * �t�
31�30, �D1�

coherence between two- and one-exciton states:

�t�31 = − i��31 − ���31 − �31�31 + iE�t��
31�11

+ 
32�21� − iE * �t�
10�30, �D2�

two-exciton coherence:

�t�30 = − i��30 − 2���30 − �30�30 + iE�t��
31�10

+ 
32�20 − 
10�31 − 
20�32� , �D3�

one-exciton population:

�t�11 = − �11�11 + �12�22 + iE�t��
10�01 − 
31�13�

+ iE * �t��
31�31 − 
10�10� , �D4�

intraband �one-exciton manifold� coherence:

�t�12 = − i�12�12 − �12�12 + iE�t��
10�02 − 
32�13�

+ iE * �t��
31�32 − 
20�10� , �D5�

and ground-state population:

�t�00 = − iE�t��
10�01 + 
20�02�

+ iE * �t��
10�10 + 
20�20� . �D6�

Note that we use indices 0 and 3 for the ground state 
g� and
two-exciton state 
�̄�, respectively. The equations for the
RDM elements involving state �=2 �namely, �20, �32, and
�22� are obtained by the substitution 1↔2 in the correspond-
ing equations involving state �=1.
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