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Abstract. The 40 years old Standard Model, the theory of particle physics, seems to describe
all experimental data very well. All of its elementary particles were identified and studied
apart from the Higgs boson until 2012. For decades many experiments were built and operated
searching for it, and finally, the two main experiments of the Large Hadron Collider at CERN,
CMS and ATLAS, in 2012 observed a new particle with properties close to those predicted for
the Higgs boson. In this paper we outline the search story: the exclusion of the Higgs boson at
LEP, the Large Electron Positron collider, and its observation at LHC.

PACS numbers: 13.66.Fg, 14.80.Bn, 14.80.Ec, 25.75.Dw

1. Introduction: the Standard Model
The Standard Model, the general theory of particle physics was established more than 40 years
ago. It describes our world as consisting of two kinds of elementary particles, fermions and
bosons, differing by their spin, intrinsic angular momentum: fermions have half-integer, bosons
have integer spins measured in units of h̄, the reduced Planck constant. The elementary fermions
have three families, each consisting of one pair of quarks and one pair of leptons (Table 1). Every
fermion has an antiparticle of the opposite charge. The leptons can propagate freely, but the
quarks are confined in hadrons: they can only exist in bound states of three quarks, baryons
(like the proton and neutron) or those of a quark and an antiquark, mesons (like the pion).
Three antiquarks make antibaryons like the antiproton.

In the Standard Model the three basic particle interactions, the strong interaction holding the
quarks in the nucleons and the nucleons in the atomic nucleus, the weak interaction, responsible
for the decay of the heavier basic fermions, and the well known electromagnetic interaction, are
all derived from local gauge symmetries. A gauge symmetry is a freedom to define the coordinate
system measuring the strength of an interaction, the best known example of which is the freedom
to choose the potential zero of an electric field. A local symmetry is its modified form when the
gauge is changing in space-time according to a known function. The three basic interactions
are mediated by elementary bosons: the strong nuclear force by 8 gluons, the weak interactions
by the three heavy weak bosons and the electromagnetism by the photon. In order to cancel
uncomfortable terms from equations the theory also needs the existence of an additional scalar
boson, a particle with all its quantum numbers like charges and spin zero.

Local gauge symmetries give correct answers to important questions except the mass of
elementary particles: one has to violate them in order to get non-zero masses. This spontaneous
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Table 1. Leptons and quarks, the three families of basic fermions. T3 is the third component
of the weak isospin, the rest of the notation is explained in the text step by step.

symmetry breaking (SSB) mechanism was introduced in several steps to particle physics and it
is now an integral part of the Standard Model. It is called, somewhat unjustified, also the Higgs
mechanism, although it is the product of several people, so it could also be called Brout–Englert–
Higgs–Guralnik–Hagen–Kibble mechanism.1–5 These days we try to call it BEH mechanism by
the initials of those who have first published it. As the scalar boson was first introduced by
Peter Higgs, it is justly called Higgs boson.

The spontaneous symmetry breaking mechanism consists of adding to the electroweak vacuum
a potential which breaks its perfect symmetry. The form of this potential is

V = µ2Φ†Φ + λ(Φ†Φ)2 (1)

where Φ is a complex doublet field of four components and λ > 0 is a real constant. If µ2 > 0
then it is a scalar field with a non-zero mass µ and a potential minimum at Φ = 0. However, if
µ2 < 0 then it has a non-zero minimum

Φ†Φ = 1
2(Φ2

1 + Φ2
2 + Φ2

3 + Φ2
4) = −µ

2

2λ
. (2)

Φ can be chosen so that it had just one real component and then expanded around its minimum,

vacuum expectation value v =
√
−µ2

λ as

Φ(x) =
√

1
2

(
0

v + h(x)

)
(3)

The Φ field is imposed onto the vacuum of the U(1)Y ⊗SU(2)L combined local gauge symmetries,
breaking them. Here

Y = 2(Q− T 3) (4)

the hypercharge of the fermion (where Q is the electric charge and T 3 is the third component
of the weak isospin, see Table 1), and SU(2)L acts on left-polarized fermion doublets. As
the photon has zero mass, from the neutral part of the electroweak Lagrangian we separate a
good U(1)Q using relation (4) between electric charge Q and hypercharge Y , and the rest gives
a correct weak interaction with three massive gauge bosons, W± and Z. As a result of this
manipulation, 3 components of the Φ field become the longitudinal polarizations (masses) of the
3 SU(2) gauge bosons and the fourth component makes the scalar Higgs boson. The charged
currents of the weak interaction, mediated by W± are pure SU(2)L whereas Z is the result of
the unification, thus they have different masses and Z mediates a right-handed neutral current
as well.



Figure 1. Spontaneous symmetry breaking: the BEH potential. The axial symmetry of the
potential is not violated by putting a ball on the top at Φ = 0, but it will be spontaneously
broken when the ball rolls down in the valley. However, the coordinate system can always be
chosen so that the ball were at point Im(Φ) = 0.

Spontaneous symmetry breaking is well illustrated by a Mexican hat (Fig. 1). Its axial
symmetry is not violated by putting a ball on its top, however, the ball will eventually go down
and break the original symmetry. SSB makes it possible to introduce masses in the theoretical
equations: masses for the heavy weak bosons, W+, W− and Z0 mediating the weak interaction
and also masses for the basic fermions, the quarks and leptons. There is a substantial difference,
however: whereas the masses of the weak bosons appear as a result of SSB, and so they are
predicted by the Standard Model, the fermion mass terms have to be added ad hoc to the
Standard Model Lagrangian as a triple interaction among the left-polarized fermion doublet, the
(3) BEH doublet and the right-polarized fermion singlet field with arbitrary coupling constants
giving the fermion masses. The BEH field introduces 2 free parameters in the Standard Model;
as the vacuum expectation value can be determined from the Fermi coupling constant (v ∼ 246
GeV), the only adjustable parameters left in the electroweak theory are the U(1) and SU(2)
coupling constants and the masses of the fermions and of the Higgs boson.

Note that the masses of our macroscopic world are mostly due to the energy content of the
proton and neutron and not due to the BEH mechanism.

Since almost 40 years, more and more precise new data were acquired at the particle
accelerators and all seem to agree very well with the predictions of the Standard Model.
Hundreds of experiments are summarized in the few parameters of Fig. 2 according to the LEP
Electroweak Working Group.6 It shows the 2012 situation of the analysis of electroweak data:
all experimental data and theoretical estimates agree within the statistical boundaries. The only
parameter which deviates at more than 2 uncertainties is the forward-backward asymmetry of
the decay of the Z boson to two b quarks.

The Higgs boson of the Standard Model is the only scalar particle: all of its quantum numbers
are zero, its only property is mass. Fitting experimental data predicts that the Higgs mass should
be around 100 GeV (between 80 and 160 GeV within 95% confidence). All constituents of the
Standard Model were identified and studied experimentally before the launch of the LHC, apart
from the Higgs boson, that is how it became the most wanted particle. As Peter Higgs himself
told7 “It was in 1972 ... that my life as a boson really began”.



Figure 2. Various parameters of the Standard Model:6 average measured values (2nd column)
with uncertainties (3rd column), the predictions or fits by the Standard Model (4th column) and
a bar plot showing the differences between theory and experiment divided by the experimental
uncertainties. The agreement is purely statistical as the difference is in only one case more than
2 uncertainties.

2. Analysis Concepts of Particle Physicists
The statistical methods1 used by particle physicists are as different from the official
mathematical statistics as mechanical engineering from the Lagrangian or Hamiltonian
formulation of theoretical mechanics. At the same time statistics is extremely important for data
analysis in particle physics: every few years international workshops are organized by particle
physicists working at the Large Hadron Collider to exchange ideas on statistical methods, the
last one having been in 2011.9 In the Appendix of that volume Eilam Gross defines the aim of
his paper LHC Statistics for Pedestrians: ”A pedestrian’s guide . . . to help the confused physicist
to understand the jargon and methods used by HEP phystatisticians. . . . A phystatistician is a
physicist who knows his way in statistics and knows how Kendall’s advanced theory of statistics
book looks like.

1 This section follows the line of ref.8



Every high-energy collaboration has phystatistician experts and they all have quite different
ideas how to analyze data. In order to avoid confusion, the large LHC collaborations have
Statistics Committees which publish home pages of recommendations how to do things. The
Statistics Committees of both CMS and ATLAS have several members who published text books
on statistics for physicists and ATLAS and CMS have a joint such committee as well.

As in high energy physics the primary experimental data are basically event counts, the
basic concepts are Poisson-like. The data follow the Poisson distribution (ni events in bin

i): P(ni|µi) =
µ
ni
i e−µi

ni!
and the result is usually expressed in terms of the Poisson likelihood:

L = ΠiP(ni|µi). The expected number of events is µ̃i =
∑
j Lσjεji, where L is the integral

luminosity collected, σj is the cross section of source j and εji is the efficiency (determined by
Monte Carlo simulation) of source j in bin i.

Luminosity is the rate of collecting data for colliders, similar to the flux of fixed-target
experiments. It is defined as L = fnN1N2

A where f is the circulation frequency of the colliding
beams; n is the number of particle bunches in the ring; N1, N2 are the numbers of particles in
the two kinds of bunches; A is the spatial overlap of the colliding bunches. The total number
of collisions is characterized by the integrated luminosity:

∫ t2
t1
Ldt which is usually measured in

units of inverse cross-section, at LHC in [pb−1, fb−1]. The expected rate of a reaction with cross
section σ at ε detection efficiency is R = εσL.

According to the general convention in accelerator experiments a given new phenomenon is
excluded if we can show it not appearing at a ≥ 95% confidence level and observed if it exceeds
> 5σ above background where now, for a change, σ is the experimental uncertainty according
to the best honest guess of the experimentalist.

That σ uncertainty has a statistical component from the number of observed events and
systematic ones from various sources, like Monte Carlo statistics and inputs, experimental
calibration factors, detection efficiencies, etc, with the common name nuisance parameters.
To get a rough estimation of the total error the systematic uncertainties could be added

quadratically to the statistical one: σ =
√
σ2

stat + σ2
syst, but in practice we derive the final

uncertainty via marginalizing (integrating out)10 the nuisance parameters Θ in likelihood L
using the related probability distributions W: L(P ;x) =W(x|P ) =

∫
W(x|P,Θ)W(Θ|P )dΘ.

Another important feature of high-energy data analysis is the blind analysis:11 “A blind
analysis is a measurement which is performed without looking at the answer. Blind analyses are
the optimal way to reduce or eliminate experimenter’s bias, the unintended biasing of a result
in a particular direction.” It came from medical research and the idea is to optimize, prove and
publish your analysis technique using simulations and earlier data only before touching new data
in the critical region. For instance, in Spring and early Summer, the 2012 CMS data were blinded
in the invariant mass region 110 < MH < 140 GeV (where MH is the simulated Higgs mass)
because of the 3σ excess observed in 2011. The same procedure was used again in Autumn 2012.
The methods had to be fixed and approved by the collaboration before simultaneous unblinding
for all analysis channels.

3. Search for the Higgs boson
What we usually try to observe is a resonance. For a particle with lifetime τ = Γ−1 and decay
rate Γ the event rate against the invariant mass of the decay products is |χ(E)|2 = 1

(E−M)2+Γ2/4
,

i.e. a Lorentz curve (Breit-Wigner resonance). It shows a peak at the M invariant mass of
the decaying system with a full width at half maximum Γ. The discovery of a new particle
can be claimed if we see a resonance at the same invariant mass of the particle in all expected
decay channels, by all related experiments. Many hopeful new observations were disproved as
statistical fluctuations by other experiments, and a few stayed unproven as not confirmed.

The search involves several consecutive steps.



• Compose a complete Standard Model background using Monte Carlo simulation taking into
account all types of possible events normalized to their cross-sections.

• Compose Higgs signals, simulations of all possible production and decay processes with all
possible Higgs-boson masses.

• Put all these through the detector simulation to get events analogous to the expected
measured ones.

• Optimize the event selection via reducing the B background and enhancing the S signal via
maximizing e.g. NS/

√
NB or12 2 · (

√
NS +NB −

√
NB).

• Check the background, i.e. the description of data by the simulation for the given luminosity:
the simulation should reproduce the observed background distributions in all details. For
instance, you can check the background of the decay of a neutral particle to charged leptons
by selecting lepton pairs of identical charges.

• Check the signal: does it agree with the expectation by the theoretical model?

Once you are happy with the simulations and the event selection, you must chose a test
statistic. That could be any kind of probability variable characteristic of the given phenomenon:
probabilities for having background only, for having signal or combinations. One of the favorite
is the Q likelihood ratio of signal + background over background: Q = Ls+b/Lb. As you see,
although our basic approach is definitely frequentist there is a certain Bayesian influence as well.
What most frequently plotted is

−2 lnQ(mH) = 2
∑Nch
k=1

[
sk(mH)−

∑nk
j=1 ln

(
1 +

sk(mH)Sk(xjk;mH)
bkBk(xjk)

)]
Here the variables are the following:

• nk: events observed in channel k, k = 1 . . . Nch.

• sk(mH) and bk: signal and background events in channel k for Higgs mass mH .

• Sk(xjk;mH) and Bk(xjk): probability distributions for events for Higgs mass mH at test
point xjk.

• xjk: position of event j of channel k on the plane of its reconstructed Higgs mass and
cumulative testing variable constructed of various special features of the event like b-tagging,
signal likelihood, neural network output, etc.

Several other testing variables can be constructed on the same basis, the most frequently
used ones are probabilities of NOT having the expected signal on the basis of the expected
background and the collected data:

• CLb, the signal confidence level assuming background only, i.e. the complete absence of the
signal, or

• The so-called p−value: the probability of obtaining a test statistic at least as extreme as the
one that was actually observed, assuming that the null hypothesis is true. Translated to our
language that means the probability that random fluctuation of the measured background
could give the observed excess (if any).

4. Exclusion at LEP
Although the experiments of the Large Electron Positron (LEP) collider (Fig. 3) saw no
earthshaking discoveries, no real deviation from the Standard Model, LEP provided an incredible
amount of very precise measurements, some of which are presented in Fig. 2. In its last two
years of working, LEP was mostly devoted to the search for the Higgs boson, collecting more
luminosity at higher energies than in the previous 10 years together.



Figure 3. The accelerator complex of CERN in the LEP era

At LEP the dominant formation process is Higgs-strahlung e−e+→ZH (the name comes from
the funny English word Bremsstrahlung2) and the dominant Higgs decay is to 2 b-quarks. The
various channels are different only due to the various decay processes of the accompanying Z
boson.

LEP had 4 large experiments (Fig. 3) in the 4 interaction points of the electron-positron
collider, ALEPH, DELPHI, L3 and OPAL (the present author was working in OPAL). The
structure of all contemporary high-energy detectors are very similar, consisting of onion-like
layers. A sensitive pixel detector right around the beam pipe, a tracking system of multiwire
chambers or semiconductor detectors of minimal weight material following the tracks of charged
particles in the magnetic field of the detector, then an electromagnetic calorimeter, something
heavy absorbing all electrons and photons, outside of that an even heavier hadron calorimeter,
absorbing the pions, protons, neutrons, etc., and finally, muon chambers, identifying the path
of energetic muons leaving the system. All detectors have huge magnets encompassing as much
as possible of the detector parts. Figure 5 shows a Higgs-boson-like event detected by ALEPH
in the 4-jet channel.

Statistics played a rough joke at LEP: one of the experiments, ALEPH, saw in one of the

2 Other languages use the simple mirror translation of the German word: braking radiation



Figure 4. The various decay channels of the Higgs boson according to the Standard Model.
Below 120 GeV the H→ bb decay channel dominates.

possible Higgs decay channels a very significant signal corresponding to a Higgs boson of a mass
of 115 GeV/c2, while the rest of LEP have not seen anything13 (Fig. 6). ALEPH saw the excess
in 4-jet events only, in those events where the Higgs boson decays to a pair of b quarks and the
accompanying Z boson also decays to a quark pair (Fig. 5). The b quark is identified by its long
lifetime leading to a secondary decay vertex in the event. Another strange thing was that the
Higgs signal seen by ALEPH by far exceeded the expectations of the Standard Model. Also,
the observed Higgs mass was critical as it coincided with the average kinematic limit of LEP: in
2000 the average collision energy of LEP was about 206 GeV and the observed resonance was
found at 115 GeV/c2, the difference is very close to the mass of the Z boson, 91 GeV/c2.

A quite interesting feature of data analysis was the plotting of spaghetti diagrams. Those
are signal weight distributions of each selected event as a function of the assumed Higgs mass.
Fig. 7 shows the weight distributions of 17 selected Higgs-like candidate events observed by the
4 LEP experiments.13 The ALEPH events crowd around 115 GeV/c2 whereas for the other 3
experiments there are less of them with a rather random mass distribution. This caused quite
an excitement at LEP: many physicists signed the petition to the Director General of CERN to
extend the life of LEP by another year, but that was refused: the simulated projections were
not very promising for a discovery of the SM Higgs boson (the effect seen by ALEPH only was
far too large, much higher than the prediction of the Standard Model), and the contractors for
building LHC were already prepared to start.

5. Search and observation at LHC
Figure 8 shows the various formation processes of the SM Higgs boson in p-p collisions at LHC.
The dominant reaction is gluon fusion and vector boson fusion is also significant.

Just like LEP had, the Large Hadron Collider has also 4 interaction points (Fig. 9) with
a major experiment (and sometimes a smaller one as well) in each. The two largest ones,



Figure 5. Higgs-like event detected by the ALEPH experiment at LEP: an e+e− collision
produces 4 hadrons containing b quarks recognized by their secondary vertices due to longer
lifetimes.

ATLAS14 and CMS15 were designed with the main aim of discovering the Higgs boson, ALICE16

is specialized on heavy ion collisions and LHCb17 on studying rare processes involving b quarks.
The author belongs to CMS, so most of the results we mention are due to CMS, but all will be
compared to those of ATLAS pointing out the similarities and the (very few and not significant)
differences.

The ATLAS and CMS collaborations are really huge. According to the official statistics in
2012 CMS had 3275 physicists (incl. 1535 students) and 790 engineers and technicians from 179
institutions of 41 countries (ATLAS was even slightly larger). The biggest participant of CMS is
the USA, then Italy, Germany and Russia. It is quite remarkable how similar and different are
ATLAS and CMS. ATLAS uses a lot of new detector techniques while CMS consists of mostly
traditional parts. CMS is based on the largest superconducting solenoid on Earth whereas
ATLAS has a smaller solenoid encircled by 8 huge magnets making a toroidal field. CMS weighs
14000 tons, twice the weight of ATLAS in an order of magnitude smaller volume. And in spite
of all these differences, the two collaborations get very similar results.

The design of LHC and its experiments started well before the actual start of LEP, which
means that the construction of the LHC detectors took two decades of hard work before the
actual data acquisition started. Its first two years LHC devoted to development rather than
data taking, that really started in 2011 only.

Even before LHC started the parameter fitting of the Standard Model pointed toward a
light Higgs boson, with a mass around 100 GeV/c2. As LEP excluded the Higgs boson below
114 GeV/c2 the LHC experiments had to be prepared for detecting the Higgs boson in the most



Figure 6. Exclusion of the Higgs boson at LEP. The test statistic, −2 lnQ shows a significant
signal for ALEPH and nothing for the other 3 LEP experiments at equivalent statistical and
experimental circumstances. The observed signal of ALEPH by far exceeds the expectations of
the Standard Model.

complicated mass region, around 120 GeV/c2, with several competing decay channels (Fig. 4).
It was shown very early that the best channels to observe a light Higgs boson at LHC should be
two-photon, H→γγ and 4-lepton, H→ZZ∗→`+`−`+`− channels, because of the very high hadron
background. Indeed, in 2012 the LHC luminosity was already so high that every bunch crossing
(ie. every event) contained 10–20 p-p collisions leading to copious hadron production. Thus
both large experiments, CMS and ATLAS designed their tracking systems and electromagnetic
calorimeters with this in mind. The electromagnetic calorimeter of CMS consists of 75,848
PbWO4 single crystal scintillators, whereas that of ATLAS is a sampling calorimeter based on
liquid argon shower detectors.

By the beginning of 2012, when all 2011 data were analyzed, the possible mass of the SM
Higgs boson was already confined to the region of 114 < MH < 127 GeV/c2 by CMS18 (with very
similar results from ATLAS). In that region 2– 3 σ excesses were found at ∼125 GeV/c2 in the
two main decay channels, H→γγ and H→ ZZ. It seemed more and more probable that the Higgs
boson will be observed at LHC in 2012, it was even decided by the CERN administration to
extend the data taking scheduled for 2012 before the long shutdown for accelerator development
if necessary for the discovery.

On July 4th, the beginning of the large annual high-energy physics congress in Melbourne,
the spokespersons of ATLAS and CMS gave talks from CERN (in internet connection to the
whole word, including, of course, the main auditorium of the Australian conference) on Higgs
search. They announced that at LHC collision energies 7 and 8 TeV, in the two most significant
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Figure 7. Spaghetti diagrams of 17 Higgs-like events detected by the 4 LEP experiments: signal
weights against the simulated Higgs mass.13 The ALEPH events crowd around 115 GeV/c2

whereas for the other 3 experiments there are less of them with a rather random mass
distribution.

decay channels H → γγ and H → ZZ → `+`−`+`−, at an invariant mass of m ≈ 126 GeV a new
boson is seen at a convincing statistical significance of 5σ confidence level each with properties
corresponding to those of the Standard Model Higgs boson. The fact that the new particle could
decay to two photons or Z bosons, confined its spin to an even integer, i.e. a boson of S = 0 or
S = 2. Of course, as the data analysis was optimized to find the SM Higgs, it was very unlikely
to find something very different. Nevertheless, the two experiments emphasized that it has to
be studied, whether or not its spin is really zero with a + parity (the pseudo-scalar mesons have
spin 0 with negative parity), and that its decay probabilities to various final states follow the
predictions of the Standard Model. After reanalyzing their data the Tevatron experiments, CDF
and D0 also found an excess19 at this mass (after the LHC started the Tevatron accelerator of
Fermilab was stopped).

6. Reactions of the Media
The saying that three people can keep something secret only if two of them are dead is attributed
to Benjamin Franklin. As any result of a collaboration has to be approved by all members before
it is made public, the more than 6000 participants of ATLAS and CMS knew well in advance
the developing result. Thus two days before the 4th July announcement, Nature Online already
reported the result.20 Of course, the fact that the CERN management invited to the seminar all
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Figure 8. Formation of the SM Higgs boson in p-p collisions at LHC.

leading scientists of the field including the theoreticians who developed spontaneous symmetry
breaking for the Standard Model also helped people to guess that something dramatic will be
announced.

CERN produced some figures concerning the media echo of the day: 55 media organizations
were represented at the talks of 4 July, the talks were broadcasted via close to half a million
internet connections (many of them being conference rooms in partner institutions, e.g. three
in Hungary with quite an audience in each), 1034 TV stations devoted 5016 news broadcasts to
the event for more than a billion (109) people. Many-many news articles and even more blogs
and talks discussed the conditions and importance of the discovery.

7. The observations
On 31 July the two experiments submitted papers of the discovery to Physics Letters B, they
were published 14 August.21,22 Both papers are 15 pages long followed by 16 pages of close to
3000 authors and both are dedicated to the memory of those participants who could not live to
see the result of the more than two decades of construction work. Fig. 12 shows the di-photon
spectra obtained by ATLAS and CMS in July 2012, after analyzing about a quarter of the data
to be collected in 2012. The 4-lepton spectra were quite similar with less background and signal,
they are shown in Fig. 13. Thus both experiments saw at the same invariant mass in both
most significant decay channels the new boson. In all cases the signal strengths agreed within
uncertainties to the predictions of the Standard Model.

What was really convincing of the observation was the distribution of the p-values of the
events selected in the various analyzed decay channels of the hypothetical Higgs boson. For
CMS it is shown in Fig. 14: the significance is already as high as 5σ for the data available in
July 2012. It was a joke of statistics that in July 2012 adding together two decay channels,
H → γγ and H → 4` gave the same 5σ significance for both ATLAS and CMS whereas adding



Figure 9. The accelerator complex of CERN with the Large Hadron Collider

to it the results for other channels increased the significance to 6σ for ATLAS and left it at 5σ
for CMS (Fig. 14).



Figure 10. Higgs-like event detected by the CMS experiment at LHC: a boson is formed in
a p-p collision and decays to 2 energetic gamma photons. The block sizes at the end of the
invisible photon trajectories correspond to the photon energies deposited in the electromagnetic
calorimeter.

Figure 11. Higgs-like event detected by the ATLAS experiment at LHC: a p-p collision produces
4 electrons, one pair is from Z-decay as identified by the invariant mass. The 4-electron mass
corresponds to a decaying mass of 125 GeV/c2. Upper right: x-y view, lower right: lego plot
of energy deposits in the calorimeters. Middle right shows that there were 9 other identified
vertices of p-p collisions in the neighborhood of the candidate Higgs decay belonging to the same
LHC bunch crossing.



Figure 12. First observation of the Higgs-like boson by ATLAS21 and CMS22 in the γγ invariant
mass distribution at 126 GeV/c2. The amplitudes of both observed signals are close to the
expectations of the Standard Model as shown by the fitted curves. Both experiments plotted
the raw events and also the sum of event weights according to their signal-likelihood.

8. Is it really the Higgs boson?
Analyzing most of the data collected in 2012 confirmed the existence of the new boson and
led to the conclusion that all observed properties of the newly discovered particle are within
statistics close to those predicted for the Higgs boson of the Standard Model. The fact that it
decays to two photons points to its having spin 0 or 2. The charged lepton spectra bears the
features of its having S = 0+ as ascertained by both experiments.24,25 Its mass as determined
by CMS,26 the average of all decay channels is < MX >= 125.7± 0.3(stat)± 0.3(syst) (Fig. 15).
The ATLAS result is almost exactly the same:26 125.5± 0.2(stat)± 0.6(syst). The differences
in the uncertainties are due to the facts that ATLAS had more signal-like data, but also got
more different masses in the two main channels. The measured signal strengths of the new
particle are also compatible with that expected for the Standard Model Higgs boson: for CMS
it is ∼ 20% less while for ATLAS ∼ 40% more than the SM prediction, but both deviations
are within the experimental uncertainties. As a theoretician remarked whenever ATLAS has an
excess CMS comes up for everybody’s annoyance with a deficit, bringing the average close to
the SM prediction.

The LHC experiments studied the cross sections of the processes connected to the new
particle. Fig. 16 shows the signal strengths of production and decay in various possible channels



Figure 13. First observation of the Higgs-like boson by CMS22 and ATLAS21 in the `+`−`+`−

invariant mass distribution at 126 GeV/c2. The amplitudes of the observed signals are close to
the expectations of the Standard Model.

Figure 14. Observation of the Higgs-like boson by CMS23 in the invariant mass distribution
of p-values at 125 GeV/c2 as based on the data collected at LHC at collision energies 7 TeV in
2011 and 8 TeV in 2012 (left) and in the various decay channels (right). The amplitude of the
observed signal is close to the expectations of the Standard Model.

of the Higgs-like boson measured by CMS23 as compared to those predicted by the Standard
Model for the Higgs boson with a mass of 126 GeV/c2. The amplitudes of all observed signals
are in agreement with the expectations of the Standard Model. ATLAS got similar results, of
course.

Thus what we found is very likely the Standard Model Higgs boson. On one hand this is



Figure 15. The relative signal strengths in the most significant decay channels normalized to
the predictions of the Standard Model for MH = 125 GeV against the invariant masses of the
new boson as measured by CMS.23 The two data points agree within statistics with each other
and with the expectations of the Standard Model.

Figure 16. Signal strengths observed by CMS23 for the Higgs-like particle in various possible
decay (left) and production (right) channels as compared to those predicted by the Standard
Model for the Higgs boson with a mass of 125.5 GeV/c2.



a great success of particle physics. On the other hand this is somewhat of a disappointment
as the SM has theoretical shortcomings which need new physics to resolve. Just to list a few
of them: it cannot unite the interactions at large energies, cannot account for the dark matter
of the Universe and cannot explain neutrino oscillations. There are many extensions of the
theory which should result in deviations from the Standard Model. Most of those problems can
be resolved e.g. by supersymmetry, but none of its predicted phenomena could be found yet
experimentally. The observables of the Higgs boson should be sensitive to some of the features
of new physics and these studies will be the main job of ATLAS and CMS in the future, from
2015 when the LHC will restart with twice the energy and luminosity of 2012.

It is very interesting that the 126 GeV mass of the Higgs boson seems to be exciting for
theoreticians, there was even a special workshop27 organized to discuss this mass in 2013. The
reason is that MH = 126 GeV is at the border line of the stability of electroweak vacuum on
the plane of top mass against Higgs mass, see e.g.28 At the Madrid workshop the apparent fine
tuning of the Standard Model compelled some physicists to recall the anthropic principle.

9. The Nobel Prize
As the LHC discovery gradually ripened many people asked who will get the Nobel Prize if the
Higgs boson is discovered. There were even rumors that the Nobel Committee might consider
the give it to CERN and to the two collaborations, although that would have been against the
Nobel tradition. By March 2013 it was already quite clear that the new particle is actually a
Higgs boson and very probably that of the Standard Model. In the end of September 2013 the
blogs started speculate about Higgs and Englert as Robert Brout passed away in 2011. Indeed,
in October François Englert and Peter Ware Higgs received the 2013 Nobel Prize in physics ”for
the theoretical discovery of a mechanism that contributes to our understanding of the origin
of mass of subatomic particles, and which recently was confirmed through the discovery of the
predicted fundamental particle by the ATLAS and CMS experiments at CERN’s Large Hadron
Collider.”
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