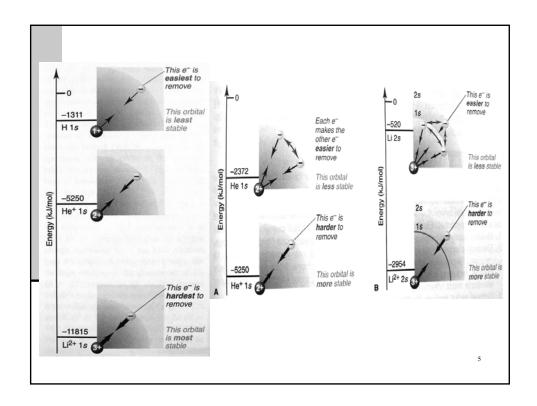

TRENDS OF CHEMICAL AND PHYSICAL PROPERTIES IN PERIODIC TABLE

Sixth Course (General Chemistry) by Dr. Istadi

1

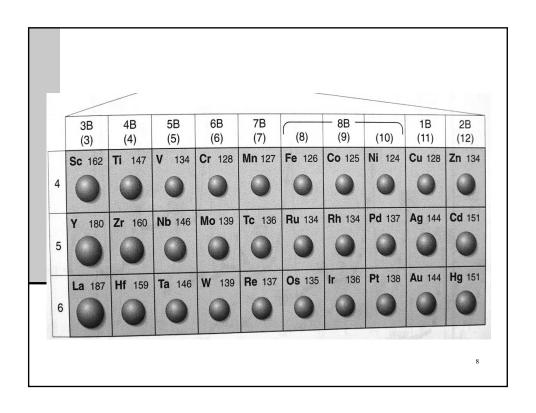
Trends in Atomic Size

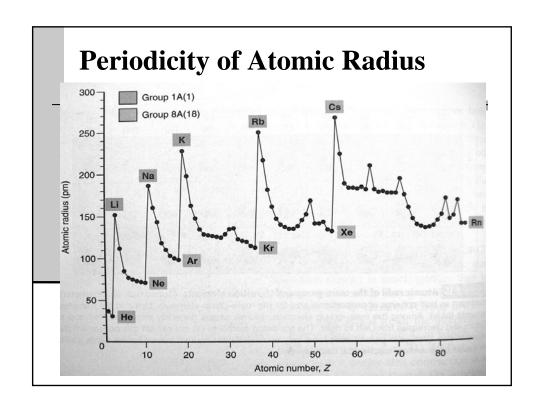

- All physical and chemical behavior of the elements is based ultimately on the electron configurations of their atom
- Sometimes atomic size is defined in terms of how closely one atom lies next to another.
- Because atoms do not have hard surfaces, the size of an atom in a compound depends somewhat on the atoms near it.
- ==> atomic size varies slightly from subtance to substance
- The metallic radius is one-half the distance between nuclei of adjacent atoms in a crystal of the element
- The covalent radius is one-half the distance between nuclei of identical covalently bonded atoms

Trends Among the Main-Group Elements

- Atomic size greatly influences other atomic properties and is critical to understanding element behavior
- Changes in *n*: As the principal quantum number (*n*) increases, the probability that the outer electrons will spend more time farther from the nucleus increases as well ==> the atoms are larger
- Changes in Z_{eff}: As the effective nuclear charge (Z_{eff}) the positive charge "felt" by an electron increases, outer electrons are pulled closer to the nucleus ==> the atoms are smaller

3

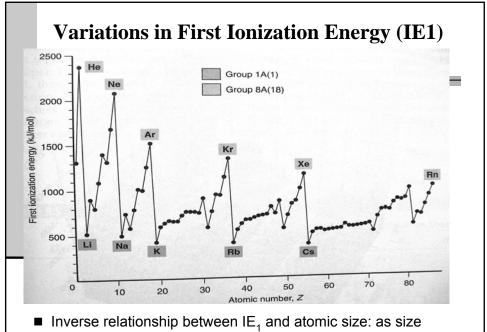

- The net effect of these influences depends on shielding of the increasing nuclear charge by inner electrons:
 - **Down a group, n dominates**: As we move down a main group, each member has one more level of inner electrons that shield the outer electrons very effectively. *Atomic radius generally increases in a group from top to bottom*
 - across a period, Z_{eff} dominates. As we move across a period of main-group elements, electrons are added to the same outer level, so the shielding by inner electrons does not change. Because outer electrons shield each other poorly, Z_{eff} on the outer electrons rises significantly, so they are pulled closer to the nucleus. Atomic radius generally decreases in a period from left to right.


Trends Among the Transition Elements

- As we move from left to right, size shrinks through the first two or three transition elements because of the increasing nuclear charge.
- But, the size remains relatively constant because shielding by inner d electrons counteracts the usual increase in Z_{eff}.
- The shielding by *d* electrons causes a major size decrease from Group 2A(2) to Group 3A(13), the two main groups that flank the transition series.
- The size decrease in Periods 4,5, and 6 (with a transition series) is much greater than in Period 3 (without transition series). Because electrons in the *np* orbitals penetrate more than those in the (*n*-1)*d* orbitals, the first *np* electron (Group 3A(13)) feels a Z_{eff} that has been increased by the protons added to all the intervening transition elements

- The greatest change in size occurs in period 4, in which calcium (Ca, Z=20) is nearly 50% larger than gallium (Ga, Z=31).
- In fact, filling the *d* orbitals in the transition series causes such a major size contraction that gallium is slightly smaller than aluminum (AI, Z=13), even though Ga is below AI in the same group

Trends in Ionization Energy (IE)

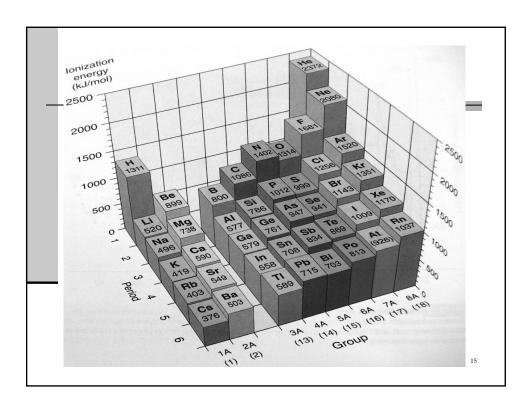

- **IE ionization** is the energy (in kJ) required for the complete removal of 1 mol of electrons from 1 mol of gaseous atoms or ions.
- Pulling an electron away from a nucleus requires energy to overcome the attraction.
- Because energy flows into the system, the ionization energy is always positive (like ΔH in endothermic reaction)
- In previous Section, the ionization energy of the H atom is the energy difference between n=1 and n= ∞ (completely removed)
- Many-electron atoms can lose more than one electron.
- The first ionization energy (IE₁) removes an outermost electron (highest energy sublevel) from the gaseous atom:
 - Atom (g) \rightarrow ion⁺ (g) + e⁻ $\Delta E = IE_1 > 0$

11

■ The second ionization energy (IE₂) removes a second electron. This electron is pulled away from a positively charged ion, so IE₂ is always larger than IE₁:

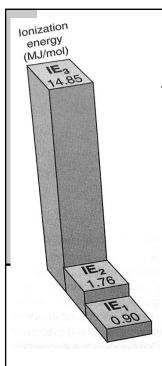
$$lon^{+}(g) \rightarrow lon^{2+}(g) + e^{-} \Delta E = IE_{2} (always > IE_{1})$$

■ The first ionization energy is a key factor in an element's chemical reactivity, because atoms with a low IE₁ tend to form cations during reactions, whereas those with a high IE₁ (except the noble gases) often form anions.



 Inverse relationship between IE₁ and atomic size: as size decreases, it takes more energy to remove an electron

13


Down a Group

- As we move down a main group, the orbital's *n* value increases, and so does atomic size. ==> the attraction between nucleus an electron lessens ==> the electron easier to remove
- The Ionization Energy generally decreases down a group
- It is easier to remove an outer electron from an element in Period 6 than Period 2
- Significant exception: Group 3A(13) ==> IE₁ decreases from B to Al, but not for the rest of the group
- Why? Filling the d sublevels in Period 4,5,6 causes a greater than expected $Z_{\it eff}$ which holds the outer electrons more tightly in the larger Group 3A members

Across a Period

- As we move **from left to right** across a period, the orbital's n value stays the same ==> Z_{eff} increases and atomic size decreases
- ==> the attraction between nucleus and outer electrons increases ==> an electron harder to remove
- Ionization energy generally increases across a period
- It is easier to remove an outer electron from an alkali metal than from a noble gas

Variations in Successive Ionization Energies

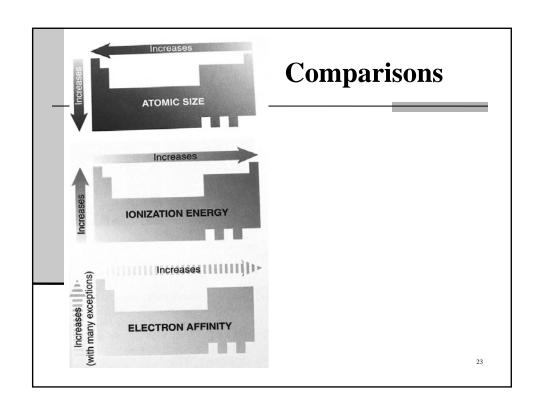
- Succesive ionization energies (IE1, IE2, so forth) of a given element increase because each electron is pulled away from an ion with a progressively higher positive charge.
- However, this increase is not smooth, but includes an *enormous jump*

Z	Element	Number of Valence Electrons	Energies of the Elements Lithium Through Sodium Ionization Energy (MJ/mol)*											
			IE ₁	IE ₂	IE ₃	IE ₄	IE ₅	IE ₆	IE ₇	IE ₈	IE ₉	IE ₁₀		
3	Li	aru fili yigi	0.52	7.30	11.81			w nompovo						
4	Be	2	0.90	1.76	14.85	21.01			CORE ELECTRONS					
5	В	3	0.80	2.43	3.66	25.02	32.82							
6	C	4	1.09	2.35	4.62	6.22	37.83	47.28						
7	N	5	1.40	2.86	4.58	7.48	9.44	53.27	64.36	0.1.00				
	0	6	1.31	3.39	5.30	7.47	10.98	13.33	71.33	84.08	106.10			
8	F	7	1.68	3.37	6.05	8.41	11.02	15.16	17.87	92.04	106.43	121 4		
10	Ne	8	2.08	3.95	6.12	9.37	12.18	15.24	20.00	23.07	115.38	131.4		
11	Na	tabaga(paptil)	0.50	4.56	6.91	9.54	13.35	16.61	20.11	25.49	28.93	141.3		

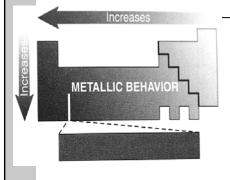
Trends in Electron Affinity

- The **electron affinity (EA)** is the energy change (in kJ) accompanying the addition of 1 mol of electrons to 1 mol of gaseous atoms or ions.
- As with ionization energy, there is a first electron affinity, a second, and so forth
- The first Electron Affinity (EA₁) refers to the formation of 1 mol of monovalent gaseous anions:

Atom (g) +
$$e^- \rightarrow ion^-$$
 (g) $\Delta E = EA_+$


- Energy is released when the first electron is added because it is attracted to the atom's nuclear charge.
- Thus, EA₁ is usually negative
- The second electron affinity (EA₂) is always positive because energy must be absorbed in order to overcome electrostatic repulsions and add another electron to a negative ion.

Electron Affinities of the m									
group elements									
1A (1)									
H -72.8	2A (2)	3A (13)	4A (14)	5A (15)	6A (16)	7A (17)	He (0.0)		
Li -59.6	Be ≤0	B -26.7	C – 122	N +7	O -141	F -328	Ne (+29		
Na -52.9	Mg ≤0	AI -42.5	Si -134	P -72.0	S -200	CI -349	Ar (+35		
K -48.4	Ca –2.37	Ga -28.9	Ge - 119	As -78.2	Se - 195	Br -325	Kr (+39)		
Rb -46.9	Sr -5.03	In -28.9	Sn –107	Sb - 103	Te - 190	 -295	Xe (+41)		
Cs -45.5	Ba -13.95	TI –19.3	Pb - 35.1	Bi 91.3	Po – 183	At -270	Rn (+41)		

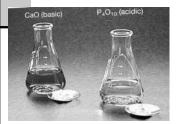

- Factors other than Z_{eff} and atomic size affect electron affinities ==> trends are not as regular as those for the previous two properties.
- We might expect electron affinities to decrease smoothly down a group (smaller negative number) because the nucleus is farther away from an electron being added ==> only Group 1A(1)
- We might also expect a regular increase in electron affinities across a period (larger negative number) because size decreases and the increasing Z_{eff} should attract the electron being added more strongly
- An overall left-to-right increase in magnitude is there, but we certainly cannot say that it is a regular increase ==> arise from changes in sublevel energy and in electron-electron repulsion

Relative Values of IE and EA

- Reactive non metals: the element in Group 6A(16) and especially those in Group 7A(17) (halogens) have high ionization energies and highly negative (exothermic) electron affinities. ==> In their ionic compounds, they form negative ions
- Reactive Metals: The element in Groups 1A(1) and 2A(2) have low ionization energies and slightly negative (exothermic) electron affinities. Both groups lose electrons readily but attract them only weakly ==> in their ionic compounds, they form positive ions.
- **Noble Gases**: The elements in Group 8A(18) have very high ionization energies and slightly positive (endothermic) electron affinities ==> this elements tend not to lose or gain electrons

Trends in Metallic Behavior

- Metals are located in the left and lower three-quarters of the periodic table, and tend to lose electrons to nonmetals
- Nonmetals are located in the upper right quarter of the table, and tend to gain electrons from metal
- Metalloids are located in the region between the other two classes and have properties between them as well
- Thus, metallic behavior decreases left to right and increases top to bottom in the periodic table

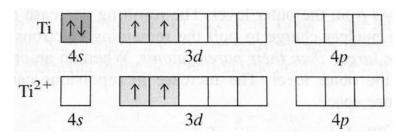

Relative Tendency to Lose Electron

- Metals tend to lose electrons during chemical reactions because they have low ionization energies compared to nonmetals
- As we move across a period, it becomes more difficult to lose an electron (IE increases) and easier to gain one (EA becomes more negative)
- Therefore, with regard to monatomic ions, elements at the left tend to form cations and those at the right tend to form anions

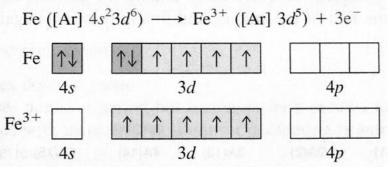
25

Acid-Base Behavior of the Element Oxide

- Metals are also distinguished from nonmetals by the acidbase behavior of their oxides in water:
 - Most main-group metals transfer electrons to oxygen, so their oxides are ionic. In water, these oxides act as bases, producing OH⁻ ions and reacting with acids.
 - Nonmetals share electrons with oxygen, so nonmetal oxides are covalent. In water, they act as acids, producing H⁺ ions and reacting with bases.


Magnetic Properties of Transition Metal Ions

- Only chemical species (atoms, ions, or molecules) with one or more unpaired electrons are affected by the external field.
- Example: unpaired ==> Ag(Z=47) [Kr] 5s¹ 4d¹⁰
- paired ==> Cd ==> [Kr] 5s² 4d¹⁰
- A species with **unpaired electrons** exhibits **paramagnetism** (it is attracted by an external magnetic field)
- A species with all **electrons paired** exhibits **diamagnetism** (it is not attracted by a magnetic field)
- Many transition metals and their compounds are paramagnetic because their atoms and ions have unpaired electrons



27

- Titanium ==> [Ar] 4s² 3d² ===> paramagnetic
- The electrons of highest n value are lost first: $Ti([Ar] 4s^2 3d^2) \rightarrow Ti^{2+}([Ar] 3d^2) + 2e^{-}$
- The partial orbital diagrams are:

- An increase in paramagnetism occurs when iron metal (Fe) forms Fe³⁺ compounds.
- This fact is consistent with Fe losing its 4s electrons and one of its paired 3d electrons

29

- Copper (Cu) is paramagnetic, but Zinc (Zn) is diamagnetic, as are the Cu⁺ and Zn²⁺ ions
- The two ions are isoelectronic:

$$Cu ([Ar] 4s^{1}3d^{10}) \longrightarrow Cu^{+} ([Ar] 3d^{10}) + e^{-}$$

$$Zn ([Ar] 4s^{2}3d^{10}) \longrightarrow Zn^{2+} ([Ar] 3d^{10}) + 2e^{-}$$

$$Cu^{+} \text{ or } Zn^{2+} \boxed{ \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow } \boxed{ 4s}$$

$$3d \qquad 4p$$