
VLSI DESIGN # 2000 OPA (Overseas Publishers Association) N.V.

2000, Vol. 00, No. 00, pp. 1 ± 43 Published by license under

Reprints available directly from the publisher the Gordon and Breach Science

Photocopying permitted by license only Publishers imprint.

Printed in Malaysia.

Tutorial on VLSI Partitioning

SAO-JIE CHENa, y and CHUNG-KUAN CHENGb,*

aDept. of Electrical Engineering, National Taiwan University, Taipei, Taiwan 10764; bDept. of Computer Science
and Engineering, University of California, San Diego, La Jolla, CA 92093-0114

(Received 1 March 1999; In ®nal form 10 February 2000)

The tutorial introduces the partitioning with applications to VLSI circuit designs. The
problem formulations include two-way, multiway, and multi-level partitioning,
partitioning with replication, and performance driven partitioning. We depict the
models of multiple pin nets for the partitioning processes. To derive the optimum
solutions, we describe the branch and bound method and the dynamic programming
method for a special case of circuits. We also explain several heuristics including the
group migration algorithms, network ¯ow approaches, programming methods,
Lagrange multiplier methods, and clustering methods. We conclude the tutorial with
research directions.

Keywords: Partitioning, clustering, network ¯ow, hierarchical partitioning, replication, perfor-
mance driven partitioning

1. INTRODUCTION

Automatic partitioning [5, 61, 78, 72] is becoming

an important topic with the advent of deep sub-

micron technologies.An e�cient and e�ective parti-

tioning [12, 17, 19, 48, 69, 70, 81, 94, 105, 77] tool

can drastically reduce the complexity of the design

process and handle engineering change orders in a

manageable scope. Moreover, the quality of the

partitioning di�erentiates the ®nal product in terms

of production cost and system performance.

The size of VLSI designs has increased to systems

of hundreds ofmillions of transistors. The complex-

ity of the circuit has become so high that it is very

di�cult to design and simulate the whole system

without decomposing it into sets of smaller sub-

systems. This divide and conquer strategy relies on

partitioning to manipulate the whole system into

hierarchical tree structure.

Partitioning is also needed to handle engineering

change orders. For huge systems, design iterations

require very fast turn around time. A hierarchical

partitioning methodology can localize the mod-

i®cations and reduce the complexity.

Furthermore, a good partitioning tool can

decrease the production cost and improve the

*Corresponding author. Tel: (858)534-6184, Fax: (858)534-7029, e-mail: kuan@cs.ucsd.edu
yTel: (8862)2363-5251 ext. 417, e-mail: csj@cc.ee.ntu.edu.tw

1

I207T001015 . 207
T001015d.207

system performance. With the advance of fabrica-

tion technologies, the cost of a transistor drops

while the cost of input/output pads remains fairly

constant. Consequently, the size of the interface

between partitions, e.g., between chips, determines

a signi®cant portion of themanufacturing expenses.

And the quality of the partitioning has strong e�ect

on production cost. Furthermore, in submicron

designs, interconnection delays tend to dominate

gate delays [8]; therefore system performance is

greatly in¯uenced by the partitions.

Partitioning has been applied to solve the

various aspects of VLSI design problems [5, 36]:

� Physical packaging Partitioning decomposes

the system in order to satisfy the physical

packaging constraints. The partitioning con-

forms to a physical hierarchy ranging from

cabinets, cases, boards, chips, to modular blocks.

� Divide and conquer strategy Partitioning is used

to tackle the design complexity with a divide and

conqure strategy [21]. This strategy is adopted to

decompose the project between team members,

to construct a logic hierarchy for logic synthesis,

to transform the netlist into physical hierarchy

for ¯oorplanning, to allocate cells into regions

for placement and RLC extraction, and manip-

ulate hierarchies between logic and layout for

simulation.

� System emulation and rapid prototyping One

approach for system emulation and prototyping

is to construct the hardware with ®eld program-

mable gate arrays. Usually, the capacity of these

®eld programmable gate arrays is smaller than

current VLSI designs. Thus, these prototyping

machines are composed of a hierarchical struc-

ture of ®eld programmable gate arrays. A

partitioning tool is needed to map the netlist into

the hardware [110].

� Hardware and software codesign For hardware

and software codesign, partitioning is used to de-

compose the designs into hardware and software.

� Management of design reuse For huge designs

especially system-on-a-chip, we have to manage

design reuse. Partitioning can identify clusters of

the netlist and construct functional modules out

of the clusters.

While partitioning is a tool required to manage

huge systems in many ®elds such as e�cient

storage of large databases on disks, data mining,

and etc., in this tutorial, we focus our e�orts on

partitioning with applications to VLSI circuit

designs. In the next section, we describe the

notations for the tutorial. In section three, the

formulations of the partitioning problems are

stated. Section four covers the models for multiple

pin nets. Section ®ve depicts the partitioning

algorithms. The tutorial is concluded with research

directions.

2. PRELIMINARIES

In this section, we establish notations used and

formulate the partitioning problems addressed in

our approaches. A circuit is represented by a

hypergraph, H(V,E), where the vertex set

V={vi j i=1, 2, . . . , n} denotes the set of modules

and the hyperedge set E={ej j j=1, 2, . . . ,m} de-

notes the set of nets. Each net ej is a subset of V

with cardinality jejj � 2. The modules in ej are

called the pins of ej.

The hypergraph representation for a circuit with

9 modules and 6 signal nets is shown in Figure 1,

where nets e1, e3 and e5 are two-pin nets, net e6 is a

three-pin net, and nets e2 and e4 are four-pin nets.

When the circuit has only two pin nets, we can

simplify the representation to a graph G(V,E). A

net connecting modules vi and vj is represented by

eij with a connectivity cij. We set cij=0 if there is no

net connecting modules vi and vj. We shall show

later that for certain formulations we replace

multiple pin nets with models of two pin nets.

The replacement is performed when the partition-

ing algorithm is devised for graph models.

(i) Module Size and Net Connectivity Each mod-

ule vi is attached with a size si in R+, positive real

numbers. We de®ne S�Vj� �
P

vi2Vj
si to be the size

of a partition Vj. Each net ei is attached with a

2 S.-J. CHEN AND C.-K. CHENG

I207T001015 . 207
T001015d.207

connectivity ci in R+. By default, ci=1. For a bus

of multiple signal lines, we can represent the bus

with a net ei of connectivity ci equal to the number

of lines. We can also assign higher weights for

some important nets, this will enable us to keep the

modules of these nets in the same partition.

In this tutorial, we will assume that circuits are

represented as hypergraphs except when stated

otherwise, hence, the terms circuit, netlist, and

hypergraph are used interchangeably throughout

the tuorial.

(ii) Partitions and Cuts The set of hyperedges

connecting any two-way partition (V1,V2) of two

disjoint vertex sets V1 and V2 is denoted by a cut

E(V1,V2)={ej2E j 0< jej\V1j and 0< jej\V2j},

i.e., ej2E(V1,V2) if there exist some pins of ej in V1

and some di�erent pins of ej in V2. We de®ne

C�V1;V2� �
P

ei2E�V1;V2�
ci to be the cut count of

the partition (V1,V2).

For a multiway partition (V1,V2, . . . ,Vk)

where k>2, a cut E(V1,V2, . . . ,Vk)={ej2Ej 9 i

s.t. 0< jej\Vij< jejj}. For each subset Vi, we

denote its external cut set E(Vi)={ej2E j0< j

ej\Vij< jejj}. We denote its adjacent net set to be

the nets with some pin contained in Vi, i.e.,

I(Vi)={ei j jei\Vij>0}.

(iii) Replication Cuts and Directed Cuts For

replication cuts and performance driven partition-

ing, the direction of the nets makes a di�erence in

the process. We characterize the pins of each net

into two types: source and sink. A directed net ei is

denoted by (ai, bi) where ai�V are the source pins

of the net and bi�V are the sink pins of the net.

We assume that jai[bij � 2, jaij � 1 and jbij � 1.

Usually, each net has one source pin and multiple

sink pins. However, some nets may have multiple

sources which share the same interconnect line.

Furthermore, one pin can be both a source pin and

sink pin of the same net. Therefore, ai and bi may

have a nonempty intersection.

For two disjoint vertex sets X and Y, we shall use

E(X!Y) to denote the directed cut set from X to

Y. Net setE(X!Y) contains all the nets ei= (ai, bi)

such that X intersects the source pin set ai and Y

intersects the sink pin set bi, i.e., E(X!Y)=

{ei j ei=(ai, bi), ai\X 6� ;, bi\Y 6� ;}. We use the

function C(X!Y) to denote the total cut count

of the nets in E(X!Y), i.e., C�X ! Y� �P
ei2E�X!Y� ci.

(iv) Performance Driven Partitioning In perfor-

mance driven partitioning [106], modules are

distinguished into two types: combinational ele-

ments and globally clocked registers. In illustra-

tion, we shall use circles to represent the com-

binational elements and rectangles to represent the

registers in ®gures (Fig. 13). Each module vi has an

associated delay di.

A path of length k from a module vi to a module

vj is a sequence hvi0 ; vi1 ; . . . ; viki of modules such

that vi � vi0 , vj � vik and for each l2 {1, 2, . . . , k},

modules vilÿ1 and vil are a souce pin and a sink pin

of a net in E, respectively.

(v) Clustering Given a hypergraph H(V,E),

highly connected modules in V can be grouped

FIGURE 1 Hypergraph example.

3VLSI PARTITIONING

I207T001015 . 207
T001015d.207

together to form some single supermodules called

clusters. After this process, a clustering ÿ={V1,

V2, . . . ,Vk} of the original hypergraph H is

obtained and a contracted (i.e., coarser) hypergraph

Hÿ(Vÿ,Eÿ) is induced, where Vÿ � fv
ÿ

1 ; v
ÿ

2 ; . . . ;

v ÿ

kg. For every ej2E, the contracted net e ÿ

j 2 Eÿ if

je ÿ

j j � 2, where e ÿ

j � fv
ÿ

i jej \ Vi 6� ;g, that is, e
ÿ

j

spans the set of clusters containing modules of ej. A

contracted hypergraph, of course, can be used to

induce another coarser contracted hypergraph

based on the same clustering process. On the other

hand, a contracted hypergraph Hÿ(Vÿ,Eÿ) can be

unclustered to return to a ®ner hypergraphH(V,E).

3. PROBLEM FORMULATIONS

In this section, we describe di�erent formulations

of the partitioning problems addressed in this

tutorial. We will cover two-way partitioning,

multiway partitioning, multiple level partitioning,

partitioning with replication, and performance

driven partitioning.

3.1. Two-way Partitioning or Bipartitioning

We consider several possible variations on the size

constraints and cost functions in the formulation.

Additionally, in certain formulations, we ®x two

modules vs and vt to be on the opposite sides of the

cut as two seeds.

3.1.1. Min-cut Separating Two Modules

vs and vt

Given a hypergraph, we ®x two modules denoted

as vs and vt at two sides. A min-cut is a partition

(V1,V2), vs2V1 and vt2V2 such that the cut count

C (V1,V2) is minimized, i.e.,

minvs2V1;vt2V2
C�V1;V2� �1�

where V1 and V2 are disjoint and the union of the

two sets is equal to V.

This partitioning is strongly related to a linear

placement problem. In a linear placement, we have

jV j equally spaced slots on a striaght line (Fig. 2).

Modules vs and vt are ®xed at the two extreme

ends, i.e., vs on the ®rst slot (left end) and vt on the

last slot (right end). The goal is to assign all

modules to distinct slots to minimize the total wire

length. Let us use xi to denote the coordinate of

module vi after it is assigned to the slot. The length

of a net ei can be expressed as the di�erence of the

maximum coordinate and the minimum coordi-

nate of the modules in the net, i.e., maxvj2eixjÿ

minvk2eixk. The total wire length can be expressed

as follows. X
ei2E

�maxvj2eixj ÿminvj2eixj� �2�

The relation between partitioning and place-

ment can be derived under the assumption that all

nets are two pin nets [50].

THEOREMHEOREM 3.1 Given a graph G(V,E) with modules

vs and vt in V, let (V1,V2) be a min-cut partition

separating modules vs and vt. Let vs and vt be the two

modules locating at the two extreme ends of a linear

placement. Then, there exists an optimal linear

placement solution such that all modules in V2 are

on the slots right of all modules in V1 (Fig. 2).

Thus, we can use the min-cut to partition a linear

FIGURE 2 Suppose partition (V1,V2) is a min-cut separating
modules vs and vt. There exists an optimal linear placement that
modules in V2 are at the right side of modules in V1.

4 S.-J. CHEN AND C.-K. CHENG

I207T001015 . 207
T001015d.207

placement into two smaller problems and still

maintain optimality. Conceptually, we can conceive

that modules in V1 or V2 have stronger internal

connection within the set than its mutual connec-

tion to the other set. Thus, if the span of modules in

V1 and inV2 aremixed in a linear placement, we can

slide all modules in V1 to the left and all modules in

V2 to the right to reduce the total wire length. In

fact, this is the procedure to prove the theorem.

The min-cut with no size constraints can be

found in polynomial time using classical maximum

¯ow techniques [1]. However, it may happen that

the optimal solution separates only vs or vt from

the rest of the modules, i.e., V1={vs} or V2={vt}.

This result is very likely to happen because most

VLSI basic modules have very small degrees of

connecting nets (e.g., the degree of a 3-input

NAND gate=4).

3.1.2. Minimum Cost Ratio Cut

The cost ratio cut formulation supplies a partition

di�erent from the min-cut that separates two ®xed

modules. Thus, if the min-cut cannot provide any

nontrivial solution, we may adopt the cost ratio

cut to perform another trial.

In cost ratio cut, we ®x two modules vs and vt at

two di�erent sides. Our objective is to ®nd a vertex

set A to minimize a cost ratio function:

C�A;V ÿ Aÿ fvsg� ÿ C�A; fvsg�

S�A�
�3�

where vertex set A does not contain vs and vt.

Vertex set A is non-empty, i.e., S(A)>0.

Cost ratio cut is also strongly related to a linear

placement. Assuming that all nets are two pin nets,

we can derive the following theorem [22]:

THEOREMHEOREM 3.2 Given a graph G(V,E) with modules

vs and vt in V, let (V1,V2) be an optimal cost ratio

cut partition. There exists an optimal linear

placement solution such that all modules in A are

on the slots left of all modules in VÿAÿ {vs}.

Conceptually, we can conceive that C(A,Vÿ

Aÿ {vs}) is the force to pull A to the right and

C (A, {vs}) is the force to push A to the left. The

denominator S(A) is the inertia of the set A. A set A

with the minimum cost ratio moves with the fastest

acceleration toward left end of the slots

Example In Figure 3, the circuit contains six

modules. The optimum cost ratio cut solution has

A={v1, v2, v3} The cost ratio value is

C�A;V ÿ Aÿ fvsg� ÿ C�A; fvsg�

S�A�
�

4ÿ 3

3
�

1

3
:

�4�

The cost ratio value of any other choice of set A is

larger than expression 4.

FIGURE 3 A six module circuit to illustrate the cost ratio cut.

5VLSI PARTITIONING

I207T001015 . 207
T001015d.207

The cost ratio cut solution can be found in poly-

nomial time for a special case of serial parallel

graphs [22]. We are unaware of algorithms for

general cases. Note that, the solution may have

VÿAÿ {vs} equal to set {vt}. In such case, the

partitioning result is not useful for decomposing the

circuit.

3.1.3. Min-cut with Size Constraints

For min-cut with size constraints, we have lower

and upper bounds on the partition size Sl and Su,

where 0<Sl�Su<S(V) and Sl�Su=S(V). The

bipartitioning problem is to divide vertex set V

into two nonempty partitions V1, V2, where

V1\V2=; and V1[V2=V, with the objective of

minimizing cut count C (V1,V2) and subject to the

following size constraints:

Sl � S�Vb� � Su for b � 1; 2 �5�

The min-cut problem with size constraints is NP

complete [43]. However, because of the importance

of the problem in many applications, many

heuristic algorithms have been developed.

Random Partitioning We use a random parti-

tion estimation of min-cut with size constraints to

demonstrate that the quality variation of parti-

tioning results can be signi®cant. Let us simplify

the case by assigning the modules with uniform

size, i.e., si=1 for all vi in V, and the nets with

uniform connectivity, i.e., ci=1 for all ei in E.

Let us assume that the modules are partitioned

into two sets V1, V2 with equal sizes: S(V1)=S(V2).

The partition is performed with an independent

random process [10] so that each module has a

50% chance to go to either side. For a net ei of two

pins, we can derive that net ei belongs to the cut set

E(V1,V2) with a 0.5 probability (Fig. 4). Similarly,

we can derive that for a net ei of k pins (k>2), the

probability that net ei belongs to cut set E(V1,V2)

is �2k ÿ 2�=2k. This probability is larger than 0.5

and approaches one as k increases. In other words,

the expected cut count C (V1,V2) is equal to or

larger than half the number of nets. For example, a

circuit of one million modules usually has an

asymptotic number of nets, i.e., jEj=O(jV j)=

1,000,000. The expected cut count would be

C (V1,V2)� 500,000. This number is much worse

than the results we can achieve. In practice, the cut

counts on circuits of a million of modules are

usually no more than several thousands [34, 36]. In

other words, the probability that a net belongs to a

cut set is small, below one percent for a circuit of

one million gates.

Suppose the two bounds of partitioned sizes are

not equal, Sl 6�Su. Using the proposed random

graph model, the expected cut count C (V1,V2) is

proportional to the product of two sizes, i.e.,

S(V1)�S(V2). Consequently, the expected cut

count is smallest if the size of one partition appro-

aches the upper bound S(Vi)=Su and the size of

another partition approaches the lower bound

S(Vj)=Sl. In practice, we do observe this behavior.

One partition is fully loaded to its maximum

capacity, while another partition is under utilized

with a large capacity left unused. This phenomena is

not desirable for certain applications.

3.1.4. Ratio Cut

Ratio cut formulation integrates the cut count and

a partition size balance criterion into a single

objective function [87, 109]. Given a partition

(V1,V2) where V1 and V2 are disjoint and

V1[V2=V, the objective funtion is de®ned as

FIGURE 4 Four possible con®gurations of net ei={a, b} in a
random placement.

6 S.-J. CHEN AND C.-K. CHENG

I207T001015 . 207
T001015d.207

C�V1;V2�

S�V1� � S�V2�
�6�

The numerator of the objective function minimizes

the cut count while the denominator avoids

uneven partition sizes. Like many other partition-

ing problems, ®nding the ratio cut in a general

network belongs to the class of NP-complete

problems [87].

Example Figure 5 shows a seven module example.

The modules are of unit size and the nets are of unit

connectivity. Partition (V1,V2) has a cost C

�V1;V2�=�S�V1� � S�V2�� � 2=�4� 3� � �1=6�. Any

other partition corresponds to a much larger cost.

The Clustering Property of the Ratio Cut The

clustering property of the ratio cut can be

illustrated by a random graph model. Let us

assume that the circuit is a uniformly distributed

random graph. with uniform module sizes, i.e.,

si=1. We construct the nets connecting each pair

of modules with identical independent probability

f. Consider a cut which partitions the circuit into

two subsets V1 and V2 with comparable sizes ��

jV j and (1ÿ�)� jV j respectively, where �<1.

The expected cut count equals the probability f

multiplied by the number of possible nets between

V1 and V2.

Expec�C�V1;V2�� � f � jV1j � jV2j

� ��1ÿ ��jVj2 � f : �7�

On the other hand, if another cut separates only

one module vs from the rest of the modules, the

expected cut count is

Expec�C�fvsg;V ÿ fvsg�� � �jV j ÿ 1� � f �8�

As jV j approaches in®nity, the value of Eq. (7)

becomes much larger than 8.

This derivation provides another explanation

why themin-cut separating two ®xedmodules tends

to generate very uneven sized subsets. The very

uneven sized subsets naturally give the lowest cut

value. Therefore, the ratio value C�V1;V2�=

�S�V1� � S�V2�� is proposed to alleviate the hidden

size e�ect. As a consequence, the expected value of

this ratio is a constant with respect to di�erent cuts:

Expec

�
C�V1;V2�

S�V1� � S�V2�

�
�

f � jV1j � jV2j

jV1j � jV2j
� f

�9�

Thus, if the nets of the graph are uniformly

distributed, all cuts have the same ratio value. In

other words, the choice of the cuts and the

partition sizes does not make di�erence in such a

uniformly distributed random graph. In a general

circuit di�erent cuts generate di�erent ratios. Cuts

that go through weakly connected groups corre-

spond to smaller ratio values. The minimum of all

cuts according to their corresponding ratios

de®nes the sparsest cut since this cut deviates the

most from the expectation on a uniformly

distributed graph.

3.2. Multi-way Partitioning

For multi-way partitioning, we discuss a k-way

partitioning with ®xed size constraints and a

cluster ratio cut. These two problems are the

extensions of the min-cut with ®xed size con-

straints and the ratio cut from two-way to multi-

way partitioning, respectively.

3.2.1. K-way Partitioning

For multi-way partitioning, we separate vertex set

V into k disjoint subsets where k>2, i.e.,

(V1,V2, . . . ,Vk). There is an upper bound Su and

a lower bound Sl on the size of each subset Vi, i.e.,

Sl�S(Vi)�Su.
FIGURE 5 An example of seven modules, where partition
(V1,V2) is a minimum ratio cut.

7VLSI PARTITIONING

I207T001015 . 207
T001015d.207

There are di�erent ways to formulate the cut

cost because of the di�erent criteria used to count

the cost of multiple pin nets. In the following we

list a few possible objective functions.

(i) Minimize the cut count,

C�V1;V2; . . . ;Vk� �
X

ei2E�V1;V2;...;Vk�

ci �10�

(ii) Minimize the sum of cut counts of all vertex

sets. Let us denote the cut count of vertex set

Vi to be C�Vi� �
P

ei2E�Vi�
ci. The sum of cut

counts of all subsets can be expressed as

Xk
i�1

C�Vi� �
Xk
i�1

X
ej2E�Vi�

cj �11�

Thus, the cost of a net connecting three

subsets is more expensive than the same net

connecting two subsets.

(iii) Minimize the maximum cut count of all

subsets, i.e.,

max1�i�kC�Vi� �12�

3.2.2. Cluster Ratio Cut

Cluster ratio cut is an extension of ratio cut from

two-way partition to multiway partition. There is

no bound on the size of each subset. Furthermore,

the number of partitions, k, is not ®xed, and

instead is part of the objective function.

RC � mink>1

C�V1;V2; . . . ;Vk�P
1�i�kÿ1

P
j�i S�Vi� � S�Vj�

�13�

Note that we can rewrite the denominator to

reduce complexity of the derivation.

RC � mink>1

C�V1;V2; . . . ;Vk�

�1=2�
P

1�i�k S�Vi� � �S�V� ÿ S�Vi��

�14�

If the number of partitions is one, the denomi-

nator becomes zero. Thus, k is restricted to be

larger than one.

Example Figure 6 shows a ®fteen module circuit.

The modules are of unit size and the nets are of

unit connectivity. The square dot in the ®gure

represents a hypernet. The partition shown by the

dashed line is a minimum cluster ratio cut. The

cost of the cut is

C�V1;V2;...;V4�

�1=2�
P

1�i�4S�Vi���S�V�ÿS�Vi��

�
4

�1=2��4�15ÿ4��3�15ÿ3��4�15ÿ4��4�15ÿ4��
�
1

21

�15�

FIGURE 6 A ®fteen module example to demonstrate cluster ratio cut.

8 S.-J. CHEN AND C.-K. CHENG

I207T001015 . 207
T001015d.207

The physical intuition of cluster ratio can be

explained using a random graph model [10]. Let G

be a uniformly distributed random graph. We

construct the nets connecting each pair of modules

with identical independent probability f. Since the

nets are uniformly distributed, the probability of

®nding a subgraph which is signi®cantly denser

than the rest of the graph is very small, meaning

that there is no distinct cluster structure in G.

Consider a cut E(V1,V2, . . . ,Vk), the expected

value of C (V1,V2, . . . ,Vk) equals

Expec�C�V1;V2; . . . ;Vk�� � f �
Xk
i�j�1

Xkÿ1
j�1

jVij � jVjj

�16�

and the expected value of cluster ratio equals

Expec�RC� � Expec

C�V1;V2; . . . ;Vk�Pk
i�j�1

Pkÿ1
j�1 jVij � jVjj

!

�
f �

Pk
i�j�1

Pkÿ1
j�1 jVij � jVjjPk

i�j�1

Pkÿ1
j�1 jVij � jVjj

� f �17�

Since f is a constant, all cuts have the same

expected cluster ratio value. Therefore, if we use

cluster ratio as the metric, all cuts would be

equally favored, which is consistent with the fact

that G has no distinct clusters. However, in a

general circuit, di�erent cuts generate di�erent

ratio values. Cuts that go through weakly con-

nected groups correspond to smaller ratio values.

The minimum of all cuts according to their cluster

ratio values de®nes the cluster structure of the

circuit since this cut deviates the most from the

cuts of a uniformly distributed graph.

3.3. Multi-level Partitioning

In multi-level partitioning [4, 23, 47, 58, 67, 68,

109, 110], the ®nal result is represented by a tree

structure. All the modules are assigned to the

leaves of the tree. The tree is directed from the root

toward the leaves. The level of the nodes is de®ned

to be the maximum number of nodes to traverse to

reach the leaves. Thus, the leaves are ranked level

zero. Each node is one level above the maximum

level of its children. When the level of the root is

only one, the problem is degenerated to two-way

or multiway partitioning.

Each net ei spans a set of leaves. Given a set of

leaves, there is a unique lowest common ancestor.

The level of the lowest ancestor is de®ned to be the

level l(ei) of the net.

The cost of a net ei is de®ned to be the

multiplication of its connectivity ci and the weight

w(l(ei)) of level l(ei) for net ei to communicate, i.e.,

ci�w(l(ei)). The cost of the multi-level partition is

the sum of the cost of all nets, i.e.,
P

ei2E
ciw�l�ei��.

3.3.1. J-level K-way Partitioning

When the root of the partitioning tree is level j and

the number of branches of each node is no more

than k, we say it a j-level k-way partition.We can set

di�erent communication weights for each level.

Usually, the function is monotone, i.e.,w(l) is larger

when level l increases. The vertex setVi of each leaf i

has its size bounded by Sl�S(Vi)�Su.

For electronic packaging, the tree is bounded by

the number of external connections. We call a leaf

is covered by a node if there is a directed path from

the node to the leaf in the tree representation. For

each node ni, we de®ne Ti to be the union of the

modules in the leaves covered by node ni. Let E(Ti)

be the external nets of Ti, i.e., E(Ti) ={ei j 0< j

ei\Ti j< jeij}. The cut count of each node should

not exceed the capacity of the external connection

of the packaging, i.e.,

C�Ti� �
X

ej2E�Ti�

cj � Cap�l�ni�� �18�

where Cap(l(ni)) is the capacity of the external

connection of level l(ni).

Example Figure 7 shows an example of a 3-level

5-way partitioning structure. The leaves are at

level 0 and the root is at level 3. Each node has at

most ®ve children. Net ei={v1, v2, v3} is covered by

node na at level l(na)=2.

9VLSI PARTITIONING

I207T001015 . 207
T001015d.207

3.3.2. Generic Binary Tree

A generic binary tree structure [110] is proposed to

simplify the multi-level partitioning. There is only

one constant Su to set in the binary tree. Thus, it is

much easier to make a fair comparison between

di�erent algorithms.

In a generic binary tree, each internal node has

exactly two children. The weight of each level is

de®ned to be w(l)=2l. Thus, we have the objective

function

min
X
ei2E

ci2
l�ei�

subject to the constraint on the capacity of the

leaves, i.e., S(Vi)�Su where Vi is the vertex set of

leaf i. The level of the root is adjusted according to

the minimization of the objective function.

Example Figure 8 illustrates a generic binary tree

for partitioning. In this ®gure, the root is at level

three. Each node has at most two children.

3.4. Replication Cut

In the replication cut problem, a subset of the

circuit may be replicated to reduce the cut count of

a partition [54, 64, 82]. In this section, we use a

two-way partition to illusturate the problem. We

®x two modules vs and vt at two sides of the cut.

We use three vertex sets to represent the partition,

V1, V2 , and R, where V1, V2 , and R are disjoint

and V1[V2[R=V, vs2V1, vt2V2. Subsets V1

and V2 are separated by the cut and subset R is to

be replicated at both sides (Fig. 9).

Each copy of R needs to collect a complete set of

input signals in order to compute the function

FIGURE 7 An example of a 3-level 5 way partitioning tree structure.

FIGURE 8 An example of a generic binary tree.

10 S.-J. CHEN AND C.-K. CHENG

I207T001015 . 207
T001015d.207

properly. Thus, the nets from V1 to R and from V2

to R are duplicated. However, the output signals

of R can be obtained from either copy of R. For

example, nets from the right side R to V1 in Figure

9(b) are not duplicated because V1 gets inputs

from the left side R. For the same reason, we do

not replicate the nets from the left side R to V2.

Given two disjoint sets V1 and V2, let a replication

cut R(V1,V2) denote the cut set of a partitioning

with R=VÿV1ÿV2 being duplicated. From

Figure 9(b), we can see that R(V1,V2) is the union

of four directed cuts, that is,

R�V1;V2� � E�V1 ! V2� [E�V2 ! V1�

[E�V1 ! R� [E�V2 ! R�:

Let Sl and Su denote the size limits on the two

partitioned subsets. We state the Replication Cut

Problem as follows:

Given a directed circuit G, we want to ®nd a

replication cut R(V1,V2) with an objective

min CR�V1;V2� �
X

ei2R�V1;V2�

ci �19�

subject to the size constraints

Sl � S�V1 [R� � Su and Sl � S�V2 [R� � Su,

and the feasible condition

V1 \ V2 � ;; R � V ÿ V1 ÿ V2:

Interpretation of the Replication Cut Suppose

we rewrite the replication cut in the format:

R�V1;V2� � E�V1 ! R� [E�V1 ! V2�

[E�V2 ! V1� [E�V2 ! R�

� E�V1 ! �V1� [E�V2 ! �V2�

where �V1 and �V2 denote the complementary sets of

V1 and V2, i.e., �V1 � V ÿ V1 and �V2 � V ÿ V2. The

cut set becomes the union of E�V1 ! �V1� and

E�V2 ! �V2�. We can interpret the cut set of the

replication cut R(V1,V2) as two directed cuts on

the original circuit G as shown in Figure 10.

3.5. Performance Driven Partitioning

The goal of performance driven partitioning is to

generate a partition that satis®es some timing

constraints. Due to the physical geometric distance

and interface technology limitations, inter-parti-

tion delay contributes the dominant portion of

signal propagation delay. Consequently, instead of

minimizing the number of the crossing nets as the

only objective during partitioning, we should take

into account the interpartition delay to satisfy the

timing constraints.

Clock period is a major measurement for circuit

performance. It is determined by the longest signal

propagation delay between registers. Each cross-

FIGURE 9 Replication cut problem: (a) the three sets of nodes V1, R and V2; (b) the duplicated circuit with R being replicated.

11VLSI PARTITIONING

I207T001015 . 207
T001015d.207

ing net is associated with an interpartition delay �

determined by VLSI technologies. Given a path p

from one register to another register with no

interleaving registers, let dp be the sum of

combinational block delays and bdp be the sum of

interpartition delays along path p. The longest

delay dp � bdp among all paths p should be smaller

than the clock period T, i.e.:

max
p

dp � bdp � T : �20�

Now we state the performance-driven partition-

ing problem as follows:

Given hypergraph H(V,E), clock period T, two

bounds of sizes Sl and Su, and interpartition delay �,

®nd a partition (V1,V2) with the minimum cut count,

subject to Sl�S(V1)�Su, Sl�S(V2)�Su, and

maxpdp � bdp � T .

Example In Figure 11, path p starts at register vi
and ends at register vj. The path crosses between

the partition (V1,V2) three times. Thus, the

interpartition delay bdp � 3�.

Replication can improve the performance of the

partitioned results [83]. In Figure 12(a), vertex set

R locates at the side of V2. Path p crosses between

the partition (V1,R[V2) three times. By replicat-

FIGURE 10 An interpretation of the replication cut, R�V1;V2� � E�V1 ! �V1� [E�V2 ! �V2�.

FIGURE 11 An illustration of performance driven partitioning.

12 S.-J. CHEN AND C.-K. CHENG

I207T001015 . 207
T001015d.207

ing vertex set R (Fig. 12(b)), path p needs to cross

the partition only once.

3.5.1. Retiming

Retiming shifts the locations of the registers to

improve the system performance [76]. It is an

e�ective approach to reduce the clock period.

Moreover, the process also reduces the primary

input to primary output latency which is another

important measurement for circuit performance.

As in [85], we assume that the combinational

blocks are ®ne-grained. A module is called ®ne-

grained, if it can be split into several smaller

modules. Alternatively, if a module cannot be

split, it is called coarse-grained. The interpartition

delay � on crossing nets is inherently coarse-

grained and cannot be split.

Given a path p, we use rp to denote the number

of registers on the path. Let W(i, j) denote the

minimum rp among all possible paths p from i to j,

i.e.,

W�i; j� � min frpj p 2 Pijg;

where Pij is the set of all paths from module vi to vj.

We de®ne a path p from vi to vj as a W-critical path

if rp equals W(i, j); W-critical path p is also called

an IO-W-critical path if modules vi and vj are the

primary input and output, respectively.

(i) Iteration Bound While retiming can reduce

the clock period of a circuit, there is a lower bound

imposed by the feedback loops in the hypergraph

[92]. Given a loop l, let dl, bdl and rl be the sum of

combinational block delays, the sum of interparti-

tion delays, and the number of registers in loop l,

respectively. The delay-to-register ratio of a loop l

is equal to �dl � bdl�=rl . The iteration bound is de®-

ned as the maximum delay-to-register ratio, i.e.:

J�V1;V2� � max

�
dl � bdl

rl
jl 2 L

�
; �21�

where L is the set of all loops. Note that the

iteration bound of a given circuit yields a lower

bound on the achieved clock period by retiming.

(ii) Latency Bound Let p denote the IO-W-

critical path with maximum path delay among all

IO-W-critical paths from vi to vj. Since the number

of registers in path p is equal to W(i, j), the IO

latency (i.e. (W(i, j)ÿ 1)�T) between vi and vj is

not less than dp � bdp, where T denotes the clock

period, and dp and bdp are the sum of combina-

tional block delays and the sum of interpartition

delays on path p, respectively. Thus, we de®ne

latency bound M as follows [85, 86]:

M�V1;V2� � maxfdp � bdpj p 2 PIOWg; �22�

where PIOW is the set of all IO-W-critical paths.

Latency bound also imposes a lower bound on the

system latency achieved by using retiming. An all-

pair shortest-path algorithm can be used to

calculate the latency bound.

We have two reasons to use the iteration and

latency bounds. (i) It is faster to calculate these

bounds. (ii) The iteration and latency bounds

stand for the lower bounds of the clock period and

system latency achieved by adopting retiming,

respectively. The partition with lower iteration and

FIGURE 12 Illustration of replication and its e�ect on
partitioning. The ®gure shows path p (a) before and (b) after
vertex set R is replicated.

13VLSI PARTITIONING

I207T001015 . 207
T001015d.207

latency bounds can achieve better clock period and

system latency by using retiming. Therefore, we

want to generate a partition with small iteration

and latency bounds.

Statement of the Problem Now we state the

performance-driven partitioning problem as fol-

lows:

Given hypergraph H(V,E), two numbers ~J and ~M,

bounds of sizes Sl and Su, and interpartition delay �,

®nd a partition (V1,V2) with the minimum number

of cut count, subject to Sl�S(V1)�Su, Sl�

S(V2)�Su, J�V1;V2� � ~J, and M�V1;V2� � ~M.

Example Figure 13 illustrates the e�ect of repli-

cation on the iteration bound. Let us assume that

the interpartition delay is �=4. Before replication,

the iteration bound is dominated by loop l1. The

bound is equal to

dl1 �
cdl1

rl1
�

8� 2� 4

4
� 4: �23�

After replication [85], the bound contributed by

loop l1 is equal to

dl1 �
cdl1

rl1
�

8

4
� 2: �24�

The iteration bound now is dominated by the

union of loops l1 and l2,

dl1�l2 �
ddl1�l2

rl1�l2
�

18� 2� 4

8
� 3:25; �25�

which is smaller than the iteration bound before

replication.

3.6. Clustering

Clustering [6] is similar to multiway partitioning in

that the process groups modules into k subsets.

However, for clustering the number of subsets is

usually much greater than for a typical multiway

partitioning problem, e.g., k� 10.

Often, a clustering process is used as part of a

divide and conquer approach. Thus, it is impor-

tant to choose an objective function that ®ts the

target application. If the goal is to reduce problem

complexity, we set the objective function to be:

min
Xk
i�1

C�Vi�

CI�Vi�
; �26�

where Vi's are disjoint vertex sets and their union

is equal to V. Function C (Vi) is the external cut

count of cluster Vi and CI (Vi) is the count of nets

connecting vertex set Vi, i.e.,
P

ei2I�Vi�
ci.

For performance driven clustering, the objective

function is to minimize the number of cuts

between registers.

4. MULTIPLE PIN NET MODELS

The handling of multiple pin nets strongly depends

on the partitioning approach [102]. A proper model

is needed to re¯ect the correct cut count and im-

prove the e�ciency. In this section, we ®rst intro-

duce a shift model which is used for iterations of

FIGURE 13 Illustration of replication and its e�ect on iteration bound.

14 S.-J. CHEN AND C.-K. CHENG

I207T001015 . 207
T001015d.207

shifting a module or swapping a pair of modules.

We then describe a clique model which is used to

replace a multiple pin net. The star and loopmodels

are variations of two pin net models, however, with

less complexity than the clique model. Finally, a

¯ow model is introduced for network ¯ow appro-

aches.

4.1. Shift Model

The shift model [101] for multiple pin net is useful

when we perturb the partition by shifting one

module to a di�erent vertex set or by swapping

two modules between di�erent vertex sets. Let us

simplify the description by assuming only one

module is shifted to a di�erent vertex set. A swap

of a pair of modules can be treated as two steps of

module shifting.

For each shift, we want to update the cut count.

We also want to update the potential change in

cost for each module if it were to be shifted, so that

we can rank the modules for the next move. Such

cost revision can be expensive if the circuit has

large nets which contain huge numbers of pins,

e.g., hundreds of thousand pins.

The shift model reduces the complexity of the

cost revision by utilizing the property that for huge

nets most shifts of its pins do not change the cost

of the other pins in the net.

Let us simplify the description by considering a

twoway partitioning. Themodel can be extended to

multiple way partitioning according to the choice of

objective functions. Let module vj be shifted from

vertex set V1 to V2. The con®guration of nets

ei2E({vj}) connectingmodule vj is revised. For each

net ei, we denote ki to be the number of pins of ei in

V1 and jeij ÿ ki the number of pins of ei in V2 (Fig.

14). With respect to net ei, we update the pin

numbers ki and jeij ÿ ki after module vj is shifted.

We also update the cost of modules in nets ei.

1. If the revised ki� 2, the potential cost of pins

due to net ei is zero. For the case that

jeij ÿ ki=1, we increase the cut count by ci
and set the potential cost of pins in ei.

Otherwise, the move has no e�ect on the cut

count and potential cost.

2. If the revised pin count ki=1, the shift of the

last pin of ei in V1 will decrease the cut count by

ci. We then update the potential cost of this last

pin.

3. If ki=0, the cut count reduces by ci. However,

the shift of any pin vk2 ei from V2 to V1 will

increase the cut count. Thus, in this case, we

re¯ect the cost of potential shift on the pins of

ei, which takes O(jeij) operations.

4.2. Clique of Two Pin Nets

Some researchers use cliques of two pin nets to

model multiple pin nets. Given a multiple pin net

ei, we construct a clique of (1/2)jeij(jeij ÿ 1) two

pin nets to connect all pairs of pins in the net. The

clique model maintains the symmetric relation of

the modules of the same net in the sense that the

order of the pins in the net has no e�ect on the

cost.

The weight of two pin nets in the clique module

is adjusted by some factor. One approach is to use

2/jeij to scale down the connectivity. The total

weight of all the nets in the clique is (2/jeij)� (1/2)

jeij(jeij ÿ 1)ci=(jeij ÿ 1)ci. Note that it takes jeij ÿ 1

two pin nets to form a spanning tree of jeij

modules.

Other factor has been proposed such as 1/

(jeij ÿ 1) which is based on a di�erent probability

model. However, no factor can exactly re¯ect the

cost of a multiple pin net model.

Complexity of the Clique Model The complex-

ity of the clique model is high. There are O(jeij
2)

two pin nets in a clique model. Suppose the

FIGURE 14 Multiple pin net model of shifting process.

15VLSI PARTITIONING

I207T001015 . 207
T001015d.207

process of each two pin net takes a constant time.

It takes O(jeij
2) operations to process a multiple

pin net ei. Therefore, in practice, if the pin number

is larger than a threshold, the net is ignored in the

process.

4.3. Star of Two Pin Nets

A star model introduces less complexity than a

clique model. Given a net ei, we create a dummy

module ~vi. The dummy module ~vi connects every

pin in ei with a two pin net. This module maintains

the symmetry of the net. However, we need only

jeij two pin nets.

For the clique and star models, the cost of the

partition depends on the number of pins on the

two sides of the partition. The cost is higher when

the pins are distributed more evenly on the two

sides of the cut. Thus, these models discourage

even partitioning of the pins in the nets.

4.4. Loop Model of Two Pin Nets

A loop model re¯ects the exact cut count [22],

however, it is sensitive to the order of the pins. We

can derive heuristic ordering of the pins using a

linear placement. Modules are sequenced accord-

ing to their x coordinates in the placement. We

®nd the partition by collecting the modules

according to the sequence.

Following the order of the modules in the x

coordinates, we link the modules of a multiple pin

net with two pin nets into a loop. We link the pins

in a sequence (Fig. 15) alternating on every other

module. The loop is formed by the two connec-

tions at the two ends.

A factor of (1/2) is assigned to the two pin nets

so that the cut count separating modules according

to the sequence is one. The model remains correct

even if any two consecutive modules in the

sequence swap their order.

4.5. Flow Model

For the network ¯ow approach, we consider each

net ei as a pipe. A set of saturated pipes forms a

bottleneck of the ¯ow. The union of the saturated

pipes becomes the cut of the circuit. In such a

model, we set the capacity of the pipe equal to the

corresponding connectivity ci [52].

Let xiu be the amount of ¯ow from pin vi to net

eu and xuj be the amount of ¯ow from net eu to pin

vj (Fig. 16). The total ¯ow injected into the net

should be smaller than or equal to its capacity and

the incoming ¯ow is equal to the outgoing ¯ow,

i.e., X
vi2eu

xiu � cu; �27�

X
vi2eu

xiu ÿ
X
vi2eu

xui � 0: �28�

5. APPROACHES

In this section we introduce several approaches to

partitioning. We ®rst discuss two methods for

optimal solutions: a branch and bound method

and a dynamic programming algorithm. The

branch and bound method is e�ective in searching

exhaustively for the optimal solution for small

circuits. The dynamic programming method pre-

sented runs in polynomial time and ®nds an

optimal partition for a special class of circuits.

We then explain a few heuristic algorithms:

FIGURE 15 A loop model of multiple pin net where modules
are placed on an x axis. FIGURE 16 A ¯ow model with respect to net eu.

16 S.-J. CHEN AND C.-K. CHENG

I207T001015 . 207
T001015d.207

group migration, network ¯ow, nonlinear pro-

gramming, Lagrangian, and clustering methods.

The group-migration approach is a popular

method in practice due to its ¯exibility and

e�ectiveness. The network ¯ow method gives us

a di�erent view of the partitioning problem by

transforming the minimization of the cut count

into the maximization of the ¯ow via a duality in

linear programming. This approach derives ex-

cellent results with respect to certain objective

functions. The nonlinear programming method

provides a global view of the whole problem. The

Lagrangian method is a useful approach for

performance driven problems. Finally, we depict

a clustering method for the partitioning.

In most cases, we illustrate the method in

question using two-way partitioning as the target

problem. However, many methods can be ex-

tended to other problems or di�erent objective

functions. For example, we can apply group

migration to multiway [98, 99] or multiple level

partitioning problems [68, 67] with modi®cation to

the cost of the moves. Furthermore, some methods

may be combined to solve a problem. For

example, we can use clustering to reduce the size

of an input circuit and then use group migration to

®nd a partition of the reduced circuit with much

greater e�ciency [24, 59]. In fact, this strategy

derives the best results in terms of CPU time and

cut count in recent benchmark [2].

5.1. Branch and Bound Method

The branch and bound method is an exhaustive

search technique that may be e�ectively applied to

the min-cut problem with size constraints for small

cases. In the branch and bound process, the

modules are ®rst ordered in a sequence. For each

module, we try placing it to either side of the cut.

The process can be represented by a complete

binary tree with jVj levels. The root of the tree is

the ®rst module in the sequence. The nodes in the

kth level of the tree correspond to the kth module

in the sequence. The two branches at each node

represent the two trials where the kth module is

placed on each of the two di�erent sides. A path in

the tree from the root to a leaf corresponds to one

assignment for the partition.

We use a depth ®rst search approach to traverse

the binary tree. We prune the search space

according to the size constraint and a partial cut

count. In the binary tree, a node at level k along

with the path from the root to the node represents

a partition assignment of the ®rst k modules. Let

V1 and V2 be the two vertex sets of the partitions

of the ®rst k modules. If S(Vi)>Su for i=1 or 2,

the size constraint is violated, and there is no need

to proceed. Thus, we prune the branches below.

We also use a partial cut count to prune the

binary tree. The cut of the partial partition is

expressed as: E(V1,V2)={ei j jei\V1j>0 and

jei\V2j>0}. The partial cut count is described

as: C�V1;V2� �
P

ei2E�V1;V2�
ci. If the partial cut

count C(V1,V2) is larger than the cut count of a

known solution, the partition results below this

node are going to be worse than the existing

solution. We prune the branches of such a node.

Complexity of the Method Suppose the circuit

has unit size si=1 on each module and the

constraint requires an even size Sl=Su=jVj/2

(assuming that jVj is even). Applying Stirling's

approximation [63], we have the number of

possible partitions:

jVj!

�jV j=2�!2
�

���������
2

�jV j

s
2jVj: �29�

Although the number of combinations is huge,

we have found that the application to small circuits

is practical. We improve the e�ciency of the

pruning by ordering the modules according to their

degrees, i.e., the number of nets connecting to the

modules, in a descending order. With an elegant

implementation, we can ®nd optimal solutions

when the number of modules is small, e.g., jVj � 60.

5.2. Dynamic Programming for a Serial

and Parallel Graph

For the special case where the circuit can be

17VLSI PARTITIONING

I207T001015 . 207
T001015d.207

represented by a serial and parallel graph of unit

module size, we can ®nd a minimum two way

partition (V1,V2) with size constraints in poly-

nomial time. In this section, we ®rst describe the

serial and parallel graph. We then depict a

dynamic programming algorithm that solves the

partitioning problem on this class of graphs. We

assume that all modules are of unit size, i.e., si=1.

A serial and parallel graph can be constructed

from smaller serial and parallel graphs by serial or

parallel process. Each serial and parallel graph has

a source module vs and a sink module vt. A graph

G(V,E) with two modules, V={vs, vt} and one

edge E={e}, e={vs, vt} is a basic serial and parallel

graph. A serial and parallel graph is constructed

from the basic graph by a series of serial and

parallel processes.

Serial Process Given two serial and parallel

graphs, G1(V1,E1) and G2(V2,E2), we construct a

serial and parallel graph G(V,E) by merging the

sink module vt1 of G1 and the source module vs2 of

G2 (Fig. 17(a)). The source module vs1 of graph G1

becomes the source module of graph G, i.e.,

vs=vs1. The sink module vt2 of graph G2 becomes

the sink module of graph G, i.e., vt=vt2.

Parallel Process Given two serial and parallel

graphs, G1(V1,E1) and G2(V2,E2), we construct a

serial and parallel graph G(V,E) by merging the

source module vs1 of G1 and the source module vs2
of G2 and by merging the sink module vt1 of G1

and the sink module vt2 of G2 (Fig. 17(b)). The

merged source module and merged sink module

become the source module vs and the sink module

vt of graph G, respectively.

Dynamic Programming The dynamic program-

ming algorithm performs a bottom up process

according to the construction of the serial and

parallel graph. It starts from the basic serial and

parallel graph. For each graph G(V,E), we derive

two tables.

a(i, j): the minimum cut count with i modules on

the left hand side and j modules on the

right hand side under the condition that

source module vs is on the left hand side

and sink module vt is on the right hand

side.

b(i, j): the minimum cut count with i modules on

the left hand side and j modules on the

right hand side under the condition that

both source module vs and sink module vt
are on the left hand side.

Let graph G(V,E) be constructed with

G1(V1,E1) and G2(V2,E2) by one of the serial

and parallel processes. Let a1, b1 be the tables of

graph G1 and a2, b2 be the tables of graph G2. We

construct the tables a, b of graph G(V,E) as

follows.

Table Formulas for Parallel Process

a�i; j� � mink�m�jV2ja1�i � 1ÿ k; j � 1ÿm�

� a2�k;m�; 8i � j � jV j; �30�

b�i; j� � mink�m�jV2jb1�i � 2ÿ k; j ÿm�

� b2�k;m�; 8i � j � jV j: �31�

For table a(i, j), we try all combinations of

tables a1 and a2 with the constraint that the

number of modules on the left hand side is i and

the number of modules on the right hand side is j.

Note that the extra addition of 1 in the index is

used to compensate the merging of the two source

modules or the sink modules. For table b(i, j), we

try all combinations of tables b1 and b2 with the

same size constraint.
FIGURE 17 Construction of serial and parallel graphs.

18 S.-J. CHEN AND C.-K. CHENG

I207T001015 . 207
T001015d.207

Table Formula for Serial Process

a�i; j� � min�mink�m�jV2ja1�i ÿ k; j � 1ÿm�

� b2�k;m�; mink�m�jV2j

b1�i � 1ÿ k; j ÿm�

� a2�k;m��; 8i � j � jV j; �32�

b�i; j� � min�mink�m�jV2ja1�i ÿ k; j � 1ÿm�

� a2�m; k�; mink�m�jV2j

b1�i � 1ÿ k; j ÿm�

� b2�k;m��; 8i � j � jV j: �33�

For table a(i, j), we try all combinations of

tables a1 and b2 and all combinations of tables b1
and a2. For the combinations of tables a1 and b2,

the merged module (by merging vt1 and vs2) is on

the right hand side. For the combinations of tables

b1 and a2, the merged module is on the left hand

side. For table b(i, j), we try all combinations of

tables a1 and a2 and all combinations of tables b1
and b2. For the combinations of tables a1 and a2,

the merged module is on the right hand side. In

terms of G2, its source module vs2 is on the right

hand side and its sink module vt2 is on the left

hand side. Thus, the indices of table a2 are

reversed, i.e., a2(m, k) instead of a2(k,m). For the

combinations of tables b1 and b2, the merged

module is on the left hand side.

5.3. Group Migration Algorithms

The group migration algorithm was ®rst proposed

by Kernighan and Lin [60] in 1970. Since then,

many variations [15, 26, 27, 33, 39, 45, 49, 84, 97 ±

99, 108, 111, 116] have been reported to improve

the e�ciency and e�ectiveness of the method.

Today, it is still a popular method in practice.

The probability of ®nding the optimum solution

in a single trial drops exponentially as the size of

the circuit increases [60]. Using the original

version, Kernighan and Lin showed that the

probability of obtaining an optimal solution is a

function of the problem size, p(jVj)=2ÿn/30. In

other words, if the circuit size is large, then the

heuristic Kernighan ±Lin algorithm is unlikely to

jump out of local minima, and so the optimum

solution will not be found. The progress of the

method has de®nitely pushed the envelope further.

In this section, we concentrate on two-way min-

cut with size constraints. The method is ¯exible

and can be extended to other partitioning pro-

blems with modi®cations of the moves and the cost

function.

The algorithm performs a series of passes. At

the beginning of a pass, each module is labeled

unlocked. Once a module is shifted, it becomes

locked in this pass. The group migration algorithm

iteratively interchanges a pair of unlocked modules

or shifts a single module to a di�erent side with the

largest reduction (gain) of the cost function. This

continues until all modules are locked. The lowest

cost along the whole sequence of swapping is

recorded. The group migration takes the subse-

quence that produces the lowest cut count and

undoes the moves after the point of the lowest

cost. This partitioning result is then used as the

initial solution for the next pass. The algorithm

terminates when a pass fails to ®nd a result with a

cost lower than the cost of the previous pass.

GroupMigration Algorithm Input: Hypergraph

H(V,E) and an initial partition. Cost function and

size constraints.

1. One pass of moves.

1.1. Choose and perform the best move.

1.2. Lock the moved modules.

1.3. Update the gain of unlocked modules.

1.4. Repeat Steps 1.1 ± 1.3 until all modules are

locked or no move is feasible.

1.5. Find and execute the best subsequence of

the move. Undo the rest of the sequence.

2. Use the previous result as an initial partition.

3. Repeat the pass (Steps 1 and 2) until there is no

more improvement.

Figure 18 illustrates the cost of a sequence of

moves. This algorithm escapes from local optima

by a whole sequence of the moves even when a

single move may produce a negative gain.

19VLSI PARTITIONING

I207T001015 . 207
T001015d.207

In the following, we discuss variations of several

parts in the process: basic moves (Step 1.1), data

structure, gains (Steps 1.1 and 1.3). At the end of

this subsection, we introduce a net based move and

a simulated annealing approach.

5.3.1. Basic Moves

Basic moves cover the shifting of a single module

and the swapping of a pair of modules. A

swapping can be conceived as two consecutive

shifts, however, with consideration of the mutual

e�ect between the two shifts.

(i) Module Shifting For each unlocked module,

we check its gain: the cost function reduction

by shifting the module to a di�erent side

assuming that the rest of the modules are

®xed. To select the best module to shift, we

order on each side the modules according to

their shift gains. If the size constraints are

violated after the shift, the move is not

feasible. We search for the best feasible

module to move [40].

(ii) Pairwise Swapping We exchange two mod-

ules in two vertex sets of the partition. Note

that the gain of the swap is not equal to the

sum of the gains of two shifts. The mutual

e�ect between the two modules needs to be

included when we derive the gain. Thus, the

best pair may not be the two modules on the

top of the two sides. The search of all pairs

takes O(jV1jjV2j) operations. In practice, we

order modules according to their shift gain.

The search of the best pair is limited to the top

k modules on each side, e.g., k=3. Thus, the

complexity is actually O(k2).

Pairwise swapping is a natural adoption when

the size constraint is tight. When no single shift is

feasible, we can use swapping to balance the size of

the partition.

5.3.2. Data Structure

The choice of data structure strongly depends on

the cost functions, gains, and the characteristic of

VLSI circuitry. A sorting structure such as heap or

AVL tree is a natural choice to sort for the top

modules. However, for the case that the gain

di�ers by a very limited quantities, an array struc-

ture can simplify the coding and the complexity.

(i) Heap or AVL Tree We can use a heap or

AVL tree to sort the modules according to

their shift gain. Each side of the partition

keeps a heap. The top of the heap is the

module of the maximum gain. The sorting of

each module takes O(jVjlog(jVj)) operations.
(ii) Array (Bucket) of Link List Figure 19

illustrate a bucket list data structure. The gain

is transformed to the index of the bucket [40].

Modules of the same gain are stored in the

same bucket by a link list. A bucket is an

e�ective data structure when the objective

function is the cut count. The gain of cut

count is limited by the maximum degrees of

the modules, i.e., degmax � maxvi2V
P

e2E�fvig�

ce. Thus, the dimension of the bucket is set to

be 2degmax.

For VLSI applications, the degree of modules is

much smaller than the number of modules. Thus,

the dimension of the bucket is small. It is very

e�cient to search and revise the module order in

the bucket structure. In fact, it is proven that using

the bucket structure and cut count as the objective

FIGURE 18 Cost of a sequence of moves and subsequence
selection.

20 S.-J. CHEN AND C.-K. CHENG

I207T001015 . 207
T001015d.207

function, it takes linear time proportional to the

total number of pins to perform each pass [40].

5.3.3. Gains

In this subsection, we use cut count as the

objective function. The extension to other cost

functions is possible. However, we may loose

e�ciency.

(i) Shift Gain We use shift model for multiple

pin nets. Given a module vi, we check the set

E({vi}) of nets connecting to this module. The

contribution of each net e2E({vi}) by shifting

module vi is the gain ge(vi) of the net with respect

to module vi. The gain g(vi) of module vi is the total

gains of all its adjacent nets, i.e.,

g�vi� �
P

e2E�fvig�
ge�vi��

(ii) Swap Gain The swap gain is the sum of the

gains of two modules vi and vj, deducting the e�ect

on common nets, i.e., g�vi� � g�vj�ÿ

z
P

e2E�fvig�\E�fvjg�
�ge�vi� � ge�vj��.

(iii) Weights of Multipin Nets The sequence of

the move depends much on the gain calculation.

For a circuit of 1,000,000 modules, suppose the

degree of most modules is less than 100 and each

net is of unit weight. We have roughly 1,000,000

modules/200 gain levels=5,000 modules per gain

level. To di�erentiate these 5,000 modules, we have

to adjust the weight of multiple pin nets.

(iii) (a) Levels with Priority The ®rst level gain is

identical to the shift gain of cut count. The second

level gain is equal to the number of nets that have

one more pins on the same side. Thus, the kth level

gain is equal to the number of nets that have k

more pins on the same side [65]. The pins on the

other side will increase by one after the module is

shifted. Thus, the negative gain of level k is

contributed by the nets with kÿ 1 pins on the

other side.

Let us assume that module vi is in vertex set V1

to simplify the notation. For each net ej2E({vi}),

we denote kj=jej\V1j the number of pins in V1.

Let us de®ne E(+, i, k) to be the set of nets

ej2E({vi}) with kj=k�1 pins in V1 (the extra one

is used to count module vi itself) and nonzero pins

in V2, i.e., jejj> kj. And E(ÿ, i, k) to be the set of

nets ej2E({vi}) with no other pins in V1 and kÿ 1

pins in V2, i.e., jejj=k and kj=1. Then, the kth

level gain of module vi, gi(k), is the weight

di�erence of the two sets, E(+, i, k) and E(ÿ, i, k).

gi�k� �
X

e2E��;i;k�

ce ÿ
X

e2E�ÿ;i;k�

ce �34�

E��; i; k� � fej j ej 2 E�fvig�; kj � k � 1; jejj > kjg

�35�

E�ÿ; i; k� � fej j ej 2 E�fvig�; kj � 1; jejj � kg

�36�

FIGURE 19 Bucket list.

21VLSI PARTITIONING

I207T001015 . 207
T001015d.207

We compare the modules with a priority on the

lower level gain. In other words, we compare the

®rst level ®rst. If the modules are equal at the ®rst

level gain, we then compare the second level and so

on. In practice, we limit the number of levels by a

threshold, e.g., l� 3.

(iii) (b) Probabilistic Gain In probabilistic gain

model [37], each module vi is assigned a weight

p(vi). The weight p(vi) is a function of the gain g(vi)

of module vi to re¯ect the belief level (potential)

that the shift of module vi will be executed at the

end of the pass. Thus, if module vi is unlocked,

p�vi� � f �g�vi��: �37�

Otherwise, p(vi)=0. Figure 20 illustrates function

f, which increases monotonically. The slope within

g0 and gup ampli®es the di�erence of gains. The

slope is clamped at two ends pmax and pmin

(0� pmin< pmax� 1) which represent the maxi-

mum potential that the module will shift or stay.

For each net e2E({vi}), its contribution ge(vi) to

the gain of module vi is the tendency that the whole

net will shift with module vi to the other side. To

simplify the notation, let us assume that module vi
is in V1. Thus, we have the following expression.

ge�vi� � ce

 Y
j 6�i;vj2e\V1

p�vj� ÿ
Y

vj2e\V2

p�vj�

!
�38�

where
Q

vj2S
p�vj� � 1 if S is an empty set. The ®rst

term
Q

j 6�i;vj2e\V1
p�vj� in the parentheses is the

potential that all the pins will shift with module vi

to V2. Hence, ce �
Q

j 6�i;vj2e\V1
p�vj� is the expected

gain if module vi is shifted. The second termQ
vj2e\V2

p�vj� is the potential that the pins in V2

will shift to V1. Thus, ce �
Q

vj2e\V2
p�vj� is the

expected loss if module vi is shifted.

The gain of a module vi is the total gains of the

adjacent nets with respect to this module, i.e.,

g�vi� �
X

e2E�fvig�

ge�vi�: �39�

Net gain ge(vi) and module potential p(vi) are

mutually dependent. We derive the values via

iterations. Initially, we use the plain shift gain (by

cut count) to derive the potential p(vi)=f (g(vi)).

From these initial potentials, we derive the

probabilistic net gain. The net gain is then used

to derive the module gain. In practice, we stop

after a limited number of cycles, e.g., two

iterations ([37]). Note that there is no guarantee

that the iteration will converge.

After each move, the associated module poten-

tial and probabilistic net gains are updated and the

plain cut count is recorded. Exact cut count is used

when we select the subsequence of move to

execute.

It has been shown via benchmarks released by

ACM/SIGDA, the probabilistic gain model pro-

duces excellent partitioning results; it outperforms

the other gain models by wide margins.

5.3.4. Net-based Move

The net based process [115, 32] is similar to the

module based approach except that all operations

are based on the concept of the critical and

complementary critical sets. The main di�erences

are (1) Instead of a single module, each move now

shifts one critical or complementary critical set,

depending on the type of objective function. For

convenience, we say a move is initiated by a net eu
if this move is composed of shifting the critical or

complementary critical set associated with eu. (2)

The locking mechanism is operated on a net, that

is, if the critical or complementary critical set of a
FIGURE 20 Function of probabilistic gain.

22 S.-J. CHEN AND C.-K. CHENG

I207T001015 . 207
T001015d.207

net has been moved then all the moves initiated by

this net will be prohibited thereafter.

Given a net eu and a vertex set Vb, let us de®ne

the critical set of net eu with respect to set Vb as

sub � eu \ Vb; �40�

and the complementary critical set of eu with

respect to set Vb as

su�b � eu \ �Vb �41�

For a move associated with a net eu, we can

either place the critical set Sub into a partition

other than Vb, or the complementary critical set

Su�b into the partition Vb. The gain of each move is

then computed by evaluating the change of the

cost due to the move of the critical or comple-

mentary critical set.

Usage of Basic Module Moves Although the

net-based move model provides a di�erent process

to improve current partition, it is more expensive

than the module-based move model because more

modules are involved in each move.

We can mimic the net based move by adding

weights to the connectivity of desired nets [38]. The

basic move is still based on the modules. However,

after module vi is moved, we add more weights on

the nets connecting to vi, i.e., E({vi}). These extra

weights encourage the adjacent modules to go

along with module vi and thus achieves the e�ect

of net based move. Empirical study ®nds improve-

ment on the partitioning results.

5.3.5. Simulated Annealing Approach

For simulated annealing [20, 81, 62, 56], we can

adopt the basic moves such as module shifting and

pairwise swapping. There is no need of lock

mechanism. To allow a larger searching space,

we incorporate the size constraints into objective

function, e.g.,

C�V1;V2� � ��S�V1� ÿ S�V2��
2: �42�

where � is a coe�cient. We can adjust it according

to the annealing temperature. As temperature

drops, we gradually increase � to enforce the size

balance.

5.4. Flow Approaches

In this section, we assume that the circuit can be

represented by a graph G(V,E) with unit module

size, i.e., si=1 and all nets are two pin nets. The

¯ow approach can be extended to multiple pin nets

using a ¯ow model.

We ®rst go through maximum ¯owminimum cut

[1, 73] to introduce the duality [30] and the concept

of shadow price. The derivation is then extended to

a weighted cluster ratio cut and a replication cut.

Finally, we introduce heuristic algorithms that

accelerate the ¯ow calculation. The ¯ow approach

can derive excellent results. Furthermore, exploit-

ing its duality formulation, we can derive a tight

bound of the optimal solutions.

5.4.1. Maximum Flow Minimum Cut

In maximum ¯ow minimum cut formulation, the

¯ow injects into module vs and drains from module

vt. The ¯ow is conservative at all other modules.

The capacity of the nets eij is equal to its

connectivity, cij. We set cij=0 if there is no net

connecting modules vi and vj. The notation xij
denotes the amount of ¯ow from module vi to

module vj and xji denotes the amount of ¯ow from

module vj to module vi on net eij. The objective is

to maximize the ¯ow injection f into vs.

Obj : max f �43�

subject to the constraints,

xij � xji � cij ; 81 � i; j � jV j �44�

XjV j
j�1

xjs ÿ
XjV j
j�1

xsj ÿ f � 0 �45�

XjV j
j�1

xjt ÿ
XjV j
j�1

xtj � f � 0 �46�

23VLSI PARTITIONING

I207T001015 . 207
T001015d.207

XjV j
j�1

xij ÿ
XjVj
j�1

xji � 0; 81 � i � jV j �47�

xij � 0; 81 � i; j � jVj: �48�

To derive the duality, we use shadow prices: a

bidirectional distance dij for each net eij Eq. (44),

potential �i for each module vi Eqs. (45) ± (47) The

dual problem can be expressed as follows [30].

Obj : min
X
eij2E

cijdij �49�

subject to

dij � j�i ÿ �j j; 81 � i; j � jVj; �50�

�t ÿ �s � 1: �51�

Figure 21 illustrates the formulation. As we

increase the ¯ow, certain nets are going to

saturate, i.e., the two sides of inequality expression

(44) become equal. Once the saturated nets

become a bottleneck of the ¯ow, the set of nets

forms a cut E(V1,V2) with vs2V1 and vt2V2. In

duality, the potential of modules in V2 increases to

one, and the potential of modules in V1 remains to

be zero, i.e., �i=1, 8vi2V2 and �i=0, 8vi2V1.

The distance of nets in the cut is one, while the

distance of nets outside the cut is zero, i.e., dij=1,

8cij2E(V1,V2) and dij=0, 8cij =2E(V1,V2).

5.4.2. The Weighted Cluster Ratio Metric

and a Uniform Multi-commodity

Flow Problem

In a uniform multi-commodity ¯ow problem

[74, 75], the demand of ¯ow between each pair of

modules is equal to an identical value f. As we

keep increasing f, some of the nets become

saturated. These saturated nets form a bottleneck

of communication and thus prescribes a potential

clustering of the communication system [71].

We simplify the notation by assuming a graph

model G(V,E). From each module vp, we inject

¯ow f/2 to each of the rest modules. Summing up

the ¯ow in two directions, the ¯ow between each

pair of modules is f. We de®ne the ¯ow originated

from module vp as commodity p. Let x
�p�
ij be the

¯ow for commodity p on net eij. The objective is to

maximize f:

Obj : max f �52�

subject to the ¯ow demand from module vp to the

other modules vi,

XjVj
j�1

x
�p�
ij ÿ

XjV j
j�1

x
�p�
ji

�
ÿf=2 if i 6� p; and 1 � i; p � jV j;

�jV j ÿ 1�f=2 if i � p; and 1 � i; p � jV j;

�
�53�

and the net capacity constraint,

FIGURE 21 Illustration of maximum ¯ow minimum cut formulation.

24 S.-J. CHEN AND C.-K. CHENG

I207T001015 . 207
T001015d.207

XjV j
p�1

x
�p�
ij �

XjV j
p�1

x
�p�
ji � cij; 1 � i; j � jVj: �54�

We transform the above linear programming

problem to its dual expression by assigning dual

variables �
�p�
i to module vi with respect to

commodity p Eq. (53), and distance dij to net eij
Eq. (54), then we have:

Obj : min
X
eij2E

cijdij �55�

subject to

dij �
����p�i ÿ �

�p�
j

��; 1 � i; j; p � jV j �56�

1

2

XjV j
p�1

XjV j
i�1;i 6�p

ÿ
�
�p�
i ÿ ��p�p

�
� 1 �57�

The Properties of Shadow Prices The shadow

price dij can be viewed as bidirectional, i.e., dij=dji.

It represents the distance of net eij, which

corresponds to the cost to transmit ¯ow through

eij. Variable �
�p�
i is the potential of module vi with

respect to commodity p.

From constraints (56), (57), we can derive two

properties for distance function dij and potential

�
�p�
i [71].

Property I: Triangular Inequality The distance

metric dij satis®es the triangular inequality:

dij � djk � dik; 8vi; vj ; vk 2 V �58�

Property II: Potential Function The term �
�p�
i ÿ

�
�p�
p in expression (56) is equal to the shortest

distance between modules vi and vp based on net

distances dij. In fact, from triangular inequality, we

obtain �
�p�
i ÿ �

�p�
p � dip.

We normalize the objective function (55) with

the left hand side terms of inequality (57). The

objective function can be expressed as:

Obj : min

P
eij2E

cijdij

�1=2�
PjV j

p�1

PjV j
i�1;i 6�p

ÿ
�
�p�
i ÿ �

�p�
p

�
�

P
eij2E

cijdij

�1=2�
PjV j

p�1

PjV j
i�1;i 6�p dip

�59�

In the solution of linear programming problem

(52) ± (56), the nets with positive dij values parti-

tion V into vertex sets V1,V2, . . . ,Vk. More speci-

®cally, nets connecting modules in di�erent sets,

Vi, Vj, i 6� j, have the same distance dij values (we

use dij to denote the distance between vertex sets Vi

and Vj when this does not cause confusion), while

nets connecting only modules in the same sub-

graph have zero distance, dij=0 (Fig. 22). We can

rewrite the denominator of the objective function

and state the problem as follows.

Statement of Weighted Cluster Ratio Cut

[103] Find the distance dij and the number of

partition k with an objective function of weighted

cluster ratio:

mindij ;kWC�V1;V2; . . . ;Vk�

� mindij ;k

Pk
i�j�1

Pkÿ1
j�1 dijC�Vi;Vj�Pk

i�j�1

Pkÿ1
j�1 dijS�Vi� � S�Vj�

�60�

where distance dij is subject to the property of

triangular inequality.

According to the mechanism of the duality, the

objective functions of the primal and dual

formulations are equal when the solution is

optimal [25].

THEOREMHEOREM 5.1 For feasible solutions, we have the

inequality f �WC (V1,V2, . . . ,Vk). The equality

holds when the solution is optimal, i.e., the

maximum uniform multicommodity ¯ow equals the

FIGURE 22 Distance between clusters.

25VLSI PARTITIONING

I207T001015 . 207
T001015d.207

minimum weighted cluster ratio of any cut,

maxxij f � mindij ;kWC�V1;V2; . . . ;Vk�.

Expression (60), weighted cluster ratio [103], is

similar to cluster ratio with a weighted metric dij.

In general, the solution for the minimum weighted

cluster ratio does not directly correspond to the

partition of optimum cluster ratio. However, if

distance dij is a constant value between all pairs of

vertex sets Vi and Vj then the weighted cluster ratio

provides the solution for cluster ratio.

When the nets with positive distance dij form a

two-way partition, we can show that the partition

de®nes the ratio cut. When the nets with positive

distances form a k-way partition with k� 4, we

also ®nd that there exists a two-way partition that

again de®nes the ratio cut [28].

THEOREMHEOREM 5.2 Let net set D={eijjdij >0} de®ne a

cut that separates the circuit into k disconnected

subsets. If k� 4, then there exists a ratio cut that is

a subset of D.

5.4.3. A Replication Cut for Two-way

Partitioning

We adopt the linear programming formulation of

network ¯ow problem [1, 30], where each module

is assigned a potential and a cut is represented by

the di�erence of module potentials as shown in

Figure 23. With respect to the directed cut

E�V1 ! �V1�, we use wij to denote the potential

di�erence between the cut from module vi2V1 to

module vj =2V1. The potential of each module vi is

denoted by pi. For module vi in V1, pi=1, and for

modules vi in �V1, pi=0. Thus all nets eij 2

E�V1 ! �V1� have wij=1. The remaining nets have

wij=0.

With respect to the directed cut E�V2 ! �V2�, we

use uji with a reversed subscript ji to denote the

potential di�erence between the cut from module

vi2V2 to module vj =2V2 (Fig. 23). The potential of

each module vi is denoted by qi. For modules vi in
�V2, qi=1, and for modules vi in V2, qi=0. The

potential di�erence uji has a reverse direction with

net eij because we set the potential on �V2 side high

and the potential on V2 side low. All nets

eij 2 E�V2 ! �V2� have uji=1. The remaining nets

have uji=0.

Primal Linear Programming Formulation The

problem is to minimize the total weight of crossing

nets:

Obj : min
X
eij2E

cijwij �
X
eij2E

cjiuij �61�

subject to

wij ÿ pi � pj � 0 81 � i; j � jV j �62�

uij ÿ qi � qj � 0 81 � i; j � jV j �63�

qi ÿ pi � 0 8vi 2 V; vi 6� vs; vt �64�

ps � 1 �65�

qs � 1 �66�

pt � 0 �67�

qt � 0 �68�

wij ; uij � 0 81 � i; j � jV j �69�

To minimize objective function (61), the equality

of constraint (62) holds, i.e., wij=piÿ pj, if pi� pj,

otherwise, wij=0. Similarly, constraint (63) re-

quires uij=qiÿ qj if qi� qj, otherwise uij=0.

Expression (64) demands potential qi be not less

than potential pi for any module vi2V. Since highFIGURE 23 p potential and q potential of each module.

26 S.-J. CHEN AND C.-K. CHENG

I207T001015 . 207
T001015d.207

potential pi corresponds to set V1, and high

potential qi corresponds to set �V2, inequality (64)

enforces V1 be a subset of �V2. Consequently, the

requirement that V1\V2=; is satis®ed.

Constraints (65) ± (68) set the potentials of

modules vs and vt. Constraint (69) requires

potential di�erence wij and uij be nonnegative.

Figure 23 shows one ideal potential con®guration

of the solution.

Dual Linear Programming Formulation If we

assign dual variables (Lagrangian multiplier) xij to

inequality (62) with respect to each net, x 0ij to

inequality (63), �i to inequality (64) with respect

to module vi, and as, bs, at, bt to inequalities (65) ±

(68), respectively, then we have the dual formula-

tion.

Obj : max as � bs �70�

subject to

xij � cij 81 � i; j � jV j �71�

x 0ij � cji 81 � i; j � jVj �72�

XjVj
j�1

ÿxij � xji ÿ �i � 0 8vi 2 V ; vi 6� vs; vt �73�

XjVj
j�1

ÿx0ij � x0ji � �i � 0 8vi 2 V ; vi 6� vs; vt �74�

XjV j
j�1

ÿxsj � xjs � as � 0 �75�

XjVj
j�1

ÿxtj � xjt � at � 0 �76�

XjV j
j�1

ÿx0sj � x0js � bs � 0 �77�

XjVj
j�1

ÿx0tj � x0jt � bt � 0 �78�

�i; xij ; x
0
ji � 0 81 � i; j � jV j; vi 6� vs; vt �79�

as; at; bs; bt unrestricted �80�

where inequalities (71), (72) are derived with

respect to each wij and uij respectively. Similarly,

Eqs. (73) ± (78) are derived with respect to each pi,

qi, ps, pt, qs and qt. The equality of Eqs. (73) ± (78)

holds because pi, qi, ps, pt, qs and qt are not

restricted on sign in the primal formulation.

Variables �i, xij, and x0ij are positive in Eq. (79)

because their corresponding expressions (62) ± (64)

are inequality constraints.

We can view G(V,E) as a network ¯ow problem

and interpret cij as the ¯ow capacity, xij as the ¯ow

of net eij. Constraint (71) requires that the ¯ow xij
be not larger than the ¯ow capacity cij on each net

eij. In constraint (72), the set of nets are in a

reversed direction and ¯ow x0ij is not larger than

the capacity of the capacity cji of net eji in E.

Corresponding to G(V,E), we use G0(V 0,E 0) to

denote the reversed graph.

Constraint (73) has the total ¯ow xij injected

from module vi into G be equal to ÿ�i. On the

other hand, constraint (74) has the total ¯ow x0ij
injected from module vi0 into G0 be equal to �i.

Suppose we combine Eqs. (73) and (74), we haveX
j

ÿxij � xji � �i �
X
j

x0ij ÿ x0ji: �81�

This means that the amount of ¯ow �i which

emanates from module vi in G enters its corre-

sponding module in vi0 in G0.

Constraints (75) ± (78) indicate that as and bs are

the ¯ow injections to module vs in G and its

reversed circuit G0; at and bt are the ¯ow ejections

from module vt in G and its reversed circuit G0,

respectively. Combining circuit G and G0 together,

we have the maximum total ¯ow, as�bs, be the

optimum solution of the minimum replication cut

problem.

5.4.4. The Optimum Partition

In this subsection, we describe the construction of

replication graph and take an example to describe

27VLSI PARTITIONING

I207T001015 . 207
T001015d.207

it. We then apply the maximum ¯ow algorithm on

the constructed replication graph to derive an

optimum replication cut. The optimality of the

derived replication cut is proved by using a

network ¯ow approach.

Construction of Replication GraphGiven a circuit

G(V,E) and modules vs and vt, we construct

another circuit G0(V 0,E 0) where jV 0 j=jV j with

each module v0i in V 0 corresponding to a module vi
in V, and jE 0 j=jE j with each directed net eij in E 0

in the reverse direction of net eij in E. We create

super modules v�s and v�t and nets �v�s ; vs�, �v
�
s ; v
0
s�,

�vt; v
�
t �, and �v

0
t; v
�
t � with in®nite capacity as shown

in Figure 24. From every module vi in V except vs
and vt, we add a directed net of in®nite capacity to

the corresponding module v0i in V 0. We refer to the

combined circuit as G�.

Polynomial-time Algorithm The optimum repli-

cation cut problem with respect to module pair vs
and vt and without size constraints can be solved

by a maximum-¯ow minimum-cut solution of the

circuit G� with v�s as the source and v�t as the sink of

the ¯ow (Fig. 24). Suppose the maximum-¯ow

minimum-cut ®nds partition �X; �X� of V with

vs2X and vt 2 �X and partition �X0; �X
0
� of V 0 with

v0s 2 X0 and v0t 2 �X
0
. Then a replication cut (V1,V2)

of the original circuit with V1=X, V2 � fiji
0 2 �X

0
g

and R=VÿV1ÿV2 is an optimum solution. Note

that V2 is derived from the cut in vertex set V 0. To

simplify the notation, we shall use �X; �X
0
� to denote

the derived replication cut of G.

Example Given a circuit in Figure 25, its replica-

tion graph G� is constructed as shown in Figure 26.

The maximum-¯ow minimum-cut of G� derives

�X; �X� � �fvs; vag; fvb; vc; vtg� and �X0; �X
0
� � �fv0s;

v0a; v
0
b; v
0
cg; fv

0
tg� with a ¯ow amount, 5 (Fig. 26).

Thus the sets V1={vs, va} and V2={vt} de®ne an

optimum replication cut R(V1,V2) with R={vb, vc}

and a cut cost equal to 5 (Fig. 27).

The network ¯ow approach leads to the opti-

mality of the solution as stated in the following

theorem.

THEOREMHEOREM 5.3 The replication cut R�X; �X
0
� derived

from the transformed circuit G� generates the

minimum replication cut count CR�X; �X
0
� (expression

(19)).

5.4.5. Heuristic Flow Algorithms

We introduce the heuristic approaches that accel-

erate the ¯ow calculation and take advantage the

optimality properties of the ¯ow methods. We ®rst

introduce an approach that utilizes the maximum

¯ow minimum cut method for the min cut with

FIGURE 24 The replication graph G�.

28 S.-J. CHEN AND C.-K. CHENG

I207T001015 . 207
T001015d.207

size constraints. We then explain a shortest path

method for multiple commodity ¯ow calculation.

(i) Usage of Maximum Flow Minimum Cut We

adopt a heuristic approach [113] to get around the

unbalanced partition of the maximum ¯ow and

minimum cut method. First, we ®nd two seeds as

the source and the sink modules, vs, vt. We then

use the maximum ¯ow and minimum cut method

to ®nd partition (V1,V2) with vs2V1 and vt2V2.

Suppose the size S(V1) of V1 is larger than the size

S(V2) of V2, we ®nd from V1 a module vi to merge

with V2 and shrink set V2 as a new sink module.

Otherwise, we ®nd from V2 a module vi to merge

with V1 and shrink set V1 as a new source module.

We repeat the maximum ¯owminimum cut process

on the graph with new source or sink module until

the size of the partition ®ts the size constraint.

Two Way Partitioning using Maximum Flow

Minimum Cut

1. Find two seeds as vs and vt.

2. Call Maximum Flow Minimum Cut to ®nd

partition (V1,V2).

3. If S(V1)>S(V2), ®nd a seed vi2V1, merge

{vi}[V2 into a new sink module vt.

4. Else ®nd a seed vi2V2, merge {vi}[V1 into a

new source module vs.

5. Repeat Steps 1 ± 4, until Sl<S(V1)<Su and

Sl<S(V2)<Su.

We can use parametric ¯ow approach recur-

sively to the maximum ¯ow minimum cut pro-

blems recursively (Step 2). The total complexity is

equivalent to a single maximum ¯ow minimum

cut.

The seeds are chosen according to its connectiv-

FIGURE 25 A ®ve module circuit to demonstrate the
replication cut.

FIGURE 26 The constructed replication graph of the circuit shown in Figure 25.

29VLSI PARTITIONING

I207T001015 . 207
T001015d.207

ity to the vertex set in the other side. The result is

sensitive to the choice of the seeds. We can make

multiple trials and choose the best results. Other

methods such as programming approach can serve

as a guideline on the choice of the seeds [79, 80].

The method has shown to derive excellent results

with reasonable running time.

(ii) Approximation of Multiple Commodity Flow

Based on the multicommodity ¯ow formulation

[103], we try to solve a multiple way partitioning

by deriving approximate multiple commodity ¯ow

with a stochastic process [13, 55, 114, 117].

Given a circuit H(V,E), the ¯ow increment �,

and the distance coe�cient �, the algorithm starts

with procedure Saturate-Network to saturate the

circuit with ¯ows. A stochastic ¯ow injection

algorithm is adopted to reduce the computational

complexity. Then, Select-Cut is activated to select

a set of nets by the ¯ow values to constitute a cut.

The conversion from weighted ratio cut to cluster

ratio cut is performed by a Select-Cut routine

which selects the subset of the cut derived from

Saturate-Network with a greedy approach.

Multiple Commodity Flow Approximation

(H,�,�)

1. Iterate the following procedures

1.1. Saturate-Network (H,�,�).

1.2. Select-Cut (H) until the clustering result

are satisfactory

2. Output clustering result.

Procedure Saturate-Network (H,�,�)

1. Set the distance of each net e to be one.

2. While (H is connected) do 2.1 to 2.3.

2.1. Randomly pick two distinct modules vs
and vt.

2.2. Find the shortest path between vs and vt.

2.3. For each net e on the shortest path, let f (e)

and de be the ¯ow and distance of net e.

2.3.1. If n is not saturated, increase f (e) by�

and set de=exp ((�� f (e))/ce).

2.3.2. If e is saturated, set de to be 1.

3. Output E with ¯ow informations.

The initial distance of each net is one since there is

no ¯ow being injected (see the distance formulation

in Step 2.3.1). Step 2.1 uses a random process with

even distribution over all modules to pick two

distinct modules, and Steps 2.2 ± 2.3 inject �

amount of ¯ows along the shortest path between

the modules. In Steps 2.3.1 ± 2.3.2, the distances of

the nets whose ¯ow has been increased are

recomputed using an exponential function de=exp

FIGURE 27 The duplicated circuit of the circuit shown in Figure 25.

30 S.-J. CHEN AND C.-K. CHENG

I207T001015 . 207
T001015d.207

((�� f (e))/ce) to penalize the congested nets, where

de and f (e) are the distance and ¯ow of net e,

respectively. Steps 2.1 ± 2.3 are iteratively executed

until a pair of modules are chosen where all possible

paths between them are saturated by ¯ows. These

saturated nets identify a partition of the circuit.

Figure 28 shows a sample circuit saturated by

¯ows after executing Saturate-Network with

�=0.01 and �=10. The ¯ow values are shown

by the numbers right beside each net. The dashed

lines indicate the cut lines along the set of

saturated nets to form the three clusters. These

saturated nets de®ne an approximate weighted

cluster ratio cut which are potential set of nets for a

selection of cluster ratio cut.

5.5. Programming Approaches

For programming approaches [7, 18, 35, 41, 46, 44],

we adopt two way minimum cut with size

constraints as the target problem. We assume that

the nets are two pin nets and thus, the circuit can

be described as a graph G(V,E). We also assume

the modules are of unit size, i.e., si=1.

The two way partition (V1,V2) is represented by

a linear placement with only two slots at coordi-

nates ÿ 1 and 1. For an even sized partition, half

of the modules are assigned to each slot. Let xi
denote the coordinate of module vi. If vi2V1,

xi=1, else xi=ÿ 1 for vi2V2. The cut count can be

expressed as follows.

C�V1;V2� �
1

4
cij�xi ÿ xj�

2 �
1

4
X>BX �82�

where X is a vector of xi, and X> is the transpose

of vector X. Matrix B has its entry bij=ÿ cij if i 6� j,

else bii �
P

1� j�jV j cij. Suppose we relax the slot

constraint by enforcing only the rules of the

gravity center and the norm. The constraint of

vector X can be expressed as:

1>X � 0; �83�

X>X � jV j �84�

Matrix B is symmetric and diagonally semido-

minant. Thus, it is semipositive de®nite, i.e., all

eigenvalues are nonnegative. And its eigenvectors

are orthogonal. Let us order its eigenvalues from

FIGURE 28 The ¯ow and partition generated by saturate-network.

31VLSI PARTITIONING

I207T001015 . 207
T001015d.207

small to large, i.e., �0��1 � � � ��jVjÿ1. The smal-

lest eigenvalue �0=0 with its eigenvector X0=1.

The second eigenvalue �1 is nonnegative with its

eigenvector orthogonal to the ®rst eigenvector, i.e.,

X>0 X1 � 1>X1 � 0. Therefore, the second eigenvec-

tor X1 is an optimal solution to objective function

(82) with constraints (83) [46]. Since X>X=jVj Eq.

(84) the solution

1

4
X>1 BX1 �

1

4
�1 � X>1 X1 �

1

4
�1 � jVj; �85�

which is a lower bound of the min-cut problem.

To push for a higher lower bound, we can adjust

the diagonal term of matrix B by adding constants

di. Let

~C�V1;V2� � C�V1;V2� �
1

4

X
1�i�jVj

di � x2i

ÿ
1

4

X
1�i�jV j

di

�
1

4

X>~BX ÿ

X
1�i�jV j

di

!
;

�86�

where matrix ~B has its entry ~bij � bij if i 6� j, else
~bii � bii � di. Either xi=1 or xi=ÿ 1, the last two

terms cancel each other. The modi®cation thus

does not alter the optimal partition solution.

The new nonlinear programming problem is to

®nd the assignment of di to maximize the objective

function [11]:

1

4

~�1 � jV j ÿ

X
1�i�jV j

di

!
�87�

where ~�1 is the second smallest eigenvalue of

matrix ~B. The solution is an upper bound of the

partition. It is larger than �1 in the sense that �1
can serve as an initial feasible solution to maximize

expression (87).

Remarks The programming approach ®nds a

global view of the problem [9, 79, 80, 118]. How-

ever, the formulation is very restricted. The

extension to multiple pin nets and the incorpora-

tion of ®xed modules will destroy the nice

structure based on which we have the eigenvalue

and eigenvector as optimal solutions. Therefore, it

is di�cult to utilize the approach recursively.

For a general case, we can view the problem as

nonlinear programming with Boolean quadratic

objective function. Nonlinear programming tech-

niques are adopted to derive the results [16, 107].

5.6. A Lagrange Multiplier Approach for

Performance Driven Partitioning

Lagrange multiplier is one useful tool for perfor-

mance optimization. In this section, we demon-

strate the usage of Lagrange multiplier for

performance driven partitioning. The problem is

to optimize the performance of a two-way parti-

tion (V1,V2) with retiming [86].

We ®rst introduce a vector of binary variables to

represent a partition. The performance-driven

partitioning problem is thus represented by a

Boolean quadratic programming formulation with

nonlinear constraints. We then absorb the non-

linear constraints into the objective function as a

Lagrangian. We use primal and dual subproblems

to decompose the Lagrangian and derive the

partitions. Lagrange multiplier is adjusted in each

iteration via a subgradient method to monitor the

timing criticality and improve the performance.

5.6.1. Programming Formulation with Lagrange

Multiplier

We assume that the circuit can be represented by a

graph G(V,E) with two pin nets and unit module

size. The two-way partition is described by a vector

x=(x1,1, . . . , x1,n, x2,1, . . . , x2,n), where xb,i is 1 if

module vi is assigned to vertex set Vb, otherwise xb,i
is 0. If modules vi and vj are in di�erent vertex set,

the value of the term x1,ix2, j�x2,ix1, j is equal to 1.

This contributes one interpartition delay � into the

delay of the net eij. Let gl(x) denote the delay to

register ratio of loop l. Delay ratio gl(x) can be

written as the following formula:

32 S.-J. CHEN AND C.-K. CHENG

I207T001015 . 207
T001015d.207

gl�x� �
d` �

P
eij2l

� � �x1;ix2; j � x2;ix1; j�

rl
�88�

Given a path p, the total delays hp(x) of p is as

follows:

hp�x� � dp �
X
eij2p

� � �x1;ix2; j � x2;ix1; j� �89�

To formulate the problem, we use an objective

function of cut count:

min
X
eij2E

cij�x1;ix2; j � x2;ix1; j�; �90�

subject to the following constraints:

C1 (Size Constraints)

XjVj
i�1

xb;isi � Su 8 b 2 f1; 2g: �91�

C2 (Variable Assignment Constraints)

X2
b�1

xb;i � 1 8 vi 2 V: �92�

C3 (Iteration Bound Constraints)

gl�x� � ~J 8 loop l: �93�

C4 (Latency Bound Constraints)

hp�x� � ~M 8 IO-critical path p: �94�

Actually, we don't need to consider all loops in C3.

Because all loops are composed of simple loops,

we have the following lemma:

LEMMAEMMA 1 Given a number ~J, if gl(x) is less than or

equal to ~J for any simple loop l, then gl(x) is less

than or equal to ~J for all loops l.

Let �c and �p represent the number of the simple

loops and the number of IO-critical paths,

respectively. Let � denote the vector ��g1 ; . . . ;

�g�c
; �h1 ; . . . ; �h�p

�. Using Lagrangian Relaxation

[104], we absorb the constraints (93) and (94) into

the objective function (90). The Lagrangian-

relaxed problem is as follows.

max
��0

min
x

L�x; �� �95�

subject to constraints C1 and C2, where

L�x; �� �
X
eij2E

cij�x1;ix2; j � x2;ix1; j�

�
X

8 simple loop l

�gl �gl�x� ÿ ~J�

�
X

8 IO-critical path p

�hp�hp�x� ÿ ~M�

�96�

(i) The Dual Problem Given vector x, we can

represent (96) as a function of variable �, i.e.,

Lx(�). Thus, the dual problem can be written as:

max
��0

Lx��� �97�

(ii) The Primal Problem Let Fij and Qij denote the

sets of the simple loops and IO-critical paths

passing the net eij. The cost aij of net eij is

composed of connectivity cij and the penalty of

the timing constraints.

aij � cij �
X
l2Fij

�

rl
�gl �

X
p2Qij

��hp �98�

Given vector �, we can represent (96) as a function

of vector x, i.e., L�(x). Thus, the primal problem

can be rewritten as:

min L��x� � min
X
eij2E

aij�x1;ix2; j � x2;ix1; j� � �

�99�

subject to C1 and C2, where � represents the

constant contributed by �.

5.6.2. Subgradient Method using Cycle Mean

Method

We solve the partitioning problem through primal

and dual iterations on the Lagrangian. A Quad-

ratic Boolean Programming, QBP, [16] is used to

33VLSI PARTITIONING

I207T001015 . 207
T001015d.207

solve the primal problem and generate a solution x

(Step 2).

For the dual problem based on x, we select the

set of loops and paths that violates the timing

constraints as active loops and paths. The nets

contained in the active loops or paths are termed

active nets.

Active Loops and Paths Given a solution x, a

loop l is called active, if gl(x) is not less than ~J. A

path p is called active, if hp(x) is not less than ~M.

Active Nets Given a net e, we de®ne e to be an

active net, if net e is covered by an active loop or

an active path.

We call a minimum cycle mean algorithm [57]

and an all-pairs shortest-paths algorithm to mark

all the nets on active loops and paths, respectively

(Step 3). For every net eij on active paths, we

record qij: the maximum path delay among all

paths passing through eij. For every net eij on

active loops, we record pij: the maximum delay-to-

register ratio among all loops passing through eij.

We then calculate the subgradient on the marked

nets and update the constants aij for the next

primal dual iteration (Steps 4 ± 5). We increase the

costs of active nets using subgradient approach

[104]. The iteration proceeds until the bound of all

loops and paths are within the given limits.

Algorithm using Lagrange Multiplier Input: Con-

stants ~J; ~M; � � 1:3 and an initial partitionÿ
V
�0�
1 ;V

�0�
2

�
.

1. Initialize k 1; a
�0�
ij � cij .

2. Run QBP [16] to ®nd a partition
ÿ
V
�k�
1 ;V

�k�
2

�
with an object to minimize cut count

C
ÿ
V
�k�
1 ;V

�k�
2

�
�
P

e2E�V
�k�
1

;V
�k�
2
�
a
�k�
ij .

3. Calculate the iteration and latency bounds of

the partition
ÿ
V
�k�
1 ;V

�k�
2

�
, respectively. Stop if

timing constraints are satis®ed. Otherwise,

revise pij and qij for all nets eij.

4. Compute

t�k� �
�
��CÿV �k�1 ;V

�k�
2

�
ÿ C

ÿ
V
�0�
1 ;V

�0�
2

���P
eij2E
�pij ÿ ~J�2 �

P
eij2E
�qij ÿ ~M�2

5. Revise shadow price aij for all nets eij2E:

a
�k�1�
ij � a

�k�
ij ;

if net eij is in active loop, then a
�k�1�
ij � a

�k�
ij �

t�k��pij ÿ ~J�;

if net eij is in active path, then a
�k�1�
ij � a

�k�
ij �

t�k��qij ÿ ~M�.

6. While k�MaxNumIter, set k k�1 and goto

2.

5.7. Clustering Heuristics

We ®rst discuss the usage of clustering heuristics.

We then discuss top down clustering and bottom

up clustering approaches. At the last, we discuss

some variations of clustering metrics.

5.7.1. Usage of Clustering Heuristics

The usage of clustering heuristics plays an

important role in determining the quality of the

®nal results. In the following, we discuss the issue

in di�erent topics. We use a two-way partitioning

with size constraints as the target problem.

1. Top Down Clustering versus Bottom Up

Clustering: Top down clustering approach

provides a global view of the solution. The

operations are consistent with the target pro-

blem. However, it is more time consuming

because the clustering operates on the whole

circuit [29]. Bottom up clustering is e�cient.

However, because the process operates locally,

the target solution is sensitive to the clustering

heuristics [59].

2. The Level of the Clustering: Suppose we

represent the clustering results with a hierarch-

ical tree structure. Let the root correspond to

the whole circuit, the leaves correspond to the

smallest clusters, and the internal nodes corre-

spond to the intermediate clusters. Hence, the

size of the clusters grows with the level of the

nodes. Top down clustering creates clusters

corresponding to nodes in high levels, while

bottom up clustering creates clustering corre-

sponding to nodes in low levels.

34 S.-J. CHEN AND C.-K. CHENG

I207T001015 . 207
T001015d.207

For example, in [60], Kernighan and Lin

proposed a top down clustering approach,

which divides the whole circuit into four clusters

only. In [59], Karypis et al., used a bottom up

clustering which starts with clusters of two

modules or a net. If we continue the application

of bottom up clustering on intermediate clus-

ters, the quality of the clusters degenerates as the

size of the clusters grows bigger.

3. Iteration of Clustering and Unclustering: We go

through the iterations of clustering and unclus-

tering to improve the quality of the results. At

each level of the hierarchical tree, we derive an

intermediate target solution, e.g., a two-way

partition. In unclustering, we go down the level

of tree hierarchy to ®nd an expanded circuit with

more modules. In clustering, we go up the level

of tree hierarchy with a circuit of a smaller

number of modules. The previous partitioning

result becomes the initial of the new partitioning

problem. Note that the hierarchical tree is

constructed dynamically. For each clustering,

themodules can be grouped based on the current

partitioning con®guration.

4. The Clustering Operations and the Target

Solution: The clustering operation has to be

consistent with the target solution. For example,

suppose the target is ®nding a two-way min-cut

with size constraints. Then, it is natural to cluster

modules based on net connectivity because the

probability that a net is in an optimal cut set is

small (see the subsection of min-cut with size

constraints in problem formulations). More-

over, it is important that the clustering follows

the current partitioning results, i.e., only mod-

ules in the same partition are clustered.

5.7.2. Top Down Clustering Approach

for Partitioning

We use an application to two-way cut with size

constraints to illustrate the top down clustering

approach [24, 29]. The partitioning of huge designs

is complicated and the results can be erratic. Our

strategy (Fig. 29) is to reduce the circuit complex-

ity by constructing a contracted hypergraph. The

clusters for the contracted hypergraph are

searched via a recursive top down partitioning

method. The number of modules is much reduced

after we contract the clusters. Hence, a group

FIGURE 29 Strategy of top down clustering.

35VLSI PARTITIONING

I207T001015 . 207
T001015d.207

migration approach can derive excellent two way

cut results on the contracted hypergraph with

much e�ciency. Furthermore, since the clusters

are grouped via a top down partitioning, concep-

tually a minimum cut on the hypergraph can take

advantage of the previous results and generate

better solutions.

In this section, we describe a top down clustering

algorithm. A ratio cut is adopted to perform the top

down clustering process. Other partition ap-

proaches can also be used to replace the ratio cut.

A group migration method is used to ®nd a

minimum cut of the contracted hypergraph with

size constraint. Finally, we apply a last run of the

group migration algorithm to the original circuit to

®ne tune the result.

Input a hypergraph H(V,E), an integer k for

the number of expected clusters, an integer

num_of_reps for repetition, and Sl, Su for the size

constraints of two resultant subsets.

1. Initialize 	={V } and V �=V.

2. Apply ratio cut [109] to obtain a partition

(A,A0) of V �=A[A0.

3. Set 	=(ÿV �})[{A,A0}. Set V � to be a

vertex set in 	 such that S�V�� � maxVi2	 S�Vi�.

4. While S(V �)> ((S(V))/k), repeat Steps 2, 3.

5. Construct a contracted hypergraph Hÿ(Vÿ,Eÿ).

6. Apply num_of_reps times of a group migration

algorithm to Hÿ with the size constraints Sl, Su.

7. Use the best result from Step 6 to the circuit H

as an initial partition. Apply a group migration

algorithm once toH with the size constraints Sl,

Su.

The choice of cluster number k It was shown

[24] that the cut count versus cluster number k is a

concave curve. When k is small, the quality is not

as good because the cluster is too coarse. When k

is large, there are too many clusters. We lose the

bene®t of the clustering.

For the case that the circuit is large, we may

need to adopt multiple levels of clustering to push

for the performance and e�ciency [58, 66].

5.7.3. Bottom Up Clustering Approaches

In this section, we discuss bottom up clustering

[90] with two applications: linear placement and

performance driven designs. We then show two

strategies to perform the clustering: maximum

matching and maximum pairing. We will demon-

strate via examples the advantage of maximum

pairing over maximum matching.

(i) Linear Placement For linear placement, we

reduce the complexity of the problem by a bottom

up clustering approach [96, 100, 53]. The clustering

is based on the result of a tentative placement. We

adopt a heuristic approach to generate tentative

placements throughout iterations. In each itera-

tion, we cluster modules only when they are in

consecutive order of the placement. We then

construct a contracted hypergraph. In the next

iteration, the heuristic approach generates the

placement of the contracted hypergraph. For each

iteration, we either grow the size of the clusters or

construct new clusters adaptively.

Inspired by the property of the minimum cut

separating two modules (Theorem 3.1), we use a

density as a measure to ®nd the cluster. A density

d(i) at a slot i of a linear placement is the total

connectivity of nets connecting modules on the

di�erent sides of the slot. The following algorithm

describes the clustering using a given placement.

Each cluster size is between L and U.

Input placement P, two parameters L and U.

1. Initialize cluster boundary at slot p=1.

2. Scan placement P from slot p toward the

right end. Find slot i such that p�L� i�

p�U and density d(i) is minimum among

d(p�L) � � � d(p�U).

3. Cluster modules between slots p and i. Set

p=i�1

4. Repeat Steps 2, 3 until the scan reaches the

right end.

Remark The proposed clustering process and the

criteria are consistent with the target linear

36 S.-J. CHEN AND C.-K. CHENG

I207T001015 . 207
T001015d.207

placement application. The whole process depends

on an e�cient and e�ective linear placement.

(ii) Performance Driven Clustering For perfor-

mance driven clustering [31, 112], nets which

contribute to the longest delay are termed critical

nets. Pins of the critical net are merged to form

clusters.

For a special case that the circuit is a directed

tree, we can ®nd optimal solution in polynomial

time. Let us assume the tree has its leaves at the

input and its root at the output. We use a dynamic

programming approach to trace from the leaves

toward the root. Each module is not traced until

all its input modules are processed. For each

module, we treat it as a root of a subtree and ®nd

the optimal clustering of the subtree. Since all the

modules in the subtree except its root have been

processed, we can derive an optimal solution of the

root in polynomial time.

(iii) Maximum Matching The maximum match-

ing pairs all modules into jV j /2 groups simulta-

neously. Given a measurement of pairing modules,

we can ®nd a matching that maximizes the total

pairing measurement in polynomial time.

We can call maximum matching recursively to

create clusters of equal sizes. However, this

strategy may enforce unrelated pairs to merge.

The enforcement will sacri®ce the quality of ®nal

clustering results.

Example Figure 30 illustrates the clustering be-

havior of maximum matching. The circuit contains

twelve modules of equal size. The ®rst level

maximum matching pairs modules (a, b), (d, e),

(g, h), (j, k), (c, l), and (f, i). Modules in the ®rst

four pairs are strongly connected with their

partners. However, the last two are not. Module c

and l have no common nets but are merged because

their choices are taken by others.

Furthermore, as we proceed to the next level

maximum matching, the merge of pairs (c, l) and

(f, i) will enforce grouping modules into cluster

{a, b, c, j, k, l} and cluster {d, e, f, g, h, i}. If we

measure the quality of the results with cluster cost

(expression (26)), the cost of the two clusters isP
i((C (Vi))/(CI (Vi)))=4/12�4/12=2/3. For this

case, we can ®nd a better solution of clusters

{a, b, c, d, e, f } and {g, h, i, j, k, l} of which the

cluster cost is equal to zero.

Figure 31 shows another example of twelve

modules with connectivities attached to the nets.

The connectivity is 1 if not speci®ed. Figure 31(a)

shows an optimum cut with cut count 6.6. If a

maximum matching [61] criterion is adopted in the

bottom up clustering approach, then modules with

a net of weight 1.1 between them will be merged. A

minimum cut on the merged modules yields a cut

count of 18 (Fig. 31(b)). In general, a 2n module

circuit having a symmetric con®guration as in

Figure 31 will have a cut count of n2/2 if the

maximum matching criterion is applied to perform

the clustering; while the optimum solution will

have a cut weight of 1.1� n. From this extreme

case, we can claim the following theorem:

THEOREMHEOREM 5.4 There is no constant factor of error

bound of the cut count generated by the maximum

matching approach, from the cut count of a

minimum cut.

Proof As shown in the above example, the factor

of error bound is (n2/2)/(1.1� n)=n/2.2, which is

not a constant. Q.E.D.

(iv) Maximum Pairing The maximum pairing is

FIGURE 30 Clustering of two module circuit.

37VLSI PARTITIONING

I207T001015 . 207
T001015d.207

similar to maximum matching, except that it does

not enforce the matching of all modules. Only the

top q percent of the modules are paired. Thus, we

can avoid the enforced pairing of unrelated

modules.

However, this strategy may cause certain

modules to keep on growing and produce very

uneven cluster results. Thus, we need to choose a

proper cost function that discourages unlimited

growth of the cluster size, e.g., cost function (26).

5.7.4. Variations of Clustering Metric

In order to identify good clusters, we need to look

beyond the direct adjacency between modules. It is

useful if we can also extract the relation between

the neighbors' neighbors, or even several levels of

neighbors' neighbors. The probabilistic gain model

of group migration approach is one good example

of such approach [37, 42].

In this section, we will discuss a few di�erent

clustering metrics. For the case of k connectivity,

we count the number of k-hop paths between two

modules. Or, we use an analogy of a resistive

network to check the conductance between the

modules. Furthermore, we check beyond the

hypergraph and use other information such as

the module functions, pin locations, and control

signals.

(i) kth Connectivity The number of k-hop paths

between two modules provides a di�erent aspect of

information on the adjacency. Suppose the circuit

has only two-pin nets. We can derive the kth

connectivity with sparse matrix multiplication. Let

C be the connectivity matrix with connectivity cij
as its elements at row i column j, and at row j

column i, and its diagonal entry cii=0. Note

that we set cij=0 if there is no net connecting

modules vi and vj.

Let c
�2�
ij be the element of the square of matrix C

(C 2), and c
�k�
ij be the element of the kth order of

matrix C (Ck). Then we have c
�k�
ij representing the

number of distinct k-hop paths connecting mod-

ules vi and vj.

(ii) Conductivity We use a resistive network

analogy [21, 93] to derive the relation between

modules. Suppose the circuit has only two pin

nets. We replace each net eij with a resistor of

conductance cij. Hence, we can view the whole

system as a resistive network and derive the

conductance between modules. The system con-

ductance between two modules vi and vj reveals the

adjacency relation between the two modules.

The network conductance can be derived using

circuit analysis. We can also approximate the

conductance with a random walk approach. In a

random network model, we start walking from a

module vi. At each module vk, the probability to

walk via net ekl to module vl is proportional to the

connectivity, i.e., (ckl/
P

m ckm). We can derive the

relation between the random walk and the con-

ductivity [89]:

FIGURE 31 A twelve module example to demonstrate
maximum matching.

38 S.-J. CHEN AND C.-K. CHENG

I207T001015 . 207
T001015d.207

hij � hji �
2
P

e2jEj ce

�ij

; �100�

where hij denotes the expected number of hops to

walk from modules vi and vj, and �ij denotes the

conductance between vi and vj.

(iii) Similarity of Signatures We can use certain

features beyond connectivity for the clustering

metric [88, 91]. For example, the index of data bits,

sequence of the pins, function of logic, and

relation with common control signals can serve

as signatures of function blocks in data path

designs. All these features form the ®rst level

adjacency. We can extend the relation to multiple

levels. For example, two modules connecting a set

of modules with strong similarity makes these two

modules similar.

Example As shown in Figure 32, modules A and

B are similar in signature because they are of the

same OR function, connected to consecutive bit

number at the same pin location, and controlled

by the same control signal at the same pin

location.

Modules C and D become similar because

module C obtains signal from A, module D

obtains signal from B, and modules A and B are

similar.

6. RESEARCH DIRECTIONS

Partitioning remains to be an important research

problem. Many applications such as ¯oorplan-

ning, engineering change orders, and performance

driven emulation demand e�ective and e�cient

partitioning solutions.

Recent e�orts released benchmarks with reason-

able complexity [3]. However, more design cases

are still needed to represent the class of huge

circuitry with details of functions and timing.

In this section, we touch on a few interesting

research problems regarding the correlation be-

tween the partition of logic and physical designs,

the manipulation of hierarchical tree structure,

and the performance driven partitioning.

6.1. Correlation of Hierarchical Partitioning

Structure Between Logic Synthesis and

Physical Layout

It is desired to correlate the logic hierarchy with

the physical design hierarchy. The main reason is

the control of timing for huge designs. Currently,

the design turnaround takes 2 ± 8 months for ASIC

and much longer for custom designs. Throughout

the design process, designs keep on changing. We

don't want to lose control of timing as design

changes. A tight correlation of logic and physical

hierarchies makes timing predictable. Without this

kind of mechanism, the timing characteristics of a

¯oorplan may become erratic after iterations of

design changes.

6.2. Manipulation of Hierarchical Partitioning

Structure

One main issue in mapping a huge hierarchical

circuit is the utilization of the hierarchy to reduce

the mapping complexity. We can drastically

improve the e�ciency of the mapping process, ifFIGURE 32 Signature identi®es data structure.

39VLSI PARTITIONING

I207T001015 . 207
T001015d.207

we properly exploit the structure of the design

hierarchy. The generic binary tree is a good

formulation to start with.

The handling of a hierarchy tree gives rise to

many fundamental research problems. For exam-

ple, ®nding k shortest-paths or exploring the

maximum-¯ow minimum-cut of the whole circuit

[51] embedded in a hierarchical tree can be useful

for interconnect analysis and optimization. Such

research can also bene®t many di�erent ®elds

which have to handle huge hierarchical systems.

6.3. Performance Driven Partitioning

For performance driven partitioning, we need a

fast evaluation on the hierarchical tree structure.

The analysis needs to be incremental with incor-

poration of signal integrity.

The network ¯ow method is a potential

approach for the partitioning with timing con-

straints. More e�orts are needed to improve the

speed and derive desired results.

Acknowledgements

The authors thank the editor for the encourage-

ment of preparing this manuscript. The authors

would also like to thank Ted Carson, Lung-Tien

Liu, and John Lillis for helpful discussions.

References

[1] Ahuja, R. K., Magnanti, T. L. and Orlin, J. B., Network
Flows, Prentice Hall, 1993.

[2] Alpert, C. J., ``The ISPD98 circuit benchmark suite'', Int.
Symp. on Physical Design, pp. 80 ± 85, April, 1998.

[3] Alpert, C. J., Caldwell, A. E., Kahng, A. B. and Markov,
I. L., ``Partitioning with Terminals: a ``New'' Problem
and New Benchmarks'', Int. Symp. on Physical Design,
pp. 151 ± 157, April, 1999.

[4] Alpert, C. J., Huang, J. H. and Kahng, A. B., ``Multi-
level circuit partitioning'', In: Proc. ACM/IEEE Design
Automation Conf., June, 1997, pp. 530 ± 533.

[5] Alpert, C. J. and Kahng, A. B., ``Recent directions in
netlist partitioning: a survey'', Integration: The VLSI J.,
19(1), 1 ± 81, August, 1995.

[6] Alpert, C. J. and Kahng, A. B., ``A general framework
for vertex orderings with applications to circuit cluster-
ing'', IEEE Trans. VLSI Syst., 4(2), 240 ± 246, June,
1996.

[7] Alpert, C. J. and Yao, S. Z., ``Spectral partitioning: the
more eigenvectors, the better'', In: Proc. ACM/IEEE
Design Automation Conf., June, 1995, pp. 195 ± 200.

[8] Bakoglu, H. B., Circuits, Interconnections, and Packaging
for VLSI, MA: Addison-Wesley, 1990.

[9] Blanks, J. (1989). ``Partitioning by Probability Conden-
sation'', ACM/IEEE 26th Design Automation Conf., pp.
758 ± 761.

[10] Bollobas, B. (1985). Random Graphs, Academic Press
Inc., pp. 31 ± 53.

[11] Boppana, R. B. (1987). ``Eigenvalues and Graph
Bisection: An Average Case Analysis'', Annual Symp.
on Foundations in Computer Science, pp. 280 ± 285.

[12] Breuer, M. A., Design Automation of Digital Systems,
Prentice-Hall, NY, 1972.

[13] Bui, T., Chaudhuri, S., Jones, C., Leighton, T. and
Sipser, M. (1987). ``Graph bisection algorithms with
good average case behavior'', Combinatorica, 7(2),
171 ± 191.

[14] Bui, T., Heigham, C., Jones, C. and Leighton, T.,
``Improving the performance of the Kernighan-Lin and
simulated annealing graph bisection algorithms'', In:
Proc. ACM/IEEE Design Automation Conf., June, 1989,
pp. 775 ± 778.

[15] Buntine, W. L., Su, L., Newton, A. R. and Mayer, A.,
``Adaptive methods for netlist partitioning'', In: Proc.
IEEE Int. Conf. Computer-Aided Design, November,
1997, pp. 356 ± 363.

[16] Burkard, R. E. and Bonniger, T. (1983). ``A Heuristic for
Quadratic Boolean Programs with Applications to
Quadratic Assignment Problems'', European Journal of
Operational Research, 13, 372 ± 386.

[17] Camposano, R. and Brayton, R. K. (1987). ``Partitioning
Before Logic Synthesis'', Int. Conf. on Computer-Aided
Design, pp. 324 ± 326.

[18] Chan, P. K., Schlag, D. F. and Zien, J. Y., ``Spectral
k-way ratio-cut partitioning and clustering'', IEEE
Trans. Computer-Aided Design, 13(9), 1088 ± 1096, Sep-
tember, 1994.

[19] Charney, H. R. and Plato, D. L., ``E�cient Partitioning
of Components'', IEEE Design Automation, July, 1968,
pp. 16.0 ± 16.21.

[20] Chatterjee, A. C. and Hartley, R., ``A new Simultaneous
Circuit Partitioning and Chip Placement Approach
based on Simulated Annealing'', In: Proc. ACM/IEEE
Design Automation Conf., June, 1990, pp. 36 ± 39.

[21] Cheng, C. K. and Kuh, E. S., ``Module Placement Based
on Resistive Network Optimization'', IEEE Trans. on
Computer-Aided Design, CAD-3, 218 ± 225, July, 1984.

[22] Cheng, C. K., ``Linear Placement Algorithms and
Applications to VLSI Design'', Networks, 17, 439 ± 464,
Winter, 1987.

[23] Cheng, C. K. and Hu, T. C., ``Ancestor Tree for
Arbitrary Multi-Terminal Cut Functions'', Porc. Integer
Programming/Combinatorial Optimization Conf., Univ.
of Waterloo, May, 1990, pp. 115 ± 127.

[24] Cheng, C. K. and Wei, Y. C. (1991). ``An Improved
Two-Way Partitioning Algorithm with Stable Perfor-
mance'', IEEE Trans. on Computer Aided Design, 10(12),
1502 ± 1511.

[25] Cheng, C. K. (1992). ``The Optimal Partitioning of
Networks'', Networks, 22, 297 ± 315.

[26] Cherng, J. S. and Chen, S. J., ``A Stable Partitioning
Algorithm for VLSI Circuits'', In: Proc. IEEE Custom
Integrated Circuits Conf., May, 1996, pp. 9.1.1 ± 9.1.4.

40 S.-J. CHEN AND C.-K. CHENG

I207T001015 . 207
T001015d.207

[27] Cherng, J. S., Chen, S. J. and Ho, J. M., ``E�cient
Bipartitioning Algorithm for Size-Constrained Circuits'',
IEEE Proceedings-Computers and Digital Techniques,
145(1), 37 ± 45, January, 1998.

[28] Cheng, C. K. and Hu, T. C. (1992). ``Maximum
Concurrent Flow and Minimum Ratio Cut'', Algorith-
mica, 8, 233 ± 249.

[29] Chou, N. C., Liu, L. T., Cheng, C. K., Dai, W. J. and
Lindelof, R., ``Local Ratio Cut and Set Covering
Partitioning for Huge Logic Emulation Systems'', IEEE
Trans. Computer-Aided Design, pp. 1085 ± 1092, Septem-
ber, 1995.

[30] Chvatal, V. (1983). Linear Programming, W. H. Freeman
and Company.

[31] Cong, J. and Ding, Y., ``FlowMap: An Optimal
Technology Mapping Algorithm for Delay Optimization
in Lookup-Table Based FPGA Designs'', IEEE Trans.
Computer-Aided Design, January, 1994, 13, 1 ± 12.

[32] Cong, J., Labio, W. and Shivakumar, N., ``Multi-way
VLSI circuit partitioning based on dual net representa-
tion'', In: Proc. IEEE Int. Conf. Computer-Aided Design,
November, 1994, pp. 56 ± 62.

[33] Cong, J., Li, H. P., Lim, S. K., Shibuya, T. and Xu, D.,
``Large scale circuit partitioning with loose/stable net
removal and signal ¯ow based clustering'', In: Proc.
IEEE Int. Conf. Computer-Aided Design, November,
1997, pp. 441 ± 446.

[34] Donath, W. E. and Ho�man, A. J. (1973). ``Lower
Bounds for the Partitioning of Graphs'', IBM J. Res.
Dev., pp. 420 ± 425.

[35] Donath, W. E. and Ho�man, A. J. (1972). ``Algorithms
for partitioning of graphs and computer logic based on
eigenvectors of connection matrices'', IBM Technical
Disclosure Bulletin 15, pp. 938 ± 944.

[36] Donath, W. E. (1988). ``Logic partitioning'', In: Physical
Design Automation of VLSI Systems, Preas, B. and
Lorenzetti, M. (Eds.) Menlo Park, CA: Benjamin/
Cummings, pp. 65 ± 86.

[37] Dutt, S. and Deng, W., ``A Probability-based Approach
to VLSI Circuit Partitioning'', In: Proc. ACM/IEEE
Design Automation Conf., June, 1996, pp. 100 ± 105.

[38] Dutt, S. and Deng, W., ``VLSI Circuit Partitioning by
Cluster-Removal Using Iterative Improvement Techni-
ques'', In: Proc. IEEE Int. Conf. Computer-Aided Design,
November, 1996, pp. 194 ± 200.

[39] Enos, M., Hauck, S. and Sarrafzadeh, M., ``Evaluation
and optimization of Replication Algorithms for logic
Bipartitioning'', IEEE Trans. on Computer-Aided Design,
September, 1999, 18, 1237 ± 48.

[40] Fiduccia, C. M. and Mattheyses, R. M., ``A Linear-Time
Heuristic for Improving Network Partitions'', In: Proc.
ACM/IEEE Design Automation Conf., June, 1982,
pp. 175 ± 181.

[41] Frankle, J. and Karp, R. M. (1986). ``Circuit Placement
and Cost Bounds by Eigenvector Decomposition'', Proc.
Int. Conf. on Computer-Aided Design, pp. 414 ± 417.

[42] Garbers, J., Promel, H. J. and Steger, A. (1990).
``Finding clusters in VLSI circuits'', In: Proc. IEEE Int.
Conf. Computer-Aided Design, pp. 520 ± 523.

[43] Garey, M. R. and Johnson, D. S., Computers and
Instractability: A Guide to the Theory of NP-Complete-
ness, W.H. Freeman, San Francisco, CA, 1979.

[44] Hagen, L. and Kahng, A. B., ``New spectral methods for
ratio cut partitioning and clustering'', IEEE Trans.
Computer-Aided Design, 11(9), 1074 ± 1085, September,

1992.
[45] Hagen, L. and Kahng, A. B., ``Combining problem

reduction and adaptive multistart: a new technique for
superior iterative partitioning'', IEEE Trans. Computer-
Aided Design, 16(7), 709 ± 717, July, 1997.

[46] Hall, K. M., ``An r-dimensional Quadratic Placement
Algorithm'', Management Science, 17(3), 219 ± 229,
November, 1970.

[47] Hamada, T., Cheng, C. K. and Chau, P., ``An E�cient
Multi-Level Placement Technique Using Hierarchical
Partitioning'', IEEE Trans. Circuits and Systems, 39,
432 ± 439, June, 1992.

[48] Hennessy, J. (1983). ``Partitioning Programmable Logic
Arrays Summary'', Int. Conf. on Computer-Aided Design,
pp. 180 ± 181.

[49] Ho�mann, A. G., ``The Dynamic Locking Heuristic ±A
New Graph Partitioning Algorithm'', In: Proc. IEEE Int.
Symp. Circuits and Systems, May, 1994, pp. 173 ± 176.

[50] Adolphson, D. and Hu, T. C., ``Optimal Linear
Ordering'', SIAM J. Appl. Math., 25(3), 403 ± 423,
November, 1973.

[51] Hu, T. C., ``Decomposition Algorithm'', pp. 17 ± 22, In:
Combinatorial Algorithms, Addison Wesley, 1982.

[52] Hu, T. C. and Moerder, K., ``Multiterminal ¯ows in a
hypergraph'', In: VLSI Circuit Layout: Theory and
Design, Hu, T. C. and Kuh, E. (Eds.) NY: IEEE Press,
1985, pp. 87 ± 93.

[53] Hur, S. W. and Lillis, J. (1999). ``Relaxation and
Clustering in a Local Search Framework: Application
to Linear Placement'', Design Automation Conference,
pp. 360 ± 366.

[54] Hwang, J. and Gamal, A. E., ``Optimal Replication for
Min-Cut Partitioning'', Proc. IEEE/ACM Intl. Conf.
Computer-Aided Design, November, 1992, pp. 432 ± 435.

[55] Iman, S., Pedram, M., Fabian, C. and Cong, J.,
``Finding uni-directional cuts based on physical parti-
tioning and logic restructuring'', In: Proc. ACM/SIGDA
Physical Design Workshop, May, 1993, pp. 187 ± 198.

[56] Johnson, D. S., Aragon, C. R., McGeoch, L. A. and
Schevon, C. (1989). ``Optimization by Simulated Anneal-
ing: an Experimental Evaluation, Part I, Graph Parti-
tioning'', Operations Research, 37(5), 865 ± 892.

[57] Karp, R. M. (1978). ``A Characterization of The
Minimum Cycle Mean in A Digraph'', Discrete Mathe-
matics, 23, 309 ± 311.

[58] Karypis, G., Aggarwal, R., Kumar, V. and Shekhar, S.,
``Multilevel Hypergraph Partitioning: Application in
VLSI Domain'', In: Proc. ACM/IEEE Design Automa-
tion Conf., June, 1997, pp. 526 ± 529.

[59] Karypis, G., Aggarwal, R., Kumar, V. and Shekhar, S.
(1998). ``Multilevel Hypergraph Partitioning: Application
in VLSI Domain'', Manuscript of CS Dept., Univ. of
Minnesota, pp. 1 ± 25 (http://www.users.cs.umn.edu/kar-
ypis/metis/publications/).

[60] Kernighan, B. W. and Lin, S., ``An E�cient Heuristic
Procedure for Partitioning Graphs'', Bell Syst. Tech. J.,
49(2), 291 ± 307, February, 1970.

[61] Khellaf, M., ``On The Partitioning of Graphs and
Hypergraphs'', Ph.D. Dissertation, Indus. Engineering
and Operations Research, Univ. of California, Berkeley,
1987.

[62] Kirkpatrick, S., Gelatt, C. and Vechi, M., ``Optimization
by Simulated Annealing'', Science, 220(4598), 671 ± 680,
May, 1983.

[63] Knuth, D. E., The Art of Computer Programming,

41VLSI PARTITIONING

I207T001015 . 207
T001015d.207

Addison Wesley, 1997.
[64] Kring, C. and Newton, A. R. (1991). ``A Cell-Replicating

Approach to Mincut Based Circuit Partitioning'', Proc.
IEEE Int. Conf. on Computer-Aided Design, pp. 2 ± 5.

[65] Krishnamurthy, B., ``An Improved Min-Cut Algorithm
for Partitioning VLSI Networks'', IEEE Trans. Compu-
ters, C-33(5), 438 ± 446, May, 1984.

[66] Krupnova, H., Abbara, A. and Saucier, G. (1997). ``A
Hierarchy-Driven FPGA Partitioning Method'', Design
Automation Conf., pp. 522 ± 525.

[67] Kuo, M. T. and Cheng, C. K., ``A New Network Flow
Approach for Hierarchical Tree Partitioning'', In: Proc.
ACM/IEEE Design Automation Conf., June, 1997, pp.
512 ± 517.

[68] Kuo, M. T., Liu, L. T. and Cheng, C. K., ``Network
Partitioning into Tree Hierarchies'', In: Proc. ACM/
IEEE Design Automation Conf., June, 1996, pp.
477 ± 482.

[69] Kuo, M. T., Liu, L. T. and Cheng, C. K., ``Finite State
Machine Decomposition for I/O Minimization'', In:
Proc. IEEE Int. Symp. on Circuits and Systems, May,
1995, pp. 1061 ± 1064.

[70] Kuo, M. T., Wang, Y., Cheng, C. K. and Fujita, M.,
``BDD-Based Logic Partitioning for Sequential Cir-
cuits'', In: Proc. ASP/DAC, Chiba, Japan, January,
1997, pp. 607 ± 612.

[71] Lomonosov, M. V. (1985). ``Combinatorial Approaches
to Multi¯ow Problems'', Discrete Applied Mathematics,
11(1), 1 ± 94.

[72] Landman, B. S. and Russo, R. L., ``On a Pin Versus
Block Relationship for Partitioning of Logic Graphs'',
IEEE Trans. on Computers, C-20, 1469 ± 1479, Decem-
ber, 1971.

[73] Lawler, E. L., Combinatorial Optimization: Networks and
Matroids, Holt, Rinehart and Winston, New York, 1976.

[74] Leighton, T. and Rao, S. (1988). ``An Approximate
Max-Flow Min-cut Theorem for Uniform Multicom-
modity Flow Problems with Applications to Approx-
imation Algorithms'', IEEE Symp. on Foundations of
Computer Science, pp. 422 ± 431.

[75] Leighton, T., Makedon, F., Plotkin, S., Stein, C.,
Tardos, E. and Tragoudas, S., ``Fast Approximation
Algorithms for Multicommodity Flow Problems'', Tech.
report no. STAN-CS-91-1375, Dept. of Computer
Science, Stanford University.

[76] Leiserson, C. E. and Saxe, J. B. (1991). ``Retiming
Synchronous Circuitry'', Algorithmica, 6(1), 5 ± 35.

[77] Lengauer, T. and Muller, R. (1988). ``Linear Arrange-
ment Problems on Recursively Partitioned Graphs'',
Zeitschrift fur Operations Research, 32, 213 ± 230.

[78] Lengauer, T., Combinatorial Algorithms for Integrated
Circuit Layout, Wiley, 1990.

[79] Li, J., Lillis, J. and Cheng, C. K., ``Linear decomposition
algorithm for VLSI design applications'', In: Proc. IEEE
Int. Conf. Computer-Aided Design, November, 1995, pp.
223 ± 228.

[80] Li, J., Lillis, J., Liu, L. T. and Cheng, C. K., ``New
Spectral Linear Placement and Clustering Approach'',
In: Proc. ACM/IEEE Design Automation Conf., June,
1996, pp. 88 ± 93.

[81] Liou, H. Y., Lin, T. T., Liu, L. T. and Cheng, C. K.,
``Circuit Partitioning for Pipelined Pseudo-Exhaustive
Testing Using Simulated Annealing'', In: Proc. IEEE
Custom Integrated Circuits Con., May, 1994, pp. 417 ±
420.

[82] Liu, L. T., Kuo, M. T., Cheng, C. K. and Hu, T. C., ``A
Replication Cut for Two-Way Partitioning'', IEEE
Trans. Computer-Aided Design, May, 1995, pp. 623 ± 630.

[83] Liu, L. T., Kuo, M. T., Cheng, C. K. and Hu, T. C.,
``Performance-Driven Partitioning Using a Replication
Graph Approach'', In: Proc. ACM/IEEE Design Auto-
mation Conf., June, 1995, pp. 206 ± 210.

[84] Liu, L. T., Kuo, M. T., Huang, S. C. and Cheng, C. K.,
``A gradient method on the initial partition of Fiduccia-
Mattheyses algorithm'', In: Proc. IEEE Int. Conf.
Computer-Aided Design, November, 1993, pp. 229 ± 234.

[85] Liu, L. T., Shih, M., Chou, N. C., Cheng, C. K. and Ku,
W., ``Performance-Driven Partitioning Using Retiming
and Replication'', In: Proc. IEEE Int. Conf. Computer-
Aided Design, November, 1993 pp. 296 ± 299.

[86] Liu, L. T., Shih, M. and Cheng, C. K., ``Data Flow
Partitioning for Clock Period and Latency Minimiza-
tion'', In: Proc. ACM/IEEE Design Automation Conf.,
June, 1994, pp. 658 ± 663.

[87] Matula, D. W. and Shahrokhi, F., ``The Maximum
Concurrent Flow Problem and Sparsest Cuts'', Tech.
Report, southern Methodist Univ., 1986.

[88] McFarland, M. C., S.J.,``Computer-aided partitioning of
behavioral hardware descriptions'', In: Proc. ACM/
IEEE Design Automation Conf., June, 1983, pp. 472 ±
478.

[89] Motwani, R. and Raghavan, P. (1995). Randomized
Algorithms, Cambridge University Press.

[90] Ng, T. K., Old®eld, J. and Pitchumani, V., ``Improve-
ments of a mincut partition algorithms'', In: Proc. IEEE
Int. Conf. Computer-Aided Design, November, 1987, pp.
470 ± 473.

[91] Nijssen, R. X. T., Jess, J. A. G. and Eindhoven, T. U.,
``Two-Dimensional Datapath Regularity Extraction'',
Physical Design Workshop, April, 1996, pp. 111 ± 117.

[92] Parhi, K. K. and Messerschmitt, D. G. (1991). ``Static
Rate-Optimal Scheduling of Iterative Data-Flow Pro-
grams via Optimum Unfolding'', IEEE Trans. on
Computers, 40(2), 178 ± 195.

[93] Riess, B. M., Doll, K. and Johannes, F. M., ``Partition-
ing very large circuits using analytical placement
techniques'', In: Proc. ACM/IEEE Design Automation
Conf., June, 1994, pp. 646 ± 651.

[94] Roy, K. and Sechen, C., ``A Timing Driven N-Way Chip
and Multi-Chin Partitioner'', Proc. IEEE/ACM Int.
Conf. on Computer-Aided Design, pp. 240 ± 247, Novem-
ber, 1993.

[95] Russo, R. L., Oden, P. H. and Wol�, P. K. Sr., ``A
heuristic procedure for the partitioning and mapping of
computer logic graphs'', IEEE Trans. on Computers,
C-20, 1455 ± 1462, December, 1971.

[96] Saab, Y., ``A fast and robust network bisection
algorithm'', IEEE Trans. Computers, 44(7), 903 ± 913,
July, 1995.

[97] Saab, Y. and Rao, V. (1989). ``An Evolution-Based
Approach to Partitioning ASIC Systems'', ACM/IEEE
26th Design Automation Conf., pp. 767 ± 770.

[98] Sanchis, L. A., ``Multiple-Way Network Partitioning'',
IEEE Trans. Computers, 38(1), 62 ± 81, January, 1989.

[99] Sanchis, L. A., ``Multiple-Way Network Partitioning
with Di�erent Cost Functions'', IEEE Trans. on
Computers, pp. 1500 ± 1504, December, 1993.

[100] Schuler, D. M. and Ulrich, E. G. (1972). ``Clustering and
Linear Placement'', Proc. 9th Design Automation Work-
shop, pp. 50 ± 56.

42 S.-J. CHEN AND C.-K. CHENG

I207T001015 . 207
T001015d.207

[101] Schweikert, D. G. and Kernighan, B. W. (1972). ``A
Proper Model for the Partitioning of Electrical Circuits'',
Proc. 9th Design Automation Workshop, pp. 57 ± 62.

[102] Sechen, C. and Chen, D. (1988). ``An Improved Objec-
tive Function for Mincut Circuit Partitioning'', Proc. Int.
Conf. on Computer-Aided Design, pp. 502 ± 505.

[103] Shahrokhi, F. and Matula, D. W., ``The Maximum
Concurrent Flow Problem'', Journal of the ACM, 37(2),
318 ± 334, April, 1990.

[104] Shapiro, J. F. (1979). Mathematical Programming:
Structures and Algorithms, Wiley, New York.

[105] Sherwani, N. A. (1999). Algorithms for VLSI Physical
Design Automation, 3rd edn., Kluwer Academic.

[106] Shih, M., Kuh, E. S. and Tsay, R.-S. (1992). ``Perfor-
mance-Driven System Partitioning on Multi-Chip Mod-
ules'', Proc. 29th ACM/IEEE Design Automation Conf.,
pp. 53 ± 56.

[107] Shih, M. and Kuh, E. S. (1993). ``Quadratic Boolean
Programming for Performance-Driven System Partition-
ing'', Proc. 30th ACM/IEEE Design Automation Conf.,
pp. 761 ± 765.

[108] Shin, H. and Kim, C., ``A Simple Yet E�ective
Technique for Partitioning'', IEEE Trans. on Very Large
Scale Integration Systems, pp. 380 ± 386, September,
1993.

[109] Wei, Y. C. and Cheng, C. K. (1991). ``Ratio Cut
Partitioning for Hierarchical Designs'', IEEE Trans. on
Computer-Aided Design, 10(7), 911 ± 921.

[110] Wei, Y. C., Cheng, C. K. and Wurman, Z., ``Multiple
Level Partitioning: An Application to the Very Large
Scale Hardware Simulators'', IEEE Journal of Solid
State Circuits, 26, 706 ± 716, May, 1991.

[111] Woo, N. S. and Kim, J. (1993). ``An E�cient Method of
Partitioning Circuits for Multiple-FPGA Implementa-
tion'', Proc. ACM/IEEE Design Automation Conf., pp.
202 ± 207.

[112] Yang, H. and Wong, D. F. (1994). ``Edge-Map: Optimal
Performance Driven Technology Mapping for Iterative
LUT Based FPGA Designs'', Int. Conf. on Computer- A
Aided Design, pp. 150 ± 155.

[113] Yang, H. and Wong, D. F., ``E�cient Network Flow
based Min-Cut Balanced Partitioning'', In: Proc. IEEE
Int. Conf. Computer-Aided Design, November, 1994, pp.
50 ± 55.

[114] Yeh, C. W., ``On the Acceleration of Flow-Oriented
Circuit Clustering'', IEEE Trans. Computer-Aided De-
sign, 14(10), 1305 ± 1308, October, 1995.

[115] Yeh, C. W., Cheng, C. K. and Lin, T. T. Y., ``A general
purpose, multiple-way partitioning algorithm'', IEEE
Trans. Computer-Aided Design, 13(12), 1480 ± 1488,
December, 1994.

[116] Yeh, C. W., Cheng, C. K. and Lin, T. T. Y.,
``Optimization by iterative improvement: an experimen-
tal evaluation on two-way partitioning'', IEEE Trans.
Computer-Aided Design, 14(2), 145 ± 153, February,
1995.

[117] Yeh, C. W., Cheng, C. K. and Lin, T. T. Y., ``Circuit

clustering using a stochastic ¯ow injection method'',
IEEE Trans. Computer-Aided Design, 14(2), 154 ± 162,
February, 1995.

[118] Zien, J. Y., Chan, P. K. and Schlag, M., ``Hybrid
spectral/iterative partitioning'', In: Proc. IEEE Int. Conf.
Computer-Aided Design, November, 1997 pp. 436 ± 440.

Authors' Biographies

Sao-Jie Chen has been a member of the faculty in

the Department of Electrical Engineering, Na-

tional Taiwan University since 1982, where he is

currently a full professor. During the fall of 1999,

he held a visiting appointment at the Department

of Computer Science and Engineering, University

of California, San Diego. His current research

interests include: VLSI circuits design, VLSI

physical design automation, and object-oriented

software engineering. Dr. Chen is a member of the

Association for Computing Machinery, the IEEE,

and the IEEE Computer Society.

Chung-Kuan Cheng received the B.S. and M.S.

degrees in electrical engineering from National

Taiwan University, and the Ph.D. degree in

electrical engineering and computer sciences from

University of California, Berkeley in 1984. From

1984 to 1986 he was a senior CAD engineer at

Advanced Micro Devices Inc. In 1986, he joined

the University of California, San Diego, where he

is a Professor in the Computer Science and

Engineering Department, an Adjunct Professor

in the Electrical and Computer Engineering

Department. He served as a chief scientist at

Mentor Graphics in 1999. He is an associate editor

of IEEE Trans. on Computer Aided Design since

1994. He is a recipient of the best paper award,

IEEE Trans. on Computer-Aided Design 1997, the

NCR excellence in teaching award, School of

Engineering, UCSD, 1991. His research interests

include network optimization and design automa-

tion on microelectronic circuits.

43VLSI PARTITIONING

I207T001015 . 207
T001015d.207

