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Abstract
Fuzzy logic is based on the theory of fuzzy sets, where an object’s membership of a set is
gradual rather than just member or not a member. Fuzzy logic uses the whole interval of
real numbers between zero (False) and one (True) to develop a logic as a basis for rules of
inference. Particularly the fuzzified version of the modus ponens rule of inference enables
computers to make decisions using fuzzy reasoning rather than exact.
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1 Introduction
An assertion can be more or less true in fuzzy logic. In classical logic an assertion is

either true or false — not something in between — and fuzzy logic extends classical logic
by allowing intermediate truth values between zero and one. Fuzzy logic enables a computer
to interpret a linguistic statement such as

’if the washing machine is half full, then use less water.’
It adds intelligence to the washing machine since the computer infers an action from a set of
such if-then rules. Fuzzy logic is ’computing with words,’ quoting the creator of fuzzy logic,
Lotfi A. Zadeh.

The objective of this tutorial is to explain the necessary and sufficient parts of the theory,
such that engineering students understand how fuzzy logic enables fuzzy reasoning by
computers.

2 Fuzzy Set Theory
Fuzzy sets are a further development of mathematical set theory, first studied formally

by the German mathematician Georg Cantor (1845-1918). It is possible to express most
of mathematics in the language of set theory, and researchers are today looking at the
consequences of ’fuzzifying’ set theory resulting in for example fuzzy logic, fuzzy numbers,
fuzzy intervals, fuzzy arithmetic, and fuzzy integrals. Fuzzy logic is based on fuzzy sets,
and with fuzzy logic a computer can process words from natural language, such as ’small’,
’large’, and ’approximately equal’.

Although elementary, the following sections include the basic definitions of classical set
theory. This is to shed light on the original ideas, and thus provide a deeper understanding.
But only those basic definitions that are necessary and sufficient will be presented; students
interested in delving deeper into set theory and logic, can for example read the book by Stoll
(1979[10]); it provides a precise and comprehensive treatment .

2.1 Fuzzy Sets

According to Cantor a set X is a collection of definite, distinguishable objects of our
intuition which can be treated as a whole. The objects are the members of X . The concept
’objects of our intuition’ gives us great freedom of choice, even sets with infinitely many
members. Objects must be ’definite’: given an object and a set, it must be possible to
determine whether the object is, or is not, a member of the set. Objects must also be
’distinguishable’: given a set and its members, it must be possible to determine whether any
two members are different, or the same.

The members completely define a set. To determine membership, it is necessary that the
sentence ’x is a member of X ’, where x is replaced by an object and X by the name of a set,
is either true or false. We use the symbol ∈ and write x ∈ X if object x is a member of the
set X . The assumption that the members determine a set is equivalent to saying: Two sets
X and Y are equal, X = Y , iff (if and only if) they have the same members. The set whose
members are the objects x1, x2, . . . , xn is written

{x1, x2, . . . , xn} .2



In particular, the set with no members is the empty set symbolized by ∅. The set X is
included in Y ,

X ⊆ Y
iff each member of X is a member of Y . We also say that X is a subset of Y, and it means
that, for all x, if x ∈ X , then x ∈ Y . The empty set is a subset of every set.

Almost anything called a set in ordinary conversation is acceptable as a mathematical
set, as the next example indicates.

Example 1 Classical sets
The following are lists or collections of definite and distinguishable objects, and therefore
sets in the mathematical sense.

(a) The set of non-negative integers less than 3. This is a finite set with three members
{0, 1, 2}.

(b) The set of live dinosaurs in the basement of the British Museum. This set has no
members, it is the empty set ∅.

(c) The set of measurements greater than 10 volts. Even though this set is infinite, it is
possible to determine whether a given measurement is a member or not.

(d) The set {0, 1, 2} is the set from (a). Since {0, 1, 2} and {2, 1, 0} have the same mem-
bers, they are equal sets. Moreover, {0, 1, 2} = {0, 1, 1, 2} for the same reason.

(e) The members of a set may themselves be sets. The set
X = {{1, 3} , {2, 4} , {5, 6}}

is a set with three members, namely, {1, 3} , {2, 4} , and {5, 6} . Matlab supports sets of sets,
or nested sets, in cell arrays. The notation in Matlab for assigning the above sets to a cell
array x is the same.

(f) It is possible in Matlab to assign an empty set, for instance: x = {[]}.

Although the brace notation {·} is practical for listing sets of a few elements, it is
impractical for large sets and impossible for infinite sets. How do we then define a set with a
large number of members?

An answer requires a few more concepts. A proposition is an assertion (declarative
statement) which can be classified as either true or false. By a predicate in x we understand
an assertion formed using a formula in x. For instance, ’0 < x ≤ 3’, or ’x > 10 volts’
are predicates. They are not propositions, however, since they are not necessarily true or
false. Only if we assign a value to the variable x, each predicate becomes a proposition. A
predicate P (x) in x defines a set X by the convention that the members of X are exactly
those objects a such that P (a) is true. In mathematical notation:

{x | P (x)} ,
read ’the set of all x such that P (x).’ Thus a ∈ {x | P (x)} iff P (a) is a true proposition.

A system in which propositions must be either true or false, but not both, uses a
two-valued logic. As a consequence, what is not true is false and vice versa; that is the law of
the excluded middle. This is only an approximation to human reasoning, as Zadeh observed:
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Clearly, the "class of all real numbers which are much greater than 1," or "the
class of beautiful women," or "the class of tall men," do not constitute classes or sets
in the usual mathematical sense of these terms. (Zadeh, 1965[12])

Zadeh’s challenge we might call it, because for instance ’tall’ is an elastic property. To
define the set of tall men as a classical set, one would use a predicate P (x), for instance
x ≥ 176, where x is the height of a person, and the right hand side of the inequality a
threshold value in centimeters (176 centimeters ' 5 foot 9 inches). This is an abrupt
approximation to the concept ’tall’. From an engineering viewpoint, it is likely that the
measurement is uncertain, due to a source of noise in the equipment. Thus, measurements
within the narrow band 176± ε, where ε expresses variation in the noise, could fall on either
side of the threshold randomly.

Following Zadeh a membership grade allows finer detail, such that the transition from
membership to non-membership is gradual rather than abrupt. The membership grade for all
members defines a fuzzy set (Fig. 1). Given a collection of objects U , a fuzzy set A in U is
defined as a set of ordered pairs

A ≡ {hx, μA (x)i | x ∈ U} (1)
where μA (x) is called the membership functionfor the set of all objects x in U — for the
symbol ’≡’ read ’defined as’. The membership function relates to each x a membership
grade μA (x), a real number in the closed interval [0, 1]. Notice it is now necessary to
work with pairs hx, μA (x)i whereas for classical sets a list of objects suffices, since their
membership is understood. An ordered pair hx, yi is a list of two objects, in which the
object x is considered first and y second (note: in the set {x, y} the order is insignificant).

The term ’fuzzy’ (indistinct) suggests an image of a boundary zone, rather than an abrupt
frontier. Indeed, fuzzy logicians speak of classical sets being crisp sets,to distinguish them
from fuzzy sets. As with crisp sets, we are only guided by intuition in deciding which
objects are members and which are not; a formal basis for how to determine the membership
grade of a fuzzy set is absent. The membership grade is a precise, but arbitrary measure: it
rests on personal opinion, not reason.

The definition of a fuzzy set extends the definition of a classical set, because membership
values μ are permitted in the interval 0 ≤ μ ≤ 1, and the higher the value, the higher the
membership. A classical set is consequently a special case of a fuzzy set, with membership
values restricted to μ ∈ {0, 1}.

A single pair hx, μ(x)i is a fuzzy singleton; thus the whole set can be viewed as the
union of its constituent singletons.

Example 2 Fuzzy sets
The following are sets which could be described by fuzzy membership functions.

(a) The set of real numbers xÀ 1 (x much greater than one).
(b) The set of high temperatures, the set of strong winds, or the set of nice days are fuzzy

sets in weather reports.
(c) The set of young people. A one year old baby will clearly be a member of the set of

young people, and a 100-year-old person will not be a member of this set. A person aged 30
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Figure 1. Two definitions of the set of "tall men", a crisp set and a fuzzy set. (figtall.m)

might be young to the degree 0.5.
(d) The set of adults. The Danish railways allow children under the age of 15 to travel

at half price. An adult is thus defined by the set of passengers aged 15 or older. By their
definition the set of adults is a crisp set.

(e) A predicate may be crisp, but perceived as fuzzy: a speed limit of 60 kilometres per
hour is by some drivers taken to be an elastic range of more or less acceptable speeds within,
say, 60− 70 kilometres per hour (' 37− 44 miles per hour). Notice how, on the one hand,
the traffic law is crisp while, on the other hand, those drivers’s understanding of the law is
fuzzy.

Members of a fuzzy set are taken from a universe of discourse, or universefor short. The
universe is all objects that can come into consideration, confer the set U in (1). The universe
depends on the context, as the next example shows.

Example 3 Universes
(a) The set x À 1 could have as a universe all real numbers, alternatively all positive

integers.
(b) The set of young people could have all human beings in the world as its universe.

Alternatively it could have the numbers between 0 and 100; these would then represent age
in years.

(c) The universe depends on the measuring unit; a duration in time depends on whether
it is measured in hours, days, or weeks.

(d) A non-numerical quantity, for instance taste, must be defined on a psychological
continuum; an example of such a universe is U = {bitter, sweet, sour, salt, hot}.

A programmer can exploit the universe to suppress faulty measurement data, for instance
negative values for a duration of time, by making the program consult the universe.
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Figure 2. Around noon. Four possible membership functions representing the time ’around
noon’: a) trapeziodal, b) triangular, c) smooth trapezoid, and d) smooth triangular. The
universe is the hours of the day in 24-hour format. (figmf0.m)

There are two alternative ways to represent a membership function: continuous or
discrete. A continuous fuzzy setA is defined by means of a continuous membership function
μA (x). A trapezoidal membership function is a piecewise linear, continuous function,
controlled by four parameters {a, b, c, d} (Jang et al., 1997[4])

μtrapezoid(x; a, b, c, d) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 , x ≤ a
x−a
b−a , a ≤ x ≤ b

1 , b ≤ x ≤ c
d−x
d−c , c ≤ x ≤ d

0 , d ≤ x

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , x ∈ R (2)

The parameters a ≤ b ≤ c ≤ d define four breakpoints, here designated: left footpoint (a),
left shoulderpoint (b), right shoulderpoint (c), and right footpoint (d). Figure 2 (a) illustrates
a trapezoidal membership function.

A triangular membership function is piecewise linear, and derived from the trapezoidal
membership function by merging the two shoulderpoints into one, that is, setting b = c, Fig.
2 (b).

Smooth, differentiable versions of the trapezoidal and triangular membership functions
can be obtained by replacing the linear segments corresponding to the intervals a ≤ x ≤ b
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and c ≤ x ≤ d by a nonlinear function, for instance a half period of a cosine function,

μSTrapezoid(x; a, b, c, d) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 , x ≤ a
1
2 +

1
2 cos(

x−b
b−aπ) , a ≤ x ≤ b

1 , b ≤ x ≤ c
1
2 +

1
2 cos(

x−c
d−cπ) , c ≤ x ≤ d

0 , d ≤ x

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , x ∈ R

We call it here STrapezoid for ’smooth trapezoid’ or ’soft trapezoid’. Figures 2 (c-d)
illustrate the smooth membership functions. Other possibilities exist for generating smooth
trapezoidal functions, for example Gaussian, generalized bell, and sigmoidal membership
functions (Jang et al., 1997[4]).

Discrete fuzzy sets are defined by means of a discrete variable xi (i = 1, 2, . . .). A
discrete fuzzy set A is defined by ordered pairs,

A = {hx1, μ(x1)i , hx2, μ(x2)i , . . . | xi ∈ U , i = 1, 2, . . .}
Each membership value μ(xi) is an evaluation of the membership function μ at a discrete
point xi in the universe U , and the whole set is a collection, usually finite, of pairs
hxi, μ(xi)i.

Example 4 Discrete membership function
To achieve a discrete triangular membership function from the trapezoid (2) assume the uni-
verse is a vector u of 7 elements. In Matlab notation,

u=[9 10 11 12 13 14 15]

Assume the defining parameters are a = 10, b = 12, c = 12, and d = 14 then, by (2), the
corresponding membership values are a vector of 7 elements,

0 0 0.5 1 0.5 0 0

Each membership value corresponds to one element of the universe, more clearly displayed
as

0 0 0.5 1 0.5 0 0
9 10 11 12 13 14 15

with the universe in the bottom row, and the membership values in the top row. When this is
impractical, in a program, the universe and the membership values can be kept in separate
vectors.

As a crude rule of thumb, the continuous form is more computing intensive, but less
storage demanding than the discrete form.

Zadeh writes that a fuzzy set induces a possibility distribution on the universe, meaning,
one can interpret the membership values as possibilities. How are then possibilities related
to probabilities? First of all, probabilities must add up to one, or the area under a density
curve must be one. Memberships may add up to anything (discrete case), or the area under
the membership function may be anything (continuous case). Secondly, a probability
distribution concerns the likelihood of an event to occur, based on observations, whereas
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a possibility distribution (membership function) is subjective. The word ’probably’ is
synonymous with presumably, assumably, doubtless, likely, presumptively. The word
’possible’ is synonymous with doable, feasible, practicable, viable, workable. Their
relationship is best described in the sentence: what is probable is always possible, but not
vice versa. This is illustrated next.

Example 5 Probability versus possibility
a) Consider the statement ’Hans ate x eggs for breakfast’, where x ∈ U = h1, 2, ..., 8i (Zadeh
in Zimmermann, 1993[16]). We may associate a probability distribution p by observing Hans
eating breakfast for 100 days,

.1 .8 .1 0 0 0 0 0
1 2 3 4 5 6 7 8

A fuzzy set expressing the grade of ease with which Hans can eat x eggs may be the following
possibility distribution π,

1 1 1 1 .8 .6 .4 .2
1 2 3 4 5 6 7 8

Where the possibility π(3) = 1, the probability p(3) = 0.1 only.
b) Consider a universe of four car models

U = {Trabant, F iat Uno,BMW,Ferrari} .
We may associate a probability p(x) of each car model driving 100 miles per hour (161
kilometres per hour) on a motorway, by observing cars for 100 days,

p(Trabant) = 0, p(Fiat Uno) = 0.1, p(BMW ) = 0.4, p(Ferrari) = 0.5

The possibilities may be
π(Trabant) = 0, π(Fiat Uno) = 0.5, π(BMW ) = 1, π(Ferrari) = 1

Notice that each possibility is at least as high as the corresponding probability.

Equality and inclusion are defined by means of membership functions. Two fuzzy sets A
and B are equal, iff they have the same membership function,

A = B ≡ μA(x) = μB(x) (3)
for all x. A fuzzy set A is a subset of (included in) a fuzzy set B, iff the membership of A is
less than equal to that of B,

A ⊆ B ≡ μA(x) ≤ μB(x) (4)
for all x.

2.2 Fuzzy Set Operations

In order to generate new sets from existing sets we define two operations, in certain respects
analogous to addition and multiplication. The (classical) union of the sets X and Y,
symbolized by X ∪ Y and read ’X union Y’, is the set of all objects which are members of
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Figure 3. Set operations. The top row are classical Venn diagrams; the universe is repre-
sented by the points within the rectangle, and sets by the interior of the circles. The bottom
row their fuzzy equivalents; the universal set is represented by a horisontal line at member-
ship μ = 1, and sets by membership functions. The shaded areas are: a) and d) union A∪B,
b) and e) intersection A ∩B, and c) and f) complement A ∪B. (figvenn2.m)

X or Y , or both. That is,
X ∪ Y ≡ {x | x ∈ X or x ∈ Y}

Thus, by definition, x ∈ X ∪ Y iff x is a member of at least one of X and Y. For example,
{1, 2, 3} ∪ {1, 3, 4} = {1, 2, 3, 4}

The (classical) intersection of the sets X and Y, symbolized by X ∩ Y and read ’X
intersection Y’, is the set of all objects which are members of both X and Y . That is,

X ∩ Y ≡ {x | x ∈ X and y ∈ Y}
For example,

{1, 2, 3} ∩ {1, 3, 4} = {1, 3}
The (classical) complement of a set X , symbolized by X and read ’the complement of X ’ is

X ≡ {x | x /∈ X}
That is, the set of those members of the universe which are not members (/∈) of X . Venn
diagrams clearly illustrate the set operations, Fig. 3 (a-c).

When turning to fuzzy sets, the gradual membership complicates matters. Figure 3 (d-f)
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shows an intuitively acceptable modification of the Venn diagrams. The following fuzzy set
operations are defined accordingly:

Let A and B be fuzzy sets defined on a mutual universe U . The fuzzy union of A and B
is

A ∪ B ≡ {hx, μA∪B (x)i | x ∈ U and μA∪B (x) = max (μA (x) , μB (x))}
The fuzzy intersection of A and B is

A ∩ B ≡ {hx, μA∩B (x)i | x ∈ U and μA∩B (x) = min (μA (x) , μB (x))}
The fuzzy complement of A is

A ≡ {hx, μA (x)i | x ∈ U and μA (x) = 1− μA (x)}
While the notation may look cumbersome, it is in practice easy to apply the fuzzy set
operationsmax,min, and 1− μ.

Example 6 Buying a house (after Zimmermann, 1993[16])
A four-person family wishes to buy a house. An indication of their level of comfort is the
number of bedrooms in the house. But they also wish a large house. The universe U =
h1, 2, 3, 4, 5, 6, 7, 8, 9, 10i is the set of houses to be considered described by their number of
bedrooms. The fuzzy set Comfortable may be described as a vector c, or in Matlab

c =
£
0.2 0.5 0.8 1 0.7 0.3 0 0 0 0

¤
Let l describe the fuzzy set Large, defined as

l =
£
0 0 0.2 0.4 0.6 0.8 1 1 1 1

¤
The intersection of Comfortable and Large is then min(c,l),

0 0 0.2 0.4 0.6 0.3 0 0 0 0

To interpret, five bedrooms is optimal having the largest membership value 0.6. It is, however,
not fully satisfactory, since the membership is less than 1. The second best solution is four
bedrooms, membership 0.4. If the market is a buyer’s market, the family will probably wait
until a better offer comes up, thus hoping to achieve full satisfaction (membership 1).

The union of Comfortable and Large is max(c,l)
0.2 0.5 0.8 1 0.7 0.8 1 1 1 1

Here four bedrooms is fully satisfactory (membership 1) because it is comfortable. Also 7-10
bedrooms are satisfactory, because the house is large. If the market is a seller’s market, the
family might buy the house, being content that at least one of the criteria is fulfilled.

If the children are about to move away from the family within the next couple of years, the
parents may wish to buy a house that is Comfortable and Not Large, or min(c, 1-l)

0.2 0.5 0.8 0.6 0.4 0.2 0 0 0 0

In that case, three bedrooms is satisfactory to the degree 0.8. The example indicates how
fuzzy sets can be used for computer aided decision support.

In mathematics the word ’relation’ is used in the sense of relationship, for example the
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predicates: x is less than y, or y is a function of x. A binary relation R is a set of ordered
pairs. We may write it xRy which reads: ’x is related to y.’ There are established symbols
for various relations, for example x = y, x < y. One simple relation is the set of all pairs
hx, yi, such that x is a member of a set X and y is a member of a set Y . This is the (classical)
cartesian product of X and Y ,

X × Y = {hx, yi | x ∈ X , y ∈ Y}
In fact, any binary relation xRy is a subset of the cartesian product X ×Y , and we can think
of those instances of X × Y , that are members ofR as having membership 1.

By analogy, a binary fuzzy relation consists of pairs hx, yi with an associated fuzzy
membership value. For example, given X = Y = {1, 2, 3} we can set up a relation
’approximately equal’ between all pairs of the three numbers, most clearly displayed in a
tabular arrangement,

Y
1 2 3

1 1 0.8 0.3
X 2 0.8 1 0.8

3 0.3 0.8 1
In the fuzzy cartesian product each object is defined by a pair: the object, which is a pair

itself, and its membership. Let A and B be fuzzy sets defined on X and Y respectively, then
the cartesian product A×B is a fuzzy set in X × Y with the membership function
A× B =

©
hx, yi , μA×B(x, y)

®
| x ∈ X , y ∈ Y, μA×B(x, y) = min (μA(x), μB(y))

ª
For example, assume X and Y are as above, and μA(xi) = h0, 0.5, 1i, with i = 1, 2, 3, and
μB(yj) = h1, 0.5, 0i , with j = 1, 2, 3, then A× B is a two-dimensional fuzzy set

B
1 0.5 0

0 0 0 0
A 0.5 0.5 0.5 0

1 1 0.5 0
The element at row i and column j is the intersection of μA(xi) and μB(yj). Again

we note that to each object hxi, yji is associated a membership μA×B(xi, yj), whereas the
classical cartesian product consists of objects hxi, yji only.

In order to see how to combine relations, let us look at an example from the cartoon
Donald Duck.

Example 7 Donald Duck’s family
Assume that Donald Duck’s nephew Huey resembles nephew Dewey to the grade 0.8, and
Huey resembles nephew Louie to the grade 0.9. We have therefore a relation between two
subsets of the nephews in the family. This is conveniently represented in a matrix, with one
row and two columns (and additional headings),

R1 =
Dewey Louie

Huey 0.8 0.9
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Let us assume another relation between nephews Dewey and Louie on the one side, and uncle
Donald on the other, a matrix with two rows and one column,

R2 =
Donald

Dewey 0.5
Louie 0.6

We wish to find out how much Huey resembles Donald by combining the information in the
two matrices. Observe that

(i) Huey resembles Dewey (R1(1, 1) = 0.8), and Dewey in turn resembles Donald (R2(1, 1) =
0.5), or

(ii) Huey resembles Louie (R1(1, 2) = 0.9), and Louie in turn resembles Donald (R2(2, 1) =
0.6).

Assertion (i) contains two relationships combined by ’and’; it seems reasonable to take
the intersection. With our definition, this corresponds to choosing the smallest membership
value for the (transitive) Huey-Donald relationship, or min(0.8, 0.5) = 0.5. Similarly with
statement (ii). Thus from chains (i) and (ii), respectively, we deduce that

(iii) Huey resembles Donald to the degree 0.5, or
(iv) Huey resembles Donald to the degree 0.6.

Although the results in (iii) and (iv) differ, we are equally confident in either result; we have
to choose either one or the other, so it seems reasonable to take the union. With our definition,
this corresponds to choosing the largest membership value, or max (0.5, 0.6) = 0.6. Thus,
the answer is that Huey resembles Donald to the degree 0.6.

Generally speaking, this was an example of composition of relations. Let R and S be
two fuzzy relations defined on X × Y and Y ×Z respectively. Their composition is a fuzzy
set defined by

R ◦ S =
(*

hx, zi ,
[
y

μR (x, y) ∩ μS (y, z)
+
| x ∈ X , y ∈ Y, z ∈ Z

)
When R and S are expressed as matrices R and S, the composition is equivalent to an
inner product. The inner product is similar to an ordinary matrix (dot) product, except
multiplication is replaced by any function and summation by any function. Suppose R is
an m × p matrix and S is a p × n matrix. Then the inner ∪ − ∩ product (read ’cup-cap
product’) is an m × n matrix T = (tij) whose ij-entry is obtained by combining the ith
row ofR with the jth column of S, such that

tij = (ri1 ∩ s1j) ∪ (ri2 ∩ s2j) ∪ . . . ∪ (rip ∩ spj) =
p[

k=1

rik ∩ skj (5)

With our definitions of the set operations, the composition is specifically called max-min
composition (Zadeh in Zimmermann, 1993[16]). Sometimes the min operation is replaced
by * for multiplication, then it is called max-star composition.

Example 8 Inner product
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For the tablesR1 andR2 above, the inner product yields,

R1 ◦R2 = 0.8 0.9 ◦ 0.5
0.6

= (0.8 ∩ 0.5) ∪ (0.9 ∩ 0.6) = 0.5 ∪ 0.6 = 0.6

which agrees with the previous result.

3 Fuzzy Logic
Logic started as the study of language in arguments and persuasion, and it can be used

to judge the correctness of a chain of reasoning — in a mathematical proof for instance.
The goal of the theory is to reduce principles of reasoning to a code. The ’truth’ or ’falsity’
assigned to a proposition is its truth-value. In fuzzy logic a proposition may be true or
false, or an intermediate truth-value such as maybe true. The sentence ’John is a tall man’
is an example of a fuzzy proposition. For convenience we shall here restrict the possible
truth-values to a discrete domain {0, 0.5, 1} for false, maybe true, and true. In doing so we
are in effect restricting the theory to multi-valued logic, or rather three-valued logic to be
specific. In practice one would subdivide the unit interval into finer divisions, or work with a
continous truth-domain. Nevertheless, much of what follows is valid even in a continuous
domain as we shall see.

3.1 Propositions

In daily conversation and mathematics, sentences are connected with the words and, or,
if-then (or implies), and if and only if. These are called connectives. A sentence which is
modified by the word ’not’ is called the negation of the original sentence.The word ’and’ is
used to join two sentences to form the conjunction of the two sentences. The word ’or’ is
used to join two sentences to form the disjunction of the two sentences. From two sentences
we may construct one, of the form ’If ... then ...’; this is called an implication. The sentence
following ’If’ is the antecedent, and the sentence following ’then’ is the consequent. Other
idioms which we shall regard as having the same meaning are ’p implies q’, ’p only if q’, ’q
if p’, etc.

Letters and special symbols make the connective structure stand out. Our choice of
symbols is

¬ for ’not’
∧ for ’and’
∨ for ’or’
⇒ for ’if-then’ (implication)
⇔ for ’if and only if’ (equivalence)

The next example illustrates how the symbolic forms expose the underlying logical structure.

Example 9 Baseball betting (Stoll, 1979[10])
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Consider the assertion about four baseball teams: If either the Pirates or the Cubs loose and
the Giants win, then the Dodgers will be out of first place, and I will loose a bet. Since it is
an implication, it may be symbolised in the form r ⇒ s. The antecedent is composed from
the three sentences p (The Pirates lose), c (The Cubs lose), and g (The Giants win). The
consequent is the conjunction of d (The Dodgers will be out of first place) and b (I will lose
a bet). The original sentence may thus be represented by ((p ∨ c) ∧ g)⇒ (d ∧ b).

An assertion which contains at least one propositional variable is called a propositional
form. The main difference between proposition and propositional form is that every
proposition has a truth-value, whereas a propositional form is an assertion whose truth-value
cannot be determined until propositions are substituted for its propositional variables. But
when no confusion results, we will refer to propositional forms as propositions.

A truth-table summarises the possible truth-values of an assertion. Take for example the
truth-table for the two-valued propositional form p ∨ q. The truth-table (below, left) lists all
possible combinations of truth-values — the Cartesian product — of the arguments p and q
in the two leftmost columns. The rightmost column holds the truth-values of the proposition.
Alternatively, the truth-table can be rearranged into a two-dimensional array, a so-called
Cayley table (below, right).

p q p ∨ q
0 0 0
0 1 1
1 0 1
1 1 1

is equivalent to

Or
p ∨ q
0 1 → q

0 0 1
1 1 1
↓
p

Along the vertical axis in the Cayley table, symbolized by arrow ↓, are the possible values
0 and 1 of the first argument p. Along the horizontal axis, symbolized by arrow→, are the
possible values 0 and 1 of the second argument q. Above the table, the proposition p ∨ q
reminds us that the table concerns disjunction. At the intersection of row i and column
j (only counting the inside of the box) is the truth-value of the expression pi ∨ qj . By
inspection, one entry renders p ∨ q false, while three entries render p ∨ q true. Truth-tables
for binary connectives are thus given by two-by-two matrices. A total of 16 such tables can
be constructed, and each has been associated with a connective.

We can derive the truth-table for ’nand’ (’not and’) from ’or’. By the definition
(¬p) ∨ (¬q) we negate each variable of the previous truth-table, which is equivalent to
reversing the axes and permuting the entries back in the usual ascending order on the axes,

Nand
(¬p) ∨ (¬q)
0 1 → q

0 1 1
1 1 0
↓
p

14



From ’nand’ (’not and’) we derive ’and’ by negating the entries of the table (’not not and’ =
’and’),

And
¬ ((¬p) ∨ (¬q))

0 1 → q
0 0 0
1 0 1
↓
p

Notice that it was possible to define ’and’ by means of ’or’ and ’not’, rather than assume its
definition given as an axiom.

By means of ’or’ and ’not’ we can proceed to define ’implication’. Classical logic
defines implication ¬p∨ q, which is called material implication. We negate the p-axis of the
’or’ table, which is equivalent to reversing the axis and permuting the entries back in the
usual ascending order, thus

Implication
¬p ∨ q
0 1 → q

0 1 1
1 0 1
↓
p

Equivalence is taken to mean (p⇒ q) ∧ (q ⇒ p), which is equivalent to the conjunction of
each entry of the implication table with the elements of the transposed table, element by
element, or

Equivalence
(p⇒ q) ∧ (q ⇒ p)

0 1 → q
0 1 0
1 0 1
↓
p

It is possible to evaluate, in principle at least, a logical proposition by an exhaustive test
of all combinations of truth-values of the variables, and this is the idea behind array based
logic (Franksen, 1979[1]). The next example illustrates an application of array based logic.

Example 10 Array based logic
In the baseball example, we had the relation ((p ∨ c) ∧ g) ⇒ (d ∧ b). The proposition
contains five variables, and each variable can take two truth-values. There are therefore
25 = 32 possible combinations. Only 23 are legal, in the sense that the proposition is true
for these combinations, and 32 − 23 = 9 cases are illegal, in the sense that the proposition
is false for those combinations. If we are interested only in the legal combinations for which
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’I win the bet’ (b = 0), then the following table results
p c g d b
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
1 0 0 0 0
1 0 0 1 0
1 1 0 0 0
1 1 0 1 0

There are thus 10 winning outcomes out of 32 possible.

By analogy we can define similar truth-tables for fuzzy logic connectives. If we
start again by defining negation and disjunction, we can derive the truth-tables of other
connectives from that point of departure. Let us define disjunction as set union, that is,

p ∨ q ≡ max(p, q). (6)
We can then build the truth-table for the fuzzy connective ’or’,

Or
p ∨ q

0 0.5 1 →q
0 0 0.5 1
0.5 0.5 0.5 1
1 1 1 1
↓
p

Like before, the p-axis is vertical and the q-axis horizontal. At the intersection of row i and
column j (only regarding the inside of the box) is the value of the expressionmax(pi, qj) in
accordance with (6). When looking for definitions of fuzzy connectives, we will require that
such connectives should agree with their classical counterparts for the truth-domain {0, 1} .
In terms of truth-tables, the values in the four corners of the fuzzy Cayley table, should agree
with the Cayley table for the classical connective.

Let us define negation as set complement, that is,
¬p ≡ 1− p.

The truth-table for ’nand’ is derived from ’or’ by the definition (¬p) ∨ (¬q) by negating the
variables. That is equivalent to reversing the axes in the Cayley table. And moving further,
’and’ is the negation of the entries in the truth-table for ’nand’, thus
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Nand
(¬p) ∨ (¬q)
0 0.5 1 →q

0 1 1 1
0.5 1 0.5 0.5
1 1 0.5 0
↓
p

And
¬((¬p) ∨ (¬q))
0 0.5 1 →q

0 0 0 0
0.5 0 0.5 0.5
1 0 0.5 1
↓
p

(7)

It is reassuring to observe that even though the truth-table for ’and’ is derived from the
truth-table for ’or’, the truth-table for ’and’ is identical to one generated using the min
operation, set intersection.

The implication, however, has always troubled fuzzy logicians. If we define it as material
implication, ¬p ∨ q, then we get a fuzzy truth-table which is unsuitable, as it causes several
useful logical laws to break down. It is important to realise, that we must make a design
choice at this point, in order to proceed with the definition of implication and equivalence.
The choice is which logical laws we wish to apply.

Not all laws known from two-valued logic can be valid in fuzzy logic. Take for instance
the propositional form

p ∨ ¬p⇔ 1 (8)
which is equivalent to the law of the excluded middle. Testing with the truth-value p = 0.5
(fuzzy logic) the left hand side yields

0.5 ∨ ¬0.5 = max (0.5, 1− 0.5) = 0.5.
This is different from the right hand side, and thus the law of the excluded middle is
invalid in fuzzy logic. If a proposition is true with a truth-value of 1, for any combination
of truth-values assigned to the variables, we shall say it is valid. Such a proposition is a
tautology. If the proposition is true for some, but not all combinations, we shall say it is
satisfiable. Thus (8) is satisfiable, since it is true in two-valued logic, but not in three-valued
logic.

One tautology that we definitely wish to apply in fuzzy logic applications is
Tautology 1: [p ∧ (p⇒ q)]⇒ q (9)

Or in words: If p, and p implies q, then q. We have labelled it tautology 1, because we need
it later in connection with the modus ponens rule of inference. Another tautology that we
definitely wish to apply in fuzzy logic applications is the transitive relationship

Tautology 2: [(p⇒ q) ∧ (q ⇒ r)]⇒ (p⇒ r) (10)
Or in words from left to right: if p implies q which in turn implies r, then p implies
r. Whether these propositions are valid in fuzzy logic depends on how we define the
connectives. Or rather, we must define the connectives, implication in particular, such that
those propositions become valid (Jantzen, 1995[5]).

Many researchers have proposed definitions for the implication connective (e.g., Zadeh,
1973; Mizumoto, Fukami & Tanaka, 1979; Fukami, Mizumoto & Tanaka, 1980; Wenstøp,
1980[13, 9, 2, 11]; see also the survey by Lee, 1990[7]). In fact Kiszka, Kochanska &
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Sliwinska list 72 alternatives to choose from (1985[6]). One candidate, not necessarily the
best, is the so-called sharp implication. It can be defined

p⇒ q ≡ p ≤ q (11)
This choice is motivated by the following argument. When the crisp set X is included in the
crisp set Y, then X is said to imply Y . The fuzzy set A is included in the fuzzy set B, iff
μA(x) ≤ μB(x) by (4), therefore we define implication by (11).

Once it is agreed that p ⇔ q is the same as (p ⇒ q) ∧ (q ⇒ p), the truth-table for
equivalence (⇔) is determined from implication and conjunction,

Implication
p ≤ q

0 0.5 1 →q
0 1 1 1
0.5 0 1 1
1 0 0 1
↓
p

Equivalence
(p⇒ q) ∧ (q ⇒ p)
0 0.5 1 →q

0 1 0 0
0.5 0 1 0
1 0 0 1
↓
p

(12)

Example 11 Fuzzy baseball
The baseball example illustrates what difference three-valued logic makes. The proposition

((p ∨ c) ∧ g)⇒ (d ∧ b)
contains five variables, and now each can take three truth-values. This implies 35 = 243
possible combinations; 148 of these are legal in the sense that the proposition is true (truth-
value 1). If we are interested again in the legal combinations for which ’I win the bet’
(b = 0), then there are 33 winning outcomes out of 148. Instead of listing all, we show one
for illustration,

(p, c, g, d, b) = (0.5, 0.5, 0, 1, 0) .
With two-valued logic we found 10 winning outcomes out of 32 possible.

The example indicates that fuzzy logic provides more solutions, compared to two-valued
logic, and it requires more computational effort.

It is straight forward to test whether tautologies 1 and 2 are valid, because it is possible
to perform an exhaustive test of all combinations of truth-values of the variables, provided
the domain of truth-values is discrete and limited.

Example 12 Testing tautology 1
Tautology 1 is,

[p ∧ (p⇒ q)]⇒ q
Since the proposition contains two variables p and q, and each variable can take three truth-
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values, there will be 32 = 9 possible combinations to test. The truth-table has 9 rows,
p q p⇒ q [p ∧ (p⇒ q)] [p ∧ (p⇒ q)]⇒ q
0 0 1 0 1
0 0.5 1 0 1
0 1 1 0 1
0.5 0 0 0 1
0.5 0.5 1 0.5 1
0.5 1 1 0.5 1
1 0 0 0 1
1 0.5 0 0 1
1 1 1 1 1

Columns 1 and 2 are the input combinations of p and q. Column 3 is the result of sharp
implication, and column 4 is the left hand side of tautology 1. Since the rightmost column is
all 1’s, the proposition is a tautology, even in three-valued logic.

Example 12 suggests a new tautology, in fact. If we study closely the truth-values
for [p ∧ (p ⇒ q)] (column 4 in the example), and compare them with the truth-table for
conjunction, we discover they are identical. We can thus postulate,

Tautology 3: [p ∧ (p⇒ q)]⇔ p ∧ q
We shall use this result later in connection with fuzzy inference.

The main objective of the approach taken here, is not to show that one implication is
better than another, but to reduce the proof of any tautology to a test that can be programmed
on a computer. The scope is so far limited to the chosen truth domain {0, 0.5, 1}; this
could be extended with intermediate values, however, and the test performed again in case a
higher resolution is required. Nevertheless, it suffices to check for all possible combinations
of {0, 0.5, 1} if we wish to check the equality of two propositions involving variables
connected with ∧,∨, and ¬ (Gehrke, Walker & Walker, 2003[3]). For propositions involving
sharp implication, which cannot be transcribed into a definition involving the said three
connectives only, we have to conjecture the results for fuzzy logic.

Since implication can be defined in many possible ways, one has to determine a design
criterion first, namely the tautologies, before choosing a proper definition for the implication
connective.

Originally, Zadeh interpreted a truth-value in fuzzy logic as a fuzzy set, for instance
Very true (Zadeh, 1988[15]). Thus Zadeh based fuzzy (linguistic) logic on treating Truth
as a linguistic variable that takes words or sentences as values rather than numbers (Zadeh,
1975[14]). Please be aware that our approach differs, as it is built on scalar truth-values
rather than vectors.

Example 13 Mamdani implication
The so-calledMamdani implication, is often used in fuzzy control (Mamdani, 1977[8]). Let
A and B be fuzzy sets defined on X and Y respectively, then the Mamdani implication is a
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fuzzy set in X × Y with the membership function
{hhx, yi , μA0⇒0B(x, y)i | x ∈ X , y ∈ Y, μA0⇒0B(x, y) = min (μA(x), μB(y))}

Notice the definition is similar to the definition of the fuzzy cartesian product. Its Cayley
table, using the minimum operation, is

Mamdani ’implication’
min(p, q)

0 0.5 1 →q
0 0 0 0
0.5 0 0.5 0.5
1 0 0.5 1
↓
p

One discovers by inspection that only one out of the four corner-values matches the truth-
table for two-valued implication. Therefore, it is not an implication, and Mamdani ’inference’
would be a more appropriate name, as we shall see later.

3.2 Inference

Logic provides principles of reasoning, by means of inference, the drawing of conclusions
from assertions. The verb ’to infer’ means to conclude from evidence, deduce, or to have as
a logical consequence (do not confuse ’inference’ with ’interference’). Rules of inference
specify conclusions drawn from assertions known or assumed to be true.

One such rule of inference is modus ponens. It is often presented in the form of an
argument:

P
P ⇒ Q
Q

In words: If 1) P is known to be true, and 2) we assume that P ⇒ Q is true, then 3) Q
must be true. Restricting for a moment to two-valued logic, we see from the truth-table for
implication,

Implication
p⇒ q
0 1 →q

0 1 1
1 0 1
↓
p

, (13)

whenever P ⇒ Q and P are true then so is Q; by P true we consider only the second row,
leaving Q true as the only possibility. In such an argument the assertions above the line
are the premises, and the assertion below the line the conclusion. Notice the premises are
assumed to be true, we are not considering all possible truth combinations as we did when
proving tautologies.

On the other hand, underlying modus ponens is tautology 1, which expresses the same,
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but is valid for all truth-values. Therefore modus ponens is valid in fuzzy logic, if tautology
1 is valid in fuzzy logic.

Example 14 Four useful rules of inference
There are several useful rules of inference, which can be represented by tautological forms.
Four are presented here by examples from medicine.

(a)Modus ponens. Its tautological form is
[p ∧ (p⇒ q)]⇒ q.

Let p stand for ’altitude sickness,’ and let p ⇒ q stand for ’altitude sickness causes a
headache’. If it is known that John suffers from altitude sickness, p is true, and p ⇒ q is
assumed to be true for the case of illustration, then the conclusion q is true, that is, John has
a headache.

(b)Modus tollens. Its tautological form is
[¬q ∧ (p⇒ q)]⇒ ¬p.

Let p and q be as in (a). Thus, if John does not have a headache, then we may infer that John
does not suffer from altitude sickness.

(c) Disjunctive syllogism. Its tautological form is
[(p ∨ q) ∧ ¬p]⇒ q.

Let p stand for ’altitude sickness’ as previously, but let q stand for ’dehydration’. Thus, if it is
known for a fact that John’s headache is due to either altitude sickness or dehydration, and
it is not altitude sickness, then we may infer that John suffers from dehydration.

(d ) Hypothetical syllogism. Its tautological form is tautology 2:
[(p⇒ q) ∧ (q ⇒ r)]⇒ (p⇒ r) .

Let p stand for ’high altitude and fast ascent’, let q stand for ’altitude sickness’, and let r
stand for ’a headache’. Further assume that high altitude and fast ascent together cause
altitude sickness, and in turn that altitude sickness causes a headache. Thus, we may infer
that John will get a headache in high altitude if John ascends fast.

Provided the tautological forms are valid in fuzzy logic, the inference rules may be applied
in fuzzy logic as well.

The inference mechanism in modus ponens can be generalised. The pattern is: given
a relation R connecting logical variables p and q, we infer the possible values of q given
a particular instance of p. Switching to vector-matrix representation, to emphasize the
computer implementation, with p a (column) vector and R a two-dimensional truth-table,
with the p-axis vertical, the inference is defined

qt = pt ◦R
The operation ◦ is an inner ∨ − ∧ product. The ∧ operation is the same as in p ∧ (p⇒ q)
and the ∨ operation along the columns yields what can possibly be implied about q, confer
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the rightmost implication in [p ∧ (p⇒ q)]⇒ p. Assuming p is true corresponds to setting

p =

µ
0
1

¶
.

But the scheme is more general, because we could also assume p is false, compose withR
and study what can be inferred about q. Take for instance modus ponens, thus

R =

µ
1 1
0 1

¶
which is the truth-table for p⇒ q. Assigning p as above,

qt= pt ◦R =
¡
0 1

¢
◦
µ
1 1
0 1

¶
=
¡
0 1

¢
The outcome qt is a truth-vector pointing at q true as the only possible conclusion, as
expected. Testing for instance with p = (1 0)t yields

qt= pt ◦R =
¡
1 0

¢
◦
µ
1 1
0 1

¶
=
¡
1 1

¢
Thus q could be anything, true or false, as expected. The inference could even proceed in the
reverse direction, from q to p, but then we must compose from the right side of R to match
the axes. Assume for instance q is true, or q = (1 0)t, then

p = R ◦ q =
µ
1 1
0 1

¶
◦
µ
1
0

¶
=

µ
1
0

¶
To interpret: if q is false and p⇒ q, then p is false (modus tollens).

The array based inference mechanism is even more general, because R can be any
dimension n (n > 0 and integer). Given values of n − 1 variables, the possible outcomes
of the remaining variable can be inferred by an n-dimensional inner product. Furthermore,
given values of n− d variables (d integer and 0 < d < n), then the truth-array connecting
the remaining d variables can be inferred.

Generalising to three-valued logic p and q are vectors of three elements, R a 3-by-3
matrix, and the inner ∨ − ∧ product interpreted as the inner max-min product. Assuming p
is true, corresponds to assigning

p =

⎛⎝ 0
0.5
1

⎞⎠
In modus ponens

R =

⎛⎝ 1 1 1
0 1 1
0 0 1

⎞⎠ ,

which is the truth-table for sharp implication. With p as above,

qt= pt ◦R =
¡
0 .5 1

¢
◦

⎛⎝ 1 1 1
0 1 1
0 0 1

⎞⎠ =
¡
0 .5 1

¢
To interpret, p true and p ⇒ q true, implies q true, as expected because tautology 1 is valid
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in three valued logic.
The inner product pt ◦R can be decomposed into three operations.

1. A cartesian product

R1 = p× 1t =

⎛⎝ 0
0.5
1

⎞⎠× ¡ 1 1 1
¢
=

⎛⎝ 0 0 0
0.5 0.5 0.5
1 1 1

⎞⎠
called the cylindrical extension. The result is a matrix whose columns are the vector p
repeated as many times as necessary to fit the size ofR.

2. An element-wise intersection

R2 = R1 ∧R =

⎛⎝ 0 0 0
0.5 0.5 0.5
1 1 1

⎞⎠ ∧
⎛⎝ 1 1 1
0 1 1
0 0 1

⎞⎠ =

⎛⎝ 0 0 0
0 0.5 0.5
0 0 1

⎞⎠
This operation does not have a name in the literature.

3. An ∨-operation along the columns ofR2,

qt =
_
p

r2pq =
¡
0 0.5 1

¢
which is the projection ofR on the q-axis.

In general, the max-min composition
bt = at ◦R

consists of three operations: 1) the cylindrical extensionR1 = at × 1b, 2) the elementwise
intersection R2 = r1ab ∧ rab, and 3) the projection onto the b-axis bt =

W
b

r2ab. This

constitutes the compositional rule of inference, where b is inferred from a by means ofR.

4 Fuzzy Rules
A fuzzy rule has the form

If x is A then y is B,
in which A and B are fuzzy sets, defined on universes X and Y, respectively. This is an
implication, where the antecedent is ’x is A’, and the consequent is ’y is B’. Examples of
such rules in everyday conversation are
1. If it is dark, then drive slowly

2. If the tomato is red, then it is ripe

3. If it is early, then John can study

4. If the room is cold, then increase the heat

5. If the washing machine is half full, then wash shorter time
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Other forms can be transcribed into the if-then form, for example ’when in Rome, do
like the Romans’ becomes ’if in Rome, then do like the Romans’. Examples 4 and 5 could
appear in a computer embedded in a heating unit or a washing machine.

To understand how a computer can infer a conclusion, take rule 3,
If it is early, then John can study

Assume that ’early’ is a fuzzy set defined on the universe
U = h4, 8, 12, 16, 20, 24i .

These are times t of the day, in steps of four hours, in 24 hour format to distinguish night
from day numerically. Define ’early’ as a fuzzy set on U ,

early = {h4, 0i , h8, 1i , h12, 0.9i , h16, 0.7i , h20, 0.5i , h24, 0.2i}
For simplicity define ’can study’ as a singleton fuzzy set μstudy = 1. If the hour is truly
early, for instance 8 o’clock in the morning, then μearly(8) = 1, and thus John can study to
the fullest degree, that is μstudy = 1. However, at 20 (8 pm) then μearly(20) = 0.5, and
accordingly John can study to the degree 0.5. The degree of fulfillment of the antecedent
(the if -side) weights the degree of fulfillment of the conclusion — a useful mechanism, that
enables one rule to cover a range of hours. The procedure is: given a particular time instant
t0, the resulting truth-value is computed asmin(μearly(t0), μstudy).

4.1 Linguistic Variables

Whereas an algebraic variable takes numbers as values, a linguistic variable takes words
or sentences as values (Zadeh in Zimmermann, 1993[16]). The name of such a linguistic
variable is its label. The set of values that it can take is called its term set. Each value in the
term set is a linguistic value or term defined over the universe. In summary: A linguistic
variable takes a linguistic value, which is a fuzzy set defined on the universe.

Example 15 Term set Age
Let x be a linguistic variable labelled ’Age’. Its term set T could be defined as

T (age) = {young, very young, not very young, old, more or less old}
Each term is defined on the universe, for example the integers from 0 to 100 years.

A hedge is a word that acts on a term and modifies its meaning. For example, in the
sentence ’very near zero’, the word ’very’ modifies the term ’near zero’. Examples of other
hedges are ’a little’, ’more or less’, ’possibly’, and ’definitely’. In fuzzy reasoning a hedge
operates on a membership function, and the result is a membership function.

Even though it is difficult precisely to say what effect the hedge ’very’ has, it does have
an intensifying effect. The hedge ’more or less’ (or ’morl’ for short) has the opposite effect.
Given a fuzzy term with the labelA and membership function μA(x) defined on the universe
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X , the hedges ’very’ and ’morl’ are defined
very A ≡

©
x, μvery A(x)

®
| μvery A(x) = μ2A(x), x ∈ X

ª
morl A ≡

n
hx, μmorlA(x)i | μmorlA(x) = μ

1
2

A(x), x ∈ X
o

We have applied squaring and square root, but a whole family of hedges is generated by μkA
or μ

1
k

A (with integer k). For example
extremely A ≡

©
x, μvery A(x)

®
| μvery A(x) = μ3A(x), x ∈ X

ª
slightly A ≡

n
x, μvery A(x)

®
| μvery A(x) = μ

1
3

A(x), x ∈ X
o

A derived hedge is for example somewhat A defined as morl A and not slightly A. For
the special case where k = 2, the operation μ2 is concentration and μ

1
2 is dilation. With

k =∞ the hedge μkA could be named exactly, because it would suppress all memberships
lower than 1.

Example 16 Very on a discrete membership function
Assume a discrete universe U = h0, 20, 40, 60, 80i of ages. In Matlab we can assign

u = [0 20 40 60 80]

and
young = [1 .6 .1 0 0]

The discrete membership function for the set ’very young’ is young.^2,
1 0.36 0.01 0 0

The notation ’.^’ is Matlab notation for the power operator. The set ’very very young’ is, by
repeated application, young.^4,

1 0.13 0 0 0

The derived sets inherit the universe of the primary set.

A primary term is a term that must be defined a priori, for example Young and Old in Fig.
4, whereas the sets Very young and Not very young are modified sets. The primary terms can
be modified by negation (’not’) or hedges (’very’, ’more or less’), and the resulting sets can
be connected using connectives (’and’, ’or’, ’implies’, ’equals’). Long sentences can be built
using this vocabulary, and the result is still a membership function.

4.2 Modus Ponens Inference

Modus ponens generalised to fuzzy logic is the core of fuzzy reasoning. Consider the
argument

A0

A⇒ B
B0

(14)

25



0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Age

M
em

be
rs

hi
p

--- Young

------- Very young

--- Not very young

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Age

M
em

be
rs

hi
p

--- Old

----- More or less old

Figure 4. The membership functions for very young and not very young are derived from
young (left), and the membership function for more or less old from old (right). (figage.m)

It is based on modus ponens, but the premise A0 is slightly different from A and thus the
conclusion B0 is slightly different from B. For instance, given the rule ’if x is High, then y
is Low’; if x in fact is ’very high’, we would like to conclude that y is ’very low’.

Let A and A0 be fuzzy sets defined on X , and B a fuzzy set defined on Y . Then the fuzzy
set B0, induced by ’x is A’ from the fuzzy rule

if x is A then y is B,
is given by

B0 = A0 ◦ (A⇒ B) .
The operation ◦ is composition, the inner ∨ − ∧ product.

Example 17 Generalised modus ponens
Given the rule ’if altitude is High, then oxygen is Low’. Let the fuzzy set High be defined

on a set of altitude ranges from 0 to 4000 metres (about 12 000 feet),
High = {h0, 0i , h1000, 0.25i , h2000, 0.5i , h3000, 0.75i , h4000, 1i}

and Low be defined on a set of percentages of normal oxygen content,
Low = {h0, 1i , h25, 0.75i , h50, 0.5i , h75, 0.25i , h100, 1i}

As a shorthand notation we write the rule as a logical proposition High⇒ Low, where it is
understood that the proposition concerns altitude and oxygen. We construct the relation R
connecting High and Low using sharp implication, or x ≤ y,

R =

1 .75 .5 .25 0
0 1 1 1 1 1
.25 1 1 1 1 0
.5 1 1 1 0 0
.75 1 1 0 0 0
1 1 0 0 0 0
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The matrix is displayed with boxes and axis annotations to make the construction of the
table clear: each element rxy is the evaluation of μHigh(x) ≤ μLow(y). The numbers on
the vertical axis correspond to μHigh and the numbers on the horisontal axis correspond to
μLow. Assuming altitude is High, we find by modus ponens

μt = μtHigh ◦R

=
¡
0 .25 .5 .75 1

¢
◦

⎛⎜⎜⎜⎜⎝
1 1 1 1 1
1 1 1 1 0
1 1 1 0 0
1 1 0 0 0
1 0 0 0 0

⎞⎟⎟⎟⎟⎠
=

¡
1 .75 .5 .25 0

¢
The result is identical to Low, thus modus ponens returns a result as expected in that case.

Assume instead altitude is Very High,
μtV eryHigh =

¡
0 .06 .25 .56 1

¢
,

the square of μtHigh. Modus ponens yields

μt = μtV eryHigh ◦R

=
¡
0 .06 .25 .56 1

¢
◦

⎛⎜⎜⎜⎜⎝
1 1 1 1 1
1 1 1 1 0
1 1 1 0 0
1 1 0 0 0
1 0 0 0 0

⎞⎟⎟⎟⎟⎠
=

¡
1 .56 .25 .06 0

¢
The result is identical to the square of μLow. Written as an argument, we have

Very High
High⇒ Low
Very Low

This is not always the case, though. With a slightly different definition of Low, say,
Low = {h0, 1i , h25, 0.8i , h50, 0.5i , h75, 0.3i , h100, 0i}

the resulting vector μt would be the same as previously, but only approximately equal to Very
Low.

5 Summary
Fuzzy reasoning is based on fuzzy logic, which is again based on fuzzy set theory. The

idea of a fuzzy set is basic and simple: an object is allowed to have a gradual membership
of a set. This simple idea pervades all derived mathematical aspects of set theory. In fuzzy
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logic an assertion is allowed to be more or less true. A truth value in fuzzy logic is a real
number in the interval [0, 1], rather than just the set of two truth values {0, 1} of classical
logic. Classical logic can be fuzzified in many ways, but the central problem is to find a
suitable definition for the connective ’implication’. Fuzzy reasoning is based on the modus
ponens rule of inference, which again rests on the definition of ’implication’.

Not all laws in classical logic can be valid in fuzzy logic, therefore the design of a fuzzy
system is a trade-off between mathematical rigour and engineering requirements.

A backward approach is recommended:
1. Start by deciding which laws are required to hold;

2. define ’and’, ’or’, ’not’, ’implication’, and ’equivalence’;

3. check by means of their truth tables whether the laws in step 1 hold; and

4. if not, go to 2.

An assumption made in the tutorial is that the laws can be checked by just checking
all combinations of three truth-values {0, 0.5, 1} . This is true for all expressions involving
variables connected with ∧,∨, and ¬, but one must be cautious with expressions involving
implication, as these generally cannot be reduced to those three connectives. Furthermore, it
is assumed in the tutorial that truth-values are taken from a finite, discrete set of truth-values.
This is not the case in general.
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