

1

2

By

Peter Shaw

Foreword by Daniel Jebaraj

3

Copyright © 2014 by Syncfusion Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

mportant licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other liability arising

from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET ESSENTIALS are the

registered trademarks of Syncfusion, Inc.

Technical Reviewer: Zoran Maksimovic, @zoranmax, www.agile-code.com

Copy Editor: Courtney Wright

Acquisitions Coordinator: Hillary Bowling, marketing coordinator, Syncfusion, Inc.

Proofreader: Darren West, content producer, Syncfusion, Inc.

I

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.twitter.com/zoranmax
http://www.agile-code.com/

4

Table of Contents

The Story behind the Succinctly Series of Books .. 6

About the Author ... 8

Introduction ... 9

What's Changed... 9

New Installation Methods ... 11

Device Support .. 12

Chapter 1 Migrating from Version 2 to Version 3 ... 14

Class Changes ... 14

Migrating the Grid System ... 15

Other Migrations .. 20

Chapter 2 Common Pitfalls ... 23

Internet Explorer Backwards Compatibility Modes .. 23

Internet Explorer 10 Device Viewport .. 24

Safari Percent Rounding .. 25

Android Stock Browser .. 25

And the Rest? .. 25

Chapter 3 Changed CSS Features .. 27

Typography Changes ... 27

List Changes .. 29

Table Changes ... 29

Form Changes ... 34

5

Output generated by code sample 18 .. 34

Button Changes ... 43

Image Changes .. 46

Helper and Visibility Changes .. 47

Chapter 4 Changed Components Features ... 55

Glyphicon Changes .. 55

Button Changes ... 56

Input Group Changes ... 63

Navigation Changes ... 65

Basic Navigation .. 66

Navbar Navigation ... 71

Label and Badge Changes .. 77

List Group Changes ... 80

Media Objects and Custom Thumbnail Changes .. 84

Panel Changes .. 89

Other changes ... 92

Chapter 5 Changed JavaScript Features ... 96

Modals.. 96

Tabs ... 99

Tooltips and Popovers ... 100

Collapsible Panels ... 102

Carousel ... 103

Chapter 6 Customizing Bootstrap 3 .. 106

Closing Notes .. 110

6

 The Story behind the Succinctly Series
 of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about every other
week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

S

7

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click” or “turn the
moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

 Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
http://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

8

About the Author

As an early adopter of IT back in the late 1970s and early 1980s, I started out with a humble
little 1k Sinclair ZX81 home computer.

In time this small, 1k machine became a 16k Tandy TRS-80, followed by an Acorn Electron, and
eventually, a 4mb arm powered Acorn A5000.

After leaving school and getting involved with DOS-based PCs, I went on to train in many
different disciplines in the computer networking and communications industries.

After returning to university in the mid-1990s and gaining a BSc in Computing for Industry, I now
run my own consulting business, Digital Solutions Computer Software Ltd, in England. I advise
clients at both hardware and software levels in many different IT disciplines, covering a wide
range of domain-specific knowledge from mobile communications and networks right through to
geographic information systems, banking and finance, and web design.

With over 30 years of experience in the IT industry within varied platforms and operating
systems, I have a lot of knowledge to share.

You can often find me hanging around in the Lidnug.NET users group on LinkedIn that I help
run, and you can easily find me in the usual places such as Stack-Overflow (and its GIS-specific
board) and in twitter (@shawty_ds), and now also on Pluralsight, where my various videos are
available.

I hope you enjoy the book, and gain something from it.

Please remember to thank Syncfusion (@Syncfusion) for making this book possible, and
allowing people like me to share our knowledge with the .NET community. The Succinctly series
is a brilliant idea for busy programmers.

9

Introduction

Welcome to the second book in the Succinctly series that covers the Twitter Bootstrap (BS) UI
and CSS framework.

In my first book, I laid down the initial groundwork and got you started with Bootstrap 2.

Since that book was released, however, Bootstrap 3 has become the mainstream version.

In this book we're going to continue to build on that groundwork and move forward into using BS
v3. We'll look to see where things are different, and as we explore the new features, we'll see
that a big chunk of what was present in v2 is still applicable to v3.

If you've not yet read the first book on Bootstrap 2, then I encourage you to do so, as I will be
referring to it at various points throughout this book.

The style and layout in this book will also be slightly different from the first one, in that it will be
more of an extension to the first book rather than an independent book in its own right.

Why? I believe that in order to understand the entire Bootstrap landscape, you need to examine
it from the beginning. You need to be able to understand what it set out to achieve and how.

You will be able to pick up just this book and learn the basics of BS v3, but you'll get a much
deeper, better understanding if you read the v2 book first.

What's Changed

So what's changed from v2 to v3?

Quite a lot.

The major change between the two versions is that v3 is now "Mobile First." Bootstrap v2 was a
responsive layout CSS kit, but its mobile and responsive features were always second place to
its rich UI features. In fact, in order to make the responsive stuff work correctly, you had to
include a second CSS file whose sole purpose was to enable the responsive, mobile features
and nothing else.

In v3 this whole situation has been completely reversed. The entire framework is now mobile-
friendly and responsive out of the box, and it now takes extra work to adapt your layouts for
larger screen formats. Don't get me wrong—it's by no means a huge amount of work. Most of
what you need to change is still just simply swapping classes about and structuring your HTML
mark-up correctly.

The other major change is in the naming of classes and API calls. Many of the class names that
were introduced in v2 are now either deprecated or have been renamed to something more
suitable to their intended purpose.

10

There has also been a major effort to rename classes to be more consistent. For example, in
v2, for items that targeted the RED error color, we had the following classes:

 Buttons - btn-danger

 Text - text-error

 Table Rows - tr.error

 Labels - .important

 Badges - .important

 Alerts - .error

 Progress Bars - progress-danger

Now, in v3, these have be consolidated so that naming is similar across all components as
follows:

 Buttons - btn-danger

 Text - text-danger

 Table Rows - .danger

 Label, Badge, Alert - .danger

 Progress Bars - progress-bar-danger

As you can see, consistency is now a major player in the v3 classes, and many other similar
changes have been made across the entire framework.

There have been quite a few minor changes too. For example, the box-model used by Bootstrap
has now been improved considerably, with all elements now using border-box as the default

CSS box sizing model.

The grid system has been extended and improved too, and instead of being one monolithic grid
system with optional classes, it’s now comprised of four tiers of grid sizes specifically aimed at
phones, tablets, desktops, and large desktops.

All the JavaScript stuff has also now been name-spaced to reduce conflict with other JavaScript
code; the available events are now better named to reflect their purpose and are much more
clearly documented.

Modals and Navbars have been vastly improved in terms of responsiveness, and along with the

class-naming changes, the sizing classes for all of the components (Inc Nav Modals) have now
been aligned.

Component-wise, some of the older, less frequently used components have been deprecated
and removed, the most notable of which is the Accordion component. But don’t despair—the

accordion has been replaced with a brand new collapsible-panel component that's much

more flexible than its predecessor.

We also have a new, narrow jumbotron, new panel types, list groups, and much more.

Finally, the one change that EVERYONE will notice is the look and feel: TWB V3 is flat. It has a
single colored, new interface, but with rounded corners flat.

11

The hover classes no longer have nice graduated effects in them, and the progress bars and
buttons no longer look semi-3D as they did in v2. Instead, what the maintainers of Twitter
Bootstrap have decided to do is to make it easier to customize the look and feel of the elements
that are in the CSS.

The maintainers have even made available a “Bootstrap” theme that makes v3 look like the
original v2 design to get you started. In the last chapter of this book, I'll show you how simple it
now is to override the various classes, and show you how to overhaul the flat theme to take on
your own look and feel.

For now though, if you want the v2 experience, you'll need to make sure that you also include
the appropriate CSS file as required. If you want to stick with the v3 default, you don't need
anything extra.

New Installation Methods

When BS2 was first released, the only way of getting it was via a download from the project
website. This was covered extensively in the first book with an in-depth discussion of exactly
which files were in the zip file and why.

Because so many people were using Bootstrap, it didn't take long before it was made available
for free on a CDN by the folks who run MaxCDN. This tradition has continued into the v3 code
base, and you can now simply get your chosen standard v3 installation by using the following
HTML script tags:

If you use the CDN versions, please remember that you will also need to make sure you include
a recent copy of JQuery; none of the BS3 JS functionality will work unless you do.

As well as the CDN link, there is now also a direct download on the getbootstrap.com site, not
only for the standard JavaScript & CSS bundle as described in the previous book, but also a
direct link to a zip file of the original “Less” sources and a conversion to “Sass” for those folks
who would like to be able to include a fully variable-based, customizable version of the kit in
your own build system using tools like Grunt to automate things.

In addition to the new sources, you can now also use Bower to install everything you need using
the following from your project folders command line:

bower install bootstrap

<link rel="stylesheet"
href="//netdna.bootstrapcdn.com/bootstrap/3.1.1/css/bootstrap.min.css">

<link rel="stylesheet" href="//netdna.bootstrapcdn.com/bootstrap/3.1.1/css/bootstrap-
theme.min.css">

<script src="//netdna.bootstrapcdn.com/bootstrap/3.1.1/js/bootstrap.min.js"></script>

12

Bower is an HTML scaffolding and package system designed to automate much of the
application boiler plate. You don’t need to understand it to understand BS v3, but a quick
Google search for “Bower” will turn up many references to deepen your understanding.

On a similar note, BS v3 can also be installed using the NuGet package manager if you’re
working in Visual Studio. Like Bower, this will automate much of the process for installing and
setting up the required files. Be careful though—there are many Bootstrap packages available
in NuGet, some of which will cause you more work than they save you.

Finally, the TWB customizer is still available at http://getbootstrap.com/customize/. It’s been
greatly restructured and rebuilt to provide more options and an easier, more intuitive look at
what you’re changing and why.

In fact, it's now so easy to change things using the customizer that your designer or design
team can do 90 percent of the work needed to set the colors and branding of your download
before the files required are even downloaded. This enables your design department to start
making color and layout choices immediately, while you work on the page layouts and additional
code for the required interactivity. Then, all that’s required is for you to simply replace your
default files with the files provided to you by your designers, and an instant theme change
should occur.

Device Support

Officially, BS v3 only supports the latest round of HTML 5-compliant browsers and Internet
Explorer 10 and above.

In reality, the framework also supports IE8 and IE9; however, there are some features of CSS3
and HTML5 that don't quite work as expected. In particular, if you want the responsive elements
to work correctly, you'll need to use respond.js, which you can download from the following

GitHub repository: https://github.com/scottjehl/Respond.

Once you add respond to your project, it's basically just a general expectation to what was and

was not added to the various browsers, at various times.

The parts that will be most noticed as missing are as follows:

For IE8:

border-radius is NOT supported

box-shadow is NOT supported

transform is NOT supported

transition is NOT supported

placeholder text is NOT supported

http://getbootstrap.com/customize/
https://github.com/scottjehl/Respond

13

This essentially means that placeholder text in input elements won't show, and anything that
uses rounded corners or drop shadows, or has any kind of transition or transformation on the
element, won't display correctly.

For IE9:

border-radius IS supported

box-shadow IS supported

transform IS supported (but only with -ms prefix)

transition is NOT supported

placeholder text is NOT supported

Things are slightly improved where IE9 is concerned—rounded corners and drop shadows are
now fine, and transformations will also work, as long as they also have a -ms prefix version.

Transitions and placeholders on the input elements, however, are still sadly missing.

The official support matrix for the current version of BS3 in current browsers looks like this:

Table 1: Official support matrix

 Chrome Firefox IE Opera Safari

Android Yes No No

iOS Yes No Yes
Mac OS X Yes Yes Yes Yes
Windows Yes Yes Yes Yes No

If you are targeting IE9 and IE8, and are using respond.js to support those efforts, then please

be aware of the following points:

You will need to refer to the respond.js docs if you’re hosting CSS, etc. on a different domain

(for example a CDN) to mitigate cross-domain problems.

Browser security will cause you problems with file:// and @import based resource

references.

Specific to @import is that respond.js cannot read the rules properly, which is important to

Drupal users, as Drupal uses @import quite heavily.

Older IE compatibility modes will stop Bootstrap from working completely, not just with
respond.js, so be careful if you’re testing for backwards compatibility using a modern IE in

emulation mode—the results will most likely NOT be what you expect.

14

Chapter 1 Migrating from Version 2 to
Version 3

So what's involved in migrating from Bootstrap 2 to Bootstrap 3? In truth, not a great deal.

Despite the many changes, there's still not a huge amount for you to actually change, and the
changes you do need to make are generally just class renames where applicable.

One of the things you might want to do, especially if you've been using BS only for general web
app development and not mobile or any kind of responsive design, is to disable the responsive
features in BS3.

This is easy enough to do, but not at all recommended.

You can achieve this as follows:

 Do not add the meta tag containing the device width and other initial sizing info to the
head of your document.

 Do override the width on your elements that are marked up with a class of container,
and make sure you use style='width: xxx !important' when you do so.

 Do make sure that any width overrides are processed AFTER the main Bootstrap CSS
rules have been loaded.

 Do remove ALL collapsing and expanding behaviors and rules from ALL navbar
constructs within your document.

 Do change all grid layout classes to use ONLY col-xs-* classes and none of the other
four levels.

If you’re targeting IE8 and IE9, you will still need to make sure you use respond.js, even if you

do disable responsiveness as outlined.

Class Changes

As I mentioned earlier, there have been many class name changes between the two versions,
and many classes have been deprecated and withdrawn.

One thing that will (and already has if you look at Stack Overflow) come as a surprise to many is
the withdrawal of the fluid width classes.

In version 2, if you wanted a full-width elastic container, then you had to do something like the
following:

15

Code Sample 1: Version 2 Flexible Container

In version 3 the container and row-fluid classes no longer exist.

So how do you get a fluid container? Simple: you don't.

Rather than wrap your contents in a container and then a row, you simply don’t wrap them in

anything.

You can still use the grid system to provide enclosing containers for your content, so that things
line up nicely with Bootstrap’s grid, but you no longer need to put a container around those
collections of <div> elements before you use them.

In fact, if you use container and row (the non-fluid versions still exist) then you'll end up with

all your content being in the 1024-pixel, central column automatically, and be able to use the
entire page width if you do not.

Migrating the Grid System

Then next biggest class change is the grid system itself.

In version 2 you typically created grids in the following manner:

Code Sample 2: Version 2 Grid Classes

This code would give you two containers that neatly filled the 12 grid squares horizontally that
all layouts had (typically a side bar).

In version 3, the “medium level” grid is now the equivalent of the v2 span classes, so to rewrite

the previous code for V3 you simply do the following:

Code Sample 3: Version 3 Grid Classes Equivalent to 'Span'

<div class="container-fluid" id="myParentContainer">
 <div class="row-fluid" id="mycontentrow">
 <h1>A headline</h1>
 <p>Some paragraph text</p>
 </div>
</div>

<div class="container">
 <div class="span2">Content here</div>
 <div class="span10">Content here</div>
</div>

<div class="container">
 <div class="col-md-2">Content here</div>

16

However, whereas version 2 had only one level of grid size, version 3 now has four levels. Each
level is tailored for the expected main target device that you anticipate your end product will be
running on.

These grid units are now named as follows:

Extra small devices: col-xs-*

Small devices: col-sm-*

Medium devices: col-md-*

Large devices: col-lg-*

Media queries are used internally for BS3 to decide just which of the aforementioned grid
classes to use, and the different sizes are defined as follows:

Extra small: display width less than 768 pixels

Small: display width greater than or equal to 768 pixels, or less than 992 pixels

Medium: display width greater than or equal to 992 pixels, or less than 1,200 pixels

Large: display width greater than or equal to 1,200 pixels

You can code up multiple versions of your grid for BS3 to decide which type to use when
targeting multiple displays. For example if you did the following:

Code Sample 4: Multiple Grid Size Declarations

 <div class="col-md-10">Content here</div>
</div>

<div class="container">
 <div class="col-xs-2">Content here</div>
 <div class="col-xs-10">Content here</div>
 <div class="col-sm-2">Content here</div>
 <div class="col-sm-10">Content here</div>
 <div class="col-md-2">Content here</div>
 <div class="col-md-10">Content here</div>
 <div class="col-lg-2">Content here</div>
 <div class="col-lg-10">Content here</div>
</div>

17

BS3 will hide and unhide the containers as required, depending on the width of the device
display and the operation of the media queries.

As with previous versions of the grid system, there are 12 columns horizontally across all the
different sizes, so whichever grid size is displayed, you will always still get 12 grids on every
device.

The column width itself does change, however, so you may need to plan the content in those
grids to take advantage of the differing sizes. The sizes for each of them are as follows:

col-xs-* = Auto sizing, no fixed dimensions

col-sm-* = 60 pixels

col-md-* = 78 pixels

col-lg-* = 95 pixels

The gutter margin in all cases will remain at 15 pixels on each side of the grid container, giving
an overall gutter of 30 pixels. This size will be consistent no matter which grid size level you’re
using.

Nesting and offsets work as they did previously, but as with the grids themselves, by way of a
slight renaming of the actual classes used.

To apply an offset, simply use col-md-offset-*, remembering to replace the md with xs, sm, or

lg as needed, depending on your grid size.

Nesting is done simply by nesting containers under control of the col-xx-* classes inside each

other, where they will resize and behave as they did in previous BS versions.

The following examples show the correct way to achieve both of these techniques:

Code Sample 5: Nested Grids in Version 3

This example will give you a grid that looks like the following:

<div class="col-md-9">
 Level 1: .col-md-9

 <div class="col-md-6">
 Level 2: .col-md-6
 </div>
 <div class="col-md-6">
 Level 2: .col-md-6
 </div>
</div>

18

Level 1: col-md-9

Level 2: col-md-6 Level 2: col-md-6

Code Sample 6: Offset Grids in Version 3

This example will give you a layout as follows:

Col-md-4 Col-md-4 col-md-offset-4

 Col-md-3 col-md-offset-3 Col-md-3 col-md-offset-3

 Col-md-6 col-md-offset-3

BS3 also brings something new to the table when it comes to offsetting and nesting, and that's
something called column ordering.

If you want your columns to be presented in a different order to how you define them in your
HTML document, then you can use the new col-xx-pull-* and col-xx-push-* classes to

push or pull your grid layouts into the order you want them. For example:

<div class="col-md-4">
 .col-md-4
</div>
<div class="col-md-4 col-md-offset-4">
 .col-md-4 .col-md-offset-4
</div>
<div class="col-md-3 col-md-offset-3">
 .col-md-3 .col-md-offset-3
</div>
<div class="col-md-3 col-md-offset-3">
 .col-md-3 .col-md-offset-3
</div>
<div class="col-md-6 col-md-offset-3">
 .col-md-6 .col-md-offset-3
</div>

<div class="col-md-8">8 columns of content</div>

19

If you render those in your document, as expected, you'll get the following:

8 columns of content 4 columns of content

If, however, you modify the above code to add push and pull modifiers as follows:

When you render your document, you should see your layout change as follows:

4 columns of content 8 columns of content

Finally, if you’re using the Less CSS source versions of Bootstrap, you have complete control
over the grid sizes by changing the following variables:

@grid-columns: controls the number of grids horizontally (default 12)

@grid-gutter-width: the total margin around each grid (default 30 pixels)

@grid-float-breakpoint: the minimum size below which we have “extra small” devices

(default 768 pixels)

So now that we have the new grid system under control, is there anything else you need to
know?

The more astute of you may be thinking, “But that's crazy—with all those multiple sets of <div>

elements and offsets with col-xx-xx classes, all for different size displays, I might as well just

create four different sites, with four different resolutions in mind!” To be honest, I wouldn't blame
you, except for one thing: each of these new layout size levels are designed to work on the
same markup, at the same time, and occupy the same space.

Let's take the code in the previous code sample 4, and rewrite it to do this the recommended
way:

Code Sample 7: The Recommended Way of Providing Multi-Resolution Layouts

<div class="col-md-4">4 columns of content</div>

<div class="col-md-8 col-md-push-4">8 columns of content</div>
<div class="col-md-4 col-md-pull-8">4 columns of content</div>

<div class="container">
 <div class="col-xs-2 col-sm-2 col-md-2 col-lg-2">Content here</div>
 <div class="col-xs-10 col-sm-10 col-md-10 col-lg-10">Content here</div>
</div>

20

Ok, so you might end up with the class list from hell on your elements, but one set of markup
will adapt to all display sizes, and resize itself where needed.

This also works with the various offset, order, and nesting classes.

Other Migrations

In addition to those we've already discussed, the following class names also need to be
changed if you’re migrating from a V2 layout to a V3 layout (Note: the following table has been
taken directly from the Bootstrap 3 docs and was correct at the time of writing. As Bootstrap
matures, however, this may not remain so).

Table 2: V3 class name changes

Bootstrap version 2 class name Bootstrap version 3 class name

.row-fluid .row

.span* .col-md-*

.offset* .col-md-offset-*

.brand .navbar-brand

.nav-collapse .navbar-collapse

.nav-toggle .navbar-toggle

.btn-navbar .navbar-btn

.hero-unit .jumbotron

.icon-* .glyphicon .glyphicon-*

.btn .btn .btn-default

.btn-mini .btn-xs

.btn-small .btn-sm

.btn-large .btn-lg

.alert-error .alert-danger

.visible-phone .visible-xs

.visible-tablet .visible-sm

.visible-desktop Split into .visible-md .visible-lg

.hidden-phone .hidden-xs

.hidden-tablet .hidden-sm

.hidden-desktop Split into .hidden-md .hidden-lg

.input-block-level .form-control

.control-group .form-group

21

Bootstrap version 2 class name Bootstrap version 3 class name

.control-group.warning .control-group.error

.control-group.success
.form-group.has-*

.checkbox.inline .radio.inline .checkbox-inline .radio-inline

.input-prepend .input-append .input-group

.add-on .input-group-addon

.img-polaroid .img-thumbnail

ul.unstyled .list-unstyled

ul.inline .list-inline

.muted .text-muted

.label .label .label-default

.label-important .label-danger

.text-error .text-danger

.table .error .table .danger

.bar .progress-bar

.bar-* .progress-bar-*

.accordion .panel-group

.accordion-group .panel .panel-default

.accordion-heading .panel-heading

.accordion-body .panel-collapse

.accordion-inner .panel-body

As previously mentioned, most of the changes have been made to bring conformity to the
naming scheme used by the various classes. But many of them have also been renamed
because their overall purpose has changed.

We’ll go into in more detail in upcoming chapters in this book, but for now, if you're doing a
conversion, then Table 2 will tell you everything you need in order to retarget a v2 layout to v3.

You might want to consider using a custom job in something like a Grunt.js 1 task, so that

when you run your build system, these changes are performed automatically. This will allow
your developers to remain productive using v2 while gradually making the move to v3.

So what exactly has been added to Bootstrap that's new, and what exactly has been removed?

We'll start with what's been removed, and we'll cover what's been added in more detail in
Chapter 3, “Changed CSS features.” It's more important that you know what's been removed in
this chapter, since this is the chapter you’re likely to be referring to when migrating your layouts.

1 http://gruntjs.com

http://gruntjs.com/

22

First we'll start with what's been removed where forms are concerned, and unfortunately, that's
quite a lot. We no longer have a specific type for a search form form-search, and the shaded

bar typically found at the foot of a form form-actions has also been deprecated in v3.

Also gone is the class typically used to display validation errors, control-group-info, and its

help counterpart, help-inline. None of these four classes have any recommended

replacement in the v3 code base, meaning that to construct equivalents of them, you will need
to use other elements and classes where applicable.

Continuing with forms, the main controls class used to wrap entire control sets is gone, along

with controls-row. Instead, you are advised to use row or the new form-group class. Forms

have also lost most of the sizing classes; the fixed-size classes such as input-mini, input-
small, input-medium, input-large, input-xlarge, and input-xxlarge have now all gone

away, along with the block level control class input-block-level. Instead, you are now

advised to control your form element sizes using form-control in combination with the new

sizes and layouts available in the grid system.

From an individual control point of view, the inverse classes have been removed from buttons

and other similar controls, and we've also lost the dropdown-submenu class in favor of just

using split drop-down buttons to create the same functionality.

For tabs, the tabs-left, tabs-right, and tabs-below classes no longer exist, which means

we now only have the ability to put tabs at the top of the content, left-aligned.

Staying with tabs, the class to work with content in a pill-based tab setup has also been
removed, meaning that pill-pane & pill-content should now use the general tab-content

& tab-pane classes.

Finally, the various navbar classes are not without casualties: navbar-inner, navbar
divider-vertical. nav-list, and nav-header are no longer part of the framework.

In most cases, there are no direct equivalents in v3 for these classes, although there are some
similarities in other classes that may prove useful. For example, nav-list and nav-header can

be recreated using List groups.

There's a quick reference chart to all of these in the migration guide on the Bootstrap 3 website,
which can be found at: http://getbootstrap.com/migration

http://getbootstrap.com/migration

23

Chapter 2 Common Pitfalls

While researching for this book, I've come across a number of potential problems, all of which
are going to cause you some grief—either with the transition from v2 to v3, or even just when
jumping straight in to v3.

A few of these are applicable to v2 as well, but in general I'm including them here because they
bit me and left me scratching my head in a lot of cases.

Internet Explorer Backwards Compatibility Modes

This one hurt, really hurt. For about a week and a half, I was going around in circles, trying to
figure out why my nicely crafted layout was not displaying as expected in the latest version of
IE11.

It turned out that I had a malformed meta device tag.

As you may recall from the BS2 book, there's a basic template that's recommended as the
starting point for all sites based on the bootstrap framework. It looks something like this:

Code Sample 8: Bootstrap HTML Basic Template

<!DOCTYPE html>
<html>

 <head>
 <meta http-equiv="X-UA-Compatible" content="IE=9; IE=8; IE=7; IE=EDGE" />
 <meta charset="utf-8" />
 <title>My Site</title>
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <link href="css/bootstrap.css" rel="stylesheet" type="text/css" />
 </head>

 <body>

 <!-- document code goes here -->

 <script src="js/jquery-2.0.2.js" type="text/javascript"></script>
 <script src="js/bootstrap.js" type="text/javascript"></script>

 </body>
</html>

24

If you notice in the meta tag just inside the head element, you'll see that we have compatibility

keys in there to allow the modern IE rendering engine to know what is and is not supported
when trying to render things in a backward compatible way.

In BS3, none of this works correctly. Instead, the recommended method is to remove all your
content type keys, leaving ONLY IE=EDGE, and no others.

The best way to do this is to create a layout that works perfectly in an HTML5-standard way,
include the various versions, then either force the IE debugger to adopt a specific version, or do
something to the document source that will force IE to attempt to render the content in a way
that it would under IE9 or earlier.

Over and over again, I looked at the meta tag, not realizing that it was the cause of my

problems. So if you get any weird rendering errors in IE11, have a look in the debugger and see
just what mode IE believes it should be displaying your page in.

Internet Explorer 10 Device Viewport

Yes folks, another IE-related problem. IE10 can't tell the difference between device width and

viewport width; the result of this is that IE10 gets its CSS media queries wrong a lot of the

time (not just in Bootstrap, but other frameworks too). The fix is simple enough: add a dummy
CSS rule to your site-wide CSS styles that looks like this:

That generally fixes things, except in one case. With Windows Phone versions earlier than
Update 3, the device will not interpret things correctly and put the page into desktop view. To fix
this, the following CSS rules and JavaScript code are needed:

Code Sample 9: Windows Phone 8 IE Fix

@-ms-viewport { width: device-width; }

@-webkit-viewport { width: device-width; }
@-moz-viewport { width: device-width; }
@-ms-viewport { width: device-width; }
@-o-viewport { width: device-width; }
@viewport { width: device-width; }

if (navigator.userAgent.match(/IEMobile\/10\.0/))
{
 var msViewportStyle =
 document.createElement('style') msViewportStyle
 .appendChild(
 document.createTextNode('@-ms-viewport{width:auto!important}'))
 document.querySelector('head').appendChild(msViewportStyle)
}

25

I can't take credit for this fix however—it's clearly detailed in the BS3 documentation online.
There is also more information on the subject in the Windows 8 developer guidelines.

Safari Percent Rounding

In some versions of Safari, the rendering engine struggles with the number of decimal places in
percentage values.

These percentages are used often in the col-*-1 grid classes, and as a result, you'll see errors

in the rendering of 12-column layouts when this is encountered.

There is a bug open in the BS3 bug report system, but there's little they can do to resolve it. The
BS3 docs do suggest trying to add a pull-right to your last column, but the best course of

resolution seems to be manual tweaking of your percentage-based values until a balance is
found.

Android Stock Browser

At this time, Android versions 4.1 and above ship with the “Browser” app as the default web
browser. BS3 (and many others) fail to render correctly in the Browser app due to the large
number of problems in the browser’s code base, and more so in the CSS engine where there
are a large number of known problems.

There is a JavaScript-based solution to patch your layouts in the BS3 docs, but the best
resolution is for the user to use the Chrome app instead, which is by far a better and more
stable browser for Android in general.

And the Rest?

There are quite a few more things to be aware of, and again, most of these are documented in
the BS3 docs and cover things like pinch-based zooming, virtual keyboards, and how different
types of view ports react where media queries are concerned.

In fact, a quick scan of the most common issues on www.stackoverflow.com tells us that a great
many of the problems revolve around scrolling, resizing, zooming, and general touch screen-
based issues that seem to stem from either things being too small, or not being sensitive
enough for average finger sizes.

Many of these size issues can be resolved by downloading the BS3 source distribution and
either altering the Less variables and mixins available, or by customizing things using the

customization tools available; it's now no longer a good idea to just download and use BS3
unless you’re only targeting desktop apps.

http://www.stackoverflow.com/

26

If you’re targeting multiple platforms and expecting full responsiveness, then you really need to
be doing a lot of customization in the hooks provided by the framework authors.

27

Chapter 3 Changed CSS Features

So far you've already seen a number of the new CSS features that are available in version 3 of
Bootstrap. In this chapter we'll go into a little more detail about just what is considered new and
what's not.

In many cases these new classes are just renames of the old ones, but we treat them as new
here so that you can easily make the distinction.

Typography Changes

The various classes that make up BS3's typography section haven't changed as much as some
of the other elements. Tags H1 through H6 are still treated the same way as they were in v2,

with the addition that you can now use <small> in line with any header element without it first

having to be wrapped in a div using the page-header class. This means no extra markup now,

unless you want your block heading to be underlined with a different paragraph margin.

Code Sample 10: BS V2 Page Header

In v2 you had no choice but to wrap your H1 in a page-header div, as this was the only way the

small tags output would be neatly lined up. This has now been rectified and also applied to all
levels of header, rather than just the first three.

Code Sample 11: BS V3 Page Header

Continuing on, the standard body copy class has no changes, and remains at a default size of
14 pixels with a line height of about 1.4.

Body copy is applied to all text inside a paragraph tag automatically, so no classes are needed
unless you want to use some of the special features (as we'll see soon).

Lead body copy (paragraphs with the class name of lead) also have no changes to their names

or styling, and as with v2, are designed to give your opening paragraph a bit more emphasis
than the other regular body copy. Combining these three CSS rules, you might have something
like the following:

<div class="page-header">
 <h1>This is my super web page <small>It's the best there is</small></h1>
</div>

<h1>This is my super web page <small>it's the best there is</small></h1>

28

Code Sample 12: Header and Body Text Example

When rendered in your browser, it should look like the following:

Figure 1: The output from code sample 12

The <small> tag can now also be used on its own too, as its styling is now correctly handled

and applied in the context in which it's used, so its styling will follow its position in the document
no matter what the parent tag.

Similarly, bold text is still created using the tag and italics using the tag; as with

many of the typography classes, this is no different to the v2 framework.

The alignment classes also maintain their same class names of text-left, text-center,

text-right, and text-justify, and still perform the same functions as described in the BS2

book that precedes this one.

Likewise, abbreviations are still created using the <abbr> tag with the title attribute acting as

the full description of the abbreviation. There is one new class, initialism, that can be added

to an abbreviation tag and gives the rendered output a slightly smaller look and feel than the
surrounding text.

Addresses (using the <address> tag) and block-quotes (using the <blockquote> tag) also

have no changes in the CSS or base rules between v2 and v3 of the framework.

The final few tags that remain in the typographic category include <code>, used to create an

inline code sample. Again, this has not changed in any way, with its intended use still being for
code samples that sit in line with regular body text.

<div class="container">
 <div class="page-header">
 <h1>This is my super webpage <small>It's the best there is</small></h1>
 </div>

 <p class="lead">Welcome to my super-duper webpage, there's no other webpage like it
in the whole world, my page is the best thing on the Internet that you should
visit</p>
 <p>On this fantastic page I have text and some more text, and there's even some
text for you to read, as well as a nice looking page title</p>
</div>

29

For code samples (or anything that is plain text) that must remain formatted as per indentation
and carriage returns, you should still use the <pre> tag; again the styling here has not changed

from v2, and layout using this tag should still behave as expected.

The final typographic element is the addition of a new element called <kbd>.

The purpose of this new tag is to display text in a way that indicates the user should enter the
information into the computer in some way, generally by typing it.

For example:

Code Sample 13: '<kbd>' Tag Example

Which when rendered in an HTML document, should look something like the following:

Figure 2: Output produced by code sample 13

List Changes

In general, the normal list elements made up of , , and <dl> elements have not

changed; the layout is still as it was in BS2, with no extra classes being needed. Note also that
the list-unstyled, list-inline along with the dl-horizontal classes for definition lists

also remain unchanged in BS3, and have the same behavior as in BS2.

There are some changes in the list elements however, but since these occur with the specialist
classes used to create menus and navigation lists, we'll be covering those when we address the
changes to the navigation elements in the next chapter.

Table Changes

Tables are still styled just as they were in BS2 by creating a standard <table> arrangement,

then adding a table class to the markup. As in BS2, tables should always be constructed using

the full range of <table>, <thead>, and <tbody> HTML elements as the following example

shows:

Code Sample 14: Marking Up a Table to Be Used by Bootstrap

<p>Open up a command prompt by typing <kbd>cmd</kbd> into the box and clicking on the
button market 'Run', when it opens type in <kbd>myprogram</kbd> and press enter, at
which point the app should run</p>

<table class="table">
 <thead>

30

This markup should give you the following:

Figure 3: Output produced by code sample 14

As with BS2, the classes to add the optional styles to a table, table-striped, table-
bordered, table-hover, and table-condensed work exactly the same as in BS2; these extra

classes are added as secondary classes to the main table class on the table element itself.

This code, for example, will give you a table that has an outer border and alternating colors on
each table row.

One thing to note however, is that table striping now uses the :nth-child pseudo selector,

which means that it will no longer work in IE8 or earlier without a poly-fill or other fix to help.

The remainder of the table classes for coloring your table rows have changed slightly. Firstly
there is a new class called active. Before BS3, the active class was not available on all

elements, but mainly just on navigation and button elements. From BS3 onwards it can now be
applied to a <tr> element to show that row as a highlighted row, which by default is a light grey.

 <tr>
 <th>Col A</th>
 <th>Col B</th>
 <th>Col C</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Val A</td>
 <td>Val B</td>
 <td>Val C</td>
 </tr>
 <tr>
 <td>Val A</td>
 <td>Val B</td>
 <td>Val C</td>
 </tr>
 </tbody>
</table>

<table class="table table-striped table-bordered">

31

The remaining contextual classes, as with BS2, are designed to highlight the table rows to show
different conditions, and are the same, except for one small change.

The class name representing a dangerous or negative action has been renamed to danger. In

BS2 the red class was named error. Other than that, the classes are applied the same way to

the <tr> element as the following code shows:

Code Sample 15: Optional Row Colorings

When rendered, it should look something like this:

<table class="table">
 <thead>
 <tr>
 <th>Class</th>
 <th>Col B</th>
 <th>Col C</th>
 </tr>
 </thead>
 <tbody>
 <tr class="active">
 <td>Active</td>
 <td>Val B</td>
 <td>Val C</td>
 </tr>
 <tr class="success">
 <td>Success</td>
 <td>Val B</td>
 <td>Val C</td>
 </tr>
 <tr class="info">
 <td>Info</td>
 <td>Val B</td>
 <td>Val C</td>
 </tr>
 <tr class="warning">
 <td>Warning</td>
 <td>Val B</td>
 <td>Val C</td>
 </tr>
 <tr class="danger">
 <td>Danger</td>
 <td>Val B</td>
 <td>Val C</td>
 </tr>
 </tbody>
</table>

32

Figure 4: Output produced by code sample 15

There are two new additions to the classes used to support tables. First, there is a new
responsive class that takes in to account the size of your grid system and provides either
vertical scroll bars or a realigned table to fit differing size displays. Secondly, there’s the ability
to use the aforementioned colored row classes on individual cells, rather than just entire rows,
as was the case in BS2.

To use the coloring classes on a cell level, you just need to add the classes to individual <td> or

<th> elements as follows:

Code Sample 16: Applying the Option Row Classes to Individual Cells

This code should result in the following:

Figure 5: Output generated by code sample 16

The final table-related addition is a class called table-responsive, which you can use by

applying it to a <div> element that wraps the entire <table> as follows:

<table class="table">
 <thead>
 <tr>
 <th class="active">Class</th>
 <th class="success">Col B</th>
 <th class="info">Col C</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td class="warning">Val A</td>
 <td class="danger">Val B</td>
 <td>Val C</td>
 </tr>
 </tbody>
</table>

33

Code Sample 17: New BS3 Responsive Table Example

When this new class is used on a display greater than 768 pixels (that is, any display using a
sizing class other than *-xs-*), then the table display will behave like a normal bootstrap-

responsive table. However, if the table is displayed on a device that targets an *-xs-* class

and is less than 768 pixels, the container will be altered so that a vertical scroll is available,
allowing the entire table to be moved left and right without affecting the rest of the page.

Figure 6: Output from code sample 17 on a device greater than 768 pixels in width

Figure 7: Output from code sample 17 on a device less than 768 pixels in width

<div class="table-responsive">
 <table class="table table-bordered">
 <thead>
 <tr>
 <th>Col A</th>
 <th>Col B</th>
 <th>Col C</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Val A</td>
 <td>Val B</td>
 <td>Val C</td>
 </tr>
 </tbody>
 </table>
</div>

34

Form Changes

As with BS2, all normal form elements by default have a minimum level of markup that gives
them a base style. This means that simply just marking up a normal form tag and associated
controls will give your form the default Bootstrap look and feel.

Take the following example:

Code Sample 18: Basic BS3 Form Example with no Classes

If we render this example in a browser, we'll see that we get a reasonably good output without
adding any extra classes, as you can see in the following image:

Output generated by code sample 18

<form>
 <div>
 <label for="exampleInputEmail1">Email address</label>
 <input type="email" id="exampleInputEmail1" placeholder="Enter email">
 </div>
 <div>
 <label for="exampleInputPassword1">Password</label>
 <input type="password" id="exampleInputPassword1" placeholder="Password">
 </div>
 <div>
 <label for="exampleInputFile">File input</label>
 <input type="file" id="exampleInputFile">
 <p>Example block-level help text here.</p>
 </div>
 <div>
 <label>
 <input type="checkbox"> Check me out
 </label>
 </div>
 <button type="submit">Submit</button>
</form>

35

Note: Since the previous example was written, there has been a minor update to the BS3

code. If you try the example as it is written here, the output will likely not look as expected.

The change that has been made in BS3 seems to now mean that just marking up a form

without any BS3 classes will not have the effect of giving the form a consistent look and

feel. I‘ve left the example in this book, as it agrees with the information that is still present

on the documentation site, and as such still appears to be the official advice by the

framework authors.

As I mentioned in the migration section, the classes and components around HTML forms have
been some of the biggest casualties when it comes to class name changes, but this is for a
good reason.

Before BS3, many of the classes used for forms were very narrow in scope—there were
individual classes for many individual purposes, rather than a single class that covered many
bases. For example, there were separate classes to handle the alignments of check boxes and
radio buttons, and there where separate classes to handle input boxes and text areas with
respect to their row alignment.

In BS3 many of these classes have been deleted and are now all rolled up under a smaller
number of classes and elements.

Taking our previous example and adding in the recommended markup as is shown in the BS3
documentation gives us the following:

Code Sample 19: Basic BS3 Form from Sample 18 with Recommended Classes Added

<form role="form">
 <div class="form-group">
 <label for="exampleInputEmail1">Email address</label>
 <input type="email" class="form-control" id="exampleInputEmail1"
placeholder="Enter email">
 </div>
 <div class="form-group">
 <label for="exampleInputPassword1">Password</label>
 <input type="password" class="form-control" id="exampleInputPassword1"
placeholder="Password">
 </div>
 <div class="form-group">
 <label for="exampleInputFile">File input</label>
 <input type="file" id="exampleInputFile">
 <p class="help-block">Example block-level help text here.</p>
 </div>
 <div class="checkbox">
 <label>
 <input type="checkbox"> Check me out
 </label>
 </div>
 <button type="submit" class="btn btn-default">Submit</button>
</form>

36

Externally, if you render this code, you'll see no difference to the output generated for sample
18. Internally, however, Bootstrap can now find and work with individual elements much more
easily than it could previously.

In BS2 there was no requirement to group controls unless you wanted to work with the
automatic validation classes. There’s still no absolute requirement to use them, but doing so
allows BS to resize and reposition things correctly when using its grid (among many other
things). You'll also note that each control now has just a single form-control class assigned to

it, rather than many different ones targeting different aspects.

Also note that the form tag itself now has a role assigned to it. This, apart from being good

practice all around, is now enforced by BS3 to help with aria roles and standards guiding the
use of web apps by people with disabilities.

Lastly, if you look at the <p> tag with a help-block, you'll notice that that is also now used for

inline form text in all cases, whereas in BS2 we had a number of different classes, such as
form-info.

Unfortunately there is still one area in the support for forms that's missing—the file upload
control. Like BS2, this is due to the fact that security in all the current crop of browsers restricts
the ability to style file input controls to match the rest of the input controls available.

As I mentioned in the previous book, however, there are still third-party additions out there that
have this area covered, and because you can now manufacture your own upload system using
the HTML5 classes, strictly speaking you don't need the file upload control—you can
manufacture your own.

In BS2 there were a number of specific form types such as the search-form; under BS3 all of

these have been rolled up into three main types of form. First, you have the standard form; as
we've seen, this is a normal form with no extra classes added to the form tag. The two other
form types are form-inline and form-horizontal.

The form-inline class is designed for forms in small, limited height places such as menu and

navigation bars. A word of warning though: all input elements in this class and the other form
types are sized 100 percent by default, so if you need the form to only take up a small amount
of room (particularly in nav bar forms), you will need to put manual sizes on the individual

controls.

In the example from code sample 19, adding form-inline or form-horizontal in turn should

change your basic form layout to look like the following:

Figure 8: Form produced by code sample 19 with the form-inline class added to the form tag.

37

The form-horizontal class is used to create regular top-down forms with input controls that

have their associated labels to the left of them, rather than above them as the default form does.
Be aware, however, that in order for form horizontal to work correctly, you need to add a little
extra markup to the form in general, as shown in the following code sample.

Note: In today‘s brave new world of HTML 5, it's more important than ever to mark input

elements up correctly with an associated label. Because disadvantaged users may be using

aids to assist them, not providing the required pieces to allow these aids to work correctly

will, going forward, be seen as a bad thing, and companies leaving them up could be

shunned for doing so. Not to worry though—BS3 has you covered. If you decide you don't

want labels in your forms, you can mark them with an optional class, sr-only. Adding this

class will visually prevent the label or associated help text from appearing in your

document, but will ensure that it is marked up in such a way as to be visible by screen

readers and other similar devices or software.

Code Sample 20: The Code from Sample 19 Marked Up with Extra Classes to Support Form-Horizontal

<form role="form" class="form-horizontal">
 <div class="form-group">
 <label for="exampleInputEmail1" class="col-sm-2 control-label">Email
address</label>
 <div class="col-sm-10">
 <input type="email" class="form-control" id="exampleInputEmail1"
placeholder="Enter email">
 </div>
 </div>
 <div class="form-group">
 <label for="exampleInputPassword1" class="col-sm-2 control-
label">Password</label>
 <div class="col-sm-10">
 <input type="password" class="form-control" id="exampleInputPassword1"
placeholder="Password">
 </div>
 </div>
 <div class="form-group">
 <label for="exampleInputFile" class="col-sm-2 control-label">File input</label>
 <div class="col-sm-10">
 <input type="file" id="exampleInputFile">
 <p class="help-block">Example block-level help text here.</p>
 </div>
 </div>
 <div class="form-group">
 <div class="col-sm-offset-2 col-sm-10">
 <div class="checkbox">
 <label>
 <input type="checkbox"> Remember me
 </label>
 </div>
 </div>
 </div>
 <div class="form-group">
 <div class="col-sm-offset-2 col-sm-10">

38

If you render the code from this example in your browser, it should look like the following:

Figure 9: Output displayed from code sample 20 showing our form marked up as horizontal.

As you can see from the code in sample 20, the extra markup is not really that much more, and
most of it exists just to line up the columns correctly so that everything sits nicely.

The main points to be aware of in sample 20 are:

1. All label controls now have a class of control-label added. This is not required for the
other form types, and BS2 will simply ignore it.

2. Any input control that will likely render as a block-level element is now wrapped in a parent
<div> in order to control its width using the grid system.

3. The extra class for form-horizontal is applied to the outer-most form tag.

For the rest of the classes and associated parts in the forms section of BS3, nothing else
beyond the classes mentioned so far has changed. However, from an actual application point of
view, input controls now MUST have a correct type on them to be styled. This means at a
minimum you must have at least type="text" for BS3 to do its magic.

It’s highly recommended that you do use the correct types, however. As you'll see soon when
we get to validation groups, having the correct type will allow most of the validation stuff to
actually work correctly without making any changes to your markup.

Check boxes and radio buttons, as in BS2, are stacked by default. If you wish to have them
render vertically across the screen, you need to use the checkbox-inline and radio-inline

classes as follows:

Code Sample 21: Inline Check Box and Radio Buttons in BS3

 <button type="submit" class="btn btn-default">Sign in</button>
 </div>
 </div>
</form>

<div class="row">
 <label class="checkbox-inline">
 <input type="checkbox" id="inlineCheckbox1" value="option1"> 1
 </label>

39

Rendering sample 21 in your browser should look something like the following:

Figure 10: Output produced by sample 21

Select and multi-select boxes are marked up with standard styles just by using the elements as
they stand; this is no change from BS2, where the markup and style of these elements is
identical.

One new style that has been introduced in BS3 is the static control style. In BS2, you often had
to use a disabled form control to represent static form data that could not be changed. BS3
changes this by providing a form-control-static class that can be applied to individual

controls in place of the regular form-control, as the following code shows:

Code Sample 22: How to Create a Static Input Component in BS3

 <label class="checkbox-inline">
 <input type="checkbox" id="inlineCheckbox2" value="option2"> 2
 </label>
 <label class="checkbox-inline">
 <input type="checkbox" id="inlineCheckbox3" value="option3"> 3
 </label>
</div>
<div class="row">
 <label class="radio-inline">
 <input type="radio" id="inlineRadio" value="option1"> 1
 </label>
 <label class="radio-inline">
 <input type="radio" id="inlineRadio" value="option2"> 2
 </label>
 <label class="radio-inline">
 <input type="radio" id="inlineRadio" value="option3"> 3
 </label>
</div>

<form class="form-horizontal" role="form">
 <div class="form-group">
 <label class="col-sm-2 control-label">Email</label>
 <div class="col-sm-10">
 <p class="form-control-static">email@example.com</p>
 </div>
 </div>
 <div class="form-group">
 <label for="inputPassword" class="col-sm-2 control-label">Password</label>
 <div class="col-sm-10">
 <input type="password" class="form-control" id="inputPassword"
placeholder="Password">

40

When rendered in the browser, this produces a regular form layout, with the static control clearly
marked as not being editable or looking like an input control, as the following image shows:

Figure 11: The form with a static field produced by code sample 22

The disabled style of form controls is still marked up and used in the same way as in BS2,
simply by adding the “disabled” attribute to the input element as the following shows:

This will produce the classic disabled and shaded control look, something like the following:

Figure 12: Classic disabled control look in both BS2 and BS3

If you add the disabled attribute to a field-set surrounding a form, all of the controls in that

group will be disabled at the same time, using the same styling. This is something that didn't
happen in BS2—you instead had to mark up each individual control.

The final thing I want to mention while on the subject of forms is the validation and focus
classes. As I previously noted, adding the correct input types in HTML5 elements really helps
you when it comes to using the validation classes. Why is that?

In addition to having dedicated class names and styles for you to use, the validation classes
also hook the new HTML5 pseudo-elements such as focus:, error:, and others.

This means that if you mark a text box as type="email", and then don't put an email address

into it when submitting, the browser should automatically highlight the field red for you.

If it does not, or you have some other way of making your validation work, then you can simply
use the has-success, has-warning, and has-error classes on your form groups as the

following code shows:

Code Sample 23: Marking Up a Form in BS3 to Use the Validation Classes

 </div>
 </div>
</form>

<input class="form-control" id="disabledInput" type="text" placeholder="Disabled input here..." disabled>

<form role="form">
 <div class="form-group has-success">

41

If you render this code in your browser, you should see something like the following:

Figure 13: The output produced by code sample 23

Points to note are that I've added the classes to the form groups in order to produce a static
display; however, you should also try just marking up the form with the correct input types.

I've found browser support on the pseudo-classes is still a little patchy, even though there's no
mention of it in the BS3 docs, so I do recommend that you also make use of the class names
when manipulating your elements using JavaScript.

Also note that the label and block-level help text takes on the correct color of the group too, so
you have no need of adding colors or styles to these separately to the form control group.
Remember that the form-group sections can also use everything else we've mentioned so far

to disable, shade, and resize form elements as required on a grouped basis.

The last thing to mention for validation groups is that you can also provide optional feedback
icons directly in the form controls in order to help with the state.

 <label class="control-label" for="inputSuccess1">Label for Form group that has-
success</label>
 <input type="text" class="form-control" id="inputSuccess1" value="Some successful
text">
 <p class="help-block">Successful block-level help text here.</p>
 </div>
 <div class="form-group has-warning">
 <label class="control-label" for="inputWarning1">Label for Form group that has-
warning</label>
 <input type="text" class="form-control" id="inputWarning1" value="Some warning
text">
 <p class="help-block">Warning block-level help text here.</p>
 </div>
 <div class="form-group has-error">
 <label class="control-label" for="inputError1">Label for Form group that has-
error</label>
 <input type="text" class="form-control" id="inputError1" value="Some error text">
 <p class="help-block">Error block-level help text here.</p>
 </div>
</form>

42

You do this by providing a span element IMMEDIATELY after the input element with which it
should be used. This span element has the usual icon classes applied to it (which we'll see in
the next chapter), along with a class of form-control-feedback. This MUST be put after the

input control, and before any other markup in the input group, due to the way the control is
repositioned to make it appear in the control. Once you add the span, you also need to add a
class of has-feedback in the form group class list alongside the other has-xxxxx classes used

to show the validation state.

If we expand code sample 23 to take this in to account and add feedback icons, this is what it
should look like:

Code Sample 24: Sample 23, Changed to Add Feedback Icons

Once we re-render with these changes, you should see the following:

<form role="form">
<div class="form-group has-success has-feedback">
 <label class="control-label" for="inputSuccess1">Label for Form group that has-
success</label>
 <input type="text" class="form-control" id="inputSuccess1" value="Some successfull
text">

 <p class="help-block">Successful block-level help text here.</p>
</div>
<div class="form-group has-warning has-feedback">
 <label class="control-label" for="inputWarning1">Label for Form group that has-
warning</label>
 <input type="text" class="form-control" id="inputWarning1" value="Some warning
text">

 <p class="help-block">Warning block-level help text here.</p>
</div>
<div class="form-group has-error has-feedback">
 <label class="control-label" for="inputError1">Label for Form group that has-
error</label>
 <input type="text" class="form-control" id="inputError1" value="Some error text">

 <p class="help-block">Error block-level help text here.</p>
</div>
</form>

43

Figure 14: The output generated by code sample 24

Button Changes

The most prominent change in the classes used to style buttons in BS3 is the default style.
Under BS2, simply adding the btn class to an input element of type button, or to an anchor tag,

would give the control the default button look and feel.

From BS3 onwards, you now explicitly have to add btn-default; just adding btn on its own will

now no longer have any effect.

The second main change is in the renaming of some of the base classes. Specifically, btn-
error has been renamed to btn-danger so that the naming scheme matches the other

similarly named class changes and brings uniformity to the Bootstrap base library.

Other than that, the base button classes remain unchanged, as the following code sample
shows:

Code Sample 25: BS3 Button Classes

When rendered in the browser, you'll see the normal flat button look the BS3 now has for
controls:

Figure 15: Bootstrap buttons as produced by code sample 25

<button type="button" class="btn btn-default">Default</button>
<button type="button" class="btn btn-primary">Primary</button>
<button type="button" class="btn btn-success">Success</button>
<button type="button" class="btn btn-info">Info</button>
<button type="button" class="btn btn-warning">Warning</button>
<button type="button" class="btn btn-danger">Danger</button>
<button type="button" class="btn btn-link">Link</button>

44

There are a few new classes for the button element, added to bring uniformity to the grid-sizing
classes. These classes are btn-lg, btn-sm, and btn-xs; there is no btn-md, as the medium-

sized button is the standard size used when no class is specified.

The following code sample demonstrates all the button styles at different sizes:

Code Sample 26: All the BS3 Buttons Styles at Each of the Different Sizes

<p>
 <button type="button" class="btn btn-default btn-lg">Large default button</button>
 <button type="button" class="btn btn-default">Medium default button</button>
 <button type="button" class="btn btn-default btn-sm">Small default button</button>
 <button type="button" class="btn btn-default btn-xs">Extra small default
button</button>
</p>
<p>
 <button type="button" class="btn btn-primary btn-lg">Large primary button</button>
 <button type="button" class="btn btn-primary">Medium primary button</button>
 <button type="button" class="btn btn-primary btn-sm">Small primary button</button>
 <button type="button" class="btn btn-primary btn-xs">Extra small primary
button</button>
</p>
<p>
 <button type="button" class="btn btn-success btn-lg">Large success button</button>
 <button type="button" class="btn btn-success">Medium success button</button>
 <button type="button" class="btn btn-success btn-sm">Small success button</button>
 <button type="button" class="btn btn-success btn-xs">Extra small success
button</button>
</p>
<p>
 <button type="button" class="btn btn-info btn-lg">Large info button</button>
 <button type="button" class="btn btn-info">Medium info button</button>
 <button type="button" class="btn btn-info btn-sm">Small info button</button>
 <button type="button" class="btn btn-info btn-xs">Extra small info button</button>
</p>
<p>
 <button type="button" class="btn btn-warning btn-lg">Large warning button</button>
 <button type="button" class="btn btn-warning">Medium warning button</button>
 <button type="button" class="btn btn-warning btn-sm">Small warning button</button>
 <button type="button" class="btn btn-warning btn-xs">Extra small warning
button</button>
</p>
<p>
 <button type="button" class="btn btn-danger btn-lg">Large danger button</button>
 <button type="button" class="btn btn-danger">Medium danger button</button>
 <button type="button" class="btn btn-danger btn-sm">Small danger button</button>
 <button type="button" class="btn btn-danger btn-xs">Extra small danger
button</button>
</p>
<p>
 <button type="button" class="btn btn-link btn-lg">Large link button</button>
 <button type="button" class="btn btn-link">Medium link button</button>

45

When rendered in the browser, this code sample should give you the following output:

Figure 16: The output produced by code sample 26

When you add the class btn-block to a button or anchor element styled using any of the

previous button classes, that button will stretch to fill 100 percent of the available space. This is
useful when producing dialog boxes and sizing controls with BS3 grid system, as it allows you to
specifically size buttons (and other elements) to maintain a good balance in your form designs.

In most cases, you won't need to set a button’s active state yourself, but if you do, you can
easily add the active class to any element marked up using the button classes. Active in

general (on the <button> element at least) usually uses the :active pseudo-selector to

change the button’s style. Adding the active class, however, will force the button to display its

active state.

Note: If you‘re thinking of using the active state to create sticky buttons, be aware that in

the following chapters, we will be discussing button states using the component and

JavaScript facilities available. BS3 provides just such a sticky button using the additional

features available in these facilities, so you won’t need to create your own sticky buttons

using active in most circumstances.

You can also disable your buttons and mark them as inactive using the same “disabled” classes
and attributes that we discussed previously with the changes in form elements.

 <button type="button" class="btn btn-link btn-sm">Small link button</button>
 <button type="button" class="btn btn-link btn-xs">Extra small link button</button>
</p>

46

The following code shows buttons marked up to look active and in the disabled states:

Code Sample 27: BS3 Active and Disabled Buttons

Figure 17: Output produced by code sample 27

Be aware, however, that in the case of anchor buttons, the disabled element/class does NOT

disable the link; to make sure that a disabled state anchor link does not fire, you will need to use
custom JavaScript.

For this reason, the BS3 team recommends that you use the <button> element where possible

to mark buttons, and only use anchor tags in specific circumstances.

Let’s also not forget the subject of “idempotence” and the importance of using buttons over
anchors. In general, an anchor link is appropriate if the destination is a get request and making
the link several times will not cause any issues by repeat activation; otherwise, use a button.

Image Changes

CSS changes, where the humble image tag is concerned, have not been as far-reaching as in
other places in BS3. Previously, images were not responsive by default, and as with many
things in BS2, you had to add the optional responsive classes to get anywhere near being
responsive with them.

Unfortunately, even after you added the optional responsive classes, things still were not
perfect; many people cited problems with pages where Google Maps were used, among other
things.

<p>
 <button type="button" class="btn btn-primary active">Active primary button</button>
 <button type="button" class="btn btn-default active">Active default button</button>
</p>
<p>
 <button type="button" class="btn btn-primary" disabled="disabled">Disabled primary
button</button>
 <button type="button" class="btn btn-default" disabled="disabled">Disabled default
button</button>
</p>

47

BS3 changes all of this. Now, by default, images are fully responsive with the use of an

tag. To extend and make that responsiveness even better and more fluid, you can add the img-
responsive to any tag to ensure that even while scaling correctly, the height and width

of the image also stay in proportion to each other.

Other than that, the only other change made to the images section is the name of the img-
polaroid class (used for generating thumbnails) to img-thumbnail, so that it falls in line with

other similar renaming throughout the library.

The BS2 classes img-rounded and img-circle still work as they did previously, giving a

circular and rounded-rectangle thumbnail effect.

Helper and Visibility Changes

Finally, we come to the changes that cover those things that don't really fit into any specific
categories.

Under the typography classes in BS2, you were originally introduced to a set of color classes
used for setting the color of a text element to the same branding colors used in other elements
in the framework.

BS3 takes this one step further and introduces the concept of having the same colors used for
contextual backgrounds too.

In this case, the backgrounds are a lighter variation, as used in panels and alert boxes
elsewhere. There's an added bonus: if you use these contextual color classes on anchor tags
and anything else that has a hover-over set by default, the colors will automatically dim slightly
to show they've been hovered over.

As with the naming in other color-based classes, the classes available here are text-muted,

text-primary, text-success, text-info, text-warning, and text-danger for paragraph,

span, and other inline or block-based text elements.

For background colors, the class names are bg-primary, bg-success, bg-info, bg-warning,

and bg-danger.

The following code shows an example of using them:

Code Sample 28: BS3 Contextual Color Classes

<p class="text-muted">This paragraph is using the muted text class, typically
reserved for something not really important or less prominent.</p>
<p class="text-primary">This paragraph is using the primary text class,
typically reserved for something important or default and
visible.</p>
<p class="text-success">This paragraph is using the success text class,
typically reserved for an action that just succeeded or something good and
congratulatory.</p>

48

Figure 18: Output produced by code sample 28

One thing that was noted as being needed in BS3, and not present in BS2, is a dedicated caret

class for drop-down indicators on buttons and other screen furniture.

You can now utilize this on your own elements by adding a class name of caret to your outer

container—a or <div> that wraps your inner content.

Another new addition in BS3, while it's not actually a class, still deserves a mention: the dialog
close cross.

<p class="text-info">This paragraph is using the info text class, typically
reserved for informal messages, such as a background job just finishing or a new file
available.</p>
<p class="text-warning">This paragraph is using the warning text class,
typically reserved for something that might be dangerous or that needs
attention but can wait a while.</p>
<p class="text-danger">This paragraph is using the danger text class,
typically reserved for something very important, or something that really
needs attention drawing to it.</p>

<p class="bg-primary">This paragraph is using normal text but with a primary
background color to tell you that what you're seeing is the default status.</p>
<p class="bg-success">This paragraph is using normal text but with a success
background color to tell you that what you're seeing is all good.</p>
<p class="bg-info">This paragraph is using normal text but with an info background
color to tell you that what you're seeing is informative and should be read, but not
always acted upon.</p>
<p class="bg-warning">This paragraph is using normal text but with a warning
background color to tell you that what you're seeing could cause problems that you
should be aware of.</p>
<p class="bg-danger">This paragraph is using normal text but with a danger background
color to tell you that what you're seeing needs you to pay attention to it now.</p>

49

Just like the caret, this was present in BS2, but was not available to use separate from its

intended use in modal dialogs and alert bars. However, from BS3 onwards, you can use it just
fine on its own.

The following code sample shows an example of both the caret class and close cross in

generic mark-up:

Code Sample 29: Using the BS3 Caret and Close Cross Helpers

Figure 19: Output from code sample 29

Just as in BS2, the quick float utility classes pull-left and pull-right still exist, but they are

now joined by center-block, which simply makes both margins automatic and centers the

element in its parent, and clearfix, which clears out any floats that you may be using, thus

restoring normal document flow.

Other new classes include the show, hidden, and invisible classes. Show pretty much speaks

for itself, but what's the difference between the latter two? Hidden physically collapses the

space used by the element, so if you have it in a full height div for example, that div will collapse
down to its smallest height. However if you use invisible, the element retains its space (and

also still occupies its place in the element flow), but it vanishes from view.

We've already seen that a new class called sr-only has been introduced to mark a block as

being visible to screen readers and nothing else. There is now another class like this that is
used for graphical headings.

<div class="bg-primary" style="width: 200px; height: 200px; padding: 4px;">
 <button type="button" class="close" aria-hidden="true">×</button>
 <p>This text appears in a div that has its own close icon attached to it.</p>
 <div class="bg-success text-primary"><div class="caret" /></div>
</div>

50

If you define a page title using an image banner, a typical screen reader will be unable to tell
what the text in the image says. For a long time, many authors have used a hack called image
replacement to get around this. Image replacement works by wrapping the image banner in an
H1 or some other standard-type tag, putting the name in it as clear text alongside the image

banner, then using CSS to move the text off screen.

What then happens is that display-wise, the image banner is seen by those with good sight, but
those using a screen reader hear the reader say the actual text in the image banner.

BS3 now provides a class called text-hide in order to facilitate this. A simple example follows:

Code Sample 30: Using the BS Text-Hide Class to Make Screen Reader Friendly Headers

Figure 20: Output generated by code sample 30 in a regular PC browser

Finally, we come to the last of the last in the CSS changes section.

What good would a responsive web design framework be without utility classes to help you
manage your responsive layouts?

"But hold on, we've covered that with grids," I hear you say, and yes, we have. But BS3 has one
more trick up its sleeve, which in all fairness WAS present in BS2 but, didn't really work all that
well.

So what's this extra magic? Let me introduce you to the responsive visibility classes.

Essentially, what these little gems do is allow you to swap and change parts of your UI
depending on your grid and display size.

<header>

 <h1 class="text-hide">A graphical image based title</h1>
</header>

51

Let's imagine, for example, that you have a list of email inbox items, and when it’s viewed on a
desktop PC, each item has a preview next to it, much like in a classic email reading application.
Something perhaps like the following:

Email 1 (1/1/11) Email 2 : Received (1/1/11)

To : A person

Dear A Person,

Blah blah blah blah blah blah blah

Email 2 (1/1/11)

Email 3 (1/1/11)

Email 4 (1/1/11)

Email 5 (1/1/11)

Email 6 (1/1/11)

Figure 21: Email application layout example

Now this is great until you try to fit it on a mobile device, where you absolutely want to hide the
preview pane and leave just the email list. Normally a task like this is performed using a little bit
of JavaScript to change the visibility of the element by changing the element’s visible settings.

BS3 has a built-in solution using CSS classes that helps you handle situations like this with
great ease. Take the following bit of code:

Code Sample 31: Email Application Mockup

<div class="col-md-12" style="border: 1px solid black">
 <div class="col-md-3">
 <table class="table">
 <tr>
 <td>Email 1 (1/1/11)</td>
 </tr>
 <tr>
 <td class="info">Email 2 (1/1/11)</td>
 </tr>
 <tr>
 <td>Email 3 (1/1/11)</td>
 </tr>
 <tr>
 <td>Email 4 (1/1/11)</td>
 </tr>
 <tr>
 <td>Email 5 (1/1/11)</td>
 </tr>

52

If you render this in your browser you should get something that looks like the following:

Figure 22: Email application mock-up produced by code sample 31

If, however, you resize your browser to mobile-screen size, things start to look a bit strange:

Figure 23: Email application mock-up on a resized view

This may work for some, but in general, it’s a bad idea. What happens when you have 100
unread emails, and have to scroll to the bottom of the view each time to read the preview?

 <tr>
 <td>Email 6 (1/1/11)</td>
 </tr>
 </table>
 </div>
 <div class="col-md-9" style="border-left: 1px solid black">
 <h1>Email 2 : <small>Received (1/1/11)</small></h1>
 <h2>To : A person</h2>

 <p>Dear A person,</p>
 <p>Blah blah blah blah blah blah blah</p>
 </div>
</div>

53

Take the main preview <div> and add a new class to it, hidden-sm, as follows:

Then, if you refresh your browser and try resizing it, you should see that the preview <div> now

gets hidden beyond certain widths, rather than getting stacked.

Figure 24: Email application mock-up, resized, but with hiding classes added

Just as with the grid system, there are four different sizes, and there are classes to hide and
make visible. The visible classes will make the element in question visible ONLY at the specified
screen size, and the hidden classes make the element in question hidden ONLY at the specified
screen size. The class names are as follows:

visible-xs - Make visible on extra-small screens

visible-sm - Make visible on small screens

visible-md - Make visible on medium screens

visible-lg - Make visible on extra large screens

hidden-xs - Hide on extra-small screens

hidden-sm - Hide on small screens

hidden-md - Hide on medium screens

hidden-lg - Hide on large screens

The widths of the devices and the associated trigger points are the same as those used in the
grid system in general, with -xs covering palm-sized tablet phones and smaller, -sm covering

average-to-large tablets, -md covering most desktop computers, and -lg covering wide-screen

desktops.

<div class="col-md-9 hidden-sm" style="border-left: 1px solid black">

54

There are two final classes used in this category to assist you with handling display v's print-
based layouts.

You can use visible-print and hidden-print in exactly the same manner as the size-based

classes above, but this time making an element visible and invisible when a page is sent to the
printer.

55

Chapter 4 Changed Components Features

Glyphicon Changes

The biggest news with the components provided by BS3 is the Glyphicons icon set.

When V3.0 beta was first released, the Glyphicons font that forms the core of the icon set in
BS3 was removed. The community was up in arms about this, especially when the icon set was
split into its own repository.

The split was short-lived, however, and from the production release onwards, the Glyphicons
font was reinstated into the main branch, but with one new bonus.

No longer is the icon set made up of a set of bitmapped pngs in white and black—it's now a full-

scale, vector-based font set, with ttf, svg, wot and other formats. Because it's a vector now, it

can easily be colored using standard CSS-based color techniques, and can now be scaled to
any size required.

In the current build of BS3, there are 200 or more icons to choose from, covering lots of different
use cases. To use an icon, you simply add the class glyphicon and a glyphicon-xxxxx to

select the actual icon you want to use. Then, you add this to a span class that's nested inside of
the element you wish to display the icon in.

One rule you must obey with glyphicons is that you cannot mix the icon content with any other
element. You must make sure that the icon class is applied only to its own element, and with
enough padding around it to ensure sufficient space between it and any other content next to it.

The following code gives you a simple overview on how to use the glyphicon classes:

Code Sample 32: BS3 Glyphicons Sample

<h1>This is header text
 <small>with some small text and an icon </small>
</h1>
<p>This is a normal paragraph, which again like the header has an icon inline with it

</p>
<div style="background-color: beige; width: 200px; height: 200px; padding: 4px;">
 <p>This is an absolute size div with a scaled up icon in it</p>

</div>
<p class="text-success">This is a normal paragraph, with a different color applied to it

</p>

56

Figure 25: Output produced by code sample 32

There are far too many available icons to list them all here, but if you go to
http://getbootstrap.com/components/#glyphicons-how-to-use, you’ll find a grid complete with all
the class names required to get the icon you need.

The icons work correctly in any container you add them to, and they respect the sizing classes
too. So, for example, if you add one inside a <button> element that has a btn-lg class

attached to it, the icon will scale as required to match the button size.

Button Changes

Changes to buttons in BS3 are very minimal from a component point of view. There are a few
new classes and recommendations, and some changes to their look and feel as mentioned, but
otherwise, everything you did in BS2 should still work as expected.

From a component point of view, the btn-group and btn-toolbar classes are still the same,

but it is now recommended that where possible, you try to ensure that you group buttons using
btn-group. Also, when marking up toolbars, you should try to make sure you have a role of

toolbar applied to them to assist screen readers and other equipment.

There is one thing you need to be aware of: due to changes in how BS3 handles button groups,
and if you are using tooltips or popovers on your buttons, you will now have to add the option
container:body to the tooltip or popover when you create it. The container doesn't have to be

body, however; it can be any container in which the popover/tooltip/button arrangement is

nested. The container needs to be there though; this, unfortunately, means that you now have
no option but to create popovers and tooltips using JavaScript.

In line with the rest of the new sizing classes comes the new btn-group-lg, btn-group-sm,

and btn-group-xs. As with the other size classes, there is NO btn-group-md, since medium is

the default size with no extra styling added.

http://getbootstrap.com/components/#glyphicons-how-to-use

57

The following code shows a basic example of button grouping, toolbars, and different sizes.

Code Sample 33: Simple Button Group, Toolbar, and Group Sizing Example

Figure 26: Output generated by code sample 33

Button nesting is still performed in the same manner as it was in BS2, thus allowing you to add
drop-down button menus inside groups of normal buttons, as the following code shows (but
remember, this is JavaScript functionality, so you will need to make sure JQuery is included, as
well as the BS3 JS file):

Code Sample 34: Nested Buttons

<div class="btn-toolbar" role="toolbar">
 <div class="btn-group btn-group-lg">
 <button type="button" class="btn btn-default">Left</button>
 <button type="button" class="btn btn-default">Middle</button>
 <button type="button" class="btn btn-default">Right</button>
 </div>
 <div class="btn-group">
 <button type="button" class="btn btn-primary">Left</button>
 <button type="button" class="btn btn-primary">Middle</button>
 <button type="button" class="btn btn-primary">Right</button>
 </div>
 <div class="btn-group btn-group-sm">
 <button type="button" class="btn btn-success">Left</button>
 <button type="button" class="btn btn-success">Middle</button>
 <button type="button" class="btn btn-success">Right</button>
 </div>
 <div class="btn-group btn-group-xs">
 <button type="button" class="btn btn-warning">Left</button>
 <button type="button" class="btn btn-warning">Middle</button>
 <button type="button" class="btn btn-warning">Right</button>
 </div>
</div>

<div class="btn-group">
 <button type="button" class="btn btn-default">Left</button>
 <button type="button" class="btn btn-default">Middle</button>

 <div class="btn-group">
 <button type="button" class="btn btn-primary dropdown-toggle" data-
toggle="dropdown">
 Right

 </button>
 <ul class="dropdown-menu">

58

Figure 27: Output generated by code sample 34

Notice in the last code sample that I altered the button color of the drop-down button; all you
need to do in order to achieve this is add individual button colors on the classes for individual
buttons. This works across all button groups and toolbars—not just when nesting them—
meaning that you can vary the colors of the buttons in your group depending on your usage.

Two new classes used for button layouts are the btn-group-vertical and the btn-group-
justified classes.

In BS2, it was very difficult to stack your buttons vertically, or to make them take up the full width
of the available space while maintaining a balanced size. These two new classes in BS3 solve
both of these tricky situations. Be aware, though, that to make the justified groups work
correctly, you need to mark your button groups with a little more markup than you might expect.

The next code sample shows how to use vertical groups:

Code Sample 35: Vertical Button Groups

 Menu Link 1
 Menu Link 2

 </div>
</div>

<div class="btn-group-vertical btn-group-lg">
 <button type="button" class="btn btn-default">Top</button>
 <button type="button" class="btn btn-default">Middle</button>
 <button type="button" class="btn btn-default">Bottom</button>
</div>
<div class="btn-group-vertical">
 <button type="button" class="btn btn-primary">Top</button>
 <button type="button" class="btn btn-primary">Middle</button>
 <button type="button" class="btn btn-primary">Bottom</button>
</div>
<div class="btn-group-vertical btn-group-sm">
 <button type="button" class="btn btn-success">Top</button>
 <button type="button" class="btn btn-success">Middle</button>
 <button type="button" class="btn btn-success">Bottom</button>
</div>
<div class="btn-group-vertical btn-group-xs">

59

Figure 28: Output produced by code sample 35

As I just pointed out, marking up the justification classes is a little more involved, but is
necessary to smooth out some of the few browser inconsistencies that, unfortunately, still exist.
If you use the pattern shown in the following code to mark up your justified groups, then you
should find that none of these inconsistencies present a problem for you:

Code Sample 36: BS3 Justified Button Sample

 <button type="button" class="btn btn-warning">Top</button>
 <button type="button" class="btn btn-warning">Middle</button>
 <button type="button" class="btn btn-warning">Bottom</button>
</div>

<div class="btn-group btn-group-justified" style="padding-top: 4px;">
 <div class="btn-group">
 <button type="button" class="btn btn-default">Left</button>
 </div>
 <div class="btn-group">
 <button type="button" class="btn btn-default">Middle</button>
 </div>
 <div class="btn-group">
 <button type="button" class="btn btn-default">Right</button>
 </div>
</div>
<div class="btn-group btn-group-justified" style="padding-top: 4px;">
 <div class="btn-group">
 <button type="button" class="btn btn-primary">Left</button>
 </div>
 <div class="btn-group">
 <button type="button" class="btn btn-primary">Middle 1</button>
 </div>
 <div class="btn-group">
 <button type="button" class="btn btn-primary">Middle 2</button>
 </div>
 <div class="btn-group">
 <button type="button" class="btn btn-primary">Right</button>
 </div>
</div>
<div class="btn-group btn-group-justified" style="padding-top: 4px;">
 <div class="btn-group">
 <button type="button" class="btn btn-success">Left</button>

60

Figure 29: Output produced by sample 36

The golden rule with the markup is that each individual button has to be wrapped in its own
<div> with a btn-group class applied to it. Each of these single groups then need to be

wrapped in an outer div, which has both btn-group and btn-group-justified applied to it.

There’s one thing to note if you're using justified groups: because the buttons are rendered out
as a block element, the button group-sizing classes won't work as expected. This shouldn't
really come as a surprise, because they won't work on single buttons that have the btn-block-
level class added either, just as inline elements marked and styled using block can't be fluidly

controlled in general.

If your buttons are made up of <a> tags, then you don't need all this extra mark up—you just

need the outer div with the btn-group-justified class added to it, and regular buttons inside

of it.

A drop-down button with a menu attached is still created in the exact same manner as it is in
BS2. First, you create an outer <div> with a btn-group class applied to it. Immediately inside

this, you create a regular set of button styling classes applied to it, along with a class of
dropdown-toggle and a data attribute called toggle with the value of dropdown applied to it.

Immediately after the button element, but before you close the group <div>, you then define the

actual menu using a standard, unordered list with a class of dropdown-menu and a role or menu

applied to it.

 </div>
 <div class="btn-group">
 <button type="button" class="btn btn-success">Middle 1</button>
 </div>
 <div class="btn-group">
 <button type="button" class="btn btn-success">Middle 2</button>
 </div>
 <div class="btn-group">
 <button type="button" class="btn btn-success">Middle 3</button>
 </div>
 <div class="btn-group">
 <button type="button" class="btn btn-success">Middle 4</button>
 </div>
 <div class="btn-group">
 <button type="button" class="btn btn-success">Right</button>
 </div>
</div>

61

Note: One of the new features that the HTML 5 specification brings to the table is something

called data attributes. BS3 (and for that matter BS2) uses these attributes in many different

places to allow elements and JavaScript functions to be joined together without the

developer ever having to write a single line of JavaScript. Data attributes always take the

form of data-name, where name is the name the developer wishes to assign to that

attribute. Using data- ensures that the attributes you define will never interfere with

anything the WHATWG standards body adds to the spec, giving developers utmost

flexibility in what they wish to use them for.

In most cases, these data attributes are used the way BS3 uses them: in order to pass

information from the element into the JavaScript routines working on it. They can be used

to pass in ID names, options, parameters for sizes, and many other things, meaning that

you often don't actually have to write any boilerplate code in your app. Throughout this

chapter, you'll be introduced to many more of these data attributes.

In order for the drop-down buttons to work, you MUST have the drop-down JavaScript plug-in
added to your BS3 build. If you've just downloaded the default set, then this won't be a problem,
as dropdown.js is already part of the main bootstrap.js file. If you've done a custom build, or

even compiled from the Less sources yourself, you'll need to make sure it's present.

The following code shows a basic drop-down button example:

Code Sample 37: Dropdown Button Example

<div class="btn-group">
 <button type="button" class="btn btn-success dropdown-toggle" data-
toggle="dropdown">
 A dropdown button
 </button>
 <ul class="dropdown-menu" role="menu">
 1st Link
 2nd Link
 3rd Link
 <li class="divider">
 1st Link after divider

</div>

62

Figure 30: Output generated by code sample 37

By making a simple modification to code sample 37, you can easily turn the button into a split
drop-down menu, where the action of the button remains a single action in its own right, but still
allowing the menu to appear when the caret is clicked.

To do this, simply add another button element just before the button element, then move the
text (but NOT the caret) from the (now) second button into the first, so the new button tag looks
like this:

If you then re-render the output in your browser, you should see the following:

<button type="button" class="btn btn-success">A dropdown button
 <button type="button" class="btn btn-success dropdown-toggle" data-toggle="dropdown">

 </button>
 <ul class="dropdown-menu" role="menu">
 1st Link
 2nd Link
 3rd Link
 <li class="divider">
 1st Link after divider

</button>

63

Figure 31: Output generated by code sample 37 after it's been amended

to produce a split drop-down menu

The final thing to mention before moving on are the sizing and drop-up variations.

The sizing is simple; the sizing classes mentioned in the CSS chapter work just as expected
with drop-down buttons, in exactly the same manner as they do on normal buttons (lg for large,

no md since medium is the default, sm for small, and xs for extra small).

Drop-up is a class name that you apply to the outer element with the btn-group class when

constructing a drop-down or split drop-down button, which, as its name implies, causes the
menu to pop upwards rather than downwards.

A final note on drop-down menus

Drop-down menus aren’t only attached to buttons—ANY element that can be wrapped in an
outer parent can be used.

You can apply a class of dropdown to the wrapped element with a data attribute of toggle, and

the value of dropdown, which will cause that element to become the trigger for the drop-down

menu to display.

Input Group Changes

In short, there have been no changes to the input group functionality between BS2 and BS3.

Input groups are still marked up exactly as before, with the same caveats, namely:

You cannot add multiple additions on one side, only one on each end.

Multiple elements in one input group are not supported.

You cannot mix input groups with other components; you must nest them.

64

If you’re attaching tooltips and popovers, you must add a container option, as previously
mentioned under button changes

Where possible, avoid using input groups with select lists, especially when targeting WebKit-
based browsers

To create an input group, simply wrap your input control and its [pre|suf]fix (which will generally
be a) in a <div> or other block-level element with a class type of input-group applied

to it. Next, make sure that the additional has a class of input-group-addon applied to

it.

For example, the following code will create an input box for a Twitter handle, and an input box
for money where you’re not entering a decimal part.

Code Sample 38: BS3 Input Addons Using Input Groups

Figure 32: The output produced by code sample 38

The normal sizing classes also apply to these, just as they apply to other form inputs, so adding
input-group-lg and input-group-sm (again, there is no md) to the outer input group will size

the entire control set accordingly.

One thing that’s not new in BS3, but has been made easier to do, is adding checkboxes, radio
buttons, regular buttons, and drop-down menus to input groups.

Each of these options require a bit more markup than when you’re using a regular , but

the resulting effect is that you can add interactivity to your fields. For example, you might use
these inputs to create your own file upload control, or a button that creates a random password.

The following code shows how to achieve this:

Code Sample 39: Input Groups Using Buttons and Radios

<div class="input-group">
 @
 <input type="text" class="form-control" placeholder="Username">
</div>

<div class="input-group">
 <input type="text" class="form-control">
 .00
</div>

<div class="input-group">

65

Figure 33: Output produced by code sample 39

Navigation Changes

The navigation components have had their own share of changes, but much like the other
groups, this is mostly to tie common class names together and basically tidy things up so they
are more meaningful.

There are two main sections when it comes to the navigation components: basic navigation and
nav-bars. Of these two components, nav-bars have changed the most.

 <input type="checkbox"> Keep Email Private

 <input type="email" class="form-control" placeholder="Please enter email address">
</div>

<div class="input-group">

 <input type="radio"> Make Default

 <input type="text" class="form-control" placeholder="Enter an address here">
</div>

<div class="input-group">

 <button class="btn btn-default" type="button">Check User Name</button>

 <input type="text" class="form-control" placeholder="Please enter a user name
here">
</div>

<div class="input-group">
 <input type="text" class="form-control" placeholder="Enter the password you would
like to use">

 <button class="btn btn-success" type="button">Create Random Password</button>

</div>

66

To begin with, in BS2, all you really had were nav-bars; there were no button classes or text
classes—only the brand-label. This lead to much confusion among developers and many
questions, such as "How do I centrally line text up in a nav-bar?" and "How do I stop my buttons
from increasing the height of my nav-bar?"

BS3 has now introduced many new classes designed especially for these kinds of scenarios,
which we'll introduce soon. But first, let's look at what's different in the basic navigation
components.

Basic Navigation

First things first: the navigation list component that was in BS2 is gone. Not just deprecated, but
taken away never to be seen again—and this is a good thing.

While it was easy to work with (you created an unordered list, added a sprinkle of bootstrap
magic, and were good-to-go), it was messy, didn't work consistently in all browsers, and had a
few rendering problems.

What do we have in its place?

We have List groups, which we’ll cover in detail later on. For now, let’s talk about what remains,
as it will set the groundwork for using List groups a little later on.

So what is the base class then? It may surprise you to learn that it's simply a class called nav,

which along with nav-tabs, nav-pills, and nav-stacked, can be used to make tab, pill, and

sidebar-based navigation structures in the same way you used to make nav lists in BS2.

The markup is now much simpler. You don't need to worry about any extra padding or browser
quirks, and you certainly don't need any custom stuff to get things done.

To use tabs, simply take an unordered list, and add a nav and nav-tabs class, as the following

code shows:

Code Sample 40: Tab Based Navigation

Figure 34: Output produced by code sample 40

<ul class="nav nav-tabs">
 <li class="active">Home
 Profile
 Messages

67

The markup needed now consists of nothing more than a handful of elements; the only

place the classes need to be applied is on the outer itself. You'll also see that we have an

active class on the first in the list, to show us which tag is the active tag.

If you want BS3 to provide the entire tab's experience (that is, to actually change the content as
required), then there's more work you need to do. For that, as we'll see in the JavaScript
section, you need to use one of the JavaScript add-ons. If, however, you want to handle the tab
switching and content yourself, all you need to do to switch tabs is move the active class from
one to the next.

Things are no more complicated with pills: just exchange the nav-tabs in code sample 40 for

nav-pills and you should see your output change to this:

Figure 35: Output from code sample 40 when changed to “pill” mode

and if we add nav-stacked to either of them, our navigation will stack neatly one on top of each

other:

Figure 36: Code sample 40, changed to “pill” mode, and with nav-stacked added

As with most other components and changes in the framework, the output now renders as a
block element occupying all of the available space. Again, you just need to use the grid system
and other available classes to make sure it takes up only the space you need. Now, any parent
container that changes size because of differing screen resolutions will now cause its child
elements to responsively resize as needed.

By the way, this also works with tabbed navigation, but the output is most likely not what you
would expect:

Figure 37: Code sample 40, rendered as stacked tabs

68

In fairness, though it wasn't really designed to work that way: tabs generally run left to right, and
while BS2 did have some classes for putting tabs on the side and along the bottom of elements,
these have been removed in BS3. The JavaScript plug-in for making full, tab-based outputs still
has the ability to position the tabs, but the general navigation no longer does.

As with the changes made in the button components, the navigation aids also now have a new
justified class added to them, called nav-justified, and just as with the button version, it will

cause a navigation class to span the full width of a container, giving each sibling an equal size.

If we take the code in sample 40 and add nav-justified to the two classes already there, we

get the following result:

Figure 38: Navigation tabs from code sample 40 with full-width justification applied

The navigation aids have another thing in common with the button classes and components: the
state-based changes, which are used to show a given state, as well as the ability to take drop-
down menus and sub navigation.

Simply adding a class of disabled to the inside a navigation set will disable and dim that

link with the muted-text look. Remember though, it does not actually disable the link—the link

will still be clickable, and it’s up to you to code things so the link does not react.

To add a drop-down menu to any pill- or tab-based navigation item, just use the same layout
and classes as shown in the section on buttons. Nest an <a> inside an , followed by

another , with the appropriate classes and data attributes to make it all work.

In a bit of a cross-over between the basic navigation and navigation bars, we also have
breadcrumbs and page/pagination navigation aids.

Breadcrumbs are typically used to mark your position in a site’s hierarchy, and as we've seen
above, using them is simply a case of adding them to an unordered list, as the following code
shows:

Code Sample 41: BS3 Breadcrumb Navigation Example

Figure 39: Output produced by code sample 41

<ul class="breadcrumb">
 Home
 Library
 <li class="active">Data

69

The final controls, before we move onto full navigation bars, are the pagination controls. These
controls take a huge amount of the grunt work out of lining up a bar with previous/next and
before/after, and a sequence of numbers in the middle.

Typically used where you have a data-heavy site and want to display records one page at a
time, rather than all at once, pagination bars are both simple to use and easy to line up with the
rest of your output.

Just as with the other basic elements, creating pagination bars is as simple as adding the
appropriate classes to an unordered list, as the following code shows:

Code Sample 42: BS3 Pagination Bar

Figure 40: Output produced by code sample 42

Just as with the other basic navigation aids, applying active and disabled classes where

needed to individual elements within the list enables you to mark links as disabled and

selected.

Figure 41: Output produced by code sample 42 with active and disabled classes added

Pagination controls can be sized just as easily as the other controls using the new sizing
options, and like the others, they now all follow the same naming scheme: pagination-lg and

pagination-sm. As with some of the others, there is no pagination-xs, and no hint that there

should be one; likewise there's no -md size either, since medium is the default.

To use the pagination controls, just add the appropriate sizing class alongside the pagination
class on the parent holding the list, as the following code shows:

<ul class="pagination">
 «
 1
 2
 3
 4
 5
 »

70

Code Sample 43: Using Different Sizes for the Pagination Component

Figure 42: Output produced by code sample 43

The pagination classes have one final trick up their sleeve—the generation of Previous and
Next page buttons.

<ul class="pagination pagination-lg">
 «
 1
 2
 3
 4
 <li class="active">5
 <li class="disabled">»

<ul class="pagination">
 «
 1
 2
 3
 4
 <li class="active">5
 <li class="disabled">»

<ul class="pagination pagination-sm">
 «
 1
 2
 3
 4
 <li class="active">5
 <li class="disabled">»

71

You'll see that in many wiki- or blog-style sites, there is usually an Older/Newer, or
Previous/Next button pair at the foot of a page.

To make the default version of this, simply create a as we have throughout this entire

section, and add a class of pager to it like so:

Code Sample 44: Simple BS3 Pager

Figure 43: Output from code sample 44

A pager will automatically place its buttons in the center of the available space, as seen in
Figure 44, but you can also justify them left and right by adding the previous and next classes

to the inner elements.

If you change code sample 44 so that the holding the previous button has a class of

previous assigned, and the holding the next button has a class of next, and then re-

render the output, you should see your browser change to the following:

Figure 44: Code sample 44 with optional previous and next classes applied

You'll see that, again, the output expands responsively to fill all of the available space, and as
before, you can easily control this using grids, spans, and other containers as needed.

Navbar Navigation

If there's one thing that BS3 does way better than any of the other frameworks I've seen out
there, it's navigation bars. Whether it's a drop-down menu, a title with sign-in/out controls, or just
a decoration, there's no denying that navigation bars in Bootstrap are powerful.

Unfortunately, in BS2 there was quite a bit lacking. There were many hacks published to allow
things to be lined up, but some of the CSS used was a little rough around the edges. BS3
changes all of this.

<ul class="pager">
 Previous
 Next

72

The basic navigation bar now starts its life as a collapsed item in your pages display. This
means that if the first display is on a mobile device, your design will start out with a nicely
collapsed menu bar, ready to be expanded exactly as a mobile user would expect. In BS2, the
opposite was the case, and you had to take extra steps to collapse the display before making it
visible.

The navigation bar will progressively become visible as the display width increases, until the
entire unit in full has enough space to render horizontally across the page.

Be careful though—even with a non-fluid column width of 1024px, and a fluid width of your
entire display, it’s still possible to run out of space. When this happens, you could end up with
some major content-overflow scenarios. For example, it's not difficult to push your navigation
bar two or more rows in height.

The recommended way to ensure this doesn't happen is to use custom styling to control the
width of your elements, and/or to use the responsive visibility classes to control what is and is
not shown for different screen sizes.

If you’re using Less, you can now also customize the @grid-float-breakpoint variable to

control the trigger point where your navigation bar collapses, or you can just customize the
appropriate media queries in the base CSS.

Navigation bars require JavaScript to be enabled to work correctly; if it's not enabled, the bar
should still display, but the collapsing won’t work correctly. You also need to ensure that if
you've done a custom build, you've also included the collapse JavaScript plug-in.

The following code sample shows how to create a basic empty, collapsible navigation bar:

Code Sample 45: Simple Empty BS3 Collapsible Navigation Bar

Figure 45: Blank nav bar produced by code sample 45

<nav class="navbar navbar-default" role="navigation">
 <div class="container-fluid">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse" data-
target="#bs-example-navbar-collapse-1">
 Toggle navigation

 </button>
 </div>
 <div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
 </div><!-- /.navbar-collapse -->
 </div><!-- /.container-fluid -->
</nav>

73

It may not look like much, but this bar will collapse and expand as needed for different sizes,
and all we need to do now is to add some content to it. Let's start with branding.

If you're going to brand your navigation using the navbar-brand class on an <a> link, then the

BS3 best practice is to group this element with the navbar-toggle element that builds the

three-line collapse icon. This ensures that, when collapsing, the text shrinks down as far as it
can before becoming invisible and stacking vertically.

To make this change, in code sample 45, simply add:

Immediately after the closing button tag that holds the three elements with a class of

icon-bar, and then refresh your browser. The result should now look like this:

Figure 46: Blank nav bar with a brand added

If you hover over the brand text, you'll see that it's also an active link, generally used to return to
a site’s home page. You can also put an image in here too, but there are no specific classes
here to help you. I've done this in some designs, but unfortunately, it still takes a bit of manual
work. If you make the image about the same height as the <H1> element, things stay lined up

nicely. Otherwise, the best way I've found to make it work is to put some padding in front of the
element holding the band name, then absolute-position your logo with suitable bottom
margins/padding so that it does not hide any content below.

Moving on from the brand class, we also have specific classes for forms, buttons, and text, as
follows:

navbar-nav: for creating a main of navigation links and dropdowns

navbar-form: for creating inline miniature forms

navbar-btn: for marking button components up to be navbar friendly

navbar-text: for including independent lines of text in your bar

navbar-link: for adding independent links that are not part of the regular navigation items

You can use them all together, on their own as needed, or combine them with the new emerging
web components specification and create a single bar that takes a configuration and draws what
it needs, as it needs.

The following code sample expands sample 45 to include some navigation links:

BS3

74

Code Sample 46: Previous Example Expanded to Include Basic Links

Figure 47: Output produced by code sample 46

As with all the other navigation, link classes, and elements, you'll see we've employed the
active class to mark the first link as active, and like the others, you can apply the disabled

and other similar classes to mark up items as needed.

It’s just as easy to create a menu that expands down from any of the buttons. All you have to do
is use the same pattern of markup as you do when creating drop-down menus on buttons,
except you wrap it in a navbar-nav parent element like so:

Code Sample 47: Navigation Bar Expanded to Hold a Drop-Down Menu Button

<nav class="navbar navbar-default" role="navigation">
 <div class="container-fluid">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse" data-
target="#bs-example-navbar-collapse-1">
 Toggle navigation

 </button>
 BS3
 </div>

 <div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
 <ul class="nav navbar-nav">
 <li class="active">Menu 1
 Menu 2

 </div><!-- /.navbar-collapse -->
 </div><!-- /.container-fluid -->
</nav>

<nav class="navbar navbar-default" role="navigation">
 <div class="container-fluid">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse" data-
target="#bs-example-navbar-collapse-1">
 Toggle navigation

 </button>
 BS3
 </div>

75

Figure 48: Drop-down menu produced by code sample 47

You can combine each of these, so it's simple to have drop-down and non-dropdown links in
one navbar-nav just by marking up each element as needed.

Another common requirement in navigation bars is the obligatory sign-in form, generally used to
sign in to a protected area on a site.

BS3 makes these forms even easier to construct using the navbar-form class. So far, we've

seen that all our elements are left-aligned in the navigation bar’s inner-content area. Since sign-
in forms are usually right-aligned, the BS3 team has provided the navbar-right class to allow

you to do just such a thing. The following code illustrates an example:

Code Sample 48: BS3 Navigation Bar with a Sign-In Form Right Aligned

 <div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
 <ul class="nav navbar-nav">
 <li class="dropdown">
 Menu 1 <b
class="caret">
 <ul class="dropdown-menu">
 Sub Menu 1
 Sub Menu 2
 Sub Menu 3
 <li class="divider">
 Sub Menu 4
 <li class="divider">
 Sub Menu 5

 </div><!-- /.navbar-collapse -->
 </div><!-- /.container-fluid -->
</nav>

<nav class="navbar navbar-default" role="navigation">
 <div class="container-fluid">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse" data-
target="#bs-example-navbar-collapse-1">
 Toggle navigation

76

Figure 49: Navigation bar with sign-in form, produced by code sample 48

Along the same lines, it's often also required that when a person is signed in to your application,
that they have their name shown instead of the form, and optionally, a link and/or button to sign-
out, or change options.

The button, text, and link classes have all of this covered, as shown in the following code:

Code Sample 49: Swapping the Sign-In Form for an Information Display

 </button>
 BS3
 </div>
 <div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">

 <form class="navbar-form navbar-right">
 <div class="form-group">
 <input type="text" class="form-control" placeholder="Sign-in
name">
 </div>
 <div class="form-group">
 <input type="password" class="form-control"
placeholder="Password">
 </div>
 <button type="submit" class="btn btn-default">Sign In</button>
 </form>

 </div>
 </div>
</nav>

<nav class="navbar navbar-default" role="navigation">
 <div class="container-fluid">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse" data-
target="#bs-example-navbar-collapse-1">
 Toggle navigation

 </button>
 BS3
 </div>
 <div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
 <div class="navbar-right">
 <p class="navbar-text">Signed in as Peter Shaw</p>
 Options
 <button class="btn btn-primary navbar-btn">Sign Out</button>

77

Figure 50: Navigation bar with information display produced by code sample 49

The navigation bar itself also has a few clever tricks, you can place your navigation bar inside a
container or other alignment class, then add navbar-fixed-top to it, your navigation bar will

stick to the top of its container, and align itself perfectly with it as in the following image:

Figure 51: Navigation bar from sample 49 with the navbar-fixed-top class applied to it

You can also add navbar-fixed-bottom class, which will stick your navigation bar to the

bottom of the page, and the navbar-static-top class, which will stick the bar to the top of the

container, but will allow it to scroll with the page content.

Finally, if you want a darkened navigation bar, then you can use the navbar-inverse class,

which will invert the color set used by the entire component:

Figure 52: Navbar from sample 49 with the inverse class set

Label and Badge Changes

This is going to be a very short section, because there have only been two changes to the
labels, and one big one to the badges.

To make a label in BS2, we simply gave it a label-xxxx class name, where xxxx represents

the state the label was to portray. Under BS3, we now have a two-part class definition, and a
rename from error to danger for the red color class, so that the naming now matches

everything else, and that's pretty much it.

There are also no sizing classes/options for these in BS3, as labels take on the size of the
surrounding container. So, if you create a with an appropriate label class, and then wrap

it in a <H1>, the size of that label will be much larger than the rest.

The following code sample demonstrates this:

Code Sample 50: BS3 Label Example with Different Sizes

 </div>
 </div>
 </div>
</nav>

<h1>Default</h1>

78

Figure 53: Output produced by code sample 50

Badges, on the other hand, have undergone a bigger change.

In BS3, badges no longer have contextual color classes. That is, there is no longer a label-
success or label-warning, as there is with the previous labels and with other elements.

This means you can't color badges in the same way you could in BS2, and any label you create
can only be rendered using the standard grey color. Well, at least officially you can't.

If you apply an alert-xxxxx alongside a label class on the being used for your label,

then the label will take on the coloring of that alert class, and while this is not a supported way of
doing things, it does work, and allows you to use the labels as you did in BS2.

To mark up a standard label, all you need to do is add a label and 'label-default' class to

a , and you’re ready to go:

Code Sample 51: Standard Label Example

Figure 54: Label produced by code sample 51

If you want to hack your labels to use the different colors, then you can do so as follows:

Code Sample 52: Label Example Hacked to Use Non-Standard Coloring

<h2>Primary</h2>
<h3>Success</h3>
<h4>Info</h4>
<h5>Warning</h5>
<h6>Danger</h6>

This is a label

Normal
Success

79

Figure 55: Output produced by code sample 52

One nice feature the badge component does still have, however, is its use of the empty:

pseudo-selector, allowing it to automatically vanish from display if its inner text is empty. This
helps with the internal changes designed to work on List groups and Pill lists, because it now
means that it's immensely easy to create things like inbox notification lists, where the values
disappear when the contents are removed. Here’s an example:

Code Sample 53: BS3 List Styling for Badges

Figure 56: Output produced by code sample 53

Info
Warning
Danger

<div class="col-md-4">
 <ul class="nav nav-pills nav-stacked">
 <li class="active">

 42
 Inbox

 <li class="active">

 10000
 Spam

 <li class="active">

 Lottery Wins

</div>

80

If you examine the code, you'll see that the last option in the list has no value inside its span tag,
which, because of the empty: pseudo-selector, causes the browser not to render it. However,

the second you put anything in there using JavaScript or any method that can manipulate the
DOM, that badge will pop right back into existence without missing a beat. Notice also the use
of the pull-right alignment class to make sure the label sits on the right side of the element,

making everything look nice and aligned.

List Group Changes

List groups are a new thing added in BS3, designed to replace the BS2 navigation lists, and
have far more capabilities than their BS2 counterpart.

Once you start to use them, you'll realize that list groups are more like fully styleable list-item
boxes, and to be honest, all it would take to create a fully styleable list box would in fact be to
wrap them in their own div and set the overflow to scroll appropriately.

A basic list group component can be created with markup similar to the following:

Code Sample 54: Basic BS3 List Group

Figure 57: Output produced by code sample 54

As you saw previously in the badges section, you can add badges to lists and other objects, and
if you add them to a list group, they line up perfectly:

Code Sample 55: List Group with Badges Attached

<ul class="list-group">
 <li class="list-group-item">Cheese
 <li class="list-group-item">Burger
 <li class="list-group-item">Bun
 <li class="list-group-item">Pickles
 <li class="list-group-item">Tomato

<ul class="list-group">
 <li class="list-group-item">4Cheese
 <li class="list-group-item">2Burger
 <li class="list-group-item">1Bun
 <li class="list-group-item">Pickles

81

Figure 58: Output from code sample 55

The most observant of you may be thinking, “Ok, so list groups look good, but there just still
s underneath the surface, there's really nothing that special about them.”

Well, maybe you’re right about that…or maybe we need to experiment a bit more.

List groups, unlike the classes we saw in the navigation sections, cannot just be applied to an
unordered list. A list group can be applied to any parent container, and when done so, the
styling will cause all of the children of that container to become linked. Take a look at the
following example:

Code Sample 56: List Group Created Using <a> Tags

Figure 59: Output produced by code sample 56

As code sample 56 shows, we can create a list of links using nothing more than a <div>

surrounding the list, and that list then instantly becomes a list-style menu with a light grey hover
effect. However, because the inner tags are <a> tags, we can now go even further:

Code Sample 57: List Group Expanded to Use More than Just Simple Lists

 <li class="list-group-item">2Tomato

<div class="list-group">
 Cheese
 Burger
 Bun
 Pickles
 Tomato
</div>

<div class="list-group">

82

Figure 60: Output produced by code sample 57

 Cheese
 <p>A delicious slice of ...</p>

 Burger
 <p>Prime Aberdeen angus beef ...</p>

 Bun
 <p>A freshly baked soft sesame seed bun ...</p>

 Pickles
 <p>The finest pickles from the finest purveyors ...</p>

 Tomato
 <p>Fresh organic tomatoes picked directly from the vine ...</p>

</div>

83

Notice that we still get the full, cell-hover effect when your mouse hovers over a link, and by
simply adding the active class, as we have in other examples, we can mark an item as being

the active one, and all while maintaining a single set of borders and the appearance of each
item behaving just like a regular element.

But why stop there?

Just as with any other element in BS3, list groups also have their own contextual classes to give
them meaning in the standard color set:

Code Sample 58: BS3 List Group with Contextual Color Classes

<div class="list-group">

 Cheese
 <p>...</p>

 Burger
 <p>...</p>

 Bun
 <p>...</p>

 Pickles
 <p>...</p>

 Tomato
 <p>...</p>

</div>

84

Figure 61: Output produced by code sample 58

As you can see, what use is a burger without cheese and a bun? Tomatoes I can take or leave,
but please hold the pickle!

Media Objects and Custom Thumbnail Changes

We covered the basic thumbnail changes for the styling back in the chapter on CSS, but what
we didn’t get into are the changes in the surrounding components.

The amalgamation that now exists in BS3 allows us to combine the thumbnail classes with the
grid classes to create easy-to-use image lists. The most basic way we can use them is to use
the row class and grid spans, along with the basic thumbnail classes, to make perfectly lined-up

thumbnails, as the following shows:

Code Sample 59: Basic Thumbnails with Grid Classes

<div class="row">
 <div class="col-md-3">

85

Figure 62: Thumbnails produced by code sample 59

For those who are wondering, I'm using holder.js to produce the image place holders. I'll let you
Google the location (it'll come up as the first available); it's a great tool for reserving image
space, especially when doing mockups for clients.

This example is nothing really special; if you've been reading the rest of this book, you've likely
already figured out how easy it is to do this. However, if we add a little more markup and work
with the same idea, we can easily produce something like the following:

Code Sample 60: BS3 Thumbnails with Extra Content

 </div>
 <div class="col-md-3">

 </div>
 <div class="col-md-3">

 </div>
 <div class="col-md-3">

 </div>
</div>

<div class="row">
 <div class="col-md-3">
 <div class="thumbnail">

 <div class="caption">
 <h3>Ecstasy requires exploration</h3>
 <p>The planet is radiating pulses. This life is nothing short of a blossoming
oasis of transformative potentiality outside of the being.</p>
 <p>
 Like
 Dislike
 </p>
 </div>
 </div>
 </div>

86

 <div class="col-md-3">
 <div class="thumbnail">

 <div class="caption">
 <h3>We exist as frequencies</h3>
 <p>This life is nothing short of a blossoming uprising of frequency
aspiration. Potential is the richness of conscious living, and of us.</p>
 <p>
 Like
 Dislike
 </p>
 </div>
 </div>
 </div>
 <div class="col-md-3">
 <div class="thumbnail">

 <div class="caption">
 <h3>To traverse the myth is to become one</h3>
 <p>It can be difficult to know where to begin. The totality is calling to you
via sub-atomic particles. Can you hear it?</p>
 <p>
 Like
 Dislike
 </p>
 </div>
 </div>
 </div>
 <div class="col-md-3">
 <div class="thumbnail">

 <div class="caption">
 <h3>We reflect, we heal, we are reborn</h3>
 <p>Through reiki, our essences are nurtured by purpose. You will soon be
guided by a power deep within yourself.</p>
 <p>
 Like
 Dislike
 </p>
 </div>
 </div>
 </div>
</div>

87

Figure 63: Output produced by code sample 60

Creating vertical lists is just as easy, but instead of using the thumbnail classes, we now need

to use the media object classes. These classes and the associated markup create a layout

similar to the previous example, but instead of appearing underneath the thumbnail, the text is
lined up to the right.

The primary design motive here is in comment and message lists with an avatar image, but they
can be used for news items, product lists, and many other things.

To mark up a media object, simply use an outer div with a class of media. Then, inside of that,

use the media-object, media-body, and media-heading classes to mark up the individual

bits, as the following example shows:

Code Sample 61: Mark Up for a Single BS3 Media Object

Figure 64: Media object produced by code sample 61

As you can probably already imagine, it wouldn't take much to add these into a List group, or
some other structure built up using the BS3 grid system. BS3 actually makes it much easier
than that by providing a dedicated media object list class and supported markup.

<div class="media">

 <div class="media-body">
 <h4 class="media-heading">To follow the journey is to become one with it</h4>
 <p>The goal of ultrasonic energy is to plant the seeds of awareness rather than
stagnation. You and I are beings of the quantum matrix. Purpose is a constant.</p>
 </div>
</div>

88

By changing your markup just a little, you can generate full lists of media objects, as follows:

Code Sample 62: Full Media Object List

Figure 65: Full media object list generated by code sample 62

<ul class="media-list">
 <li class="media">

 <div class="media-body">
 <h4 class="media-heading">Humankind has nothing to lose</h4>
 <p>Awareness is the growth of synchronicity, and of us. This life is nothing
short of an unfolding explosion of infinite truth. We exist as sonar energy.</p>
 </div>

 <li class="media">

 <div class="media-body">
 <h4 class="media-heading">It is a sign of things to come</h4>
 <p>Humankind has nothing to lose. We are at a crossroads of rebirth and
discontinuity. We are in the midst of a consciousness-expanding maturing of guidance
that will clear a path toward the quantum soup itself.</p>
 </div>

 <li class="media">

 <div class="media-body">
 <h4 class="media-heading">Only a traveller of the galaxy may generate this
canopy of life</h4>
 <p>We must learn how to lead unified lives in the face of delusion. Eons from
now, we warriors will reflect like never before as we are reborn by the quantum soup.
We must beckon ourselves and fulfill others.</p>
 </div>

89

If you nest the s and s inside the media list, BS3 will automatically indent them to give

the effect of a parent/child hierarchy. You can also use different combinations of pull-right

and pull-left where needed to position the image on the opposite side, for example. Or, to

line things up slightly differently, you can combine them with panels (which we'll see shortly) and
other similar structures to put borders and other contextual hints around the entire list and wrap
them inline to produce composite components.

Panel Changes

Like list groups, panels are a new addition to BS3—and what an addition they are!

We’re all familiar with things like forms, for example, being in group boxes, or sections of a
website being logically divided up from each other. BS3 panels allow you to easily control this
logical separation.

You can have plain old panels, panels with headers, panels with titles in headers, panels with
footers, and panels with their own set of contextual colors.

A basic panel is constructed using just two <div> elements and three CSS classes:

Code Sample 63: Basic Panel Object

However, it's not much good without a title, and really as it stands in code sample 63, it's
nothing more than a div with padding and a border around it.

If we add a third <div> element, however, and give that <div> a class of panel-heading, then

we start to get something a bit more interesting:

Code Sample 64: Basic Panel Object with a Panel Header

<div class="panel panel-default">
 <div class="panel-body">
 Panel content goes here
 </div>
</div>

<div class="panel panel-default">
 <div class="panel-heading">Panel Header</div>
 <div class="panel-body">
 Panel content goes here
 </div>
</div>

90

Figure 66: Panel produced by code sample 64

Your panel header doesn't have to be just a simple <div>, either; you can include <hx> tags

along with any other regular tag, such as an , and things will resize as required:

Code Sample 65: Panel with an H1 Tag as a Panel Title

Figure 67: Output produced by code sample 65

You can also apply a panel footer by adding a <div> element after your panel body and

applying the class panel-footer. If you want to give your panels meaning, you can also use

the contextual colors that are used for everything else. You do this simply by replacing the
panel-default class in the previous code samples with panel-primary, panel-success,

panel-info, panel-warning, or panel-danger.

Figure 68: Output produced by code sample 65, with the type set to panel-primary

<div class="panel panel-default">
 <div class="panel-heading">
 <h1 class="panel-title">Panel Header</h1>
 <p>Panel sub header</p>
 </div>
 <div class="panel-body">
 <p>Panel content goes here</p>
 <p>Panel content goes here</p>
 <p>Panel content goes here</p>
 </div>
</div>

91

One thing to be careful of, though—if you're using panel-footer and contextual colors, the

footer will NOT adopt the panel’s color scheme. This is deliberate, as the BS3 developers felt
that contextually, only the contents of the panel were important. Any buttons, controls, or footer
information to respond to that information did not need to be highlighted in the same way, thus
allowing the developer freedom to add different contextual colors for different controls as
required.

Panels can also work fluidly with list groups and tables. If you join a table with a panel inside of
the parent div, you get a panel as shown previously, and a seamless join to the table below it,

as the following shows:

Code Sample 66: Panel from Sample 65 Colored as Primary and with a Table Applied

<div class="panel panel-primary">
 <div class="panel-heading">
 <h1 class="panel-title">Panel Header</h1>
 <p>Panel sub header</p>
 </div>
 <div class="panel-body">
 <p>Panel content goes here</p>
 <p>Panel content goes here</p>
 <p>Panel content goes here</p>
 </div>
 <table class="table">
 <thead>
 <tr>
 <th>#ID</th>
 <th>Name</th>
 <th>Twitter Handle</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>1</td>
 <td>Peter Shaw</td>
 <td>@shawty_ds</td>
 </tr>
 <tr>
 <td>2</td>
 <td>Digital Solutions UK</td>
 <td>@digitalsolut_uk</td>
 </tr>
 </tbody>
 </table>
</div>

92

Figure 69: Output produced by code sample 66

If you remove the <div> containing the panel body from your markup, the whole thing will

collapse down, leaving just the panel header and border, and leading straight into the table—
great for just providing tables with headers, if that’s what you need.

Adding a list group into your panel is also just as easy, and performed in exactly the same way.
I'll leave that as an exercise to the reader to play with, however.

Other changes

Before we finally leave the chapter on components behind, there are a few more things to cover:
the jumbotron, alert boxes, progress bars, and wells.

The jumbotron is not a new element, but its use in BS2 was slightly more messy than it now is in
BS3. Creating a jumbotron is very simple; you simply use a <div> with the class jumbotron

applied, and then add some optional markup inside. What markup you use is entirely up to you,
but to get the intended effect, the recommended markup is:

Code Sample 67: BS3 Jumbotron Example

<div class="jumbotron">
 <h1>Bootstrap 3</h1>
 <p>Don't you just love this framework? It's elegant, simple to use, and frees you
from so much boilerplate code.</p>
 <p>Heck yes I do</p>
</div>

93

Figure 70: Jumbotron produced by code sample 67

And that’s it. You can remove the rounded corners and make it full-width by swapping the order
and moving it outside its container, but there are no special classes or optional colors for this—
it's designed to be big and bold, and catch your attention.

Speaking of catching attention, we also have a number of alert classes, and the only real
change between the BS2 version and BS3 is the renaming of the class name alert-error to

alert-danger. Other than that, the markup to produce alerts is still as simple as using a

standard <div> with the appropriate contextual classes added:

Code Sample 68: Contextual Alert Classes

Figure 71: Alert boxes produced by code sample 68

If you want to add links in your alerts using a standard <a> tag, make sure you apply the class

alert-link to the anchor tag; this will ensure that the link coloring remains consistent with the

contextual color class being used.

You can also add a cross/dismiss icon to the alert, allowing the user to close it and make it
vanish from the display. To do this, we need to add a <button> element marked up with a

sprinkle of data attributes and extra classes as follows:

<div class="alert alert-success">You did something ...</div>
<div class="alert alert-info">Something happened you ...</div>
<div class="alert alert-warning">Something happened that wasn't ...</div>
<div class="alert alert-danger">You did something that was not liked ...</div>

94

Code Sample 69: A Dismissable Alert Box

Figure 72: Dismissible alert produced by code sample 69

We added the extra class alert-dismissable to the outer <div>, and then used a dismiss

data attribute to connect the JavaScript action to the alert’s dismiss method, using a simple

button.

If alerts provide operational feedback, then there's one other feedback-related component that's
a must-have—the progress bar.

No feedback element has produced so much hatred or salutation as this humble, little colored
bar. From BS2 to BS3, the only changes made here, like with the alert classes, are the
renaming of the contextual colors to match the overall scheme renames elsewhere in the
framework.

The base HTML markup to produce them remains exactly the same:

Code Sample 70: Basic Progress Bar

Figure 73: Progress bar produced by sample 70

One thing you really should pay attention to, however (and something that I have reiterated at
various points in this book), is the group of attributes and extras used to make this element
friendly to screen readers and similar equipment.

Since a progress bar often tends to be purely graphical in nature, it means nothing to someone
who's unable to read the screen. Most other elements have at least enough text to give the
reader an idea of what's there; progress bars need all the help they can get. You'll see from the
previous example that we've added extra aria values to report on what percentage the value is
at, and we've also marked up a span that's for screen readers only, specifically to give an
audible report.

<div class="alert alert-danger alert-dismissable">
 <button type="button" class="close" data-dismiss="alert" aria-
hidden="true">×</button>
 YO! You got that operation very, very wrong indeed.
</div>

<div class="progress">
 <div class="progress-bar" role="progressbar" aria-valuenow="60" aria-valuemin="0"
aria-valuemax="100" style="width: 60%;">
 60% Complete
 </div>
</div>

95

If we remove the sr-only class, however, it makes our bar look a bit better to those who can

see it too:

Figure 74: Progress bar with the sr-only class removed from the inner span

It goes without saying that you can also add progress-bar-success, progress-bar-info,

progress-bar-warning, and progress-bar-danger to the inner <div> with the progress-
bar class, in order to take advantage of the contextual colors available.

You can also add progress-striped and/or active to the outer <div> alongside the

progress class in order to get striped and animated effects on your progress bars. A stacked

progress bar effect can be obtained by placing multiple progress-bar <div>s inside of the

outer progress container and setting their values appropriately.

The final element that's left, is the humble well. No changes have been made to this since BS3,

but it does now have an extra class called well-sm. There's no magic involved here— if you

want a simple, boxed-off area with a shaded background, simply create a <div> element, add

the well class to it, and then add your content inside. Wells are useful for sidebars and/or

footers, or anything too simple to warrant being put in a full panel or other fenced off area. There
are no contextual colors or special actions, either; it’s simple, effective, and easy to use:

Code Sample 71: Simple Well Example

Figure 75: Well example produced by sample 71

<div class="well">Hello World!</div>

96

Chapter 5 Changed JavaScript Features

When it comes to JavaScript in BS3, not much has changed; the vast majority of the changes
we've seen so far have revolved around the CSS and components sections. There’s a reason
for this.

Most of BS2's (and for that matter, BS3's) JavaScript functionality comes in the form of data
attributes. In most of the cases, we've already seen how to use these in the various sections on
components, which really leaves very little that's specific to JavaScript only.

In this chapter, therefore, I’ll just briefly run through most of what's available, and where there is
no other description elsewhere in the book, show a brief example on how to use the API
available.

The JS facilities available in BS2 and BS3 are very extensible, and even a full book probably
couldn't cover everything that's possible. I therefore strongly encourage you to go to
www.getbootstrap.com and read through the section on JavaScript.

Modals

The first thing that anyone mentions when the subject of JavaScript comes up in Bootstrap is
the modal dialog boxes—and it's little surprise.

BS3's modal boxes are one of the easiest implementations (and one of the richest) seen in any
of the modern browser HTML5 frameworks.

Using them is easy, but unfortunately, does require quite a lot of markup.

The following code gives you a very basic example:

Code Sample 72: Basic Modal Example

<button class="btn btn-primary btn-lg" data-toggle="modal" data-target="#myModal">
 Show Modal Dialog
</button>

<div class="modal fade" id="myModal" tabindex="-1" role="dialog" aria-labelledby="myModalLabel" aria-
hidden="true">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <button type="button" class="close" data-dismiss="modal" aria-hidden="true">×</button>
 <h4 class="modal-title" id="myModalLabel">Modal title</h4>
 </div>
 <div class="modal-body">Modal Body</div>
 <div class="modal-footer">
 <button type="button" class="btn btn-default" data-dismiss="modal">Close</button>
 <button type="button" class="btn btn-primary">Some Action</button>
 </div>

http://www.getbootstrap.com/

97

Figure 76: Modal example produced by sample 72

In order to show a modal, you first need to have a trigger target. In sample 72, this is the button
marked Show Modal Dialog. For a trigger action to work it must have a toggle and target data

attribute assigned to it, and the toggle must have the value "modal" to show that it targets a

modal dialog. The target must have the ID selector of the outermost <div> assigned to it.

In sample 72, the outermost <div> has an ID="myModal" on it, which means the data attribute

for target should have #myModal as its value.

Your trigger doesn't have to be a button; it can be anything that can accept (or is set up to
accept) a mouse click, as long as the toggle and target data attributes are provided.

Once we get into the modal itself, you'll see the structure consists of a number of quite deeply
nested <div>s. Because of this nesting, it's recommended that you create and place your

dialog/modal definitions as close to the body root as possible; if you do not, then there is a
chance that other components and HTML structures could cause layout problems that you did
not anticipate.

You'll also notice that again, there is a common theme of marking things up to make them
friendly to screen readers, and again, I can't stress this enough: you should make every effort to
make sure your markup is as friendly to accessibility tools as possible.

A modal starts with an outer <div> and the class modal applied to it. Optionally, you can also

add fade, which will give the modal a nice smooth transition when showing and hiding. This

outer <div> should be the one on which you set your Z-Order and anything else in the way of

global modal customizations you wish to make.

The next <div> in should have a class of modal-dialog added to it. That <div> should then be

followed immediately by a third <div> with the class of modal-content assigned to it. It's inside

this third <div> where you actually place your modal content definition.

 </div>
 </div>
</div>

98

Once you have the modal content shell defined, you can then place in three further <div>

elements with the following classes: modal-header, modal-body, and modal-footer. These

three inner sections should NOT be nested, but rather added to the markup as siblings of each
other, and are used to define the content for the three main sections of the dialog.

You can see from the code in sample 72 that we include a closing cross, as we did for alert
boxes. The only difference between this closing cross and the one we saw previously is that the
dismiss data attribute has a value of modal and not alert. Any clickable element placed within

the inner modal markup that has this data attribute, with this value, will close the dialog when
clicked.

Apart from the close icon, the rest of the modal’s inner content is just normal BS3 markup and
CSS. Anything you can use elsewhere you can use inside a modal, and if it's too tall for the
screen, you'll get an inner container that automatically switches to a scrollable element.

There are also two optional width sizes; these are added to the inner modal-dialog <div> and

are modal-lg and modal-sm. The large size class expands the width of the modal to half the

screen width (ideal for tables and lists), whereas the small size shrinks the default width to
approximately half of its original size (ideal for things like yes/no prompts).

You can also initialize the modal using the JavaScript API in a standard jQuery fashion; if you
want to alter the default option’s behavior, then using the JQ constructor is the only way to do it.

Code Sample 73: Setting the Default Options on a Modal Using JavaScript

The options that can be changed are as follows:

backdrop: Boolean true or false to include or not include the shaded background on the page
when the modal is shown; if the value static is specified, then the background is shown but

does NOT close the modal when clicked on, as it does if true is used.

keyboard: Boolean true or false; allows or does not allow the escape key to close the modal.

show: Boolean true or false, automatically shows or does not show the dialog as soon as it’s
initialized.

remote: String containing a url to get the inner content for the dialog body; if this is supplied,
then the dialog will ask the url to supply a chunk of HTML to be used in the body of the modal.

There are also a number of events that are raised for certain actions, but they are beyond the
scope of this chapter.

$('#myModal').modal({
 backdrop: true/false,
 keyboard: true/false,
 show: true/false,
 remote: 'path to url that returns content'
});

99

Tabs

If you recall, back in the section on basic navigation, I mentioned that the tab component can be
wired up with extra markup to actually handle the swapping of content panes for you.

To mark-up a set of tabs that change automatically using JavaScript, you first need to create a
 in the same manner as shown in the navigation components section. This must have

<a> elements embedded inside each of its elements, with the href of each anchor

pointing to the id of each associated <div> set up to hold a tab panel. You also need to make

sure that each anchor has a toggle data attribute assigned to it and that its value is set to tab.

Once you've created the navigation set, you then need to create an outer <div> and assign the

class tab-content to it. Inside of this <div>, you then need to create several separate sibling

<div>s, each with a class of tab-pane and an id attribute matching the associated tab in the

navigation set. Optionally, you can also add fade in to fade tabs when they change, and

active to mark which of the tabs is currently been shown.

The following code shows an example of this:

Code Sample 74: Automatic Tabs Example

Figure 77: Tab set produced by code sample 74

<ul class="nav nav-tabs">
 <li class="active">Tab 1
 Tab 2
 Tab 3

<div class="tab-content">
 <div class="tab-pane active" id="tab1">
 <h1>We self-actualize, we believe, we are reborn</h1>
 <p>By refining, we live ...</p>
 </div>
 <div class="tab-pane" id="tab2">
 <h1>We exist as four-dimensional superstructures</h1>
 <p>Today, science tells us that the ...</p>
 </div>
 <div class="tab-pane" id="tab3">
 <h1>The goal of morphogenetic fields is to plant ...</h1>
 <p>You and I are life forms of the quantum soup ...</p>
 </div>
</div>

100

The tab control doesn't have a constructor that takes options the way modal does, but it does
have an API call so that you can tell which tab to show programmatically. To do this, you just
need use jQuery to select the appropriate selector, and then call tab('show') on it. When this

is done, your tabs will automatically make the referenced tab the selected one. As with modals
(and others), there are events available to tell you when things change; the details and
parameters of each call can be found in the BS3 docs.

Tooltips and Popovers

Everyone loves tooltips—simple little pop-up tags that can be used for help and many other
simple, descriptive tasks.

Using a tooltip in BS3 is incredibly easy. Simply assign a data attribute of toggle with the value

tooltip to any standard HTML element that you wish the tooltip to display for. To define the

text for the tooltip, add a title attribute containing the desired text, and optionally, add a data
attribute called placement containing the value left, top, bottom, or right as required,

depending on which direction you would like the tooltip to show.

The following code will create a simple button with a tooltip attached to its top:

Code Sample 75: BS3 Button with a Tool Tip

There is one small caveat that applies to tooltips, but does not apply to any other element: you
need to initialize tooltips yourself. You can pass various options into them at the same time (just
as with modals), but you MUST initialize them, or your tooltips will not appear.

To initialize the button shown in the previous example, place the following line of JavaScript
somewhere in your page so that it's run once the DOM is ready and the button is created:

It's entirely up to you how you select each of your buttons. You could, for example, select them
all via their element type, but you must call tooltip() on every element that has a tooltip

attached.

If everything works as expected, you should see something like this:

<button id="mybutton" type="button" class="btn btn-default" data-toggle="tooltip"
data-placement="top" title="I am a tooltip!!">The button with a tooltip</button>

$('#mybutton').tooltip();

101

Figure 78: Button with accompanying tooltip

Close behind the humble tooltip comes the popover, and like the tooltip, it must be initialized
manually with a call to popover(). The main difference between a popover and a tooltip is that

popovers can hold more contents than a tooltip.

A tooltip typically only has a simple, single line of text, whereas a popover is larger and can
contain multiple HTML elements, ranging from paragraphs to buttons and images.

The second difference is that the element has to be clicked before a popover will display,
whereas a tooltip is automatic upon hover.

You create a popover in much the same way as a tooltip, except that the popup content is
defined inside a data attribute called content, and the title attribute is used to give the

popover a mini title area (similar to the way the header area is used on a panel component).
The following code shows how to define a simple popover:

Code Sample 76: BS3 Button with a Popover

As with the tooltip, somewhere in your document start-up, you also need to ensure you initialize
the component using something like:

Also as with the tooltip, you can pass an object containing options in here. There are many
available, so again, I'd encourage you to read the BS3 docs to learn them all.

If everything worked, you should be able to render your page and see this:

Figure 79: BS3 button with a popover attached

<button id="mybutton" type="button" class="btn btn-default" data-container="body"
data-toggle="popover" data-placement="bottom" data-content="I am the pop over
contents, and I'm awesome." title="Popover Title">
 I am a button with a pop over
</button>

$('#mybutton').popover();

102

Collapsible Panels

One of the things removed in BS3, sadly, was the readymade accordion component. In its
place, however, is something better: the collapsible panel.

Using these panels, it's still just as easy to create a standard accordion, but they are now also
separately useable, standalone components, allowing you to do things like create folding
information areas, toolbars, and much more.

One thing to note, however: if you're doing a custom build, you must also make sure that you
include the transition helper JavaScript plug-in. The BS3 docs have more information that you’ll
need if you are doing a custom build.

To create an accordion from collapsible panels, you simply have to create an outer <div> with a

class of panel-group and give it an id. Then, inside of that, you need a series of <div> tags

marked up as shown previously in the section on panel components, with each panel div being

a single self-contained panel.

Once you have your panels laid out, you just need to add a panel-title inside a panel-
header. This header should contain an <a> tag with two data attributes assigned: one called

data-toggle, and one called data-parent.

The toggle attribute should have a value of collapse, and the parent attribute should hold the

id of the outer <div> holding the panel group, and an href with the id of the target panel body

that should be the object of the collapsing behavior. Each of the target panels should have the
classes panel-collapse and collapse assigned to them.

The following code shows how to achieve this:

Code Sample 77: How to Create an Accordion Replacement Using Collapsible Panels

<div class="panel-group" id="newAccordion">
 <div class="panel panel-default">
 <div class="panel-heading">
 <h4 class="panel-title">
 <a data-toggle="collapse" data-parent="#newAccordion" href="#panelOne">
 Consciousness is the richness of truth, and of us

 </h4>
 </div>
 <div id="panelOne" class="panel-collapse collapse in">
 <div class="panel-body">
 Aromatherapy may be the solution to what's ...
 </div>
 </div>
 </div>
 <div class="panel panel-default">
 <div class="panel-heading">
 <h4 class="panel-title">
 <a data-toggle="collapse" data-parent="#newAccordion" href="#panelTwo">

103

Figure 80: Accordion replacement produced by sample 77

As mentioned, panels don't need to be grouped; they can be used in a singular fashion with just
a single element as the trigger for the folding to happen. For example, if you want to collapse a
panel using a simple button, just ensure that your button has a data attribute of toggle with the

value collapse, and a data attribute called target with the selector for the target panel as its

value.

Carousel

To round this chapter off, the last JavaScript plug-in I'm going to introduce is the newly designed
carousel. BS2 had a carousel, but like the accordion, it’s now been removed and greatly
simplified to make it easier to use.

 The planet is radiating four-dimensional superstructures

 </h4>
 </div>
 <div id="panelTwo" class="panel-collapse collapse">
 <div class="panel-body">
 It is time to take chi to the next level ...
 </div>
 </div>
 </div>
 <div class="panel panel-default">
 <div class="panel-heading">
 <h4 class="panel-title">
 <a data-toggle="collapse" data-parent="#newAccordion" href="#panelThree">
 Reality has always been radiating messengers whose souls are opened by
stardust

 </h4>
 </div>
 <div id="panelThree" class="panel-collapse collapse">
 <div class="panel-body">
 Self-actualization requires exploration ...
 </div>
 </div>
 </div>
</div>

104

Typically, the carousel plug-in is used at the top of a page to provide a rotating banner of
images, and in BS2, this was the only thing that the carousel could be used for. In BS3,
however, any content that can be placed inside the carousel’s panels will be rotated, including
images, text, svg, and much more.

The following code shows a basic example of how to construct a carousel:

Code Sample 78: BS3 Carousel

<div id="carousel-example-generic" class="carousel slide" data-ride="carousel">
 <ol class="carousel-indicators">
 <li data-target="#carousel-example-generic" data-slide-to="0"
class="active">
 <li data-target="#carousel-example-generic" data-slide-to="1">
 <li data-target="#carousel-example-generic" data-slide-to="2">

 <div class="carousel-inner">
 <div class="item active">

 <div class="carousel-caption">
 <h3>You and I are beings of the planet</h3>
 <p>Spacetime is a constant. Will requires exploration</p>
 </div>
 </div>
 <div class="item">

 <div class="carousel-caption">
 <h3>Nothing is impossible</h3>
 <p>Stardust requires exploration. You and I are storytellers of the
cosmos</p>
 </div>
 </div>
 <div class="item">

 <div class="carousel-caption">
 <h3>You and I are beings of the planet</h3>
 <p>Spacetime is a constant. Will requires exploration</p>
 </div>
 </div>
 </div>
 <a class="left carousel-control" href="#carousel-example-generic" data-
slide="prev">

 <a class="right carousel-control" href="#carousel-example-generic" data-
slide="next">

</div>

105

Figure 81: Carousel produced by code sample 78

There are a few more low-key JavaScript objects, but most of them are not directly usable from
normal user code, and are generally only used in special circumstances. The BS3 docs cover
everything I've missed, and if you're going to dig deeply into the JavaScript facilities available, a
long read and an understanding of how everything is hooked together is definitely a
requirement.

One final note: BS3 JavaScript plug-ins are nothing more than regular jQuery plug-ins (BS uses
jQuery under the hood). This means that it should be very easy to take your favorite jQuery
plug-in from places like unheap.com and adapt them to work with BS3 quite easily. Don’t forget
there is still a huge number of add-ons available out there already, especially to be used with
the framework, most of which are only a Google search away.

106

Chapter 6 Customizing Bootstrap 3

And so finally we get to the last chapter in the book, which will show you how to create custom
color sets.

If you recall back at the beginning, when we were going through the major changes, I mentioned
that the BS authors had provided an additional file to make BS3 look just like BS2, rather than
using its flat look.

Throughout this book, we've used the default BS3 flat look, but if you download the prebuilt
JavaScript version of BS3 from the get bootstrap site (www.getbootstrap.com) you'll find a new
file inside the archive you download called bootstrap-theme.css.

If you link this file into your project immediately after your inclusion of the core bootstrap.css file,
you'll find that even though you’re now using the new BS3, the look and feel of your application
still resembles BS2.

The authors realized that one of the main barriers to the adoption of BS3 in new applications
was the inability to style it in a custom manner, but with ease.

If you were a user of Less, or even SaSS (as BS3 now has SaSS bindings), then this wasn't an
issue. You simply opened up the Less sources, tweaked the variables and Mixins you needed,
and ran things through the Less compiler to get your new CSS script.

Unfortunately, not everyone used Less; in fact, many developers and designers only had the
ability to download and include the plain old pre-compiled CSS and JavaScript files, so a better
way had to be found.

The first change was opening up the entire Less sources to an in-page customization tool
directly on the Bootstrap main site, but this isn't a new thing; you were able to use this page
before in a limited way. With BS3, however, the Less customization tool has had a complete
overhaul, and you can now redefine EVERYTHING that BS3 uses, from font sizes and
typefaces, right through to grid sizes, trigger points, and basic contextual color sets.

In fact, there is now nothing that cannot be changed before you decide to download your new
customized CSS, as the following image shows:

http://www.getbootstrap.com/

107

Figure 82: Screenshot of the top half of the new customization tool

Because of the sheer size of the tool, it's impossible to show the entire thing in this book, but it's
easy enough to access. Simply go to www.getbootstrap.com and click Customize in the top
menu bar. You'll also see that you have many other options, such as which JavaScript plug-ins
and tool-kits to include, which components to include, and base style that you may not want.

For example, if all you want to use is the grid system, and nothing else, then you can simply
select only the grid system, and unselect all the other components.

The BS3 site will then generate just the required code to include, and no more. This is a boon
for those people who complain that all Bootstrap sites look the same, because it means that
your site absolutely does not have to look the same as the rest—you can just use the bits you
need, and use your own stuff for everything else.

There are two other ways you can customize your build. The first is to take the additional
'bootstrap-theme' CSS style sheet, make a copy, and then change the styles as you see fit. This
is not as easy as using the customization tools, but it's also not as difficult as the alternative.

Most of the class names and settings that you'll want to change to stamp your personal mark in
BS3 are already separated out in the BS2 theme, so the quickest way to experiment is simply to
put together a prototyping page with the main controls and elements on you want to change,
and then link in your copy of the BS2 theme.

If you’re using Node and something like Bower, it gets even easier, because you can use live
reload, then just watch your sample page change in near real-time as you tweak your custom
version of the theme sheet.

The second way is slightly more involved, and as described in the BS3 docs, comes in two
flavors: light customizations and heavy customizations.

An example of a light customization is adding a contextual color class to the button element. For
example, if you wanted to add btn-sky alongside the btn-info, btn-primary, etc. classes,

you might define a single style sheet to hold the following rules:

Code Sample 79: Light Customization, Adding a New Contextual Class to the BS3 Button Classes

.btn-sky, .btn-sky:hover, .btn-sky:active
{
 color: #000000;

http://www.getbootstrap.com/

108

When added and linked in correctly, it should look something like this:

Figure 83: Output from code sample 80, when used with the customization in sample 79

When used with a normal button tag in the following manner:

The hardest part of using this method is going through the base CSS style sheets to find the
names you wish to override; it's not exactly difficult, just long-winded.

Once you have one such as the button above, or you've found and copied out an alert, panel,
list, or other class, then you can easily make a template that can be reused whenever you want
to add a custom class of that type.

Heavy customizations are not very different from light customizations; the major difference is
that you override the entire class.

So, for example, you find all the classes related to btn, copy them, modify them, and include

them separately.

The new architecture inside the BS3 framework now means that once you know the target
selectors, and their siblings, creating an override is easy. As I’ve already pointed out, the
bootstrap-theme file already contains much of what you might want to modify anyway, and if
that's not an option, then try sites such as Bootswatch.com:

 text-shadow: 0 -1px 0 rgba(0, 0, 0, 2);
 background-color: #AAD4FF;
 border: 1px solid black;
}

.btn-sky
{
 background-repeat: repeat-x;
 background-image: linear-gradient(top, #00FFFF 0%, #FFFF00 100%);
}

.btn-sky:hover
{
 background-position: 0 -10px;
}

<button class="btn btn-sky">My Sky Button</button>

109

Figure 84: Screen shot of the sweet and cherry theme from Bootswatch.com

Many others have thousands of themes to choose from, both free and paid for, so there's no
excuse for your Bootstrap site to look the same as everyone else's.

110

Closing Notes

Well that’s it folks, that’s all I have for this book. I knew when I started writing the BS2 guide that
it wouldn't be too long before BS3 went mainstream. It took a little longer than expected to get it
out into the wild, but when it was released, it was met with so much enthusiasm that I knew I
simply had to start a follow-up covering BS3 straightaway.

After a brief discussion with the marketing team at Syncfusion (Hi guys!), we decided that the
way forward was to try and get this written in about a month, and by and large I did it. What you
you’re seeing now did not exist at the beginning of May 2014, and was nothing more than a few
scribbled down ideas on the notepad on my desk.

If you'd like to reach out and ask me any questions about the book, I can generally be found
hanging about on twitter as @shawty_ds. You can also generally find me on LinkedIn, or in the
Linked.NET (Lidnug) users group that I help run there.

I hope you enjoy this book and that it helps you become a better developer using Bootstrap 3. In
this new world of responsive web design, BS3 is a framework that shouldn't be taken lightly—it
represents a lot of research by one of the biggest social media companies in existence, and is
used to power most of their public-facing sites.

Until next time, keep calm and carry on bootstrapping.

https://www.linkedin.com/profile/view?id=36236951
https://www.linkedin.com/groups/LinkedNET-Users-Group-LIDNUG-43315

	Table of Contents
	The Story behind the Succinctly Series of Books
	About the Author
	Introduction
	What's Changed
	New Installation Methods
	Device Support

	Chapter 1 Migrating from Version 2 to Version 3
	Class Changes
	Migrating the Grid System
	Other Migrations

	Chapter 2 Common Pitfalls
	Internet Explorer Backwards Compatibility Modes
	Internet Explorer 10 Device Viewport
	Safari Percent Rounding
	Android Stock Browser
	And the Rest?

	Chapter 3 Changed CSS Features
	Typography Changes
	List Changes
	Table Changes
	Form Changes
	Output generated by code sample 18
	Button Changes
	Image Changes
	Helper and Visibility Changes

	Chapter 4 Changed Components Features
	Glyphicon Changes
	Button Changes
	Input Group Changes
	Navigation Changes
	Basic Navigation
	Navbar Navigation

	Label and Badge Changes
	List Group Changes
	Media Objects and Custom Thumbnail Changes
	Panel Changes
	Other changes

	Chapter 5 Changed JavaScript Features
	Modals
	Tabs
	Tooltips and Popovers
	Collapsible Panels
	Carousel

	Chapter 6 Customizing Bootstrap 3
	Closing Notes

