




Topology:	A	Very	Short	Introduction



VERY	SHORT	INTRODUCTIONS	are	for	anyone	wanting	a	stimulating	and	accessible	way	into	a	new
subject.	They	are	written	by	experts,	and	have	been	translated	into	more	than	45	different	languages.
 The	series	began	in	1995,	and	now	covers	a	wide	variety	of	topics	in	every	discipline.	The	VSI
library	currently	contains	over	600	volumes—a	Very	Short	Introduction	to	everything	from	Psychology
and	Philosophy	of	Science	to	American	History	and	Relativity—and	continues	to	grow	in	every	subject
area.
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Chapter	1
What	is	topology?

As	you	read	this,	passengers	the	world	over	are	travelling	on	metro	(or	subway	or	underground)
trains.	There	are	around	60	billion	individual	journeys	made	annually	on	such	metro	systems.	But
whether	this	be	in	Tokyo,	London,	São	Paolo,	New	York,	Shanghai,	Paris,	Cairo,	Moscow,	those
travellers	are	perusing	maps	for	their	journeys	that	are	crucially	different	from	maps	in	atlases	or
seen	on	geography	classroom	walls.	Foremost	in	the	minds	of	those	passengers	are	the
connections	they	need	to	make—getting	out	at	the	right	station	and	changing	to	the	correct	new
line.	They	are	not	interested	in	whether	the	map’s	left–right	lines	do	indeed	run	west–east,	or
whether	they	really	did	make	a	right	angle	turn	when	they	changed	lines,	as	depicted	on	the
metro	map.

The	oldest	metro	network	in	the	world	is	the	London	Underground.	When	first	produced,	the
underground	maps	superimposed	the	different	train	lines	onto	an	actual	(geographically	accurate)
map	of	London,	as	shown	in	Figure	1(a).	A	first	version	of	the	current	map	was	designed	by	Harry
Beck	in	1931	as	in	Figure	1(b).	Beck’s	map,	and	the	current	underground	map,	are	not	wrong.
Rather	they	transparently	show	information	important	to	travellers—for	example,	the	various
connections	between	lines	and	the	number	of	stops	between	stations.	It	is	an	early	example	of	a
topological	map	and	demonstrates	the	different	focus	of	topology—which	is	all	about	shape,
connection,	relative	position—compared	with	that	of	geometry	(or	geography)	which	is	about
more	rigid	notions	such	as	distance,	angle,	and	area.



1.	London	underground	maps	(a)	Geographically	accurate	1908	map,	(b)	Beck’s	topological
1931	map.

Topology	is	now	a	major	area	of	modern	mathematics,	so	you	may	be	surprised	to	learn	that	an
appreciation	of	topology	came	late	in	the	history	of	mathematics.	The	word	topology—meaning
‘the	study	of	place’—wasn’t	even	coined	until	1836.	(‘Geometry’	by	comparison	is	an	ancient
Greek	word	and	‘algebra’	is	an	Arabic	word,	with	its	mathematical	meaning	dating	back	to	the	9th
century.)	Just	why	this	was	the	case	is	not	a	simple	question	to	address,	though	we	will	see	some
aspects	of	topology	developed	as	mathematicians	sought	to	put	their	subject	on	a	more	rigorous
footing.	Topology	is	a	highly	visual	subject	that	lends	itself	to	an	informal	treatment	and	this	book
will	give	you	a	sense	of	topology’s	ideas	and	its	technical	vocabulary.

A	topologist’s	alphabet
As	a	first	example,	to	convey	how	differently	topologists	and	geometers	see	objects,	consider	what
capital	letters	a	topologist	would	deem	to	be	the	‘same’.	Using	the	sans	serif	font,	the	four	letters

E	F	T	Y

are	all	topologically	the	same.	They	are	not	congruent,	meaning	that	none	of	the	letters	can	be



picked	up,	and	rotated	or	reflected,	and	then	put	down	as	one	of	the	other	letters.	But	I	hope	you
can	envisage,	if	allowed	to	bend,	stretch,	or	shrink	the	letters,	how	any	of	them	might	be
transformed	into	one	of	the	others.

To	a	topologist	these	four	letters	are	homeomorphic	to	one	another.	The	geometer	would	notice
that	the	angle	made	by	the	arms	of	the	Y	is	different	from	any	angle	found	in	the	other	letters.	The
topologist,	on	the	other	hand,	would	be	happy	to	flatten	the	arms	of	the	Y,	and	stretch	its	body	a
little,	to	give	the	T	shape.	Likewise	the	E	could	have	its	bottom	rung	bent	around	to	the	vertical,
and	then	shortened	somewhat,	to	make	the	F.	Finally	doing	the	same	to	the	top	of	the	F	would
make	a	T	on	its	side.	These	four	letters	can	be	continuously	deformed	into	one	another	and	back
again.	Broadly	speaking	this	is	what	it	is	to	be	homeomorphic,	to	be	topologically	the	same.

But	what	is	it	about	these	letters	that	makes	them	topologically	different	from	other	letters?
Another	collection	of	letters	that	are	topologically	the	same	as	one	another	is:

C	G	I	J	L	M	N	S	U	V	W	Z.

Topologically	all	of	these	are	equivalent	to	a	line	segment	and	it’s	not	hard	to	imagine	how	each
might	be	formed	by	bending	and	stretching	a	suitably	mutable	letter	I.	So	hopefully	you’re
convinced	that	the	letters	in	the	second	list	are	all	homeomorphic	to	one	another,	but	what	makes
this	second	collection	topologically	different	from	the	first	list?

Note,	for	each	letter	E,	F,	T,	Y,	that	every	point	lies	on	a	distorted	bit	of	line	with	one	exception.	In
each	of	these	letters	there	is	a	single	point	that	might	be	described	as	a	T-junction.	These	T-
junctions	are	highlighted	below.

One	way	in	which	these	T-junctions	are	special	is	that,	if	removed,	the	remainder	of	the	letter	is
disconnected	into	three	parts;	the	removal	of	any	other	point	would	leave	just	two	parts
remaining.	In	whatever	ways	we	might	bend	and	deform	an	E	the	deformed	version	would	still
include	a	single	T-junction.	As	none	of	the	second	set	C	…	Z	has	such	a	T-junction	then	none	of
them	can	be	a	deformed	version	of	an	E	(or	an	F,	T,	or	Y ).

This	gives	a	genuine	sense	of	how	mathematicians	resolve	the	question:	are	two	shapes	the	same
topologically?	This	either	amounts	to	finding	some	means	of	continuously	deforming	one	into	the
other,	or	involves	finding	some	topological	invariant	of	one	that	does	not	apply	to	the	other.	The
word	invariant	is	used	in	different	contexts	in	mathematics:	for	example,	if	you	shuffle	a	pack	of
cards,	there	will	still	remain	fifty-two	cards	afterwards	and	four	suits,	these	are	invariants;	but	the
top	card	may	have	changed	and	the	jack	of	clubs	may	no	longer	come	before	the	eight	of
diamonds,	and	so	such	facts	aren’t	invariants	of	a	shuffle.	A	topological	invariant	is	something
immutable	about	a	shape,	no	matter	how	we	stretch	and	deform	it.	In	the	above	example	we	used
the	presence	of	a	T-junction	as	our	topological	invariant.	You	might	note	that	an	E	includes	four
right	angles	whilst	an	F	contains	only	three.	The	presence	of	four	right	angles	is	a	geometric
invariant	and	so	shows	that	E	and	F	are	not	congruent	(i.e.	not	geometrically	the	same),	but—
working	topologically—we	are	permitted	to	unbend	these	right	angles	and	so	right	angles	are	not
important	from	a	topological	point	of	view.	Rather	they’re	mutable	aspects	of	a	shape	and	not
topological	invariants.

The	remaining	twenty-six	letters,	grouped	topologically,	break	down	as:

DO,	KX,	AR,	B,	PQ,	H.

You	might	want	to	take	a	moment	thinking	about	what	makes	an	A	different	from	a	P	or	O
different	from	Q.	In	fact,	the	O	introduces	an	important	topological	invariant	that	separates	it
from	both	I	and	E.	The	shape	of	the	O	is	different	as	it	makes	a	loop.	Technically	O	is	not	simply
connected,	a	topic	we	will	discuss	more	in	Chapter	5.

Euler’s	formula
One	of	the	first	topological	results	was	due	to	Leonhard	Euler	(pronounced	‘oil-er’),	a	titan	of
18th-century	mathematics	and	one	of	the	most	prolific	mathematicians	ever;	his	formula	dates	to
around	1750.	The	result	relates—at	first	glance—to	polyhedra,	three-dimensional	objects	such	as



cubes	and	pyramids	(Figure	2).	It	is	also	so	fundamental—a	straightforward	observation	at	least—
that	it	is	surprising	ancient	Greek	mathematicians	missed	it.

2.	Examples	of	polyhedra	(a)	A	cube,	(b)	A	Square-based	pyramid.

Looking	at	the	cube,	we	can	see	that	it	is	made	up	of	vertices	(the	corners	of	the	cube—the
singular	is	‘vertex’),	these	vertices	being	connected	by	edges	and	that	these	edges	then	bound
(square)	faces.	For	the	cube	the	number	of	vertices	V	equals	8,	there	are	E	=	12	edges	and	F	=	6
faces.	For	the	(square-based)	pyramid	we	have	V	=	5,	E	=	8,	and	F	=	5.	No	pattern	may	be
evident	immediately	but	if	we	include	the	four	other	so-called	Platonic	solids—tetrahedron,
octahedron,	dodecahedron,	icosahedron	(Figure	4)—and	other	familiar	polyhedra,	we	create	Table
1.

Table	1. 	Vertices,	edges,	faces	for	various	polyhedra

4.	The	Platonic	solids	(a)	Tetrahedron,	(b)	Cube,	(c)	Octahedron,	(d)	Dodecahedron,	(e)
Icosahedron.

(We	shall	see	soon	that	the	truncated	icosahedron	is	familiar	to	us—just	not	by	that	name!)

For	all	the	geometry	that	the	ancient	Greeks	knew,	it	seems	striking	that	this	pattern	eluded	them,
but	we	will	prove	now—or	more	honestly	sketch	a	proof	of—Euler’s	formula	which	states,	for	a
polyhedron	with	V	vertices,	E	edges,	and	F	faces,	that

In	the	proof	our	aim	will	be	to	begin	with	a	polyhedron	and	manipulate	it	in	certain	ways—for
example,	we	might	remove	or	subdivide	faces—but	in	all	cases	we	will	carefully	track	the	effect
our	manipulation	has	(if	any)	on	the	number	 .	If,	after	such	manipulations,	we	arrive



•
•
•
•

at	a	simplified	situation	where	we	know	what	 	equals,	and	we	know	the	effects	our
manipulations	had	on	that	number,	then	we	may	be	able	to	work	backwards	to	find	what	

	was	originally.

We	begin	then	with	a	polyhedron,	and	first	remove	one	of	the	faces.	This	has	the	effect	of	reducing
	by	1	as	F	has	decreased	by	1.	Now	that	the	polyhedron	has	a	missing	face—

effectively	the	polyhedron	has	been	punctured—it	can	be	flattened	into	the	plane,	taking	care	that
all	the	vertices,	edges,	faces	present	on	the	punctured	polyhedron	remain	and	are	connected	in
the	plane	in	the	same	manner	they	were	on	the	punctured	polyhedron.	For	example,	if	we
removed	one	face	from	a	cube	and	flattened	the	remaining	cube	then	we	would	have	something
like	Figure	3(a).

3.	Manipulations	of	a	cube	to	find	its	Euler	number	(a)	A	flattened,	punctured	cube,	(b)	With
flattened	faces	triangulated,	(c)	Removing	a	triangle,	(d)	Removing	a	triangle.

The	next	manipulation	is	to	subdivide	each	of	the	flattened	faces	into	triangles—as	has	been	done
to	the	flattened	cube	in	Figure	3(b).	Introducing	a	single	triangle	has	the	effect	of	increasing	F	by
1—what	was	one	face	becomes	split	into	two—of	increasing	E	by	1—the	new	edge,	introduced	to
make	a	triangle—and	doesn’t	change	V.	So	there	is	no	overall	effect	to	 	as	we	keep
introducing	triangles;	the	increase	of	1	to	F,	a	term	that	is	added	in	the	formula,	is	precisely
balanced	by	the	increase	in	E	which	is	a	term	we	subtract.	When	this	has	been	done	for	each
flattened	face	(as	in	Figure	3(b))	then	 	is	still	just	one	less	than	it	was	originally.

We	now	remove	the	triangles	one	at	a	time.	For	example,	if	we	remove	the	bottom	triangle	from
Figure	3(b)	to	make	Figure	3(c),	then	we	remove	one	edge	and	one	face	and,	by	the	same
reasoning	as	before,	this	has	no	overall	effect	on	 .

Similarly,	we	might	then	remove	the	right-most	triangle	to	create	Figure	3(d),	the	manipulation
again	having	no	effect	on	 .	But	the	bottom	triangle	of	Figure	3(d)	is	connected
differently.	If	we	remove	that	triangle	then	we	remove	2	edges,	1	face,	and	1	vertex.	The	algebra
is	a	little	more	complicated	this	time,	but	again	removing	1	vertex	and	1	face	means	
goes	down	2	but	this	is	countered	by	removing	2	edges	as	E	is	a	term	we	subtract.	Or	if	you	prefer
more	formal	algebraic	reasoning,	we	are	just	saying

Let’s	summarize	what’s	happened	so	far:

We	removed	a	face	and	 	decreased	by	1.
We	flattened	the	polyhedron	into	the	plane—all	V,	E,	F	remain,	so	no	change	to	 .
We	subdivided	the	flattened	faces	into	triangles—this	had	no	effect	on	 .
We	kept	removing	triangles	from	the	edge	of	the	flattened	polygon—each	removal	having	no



effect	on	

Eventually	only	a	single	triangle	will	remain,	having	removed	all	others.	A	triangle	has	a	single
face,	three	vertices,	and	three	edges,	so	that	 	equals	 .	This	is	the	value
of	 	that	we	finish	with.	The	only	manipulation	that	ever	changed	 	was
that	very	first	removal	of	a	face	which	reduced	it	by	one;	initially	then	it	was	the	case	that

This	‘sketch	proof’	was	given	by	Augustin-Louis	Cauchy	in	1811.	It’s	worth	highlighting	there	are
several	‘i’s	still	to	be	dotted	to	make	a	proof	with	which	a	professional	mathematician	would	be
happy,	but	also	noting	how	much	of	the	idea	of	the	proof	is	genuinely	here.	We	didn’t	take	care
describing	how	we	removed	triangles	from	the	boundary	of	the	flattened	polygon;	if	we’d	been
careless	we	might	have	removed	a	triangle	that	disconnected	the	flattened	polygon	into	two
separate	polygons,	and	we	should	have	taken	time	to	make	sure	such	an	occasion	can	always	be
avoided.	Other	issues	will	become	more	apparent	in	Chapter	2	but	these	‘i’s	can	indeed	be	dotted.
In	Proofs	and	Refutations,	the	Hungarian	philosopher	Imre	Lakatos	used	the	specific	example	of
Euler’s	formula,	and	historical	efforts	to	prove	it,	to	highlight	how	hard	it	can	sometimes	be	to
generate	a	watertight	proof	and	to	also	raise	the	question	of	when	a	theorem	properly	becomes
part	of	mathematics	or	has	mathematical	content.

It’s	also	worth	mentioning	that	René	Descartes	had,	over	a	century	before	Euler,	demonstrated	a
theorem	for	polyhedra	that	is	equivalent	to	Euler’s	formula;	his	theorem	was	in	terms	of	‘angular
defects’	at	vertices.	All	of	a	sudden	we	are	back	in	the	geometrical	world	and	it’s	less	than	clear
that	there	is	a	genuinely	new	subject,	an	importantly	different	way	of	mathematical	thinking,	that
Euler’s	fingertips	were	brushing	against.	Euler’s	formulation	encourages	appreciation	of	the
result	as	something	a	little	new—in	Euler’s	terminology,	rather	than	Descartes’s,	it’s	much	clearer
that	the	connection	of	the	vertices,	edges,	and	faces	is	what	counts,	but	historically	we	are	still	a
long	time	from	a	deeper	appreciation	of	topology	as	a	fundamental	mode	of	mathematical
thinking.

There	are	five	Platonic	solids
Platonic	solids	are	polyhedra	with	regular	faces	that	are	all	congruent	(geometrically	the	same)
and	which	meet	in	the	same	manner	at	each	vertex.	There	are	infinitely	many	regular	polygons—
equilateral	triangles,	squares,	regular	pentagons,	etc.—but	in	3D	it	turns	out	that	there	are	just
five	regular	solids	which	have	been	known	since	antiquity.	These	are	shown	in	Figure	4	and	with
Euler’s	formula	we	can	show	there	are	just	these	five.

Consider	a	regular	polyhedron	with	V	vertices,	E	edges,	and	F	faces.	As	the	solid	is	regular	then
each	face	is	bounded	by	the	same	number	of	edges;	let’s	call	this	number	n.	Likewise	there	is	a
common	number	m	for	how	many	edges	meet	at	each	vertex.	So,	with	the	cube,	 	(the	faces
are	squares)	and	 	(three	edges	meet	at	each	vertex).	Continuing	with	the	cube	as	our
example	for	now,	think	about	how	we	can	make	a	cube	by	gluing	together	the	edges	of	six
squares.

We	begin	with	6	separate	squares	so	that,	before	any	gluing	happens,	there	are	6	squares,	24
edges,	and	24	vertices.	Note	that	to	make	the	cube	it	takes	two	‘unglued’	edges	to	make	each
edge	of	the	cube	(which	agrees	with	there	being	24/2	=	12	edges)	and	it	takes	three	‘unglued’
vertices	to	make	a	single	vertex	of	the	cube	(again	there	are	24/3	=	8	vertices).	More	generally,
when	we	have	F	faces	each	with	n	edges,	we	would	have	nF	edges	before	any	gluing.	It	takes	two
of	these	unglued	edges	to	make	a	single	edge	of	the	polyhedron	which	then	has	
edges.	There	are	as	many	unglued	vertices	as	unglued	edges,	namely	 ,	and	these	will	be
glued	together	to	make	 	vertices	on	the	polyhedron	as	it	takes	m	unglued	vertices	to
make	one	glued	vertex	on	the	solid.

Putting	these	expressions	for	V	and	F	into	Euler’s	formula	we	get

(The	equation	 	has	been	rearranged	to	make	F	the	subject	of	the	equation	so	that	
.)	We	can	then	divide	both	sides	of	the	above	equation	by	2E	and	rearrange	to	find



As	1/E	is	positive	this	means	that

So	m	and	n	can’t	both	be	very	large	as	then	 	and	 	would	be	very	small	and	their	sum
would	not	exceed	 .	Also	recall	m	and	n	are	positive	whole	numbers,	so	there	aren’t	many
options	and	it’s	not	hard	to	find	all	their	possible	values.

It’s	impossible	for	both	m	and	n	to	exceed	4	as	then	 	would	be	less	than	

.	So	either	 	or	 	or	 	or	 	(with	perhaps	more	than	one	of

these	being	true).	For	example,	if	 ,	the	only	n	for	which	the	inequality	is	true	are	
.	If	 	then	 	equals	 	or	less	and	the	inequality	is

not	true.	For	the	three	cases	of	 	and	 	we	have

A	similar	calculation	for	 	leads	to	 ,	 ,	and	when	 	we	find	 ,	
.	In	all	these	five	cases	we	can	use	the	previous	formulas	to	work	out	the	numbers	of

vertices	 	and	faces	 .	We	can	put	the	full	details	into	Table	2.

Table	2. 	Possible	m	and	n	values	for	the	Platonic	solids

If	we	are	seeking	to	be	rigorous	here,	we	should	really	point	out	that	the	previous	calculations
show	that	there	are	at	most	five	possible	pairs	of	values	that	m,	n	can	take.	Those	calculations
limit	the	possibilities,	but	do	not	necessarily	mean	that	there	is	a	Platonic	solid	for	each	of	these
cases,	nor	preclude	there	being	more	than	one	Platonic	solid	for	permitted	m	and	n—it	might	be
that	there	are	two	different	Platonic	solids	with	three	pentagons	meeting	at	each	vertex.	Listed	in
Table	2	are	the	five	Platonic	solids,	and	so	we	can	see	that	there	is	at	least	one	solid	for	permitted
m,	n.	And	it’s	not	hard	to	appreciate	why	there	can	be	at	most	one.	In	the	case	where	 ,	

	then	three	squares	meet	at	each	vertex;	seemingly	this	only	tells	us	something	about	parts
of	the	solid,	but	if	we	follow	this	recipe	of	attaching	three	squares	at	each	vertex	then	there	is
only	one	way	to	progress	building	up	the	solid—it’s	not	clear	that	this	recipe	will	actually	lead	to	a
complete	solid,	but	it	does	show	that	there	can	be	at	most	one	Platonic	solid	for	each	allowed	m,
n.

(As	an	aside,	you	may	have	noticed	that	 	and	 ,	 	and	 ,	 	are
solutions	if	we	permit	E	to	be	infinite.	These	‘solutions’	correspond	to	tessellations	of	the	plane
where	four	squares	meet	at	a	vertex,	where	three	regular	hexagons	meet	at	a	vertex	(as	with



honeycombs),	and	where	six	equilateral	triangles	meet	at	a	vertex.	There	are	also	some	patterns
apparent	in	Table	2	for	the	values	of	V,	E,	F	for	the	cube	and	octahedron,	and	likewise	the
dodecahedron	and	icosahedron.	This	is	because	these	solids	are	dual	to	one	another—this	means
that	the	midpoints	of	the	faces	of	a	cube	make	an	octahedron,	and	vice	versa;	likewise	the
dodecahedron	is	dual	to	the	icosahedron	and	the	tetrahedron	is	self-dual	in	this	sense.)

Footballs
In	2017	the	mathematics	popularizer	Matt	Parker	began	a	petition	seeking	to	get	road	signs	to
football	stadia	corrected.

You	may	not	have	noticed	the	inaccuracy	of	such	signs	in	the	past,	perhaps	being	happy	just	to
know	you’re	travelling	the	right	way	for	the	game.	But	it’s	clear	(Figure	5)	that	the	sign’s	football
does	not	resemble	the	actual	football	that	Matt	is	carrying.	A	football’s	surface	is	made	from
pentagons	and	hexagons	and	the	everyday	football	is	more	formally	known	as	a	truncated
icosahedron.	(It	can	be	created	from	an	icosahedron	by	planing	down,	around	each	vertex,	the
five	edges	meeting	there.	If	we	plane	down	one-third	of	each	of	those	five	edges,	we	create	a	new
pentagonal	face	and	continued	planing	eventually	shrinks	all	the	triangular	faces	to	hexagons.)	I
think	though	the	irksome	principle	for	Matt	was	not	that	the	sign’s	football	was	badly	drawn,	it
was	in	fact	impossibly	drawn.

5.	Matt	Parker	and	his	football.

There	is	no	way	that	a	sphere	can	be	made	by	stitching	together	hexagons	as	shown	on	the	sign.
That	would	be	an	example	where	 	and	 ,	using	the	previous	notation,	and	whilst	we
can	cover	the	plane	in	this	way—which	may	be	why	the	sign	looks	plausible	at	first	glance—
making	a	football	this	way	is	mathematically	impossible.

In	fact,	Euler’s	formula	shows	us	how	many	pentagons	and	hexagons	there	are	on	a	football.
Recalling	how	to	truncate	an	icosahedron	we	see	there	are	as	many	pentagons	as	original	vertices
(12)	and	hexagons	as	original	faces	(20),	but	Euler’s	formula	can	show	this	is	the	only	way	to
construct	such	a	football.	Say	a	football	has	P	pentagonal	faces	and	H	hexagonal	faces.	Then,
before	gluing	these	together,	we	have	5P	+	6H	unglued	edges	and	the	same	number	of	unglued
vertices.	Looking	at	Matt’s	ball	we	can	see	that	(i)	two	unglued	edges	are	needed	to	make	an	edge
on	the	football	and	(ii)	three	unglued	vertices	make	a	vertex	with	(iii)	two	hexagons	and	one
pentagon	meeting	at	a	vertex;	from	(iii)	we	see	there	are	twice	as	many	‘unglued’	vertices
collectively	on	the	hexagons	as	on	the	pentagons.	So

If	we	put	these	values	into	Euler’s	formula	 	we	find	that

which	simplifies	and	rearranges	to	P	=12	and	the	equation	10P	=	6H	yields	H	=20.	This,	then,	is
the	only	way	to	make	a	football	if	we	follow	the	rules	(i),	(ii),	(iii).



•
•
•

Graph	theory
Let’s	change	tack	a	little	and	consider	the	following	problem.	The	square	PQRS	in	Figure	6	has
diagonally	opposite	vertices	P	and	R,	Q	and	S.	If	we	were	to	draw	curves	from	P	to	R,	and	from	Q
to	S,	curves	which	remain	within	the	square	as	in	Figure	6,	then	surely	those	curves	would	have	to
cross	at	least	once.	(In	Figure	6	there	are	three	intersections.)	This	seems	obvious—and	is	true—
but	how	would	you	go	about	proving	this?

6.	Diagonals	in	a	square	must	intersect	Curves	PR	and	QS	in	the	square	PQRS.

Before	more	is	said,	it	might	be	worth	stressing	how	characteristic	of	a	topological	question	this
is.	The	curves	PR	and	QS	need	to	connect	their	end	points.	Those	curves	don’t	need	to	be
polygonal,	or	have	well-defined	gradients,	or	be	defined	by	specific	functions.	They	need	to
connect	the	end	points	in	some	continuous	sense—fuller	details	in	Chapter	3—but	they	are
otherwise	general	paths	from	P	to	R	and	from	Q	to	S	that	remain	in	the	square.

At	first	glance,	this	problem	might	seem	quite	removed	from	the	polyhedra	we	were	just
discussing.	However,	Figure	6	doesn’t	look	that	different	from	Figures	3(a)–(d).	We	have	vertices
(P,	Q,	R,	S	and	any	points	where	the	curves	PR	and	QS	meet),	edges	running	between	these
vertices	(though	admittedly	they’re	now	curved),	and	we	have	faces	bounded	by	those	edges.	It
was	crucial	to	the	proof	of	Euler’s	formula	that	 	for	each	of	Figures	3(a)–(d).	If
we	also	include	the	outside	region	as	a	face—essentially	the	one	removed	so	we	could	flatten	the
polyhedron—then	we	arrive	back	at	Euler’s	formula	 .	(By	this	reckoning	 ,	

,	 	in	Figure	6.)

So	suppose,	somehow,	we	could	draw	curves	PR	and	QS	in	the	square	PQRS	which	don’t	intersect.
We’d	then	find

	the	four	corners	P,	Q,	R,	S.
	the	square’s	four	sides	and	the	curves	PR,	QS.
	the	outside	of	the	square,	above	PS,	below	QR,	right	of	PQ,	left	of	SR.

But	this	leaves	us	with	 	and	so	such	a	scenario	is	impossible	by	Euler’s
formula.

Graph	theory	is	an	area	of	mathematics	that	models	networks	in	a	wide	sense:	physical,
biological,	and	social	systems,	variously	representing	transport	networks,	computer	networks,
website	structure,	evolution	of	words	across	languages	and	time	in	philology,	migrations	in
biology,	etc.	A	graph	is	a	collection	of	points	called	vertices,	with	these	vertices	connected	by
edges.	We	will	also	assume	that	graphs	are	connected,	meaning	that	there	is	a	walk	between	any
two	vertices	along	the	edges.	This	definition	may	be	extended	to	include	one-way	edges—directed
graphs	or	digraphs—and	weights	might	be	introduced	to	edges	representing	the	difficulty—in
terms	of	time,	distance,	or	cost—of	travelling	along	a	particular	edge.

Some	graphs	are	planar,	meaning	that	they	can	be	drawn	in	the	plane	without	their	edges
crossing	(at	points	that	aren’t	vertices).	The	two	graphs	K5	and	K3,3	in	Figure	7	are	importantly
not	planar.	The	complete	graph	on	5	vertices,	denoted	K5,	has	a	single	edge	between	each	pair	of
the	5	vertices	making	10	edges.	You	might	think	that	K5	is	planar	as	it’s	drawn	in	Figure	7(a)—the
point	is	that,	so	drawn,	many	of	the	edges’	crossings	don’t	occur	at	vertices	and	to	deem	these



crossings	as	vertices	would	mean	we	were	no	longer	considering	K5	which	has	only	5	vertices.	If
we	could	properly	draw	K5	in	the	plane	there	would	be	10	triangular	faces	v1v2v3,	v1v2v4,	through
to	v3v4v5.	We’d	then	have	that	 	equals	 	and	so	K5	is	not
planar.

7.	Two	non-planar	graphs	(a)	The	complete	graph	K5,	(b)	The	complete	bipartite	graph	K3,3.

K3,3	is	the	complete	bipartite	graph	between	two	trios	of	vertices.	A	somewhat	subtler	argument
shows	K3,3	is	not	planar.	Note	that	K3,3	has	 	vertices	and	 	edges.	If	drawn	in	the
plane	this	would	mean	 .	But	a	face	of	K3,3	would	have	at	least	four	edges	as
its	perimeter	necessarily	runs	from	a	v	to	a	w	to	a	different	v	and	to	a	w	and	only	then	may	return
to	the	original	v.	So,	counting	the	edges	by	going	around	all	the	faces,	we	would	get	a	total	of	at
least	 	edges.	However,	as	an	edge	can	bound	at	most	two	faces	this	would	mean	we’d
have	at	least	 	edges,	which	is	our	required	contradiction.

The	Polish	mathematician	Kazimierz	Kuratowski	proved	in	1930	that	a	graph	is	planar	precisely
when	neither	a	copy	of	K5	nor	K3,3	can	be	found	within	the	graph.	We	will	in	due	course	see	that
K3,3	can	be	drawn	on	other	surfaces	such	as	a	torus	(Figure	13(c)).

Nasty	surprises
Euler	arrived	at	his	formula	a	century	before	the	word	topology	was	coined.	His	formula	is
characteristic	of	a	visual	side	of	topology	naturally	aligned	with	geometry.	But	topology,	as	a
subject,	would	develop	along	various	themes	and	in	particular	had	an	important	role	in	the
foundational	work	mathematicians	were	doing	around	the	start	of	the	20th	century.	As	I	hinted
earlier,	topology’s	rise	may	have	been	hampered	by	a	traditional	mindset	that	some	of	its
questions	had	obvious	answers.	For	example	Camille	Jordan,	as	late	as	the	19th	century,	proved
the	following:	a	curve	in	the	plane,	which	does	not	cross	itself	and	which	finishes	back	where	it
began—a	curve	which	we	would	now	call	a	Jordan	curve—splits	the	plane	into	two	regions,	the
technical	phrase	for	these	regions	being	connected	components.	One	of	these	regions	is	bounded,
the	inside,	and	the	other	is	unbounded,	the	outside,	and	this	is	the	Jordan	curve	theorem.
Earlier	mathematicians	would	have	happily	thought	this	obvious	and	the	first	rigorous	proof	didn’t
appear	until	1887.	You	may	agree	with	those	earlier	mathematicians	that	the	result	can	be	safely
assumed.	Maybe	even	the	Pollock-like	Jordan	curve	in	Figure	8(a)	does	not	sway	your	view	of	the
intuitiveness	of	the	result.



8.	Complicated	Jordan	curves	(a)	A	more	complicated	Jordan	curve,	(b)	A	Jordan	curve	with
positive	area.

In	Figure	8(b)	is	the	Knopp–Osgood	curve	which,	for	all	its	fractal-like	appearance,	is	a	Jordan
curve.	Astonishingly	it	has	a	positive	area—that	is	the	curve	itself	has	positive	area,	we’re	not
referring	to	some	region	that	it	bounds.	Would	you	have	said	a	moment	ago	that	it’s	obvious	that
curves	can’t	themselves	have	area?

You	shouldn’t	worry	too	much	in	the	sense	that	most	things	those	early	mathematicians	thought	to
be	true	turned	out	to	be	true,	once	properly	understood	and	qualified,	but	mathematicians
towards	the	end	of	the	19th	century	were	getting	nervous	about	the	rules	and	assumptions	that
mathematics	relied	on.

A	related	problem	within	topology	at	that	time	was	rigorously	defining	what	dimension	means.
Again	this	had	previously	been	treated	as	an	intuitive	concept,	only	for	mathematicians	to	begin
finding	space-filling	curves	that	pass	through	every	point	in	the	plane	or	other	weird-and-
wonderful	spaces	that	can	reasonably	be	assigned	dimensions	that	are	not	whole	numbers—
spaces	that	would	now	be	called	fractals.

An	early	theme	of	topology	was	this	general	topology	or	point-set	topology	seeking	to	address
what	it	means	to	be	a	set,	to	be	a	space,	etc.	Metric	and	topological	spaces	were	introduced—to
be	discussed	in	Chapter	4—each	being	attempts	to	describe	general	structures	where	continuity
could	be	defined.	Set	theory	deals	with	collections	that	are	essentially	just	things-in-a-bag.	This
general	topology	sought	to	define	ways	in	which	objects	might	be	considered	‘close’	to	one



another,	with	the	aim	being	to	define	continuity	in	a	broad	setting.

A	Flatland	mindset
The	novella	Flatland:	A	Romance	of	Many	Dimensions,	written	in	1884	by	Edwin	Abbott,	is	a	satire
on	Victorian	mores.	The	narrator	is	‘A	Square’,	an	inhabitant	of	Flatland,	a	planar	world	having
just	two	dimensions.	The	culture	of	Flatland	and	the	logistics	of	living	in	two	dimensions	are	fully
described,	implicitly	highlighting	some	of	the	narrow-mindedness	of	Victorian	culture—for
example,	women	are	one-	rather	than	two-dimensional	beings.	The	story	doesn’t	explicitly	discuss
topology,	but	in	its	description	of	worlds	with	different	dimensions	and	implications	for	the
inhabitants,	it	provides	a	useful	metaphor	for	understanding	certain	aspects	of	topology.

For	example,	A	Square	is	visited	at	one	point	by	A	Sphere.	Being	a	three-dimensional	object,	A
Sphere	can	only	be	perceived	by	Flatlanders	as	a	circular	cross-section	(Figure	9).	By	moving	up
and	down—relative	to	Flatland’s	plane—A	Sphere	can	grow,	shrink,	and	even	disappear	entirely.
In	a	similar	manner,	to	truly	understand	the	topology	of	a	space,	we	have	to	begin	thinking	like
inhabitants	of	that	space.

9.	Original	figure	from	Flatland	showing	how	A	Sphere	is	perceived	by	A	Square.

Topology	is	often	characterized	as	rubber-sheet	geometry.	It’s	a	somewhat	clichéd	metaphor,	but
it’s	also	slightly	inaccurate.	It	gives	a	correct	sense	of	topology	being	more	about	shape	and	less
rigid	than	geometry	in	its	focus.	On	the	other	hand,	in	Chapter	6	we	discuss	knots,	and	as	a
(genuine)	knot—like	the	trefoil—and	the	(unknotted)	circle	(Figure	10)	cannot	be	continuously
deformed	into	one	another	in	3D	then	you	might	be	tempted	to	say	the	circle	and	trefoil	are	not
homeomorphic,	but	they	are.

10.	The	unknot	and	the	trefoil	(a)	The	unknot,	(b)	The	trefoil	knot.

The	knottedness	of	the	trefoil	says	something	about	its	position	in	3D.	In	fact,	all	knots	are
homeomorphic	to	a	circle.	To	better	appreciate	this,	you	might	imagine	life	as	an	ant	living	on
either	the	circle	or	trefoil.	As	the	ant	moves	around	either	the	unknot	or	trefoil	it	has	a	sense	of
being	on	a	loop,	but	the	ant	has	no	notion	of	whether	it	is	living	on	a	knot.	It	is	only	by	being	able
to	view	things	from	outside	the	two	loops,	and	looking	on	from	a	position	in	the	ambient	space,
that	we	are	able	to	recognize	one	loop	as	knotted	as	compared	with	the	other.	This	Flatland
mindset	will	prove	useful	again	later	when	we	meet	subspaces.

Topology	would	advance	on	various	fronts	in	the	19th	and	20th	centuries.	In	particular,	Bernhard
Riemann	would	early	on	show	the	usefulness	of	a	‘topological	mindset’,	introducing	Riemann
surfaces	into	the	study	of	polynomial	equations	and	demonstrating	some	deep	connections
between	topology	and	many	other	areas	of	mathematics.





Chapter	2
Making	surfaces

The	shape	of	surfaces
Recall	Euler’s	formula	states	 	for	a	polyhedron.	Various	details	of	the	proof	were
brushed	under	the	carpet,	the	most	significant	of	these	being	the	claim	that,	once	a	face	is
removed	from	a	polyhedron,	the	remaining	polyhedron	can	be	flattened	into	the	plane.	This	was
true	for	the	polyhedra	we	were	considering,	but	the	claim	says	something	important	about	the
shape	of	the	remaining	polyhedron	that	was	perhaps	unintentional.	In	any	case,	the	next	example
will	either	make	us	question	what	we	mean	by	a	polyhedron	or	have	us	looking	to	generalize
Euler’s	formula.

For	Figure	11(a)’s	‘polyhedron’,	a	count	of	vertices,	edges,	and	faces	shows	that	 ,	
,	 ,	giving	 	which	seems	to	disprove	Euler’s	formula.	We	are	left

with	a	few	alternatives:	either	the	object	in	Figure	11(a)	should	not	be	considered	a	polyhedron,
or	we	need	to	restrict	Euler’s	formula	to	a	certain	type	of	polyhedron,	or	we	need	to	adapt	and
generalize	Euler’s	formula	into	a	version	that	remains	true	for	a	broader	family	of	polyhedra.

11.	The	torus	(a)	A	polyhedron	with	one	hole,	(b)	A	torus.

The	most	obvious	issue	with	this	new	‘polyhedron’	is	the	hole	through	its	middle.	This	is	not
immediately	reason	enough	to	exclude	it	as	a	polyhedron,	but	this	shape,	once	a	face	is	removed,
does	not	leave	a	remainder	that	can	be	flattened	into	the	plane,	making	our	earlier	proof	invalid.
We	need	either	to	restrict	Euler’s	formula	to	polyhedra	without	holes,	or	we	need	to	work	out	the
correct	 	values	for	polyhedra	with	holes.

Recalling	the	rubbery	nature	of	topology,	we	might	recognize	that	the	polyhedra	of	Chapter	1	all
had	the	same	underlying	spherical	shape.	If	allowed	to	smooth	out	those	polyhedra—the	pointy
vertices	and	the	ridgy	edges—we	could	transform	each	of	those	polyhedra	to	a	sphere,	covered
with	a	patchwork	of	curved	faces,	just	like	Matt	Parker’s	football	(Figure	5)	was	covered	with
curved	pentagons	and	hexagons.	But	however	we	smooth	down	our	new	polyhedron	we	can’t
make	a	sphere,	rather	we	would	make	a	torus,	the	shape	of	a	doughnut	with	a	hole	through	it
(Figure	11(b)).

Perhaps	then	all	of	the	examples	of	Chapter	1—including	the	proof	of	Euler’s	formula—point	to
the	Euler	number	of	the	sphere	being	2.	And	Figure	11(a)	is	a	first	example	suggesting	the	Euler
number	of	the	torus	is	0;	this	would	mean	the	number	 	equals	0	however	we	divide
up	the	torus.	All	this	could	become	quite	involved	unless	we	have	a	way	of	efficiently	describing
surfaces—including	more	complicated	ones	than	the	sphere	or	torus—and	for	systematically
calculating	their	Euler	numbers,	that	is	the	 	value	common	to	all	surfaces	of	a	certain
underlying	shape.

Gluing	surfaces	together



A	useful	way	of	constructing	surfaces	is	to	begin	with	a	polygon	and	pairwise	glue	together	the
edges	of	the	polygon,	the	way	a	model	kit	might	direct	you	to	‘glue	tab	A	to	tab	B’.	How	might	we
make	a	torus	in	this	manner?	If	we	begin	with	a	(suitably	elastic)	square	(Figure	12(a)),	bend	it
around	(Figure	12(b)),	and	glue	the	opposite	edges	e1	and	e3	so	that	the	vertices	v1,	v2	get	glued
respectively	to	v4,	v3,	and	likewise	for	all	other	opposite	points	of	e1	and	e3—as	signified	by	the
two	arrows—then	we	will	make	the	cylinder	drawn	in	Figure	12(c).	Note	that	the	edges	e2	and	e4
on	the	original	square	have	become	the	two	circular	ends	of	this	cylinder.	We	can	then	glue
together	these	circular	ends;	if	we	do	this	so	that	the	opposite	points	of	the	original	e2	and	e4	are
glued	together,	then	we	make	a	torus	as	in	Figure	13(a).

12.	Making	a	cylinder	(a)	A	square	with	identified	edges,	(b)	Making	the	cylinder,	(c)	A
cylinder.

13.	Making	a	torus,	(a)	Torus	with	v	and	e1,	e2	drawn,	(b)	Square	with	gluing	instructions,	(c)
K3,3	on	the	torus.

Note	that	the	four	corners	of	the	original	square—denoted	v1,	v2,	v3,	v4—have	all	been	glued
together	to	make	a	single	point	v	on	the	torus.	Similarly,	the	edges	e1	and	e3	have	been	glued
together	to	form	a	circle	going	around	the	outside	of	the	torus	and	e2	and	e4	have	been	glued
together	to	form	a	different	circle	going	through	the	hole	of	the	torus,	these	two	circles	meeting
at	the	point	v.

Importantly,	the	torus’s	shape	is	fully	described	by	a	square	with	directions	for	how	the	edges	are
to	be	glued	together.	Mathematicians	would	draw	this	square-with-gluing-instructions	as	shown	in
Figure	13(b).	The	single	arrows—and	importantly	the	directions	in	which	they’re	drawn—show
how	those	two	edges	are	glued,	and	the	double	arrows	(again	noting	directions)	tell	us	how	the
other	pair	of	edges	is	glued.

As	an	aside,	the	graph	K3,3,	which	we	saw	can’t	be	drawn	in	the	plane	(Figure	7(b)),	can	be	drawn
on	the	torus	(Figure	13(c)).	The	reason	K3,3	can	be	drawn	on	the	torus	is	because	a	torus	has	a
lower	Euler	number	of	0	and,	arguing	as	before,	it	can	then	be	shown	that	F	=	3.	If	you	look
carefully	at	Figure	13(c)	you	will	see	that	there	are	indeed	three	faces	(quadrilaterals	v1w2v2w1
and	v3w3v2w2	and	a	single	hexagonal	face	v1w2v3w1v2w3).

How	does	all	this	help	with	determining	Euler	numbers?	With	a	single	square	and	gluing
directions,	we	have	been	able	to	make	an	object	with	the	shape	of	a	torus	and	this	is	certainly	a
conciser	description	of	a	torus	than	Figure	11(a)	for	which	 ,	 ,	 .	But	is	this
glued	square	enough	to	work	out	the	Euler	number	of	a	torus?	The	answer	is	yes	if	we’re	careful
when	thinking	about	just	how	the	original	vertices	and	edges	glue	together.	On	the	original	square
there	was	just	one	face—the	square’s	interior—four	unglued	edges	(labelled	e1,	e2,	e3,	e4),	and



four	unglued	vertices	(labelled	v1,	v2,	v3,	v4).	However,	once	we’ve	followed	the	gluing	directions,
those	four	edges	have	become	the	two	circular	edges	on	the	torus	and	the	four	vertices	have
become	one	point	v,	as	in	Figure	13(a).	And	there	is	still	one	‘face’	on	the	torus—the	square’s
interior	has	been	stretched	to	become	all	of	the	torus	except	those	circles	and	v.	So	when	we	use
this	glued	square	to	calculate	the	Euler	number	of	the	torus	we	get	the	answer

which	agrees	with	our	calculation	from	Figure	11(a).

If	you	prefer	Figure	13(a)	showing	the	torus	with	the	four	glued	vertices	becoming	one,	and	the
four	edges	become	two	loops	on	the	torus,	then	Figure	13(b)	will	only	appear	as	an	unfinished	DIY
job.	But	the	single	surface	obtained	from	gluing	the	triangle,	pentagon,	and	square	in	Figure	14,
following	all	the	gluing	directions	a, b,	…	f	according	to	the	arrows,	might	reasonably	start
stretching	your	visualization	skills.	But	we	can	still	work	out	the	Euler	number	of	this	chimera	and
seek	to	understand	just	what	surface	we	are	looking	at.	This	time	there	are	three	faces	(the
triangle,	pentagon,	and	square)	and	the	twelve	unglued	edges	of	the	polygons	make	six	glued
edges	a, b, c,	…	f	on	the	surface.	How	many	vertices	will	we	ultimately	have?	There	were	twelve
unglued	vertices	originally	but	various	of	these	get	glued	together	as	we	make	the	surface.	For
example,	v1	and	v5	are	glued	together	as	they	are	both	at	the	rear	end	of	the	edge	marked	a.	In
fact,	we	can	chase	around	these	gluings	to	see	just	how	many	vertices	we	have:

14.	Gluing	instructions	for	a	triangle,	pentagon,	and	square.

v1	and	v5	are	glued	(rear	end	of	a)
v5	and	v9	are	glued	(rear	end	of	f )
v9	and	v4	are	glued	(rear	end	of	d)
v4	and	v12	are	glued	(front	end	of	f )
v12	and	v2	are	glued	(rear	end	of	c)
v2	and	v7	are	glued	(rear	end	of	b)
v7	and	v11	are	glued	(front	end	of	e)
v11	and	v1	are	glued	(front	end	of	c)

So	eight	different	(unglued)	vertices	v1,	v2,	v4,	v5,	v7,	v9,	v11,	v12	all	get	glued	together	as	a
single	vertex	on	the	surface.	In	a	similar	fashion	we	can	see	that	the	remaining	four	vertices	v3,
v6,	v10,	v8	get	glued	together	(in	that	order).	So	once	made,	the	surface	has	2	vertices,	6	edges,
and	3	faces	giving	an	Euler	number	 	of	 .	Just	what	surface	have	we
made?

Getting	the	right	answer:	subdivisions
We	need	now	to	make	clear	just	what	surfaces	we	are	considering—closed	surfaces—and	how
they	can	be	divided	up	into	vertices,	edges,	and	faces.	A	closed	surface	is	one	without	a	boundary,
such	as	a	torus	or	sphere,	but	not	the	cylinder	of	Figure	12(c).	Our	process	of	making	a	torus
begins	with	a	square	and	at	that	point	our	surface	has	a	boundary	consisting	of	its	four	edges;
when	we	glue	two	edges	to	make	a	cylinder	then	the	surface	still	has	a	boundary,	namely	its	top
and	bottom	circles.	Once	the	torus	has	been	made,	no	boundary	points	remain	unglued.

Secondly,	we	can	only	calculate	the	correct	Euler	number	of	a	closed	surface	if	we	are	careful
dividing	it	up.	Cubes,	footballs,	dodecahedra,	and	pyramids	are	all	valid	ways	of	‘subdividing’	the
sphere	into	vertices,	edges,	and	faces.	In	each	of	these	cases	we	obtained	an	Euler	number	



•
•
•

	of	2.	However	here	are	other	ways	we	might	subdivide	the	sphere	that	seemingly
produce	differing	Euler	numbers	(Figure	15).

15.	Valid	and	invalid	subdivisions	of	a	sphere	(a)	V	=	0,	E	=	0,	F	=	1,	(b)	V	=	0,	E	=	1,	F	=	2,	(c)
V	=	1,	E	=	0,	F	=	1,	(d)	V	=	1,	E	=	1,	F	=	2,	(e)	V	=	1,	E	=	2,	F	=	3,	(f	)	V	=	2,	E	=	0,	F	=	1.

In	order	the	values	of	 	for	the	six	spheres	in	Figure	15	are	1,	1,	2,	2,	2,	3	and	we
know	the	correct	Euler	number	equals	2.	So	any	old	subdivision	will	not	lead	to	a	correct
calculation	of	the	sphere’s	Euler	number.	For	a	collection	of	vertices,	edges,	and	faces	to	make	a
permissible	subdivision	the	following	must	be	true:

an	edge	must	start	and	finish	in	a	vertex;
when	two	edges	meet,	they	must	meet	in	a	vertex;
faces	must	be	(distorted)	polygons.

Looking	at	these	so-called	six	subdivisions,	only	two	of	these	are	in	fact	permissible,	15(c)	and
15(d).	In	15(a),	15(e),	15(f),	there	is	a	face	that	is	not	a	distorted	polygon;	neither	the	whole
sphere	(15(a))	nor	the	punctured	cummerbund	(15(e))	nor	the	twice-punctured	sphere	(15(f))	are
topologically	the	same	as	a	polygon	and	so	not	permissible	faces.	In	15(b)	and	15(e),	the	edges	do
not	begin	and	end	in	a	vertex.	15(e)	is	deliberately	given	to	show	that	the	correct	Euler	number
can	be	incorrectly	calculated.

Looking	back	at	the	torus	in	Figure	13(a)	and	the	surface	in	Figure	14,	we	calculated	their	Euler
numbers	using	subdivisions	consistent	with	the	above	three	rules.	Therefore,	we	correctly
calculated	their	Euler	numbers	as	0	and	–1	respectively.

Connected	sums
Given	two	closed	surfaces	S1	and	S2,	then	we	can	create	their	connected	sum	S1#S2.	This	is	a
way	to	glue	surfaces	together	and	a	useful	means	of	making	new	surfaces	from	the	few	we	have
so	far	met.	Say	S1	and	S2	each	has	a	subdivision	that	includes	a	‘triangular’	face	bounded	by	three
edges.	(The	inverted	commas	here	hint	that,	this	being	topology,	the	faces	may	not	be	that



recognizably	triangular	in	terms	of	having	straight	edges.)	The	connected	sum	S1#S2	is	then
created	by	removing	these	two	triangular	faces,	so	making	two	holes	in	the	surfaces,	and	then
gluing	the	two	surfaces	together	along	the	boundaries	of	the	holes,	pairing	up	the	three	vertices
and	three	edges	with	those	on	the	boundary	of	the	second	removed	face	as,	for	example,	in	Figure
16.

16.	Connected	sums	with	tori	(a)	One	torus	with	a	“triangle”	missing,	(b)	A	torus	with	two
holes	as	a	connected	sum.

Helpfully	there	is	a	formula	for	the	Euler	number	of	S1#S2.	In	making	the	connected	sum,	we
remove	two	triangular	faces,	the	six	different	vertices	on	these	triangles	are	glued	to	make	three
vertices	on	the	connected	sum,	and	likewise	six	edges	are	glued	to	make	three.	So	the	total
number	of	faces	has	gone	down	by	2	and	the	total	numbers	of	edges	and	vertices	have	each	gone
down	by	3.	As	V	and	F	are	added	in	the	formula	for	the	Euler	number,	and	E	is	subtracted,	overall
we	have

Or,	if	you	prefer	a	more	careful	algebraic	proof,	say	the	original	subdivision	of	S1	has	V1	vertices,
E1	edges,	and	F1	faces	and	define	V2,	E2,	F2	similarly	for	S2.	The	number	of	vertices	V#,	edges
E#,	and	faces	F#	on	the	connected	sum	is	given	by

Finally

Thinking	in	terms	of	connected	sums	helps	us	work	out	the	Euler	numbers	of	some	more
complicated	surfaces.	We	know	that	a	torus	 	has	an	Euler	number	of	0.	The	connected	sum	

	is	a	torus	with	two	holes	(Figure	16(b))	and	we	see

and	similarly	the	torus	with	three	holes,	 ,	has	Euler	number

In	fact,	we	can	see	that	every	time	we	make	a	connected	sum	with	 	the	surface	gains	one	more
hole	and	the	Euler	number	reduces	by	2.	So	the	torus	with	g	holes—which	can	be	considered	as	

,	the	connected	sum	of	g	copies	of	the	torus	 —has	Euler	number

The	number	g	of	holes	in	the	surface	 	is	called	the	genus	of	the	surface.



One-sided	surfaces
At	this	point,	we	still	can’t	identify	the	peculiar	surface	from	Figure	14	which	has	an	Euler
number	of	–1.	So	far	we’ve	only	constructed	surfaces	with	even	Euler	numbers	and	–1	is	odd.	In
fact,	with	the	tori	 ,	we’ve	only	met	half	the	story	and	half	of	the	closed	surfaces.	Recall	how	in
Figure	12	we	made	a	cylinder	by	gluing	two	edges	of	a	square.	We	could,	instead,	have	glued
those	two	sides	using	reversed	arrows	(Figure	17(a)),	introducing	a	single	twist.	So	the	points
near	v2	on	e1	are	glued	to	the	points	near	v4	on	e3	and	those	near	v1	on	e1	are	glued	to	the	points
near	v3	on	e3.	This	would	have	created	a	Möbius	strip,	named	after	August	Möbius	who
discovered	it	in	1858.

17.	The	Möbius	strip	(a)	A	square	with	identified	edges,	(b)	Runners	on	a	Möbius	strip.

The	Möbius	strip	is	unusual	in	only	having	one	side—this	is	apparent	in	Figure	17(b)	as	the
runners	cover	the	entirety	of	the	strip	rather	than	just	one	side	of	it	as	they	would	if	running
around	just	the	outside	(or	inside)	of	a	cylinder.	Or	you	can	imagine	painting	the	outside	of	a
cylinder	black	and	the	inside	white,	but	should	you	begin	painting	a	Möbius	strip	one	colour	you
would	find	yourself	covering	the	entire	strip	in	that	colour.	The	Möbius	strip	is	an	example	of	a
non-orientable	surface.	Like	the	cylinder	it	is	a	surface	with	boundary,	but	note	its	boundary	is	a
single	circle	rather	than	two	separate	ones	as	with	the	cylinder.

In	Figures	18(a)–(d)	we	see	an	oriented	loop—here	a	circle—moving	around	a	Möbius	strip.	By	an
oriented	loop	I	mean	a	loop	with	a	given	sense	of	direction,	here	initially	(18(a))	appearing	as
clockwise	to	the	reader.	But	as	this	loop	moves	around	the	strip	(or	equivalently	moves	left	in	the
square)	we	see	that	when	the	circle	returns	to	its	original	position	(18(d))	that	sense	has	now
reversed	and	appears	anti-clockwise.	If	you	are	having	a	little	trouble	visualizing	what’s
happening	to	the	loop,	note	in	18(b)	and	18(c)	how	the	points	labelled	P	are	glued	together	and
likewise	the	Qs.	In	18(b)	most	of	the	loop	(on	the	left)	looks	to	be	clockwise	running	from	P	to	Q,
but	as	the	loop	appears	on	the	right	and	continues	from	Q	to	P	that	sense	is	beginning	to	appear
as	anti-clockwise.



18.	Moving	an	oriented	loop	around	a	Möbius	strip.

Any	surface	on	which	it	is	possible	to	reverse	the	sense	of	an	oriented	loop	is	called	non-
orientable.	If	it	is	impossible	to	reverse	a	loop’s	sense,	then	the	surface	is	called	orientable.	Any
surface	that	contains	a	Möbius	strip	is	non-orientable	as	we	could	just	send	an	oriented	loop	once
around	that	strip	to	reverse	its	sense.	A	surface	with	an	inside	and	an	outside	is	orientable.	To
appreciate	this,	imagine	walking	around	the	outside	of	such	a	surface.	Looking	down	to	your	feet
on	the	surface	you	could	draw	a	circle	in	a	clockwise	manner.	As	you	wander	around	the	outside
of	the	surface	you	can	consistently	take	your	notion	of	clockwise	across	the	whole	surface.	This
means,	in	particular,	that	the	tori	 ,	which	we	met	earlier	and	which	each	have	an	inside	and
outside,	are	all	examples	of	orientable	surfaces.

Returning	to	Figure	17(a),	a	partly	glued	square	making	a	Möbius	strip,	there	remain	two	unglued
edges	e2	and	e4.	We	could	glue	these	together	as	in	Figure	19(a),	but	what	surface	would	we
make?	Certainly	a	non-orientable	one	as	it	contains	a	Möbius	strip	(the	shaded	region).	If	instead
we	make	this	surface	by	gluing	e2	and	e4	first,	we	first	create	a	cylinder	with	e1	and	e3	as	its
circular	ends.	But	to	complete	the	surface,	rather	than	bringing	those	circular	ends	together	as
with	a	torus,	one	circular	end	has	to	be	glued	backwards	on	to	the	other	circular	end—this	is
because	of	the	reverse	arrows	on	e1	and	e3.	Figure	19(b)	shows	how	we	might	try	to	do	this;	we
could	take	one	circular	end	back	into	the	cylinder	and	glue	it	to	the	other	end	from	inside,	and
this	way	the	reverse	arrows	line	up	properly.	The	surface	made	is	called	a	Klein	bottle,	after
Felix	Klein	who	first	described	it	in	1882.	Being	non-orientable,	the	Klein	bottle	does	not	have	an
inside	and	outside.



19.	The	Klein	bottle	and	projective	plane	(a)	A	Klein	bottle,	(b)	3D	depiction	of	a	Klein	Bottle,
(c)	A	projective	plane.

There	is	a	subtle	problem	with	the	Klein	bottle	in	Figure	19(b).	When	we	take	the	cylinder	back
into	itself,	some	single	points	in	space	actually	represent	two	distinct	points	on	the	Klein	bottle.	So
this	image	is	not	a	proper	representation	or	embedding	of	the	Klein	bottle	in	3D.	In	fact,	it	is
impossible	to	construct	a	Klein	bottle	in	3D	without	such	self-intersections	as	occur	where	the
cylinder	cuts	back	into	itself.	The	relevant	result	demonstrating	this	impossibility	can	be	viewed
as	a	generalization	of	the	Jordan	curve	theorem.	That	theorem	concerned	embedding	circles	in	the
plane	with	a	Jordan	curve	having	an	inside	and	an	outside.	In	a	like	manner	when	a	closed	surface
is	embedded	in	3D,	the	surface	again	divides	the	remaining	space	into	an	inside	and	an	outside
and	so	the	closed	surface	must	be	orientable.	As	the	Klein	bottle	is	non-orientable,	it	cannot	be
embedded	in	3D.

However,	the	Klein	bottle	can	be	embedded	in	4D	and	this	isn’t	too	hard	to	imagine	if	we	treat	the
fourth	dimension	as	time.	The	Klein	bottle	is	two-dimensional	(as	surfaces	are)	and	so	from	this
4D	viewpoint	it	is	important	to	consider	the	Klein	bottle	as	only	existing	for	an	instant,	a	certain
‘now’;	for	it	to	have	a	past	or	future	would	give	it	a	third	dimension.	So	when	faced	with	bringing
the	cylinder	back	into	itself—which	would	normally	cause	self-intersections—we	can	instead	move
that	bit	of	cylinder	gradually	into	the	future	(the	fourth	dimension),	where	the	remainder	of	the
Klein	bottle	doesn’t	exist	and	then,	once	the	cylinder	has	passed	through	the	space	its	present	self
occupies,	we	can	gradually	bring	that	bit	of	the	cylinder	back	into	the	present.	The	self-
intersections	no	longer	occur,	as	the	distinct	points	of	the	Klein	bottle	that	became	merged	in
Figure	19(b)	instead	sit	in	the	same	point	of	space	but	crucially	at	different	times.

We	can	also	determine	the	Euler	number	of	the	Klein	bottle,	again	being	careful	to	note	how
edges	and	vertices	are	glued	together.	The	square	is	our	only	face;	e1	and	e3	are	glued	together,
as	are	e2	and	e4,	making	two	rather	than	four	edges;	finally	v1	is	glued	to	v2	which	is	glued	to	v4
which	is	glued	to	v3	and	so	we	have	just	one	vertex,	giving	 ,	the
Euler	number	of	the	Klein	bottle.	Unfortunately,	0	is	also	the	Euler	number	of	the	torus,	so	any
hope	we	might	have	had	that	the	Euler	number	alone	is	information	enough	to	recognize	the
shape	of	a	surface	was	simplistic.	The	torus	and	Klein	bottle	are	different	surfaces—the	former	is
orientable	(two-sided),	the	latter	not—and	yet	they	both	have	the	same	Euler	number.

Another	important	non-orientable	surface,	which	can	be	formed	from	gluing	a	square’s	edges
together,	is	the	projective	plane	ℙ.	In	Figure	19(c)	we	assign	e2	and	e4	reverse	arrows	(in
contrast	to	19(a)).	The	surface	formed	is	non-orientable,	as	it	again	contains	a	Möbius	strip	(the
shaded	region),	and	we	can	calculate	the	Euler	number	as	before:	again	 	and	 	but
this	time	v1	and	v3	are	glued	together	and	separately	v2	and	v4	are	glued,	so	that	 .	Hence	ℙ
has	Euler	number	 .

The	classification	theorem
Classification	is	an	important	theme	in	mathematics.	A	mathematical	theory	often	begins	with
definitions	and	rules	about	certain	mathematical	objects	or	structures	(say	functions	or	curves)
and	seeks	to	prove	results	about	them	using	those	rules.	It’s	natural	to	search	for	examples
satisfying	those	rules,	preferably	producing	a	complete	list	or	classification	of	such	objects.

We	are	now	close	to	classifying	closed	surfaces.	Explicitly,	we	are	seeking	to	give	a	complete	list
of	all	the	closed	surfaces,	so	that	every	closed	surface	is	homeomorphic	to	(i.e.	topologically	the
same	as)	one	of	the	surfaces	on	the	list,	and	the	list	contains	no	duplicates—each	surface	on	the



•

•

list	can	be	shown	to	be	topologically	different	from	all	others	on	the	list.

It	turns	out	that	the	Euler	number	goes	a	long	way	to	separating	out	the	different	surfaces,	but	we
have	seen	that	this	cannot	be	the	whole	story	as	the	torus	and	Klein	bottle	have	the	same	Euler
number	whilst	being	different	surfaces—the	first	is	orientable,	the	second	not.	The	only	missing
ingredient	in	the	classification	is	that	notion	of	orientability.

So	the	first	half	of	the	classification	theorem	for	two-sided	surfaces	states:

An	orientable	closed	surface	is	homeomorphic	to	precisely	one	of	the	tori	 	where	
	These	tori	are	not	topologically	the	same	as	one	another	as	they	have	different

Euler	numbers—the	Euler	number	of	 	is	2–2g.

A	similar	result	holds	for	one-sided	closed	surfaces.	Just	as	the	torus	 	is	a	building	block	for	the
orientable	surfaces,	so	can	the	projective	plane	ℙ	be	used	to	make	the	non-orientable	surfaces.
Recall	that	the	projective	plane	ℙ	has	Euler	number	1.	So	the	connected	sums	ℙ#ℙ	and	ℙ#ℙ#ℙ
have

and	more	generally	k	copies	of	ℙ	in	a	connected	sum,	a	surface	denoted	ℙ#k,	has	Euler	number
2–k.

And	the	second	half	of	the	classification	theorem	for	one-sided	surfaces	states:

A	non-orientable	closed	surface	is	homeomorphic	to	precisely	one	of	ℙ#k	where	
These	surfaces	are	not	topologically	the	same	as	they	have	different	Euler	numbers—the	Euler
number	of	ℙ#k	is	2–k.

Making	a	connected	sum	with	ℙ	is	equivalent	to	sewing	a	Möbius	strip	into	the	surface.	ℙ	itself
can	be	made	by	introducing	a	Möbius	strip	into	a	sphere;	to	do	this	we	might	make	a	tear	in	the
sphere	and	then,	rather	than	gluing	the	tear	back	together,	we	could	instead	assign	reverse
arrows	to	the	two	sides	of	the	tear,	thus	introducing	a	Möbius	strip.	So	the	surface	ℙ#k	can	be
thought	of	as	a	sphere	with	k	Möbius	strips	sewed	in.

Overall	then,	the	classification	theorem	says	that	if	we	know	the	Euler	number	of	a	closed	surface
and	whether	it	is	one-	or	two-sided,	then	we	know	its	topological	shape.	If	you	were	wondering,
where	the	Klein	bottle	is	on	this	list,	we	know	its	Euler	number	to	be	0	and	we	know	it	to	be	one-
sided.	The	only	surface	in	the	classification	matching	these	facts	is	the	 	surface	ℙ#ℙ	and
this	is	topologically	the	same	as	the	Klein	bottle.	We	might	create	a	yet	more	complicated
connected	sum	such	as	 	which	at	first	glance	is	not	on	our	list.	This	surface	is
one-sided	and	its	Euler	number	equals

so	topologically	it’s	the	same	surface	as	ℙ#7.	And	at	long	last	we	are	able	to	identify	the	surface
we	formed	in	Figure	14.	That	surface	had	Euler	number	–1	and	so	the	surface	is	ℙ#ℙ#ℙ,	this
being	the	only	surface	on	our	list	with	that	Euler	number.

Complex	numbers
Surfaces	are	a	natural	two-dimensional	extension	of	one-dimensional	curves	which
mathematicians	had	long	been	interested	in	but,	historically,	surfaces	and	their	topology	became
of	particular	importance	because	of	the	work	of	19th-century	mathematicians,	most	notably
Bernhard	Riemann.

To	understand	Riemann’s	motivation	for	studying	surfaces,	we	need	to	take	a	brief	foray	into	the



world	of	complex	numbers.	Complex	numbers	have,	at	first	glance,	nothing	to	do	with	topology,
but	the	need	to	introduce	them	here	is	a	consequence	of	the	deep	interconnectedness	of
mathematics.	In	the	mid-19th	century	mathematicians	found	worthwhile	reasons	to	think	about
older	mathematics	in	new	topological	ways.	It	might	then	seem	as	though	topology	was	somehow
born	of	practical	necessity	for	addressing	these	older	problems.	However	I’d	like	to	suggest	a
rosier	picture	of	how	mathematicians	think:	nothing	will	put	a	glint	in	the	eyes	of	a	generation	of
mathematicians,	an	itch	to	be	thinking	hard	about	the	essence	of	mathematics,	so	much	as	a	sense
of	there	being	something	profound	just	around	the	corner	and	a	deeper	understanding	of	their
subject	tantalizingly	beyond	their	fingertips.	And	so	it	was	to	prove.

These	so-called	‘complex’	numbers	arose—somewhat	uncertainly—from	the	work	of	Italian
mathematicians	during	the	Renaissance.	For	a	long	time	mathematicians	had	been	interested	in
the	solutions	of	polynomial	equations.	These	are	equations	involving	powers	and	multiples	of	an
unknown	quantity,	say	x,	such	as

This	is	a	degree	3	equation,	that	being	the	highest	power	of	x.	A	solution	of	an	equation	is	a	value
of	x	which	makes	both	sides	equal.	We	can	see	that	 	solves	this	equation	because

You	might	check	that	 	is	a	solution	and	so	is	 .	And	that’s	all	of	them!	Three	solutions
.	Other	polynomials,	though,	seem	to	have	no	solutions.	For	example,	the	degree	2

equation

has	no	real	numbers	as	solutions.	If	you	take	a	positive	number	x	then	its	square	x2	is	also	positive
(and	so	cannot	equal	–1);	if	you	take	a	negative	number	then	its	square	is	also	positive;	finally	

.	So	there	are	no	solutions.	If	you	prefer	a	more	pictorial	approach	then	you	might	draw
the	graphs	of	 	and	 ,	and	the	fact	that	these	graphs	don’t	meet	(Figure	20(a))	is
again	another	way	of	showing	that	no	number	x	solves	the	equation	 .	Basically	the
problem	is	that	negative	numbers	don’t	have	real	square	roots.

20.	The	real	line	and	complex	plane	(a)	Graphs	of	y	=	x2	and	y	=	–1,	(b)	The	real	line,	(c)	The
complex	plane.

And	there	the	story	might	have	ended	except	those	Renaissance	mathematicians	found	good
reasons	to	‘imagine’	that	 	does	have	solutions,	denoting	a	solution	as	i.	This	may	seem
somewhat	ludicrous	at	first,	but	around	1530	a	method	was	found	for	solving	degree	3	equations.
One	problem	was	that	this	method	necessitated	calculations	with	square	roots	of	negative
numbers,	even	when	all	the	equation’s	solutions	were	real	numbers.	The	worth	of	the	number	i
became	truly	apparent	with	the	proof	of	the	fundamental	theorem	of	algebra	in	1799	by	Carl
Gauss.	This	theorem	shows	all	the	solutions	of	any	polynomial	equation	have	the	form	
where	a	and	b	are	real	numbers.	For	example,	the	number	 	solves	the	equation

as	shown	by	the	calculation



Numbers	of	this	form,	 	where	a	and	b	are	real	numbers	and	 ,	are	called	complex
numbers	and	the	fundamental	theorem	of	algebra	says	that	a	polynomial	of	degree	n	has
(counting	possible	repeats)	n	solutions	amongst	the	complex	numbers.

In	the	same	way	that	real	numbers	are	commonly	represented	on	the	real	line	(Figure	20(b))	the
complex	numbers	can	be	represented	as	a	plane,	the	complex	plane	(Figure	20(c)).	A	complex
number	such	as	 	can	then	naturally	be	identified	with	the	point	(1,	2)	as	shown.	The	real
numbers	occupy	the	horizontal	axis—denoted	‘Re’—and	the	vertical	axis	‘Im’	is	called	the
imaginary	axis.

Complex	numbers	have	a	rich	theory	of	their	own	which,	for	mathematicians	at	least,	is	reason
enough	to	warrant	their	study.	You	may,	though,	be	surprised	to	find	that	quantum	theory,	the
physical	theory	that	successfully	models	subatomic	physics,	is	naturally	described	using	the
language	of	complex	numbers	and	so	physicists,	chemists,	and	engineers	all	need	to	be	well
versed	in	the	use	of	complex	numbers.

Riemann	surfaces
The	introduction	of	complex	numbers	led	to	a	much	richer	theory	connecting	algebra	and
geometry.	In	Figure	20(a)	we	see	that	the	curves	 	and	 	don’t	meet;	if	they	did	meet
at	a	point	(x,y)	in	the	real	xy-plane	then	we’d	have	 	and	no	such	x	exists.	But	using
complex	numbers	they	do	intersect	at	two	points,	at	 	and	at	 .	The
fact	that	a	degree	2	curve	and	a	degree	1	curve	meet	in	 	points	in	this	case	is	not
entirely	coincidental.	More	generally	it	is	the	case	that,	if	properly	counted,	a	degree	m	curve	and
a	degree	n	curve	intersect	in	 	points.	Multiple	contacts	need	to	be	counted	properly—so	a
line	tangentially	meeting	the	curve	 	would	count	as	a	double	contact,	so	that	there	are	still

	intersections.	The	final	finesse,	when	counting	intersections,	is	to	include	points	at
infinity.	For	example,	two	parallel	lines—each	degree	1	curves—are	still	deemed	to	meet	at	a	point
at	infinity	so	that	there	is	 	intersection	as	expected.

Using	real	numbers,	the	graph	of	 	is	a	one-dimensional	curve	lying	in	the	two-dimensional

xy-plane.	In	this	case	x	and	y	are	everyday	real	numbers	and	the	curve	consists	of	all	points	(x,	x2)
where	x	is	a	real	number.	We	might	instead	consider	the	same	equation	where	x	and	y	can	now	be
complex	numbers.	Again	all	the	points	satisfying	 	are	of	the	form	(x,	x2)	but	this	time	x	can
be	any	complex	number.	When	using	real	numbers,	the	input	x	represents	some	point	of	the	x-axis
and	the	corresponding	output	x2	can	be	plotted	distance	x2	above	the	point	(x,	0)	in	the	xy-plane
(Figure	20(a)).	However,	when	it	comes	to	using	complex	numbers,	the	input	 	is	itself
two-dimensional.	The	x-‘axis’	is	a	version	of	the	complex	plane,	the	y-‘axis’	a	second	version,	and
the	complex	xy-‘plane’	is	in	fact	four-dimensional.	‘Above’	the	point	(x,	0)	is	a	point	(x,	x2),	and
together	the	points	(x,	x2)	make	a	two-dimensional	surface	situated	in	the	four-dimensional
complex	xy-space.	All	the	points	such	as	(2,	4)	that	were	on	the	original	real	curve	are	still
present,	and	make	up	a	cross-section	of	the	complex	surface;	present	too	now	are	points	like	(i,	–
1)	and	(2+i,	3+4i).	If	we	separate	out	these	complex	numbers	into	their	real	and	imaginary
dimensions,	then	we	might	instead	represent	these	points	as

and	their	four-dimensional	nature	is	a	little	clearer.



The	curve	 	sits	in	the	real	xy-plane	as	a	curved	version	of	the	x-axis	(Figure	20(a));	the
curve	and	axis	are	topologically	the	same	with	a	homeomorphism	between	the	two	just	pushing
each	point	(x,	0)	up	to	the	point	(x,	x2).	If	we	include	also	the	curve’s	point	at	infinity	bringing
together	the	curve’s	‘ends’	then	the	curve	topologically	becomes	a	circle.	When	using	complex
numbers,	the	curve	 	sits	in	complex	xy-space	as	a	curved	version	of	the	x-axis	which,
remember,	is	itself	a	two-dimensional	complex	plane.	When	we	include	the	point	at	infinity	this
brings	together	this	curved	plane	as	a	sphere.	(This	is	the	reverse	process	of	puncturing	a	sphere
to	get	the	plane	that	we	met	earlier	in	the	proof	of	Euler’s	formula.)

So,	the	complex	version	of	 ,	if	we	include	its	point	at	infinity,	is	topologically	a	sphere,	a
surface;	this	is	called	the	Riemann	surface	of	 .	We	might	similarly	consider	the	Riemann
surfaces	of	higher	degree	equations.

In	Figure	21(a)	we	have	the	real	cross-section	described	by	the	degree	3	equation	
.	On	the	left	is	a	loop,	and	when	we	add	the	point	at	infinity	to	the	curve

on	the	right	then	topologically	this	real	cross-section	becomes	two	loops;	so	it	might	not	be
surprising	that	the	whole	complex	version,	the	Riemann	surface,	in	this	case	is	a	torus	with	Figure
21(a)	just	being	a	cross-section	of	that	torus.	In	Figure	21(b)	we	have	a	real	cross-section	with	a
singular	point	where	the	curve	crosses	itself.	Topologically	the	complex	version	of	this	curve	is	a
pinched	torus	as	in	Figure	21(c).

21.	Visualizing	Riemann	surfaces	(a)	Graph	of	y2	=	x(x	–	1)(x	–	2),	(b)	Graph	of	y2	=	x(x	–	1)2,
(c)	A	pinched	torus.

Provided	there	are	no	singular	points,	then	a	degree	d	equation	defines	a	Riemann	surface	which
is	topologically	a	torus	with	g	holes.	There	is	a	profound	but	easily	described	connection	between
the	degree	of	a	curve’s	equation	d	and	the	genus	g	of	its	Riemann	surface.	This	is	given	by	the
degree-genus	formula	which	states	that

where	g	is	the	genus	of	the	Riemann	surface	and	d	is	the	degree	of	the	curve’s	equation.
Remembering	the	examples	we	have	met,	note	that	 	for	 	gives	 ,	a	sphere,	and

	for	 	gives	 ,	a	torus.	For	curves	with	singular	points,	the
formula	can	be	generalized	including	a	correction	term	for	each	singularity,	as	shown	by	Max
Noether	in	1884.

This	is	a	first	glimpse	at	some	of	the	deep	connections	between	topology,	algebra,	geometry,	and
calculus	that	would	be	uncovered	in	mathematics.	Quoting	the	French	mathematician	Jean
Dieudonné,	‘In	the	history	of	mathematics	the	twentieth	century	will	remain	as	the	century	of
topology.’	The	century	would	see	a	fledgling	subject,	intuitively	but	informally	understood,	go	on
to	become	one	of	the	central	pillars	of	mathematics.

It	is	worth	noting	that	those	early	topologists—Möbius,	Klein,	Riemann—did	not	in	their	time	have
available	the	rigorous	definitions	necessary	to	prove	their	results	to	modern	standards.	In	1861
Möbius	gave	an	early	sketch	proof	of	the	classification	theorem	for	orientable	surfaces,	and
Walther	Von	Dyck	gave	a	sketch	proof	for	all	closed	surfaces	in	1888.	But	without	having	any
formal	definition	of	what	a	surface	is,	these	proofs	can	at	best	be	considered	incomplete.	This	is
not	to	relegate	such	proofs	to	the	dustbin,	nor	to	consider	them	simply	wrong,	as	such	proofs
often	contain	most	or	all	of	the	crucial	ideas	of	a	proof.	Somewhat	differently	expressed	rigorous



versions	of	the	classification	theorem	would	be	proved	by	Max	Dehn	and	Poul	Heegaard	in	1907
and	by	Roy	Brahana	in	1921.

Curves	and	surfaces	are	one-	and	two-dimensional	examples	of	manifolds,	spaces	that	look	‘up
close’	like	the	real	line,	the	plane,	or	some	higher	dimensional	equivalent.	It	wasn’t	until	1936	that
Hassler	Whitney	gave	the	modern	definition	of	a	manifold,	and	proved	an	important	theorem
showing	when	manifolds	can	be	embedding	in	space	(recall,	for	example,	how	the	Klein	bottle
cannot	be	made	in	3D	space	without	self-intersections	but	can	be	made	in	4D).	An	important
aspect	of	modern	geometry	concerns	the	different	types	of	mathematical	structure—continuous,
smooth,	complex,	metric—that	can	be	put	on	these	manifolds	and	I	will	say	a	little	more	on	this	in
Chapter	5	when	we	discuss	differential	topology.



Chapter	3
Thinking	continuously

Given	just	one	sentence	for	the	task,	many	topologists	might	choose	to	describe	their	subject	as
the	study	of	continuity.	The	word	‘continuous’	appeared	a	few	times	in	Chapter	1	but	it	was	left	to
the	reader’s	intuition	as	to	quite	what	the	word	entailed.	In	many	ways	this	reflects	how
mathematicians	used	to	regard	continuity—historically	it	was	just	considered	evident	what	was
meant	by	‘continuous’	and	as	many	(but	not	all)	of	the	results	about	continuous	functions	that	are
‘obvious’	also	happen	to	be	true,	relatively	little	effort	was	spent	providing	further	clarity.	A
rigorous	definition	of	continuity	did	not	appear	until	the	19th	century.

In	your	everyday	routine	there	are	continuous	and	discontinuous	functions	around	you.	For
example,	if	you	drive	to	work,	the	distance	you	have	travelled	after	a	certain	time	will	be	a
continuous	function	of	time—for	this	not	to	be	the	case	would	mean	that	at	one	moment	your	car
was	in	a	certain	place	only	for	it	to	immediately	afterwards	be	at	another	place	some	distance
away.	Your	speed	on	the	journey	will	similarly	be	continuous.	However,	the	acceleration	need	not
be;	if	you	were	sat	at	rest	(say	at	traffic	lights)	the	acceleration	would	be	zero	but	then	would
jump	to	a	certain	value	once	your	foot	was	on	the	accelerator.	The	graphs	in	Figure	22	give	a
plausible	(if	simplistic)	model	for	someone’s	drive	to	work.



22.	Distance,	speed,	and	acceleration	on	a	journey	(a)	Distance,	(b)	Speed,	(c)	Acceleration.

From	Figure	22(b)	we	can	see	that	the	car	stops	at	t3—where	the	speed	s(t)	becomes	zero—and
after	t4	increases	to	the	speed	limit.	The	distance	travelled	d(t)	in	Figure	22(a)	is	a	continuous
function	of	time	t.	Historically	this	would	have	been	understood	as	meaning	its	graph	could	be
drawn	without	taking	pen	from	paper,	but	we	will	seek	to	provide	a	fuller	understanding.	But	the
acceleration	function	a(t)	is	not	continuous	because	of	the	jumps	in	the	graph	in	Figure	22(c).	The
times	t1,	t2,	…	t6	of	discontinuity	in	the	acceleration	relate	to	the	driver’s	foot	coming	off	the
accelerator,	being	put	on	the	brake,	coming	off	the	brake,	and	then	the	pattern	repeats	again.

My	aim	in	this	chapter	is	to	provide	a	more	rigorous	sense	of	just	what	continuity	entails	for	real-
valued	functions	of	a	real	variable.	This	means	we	will	focus	on	functions	having	a	single
numerical	input	and	a	single	numerical	output.

Functions



The	idea	of	a	function	is	a	central	one	to	mathematics,	though	this	has	only	been	true	since
around	the	17th	century.	Once	Descartes	and	Fermat	independently	introduced	the	idea	of
Cartesian	coordinates	x	and	y	to	describe	position	in	a	plane,	a	curve	could	just	as	easily	be
described	by	an	equation	as	by	its	geometry.	For	example,	the	curve	 	is	a	parabola,	a	curve
the	ancient	Greeks	would	have	investigated	solely	using	geometry.	A	sketch	of	this	curve	is	given
in	Figure	23(a)—the	curve’s	equation	gives	a	rule	for	plotting,	above	each	point	(x,	0)	of	the	x-axis,
a	point	(x,	x2).	Note	how	certain	algebraic	properties	of	the	function	are	represented	in	the	shape
and	position	of	the	curve—as	x2	⩾	0	for	all	x,	the	curve	lies	entirely	on	or	above	the	x-axis;	as	

,	the	curve	is	symmetric	about	the	y-axis.

23.	Examples	of	graphs	(a)	Graph	of	 ,	(b)	Graph	of	y	=.

For	some	functions,	we	might	naturally	have	to	limit	the	allowed	inputs—or	we	might	choose	to	do
so	anyway.	For	example,	if	 	then	we	at	least	need	to	ensure	that	x	is	non-zero	as

division	by	zero	is	meaningless;	for	the	function	 ,	then	we	cannot	permit	x	to	be
negative,	as	no	real	number	has	a	negative	square	(Figure	23(b)).

More	generally,	a	function	comes	with	a	set	of	inputs,	known	as	the	domain,	and	there	is	likewise
the	codomain,	a	set	containing	the	outputs.	It	is	an	important,	if	subtle,	point	to	appreciate	that	a
function	is	this	whole	package:	the	domain,	the	codomain,	and	the	rule	assigning	values.

Some	first	thoughts	about	continuity
Let’s	first	try	to	understand	what	it	means	for	a	function,	with	real	inputs	and	outputs,	to	be
continuous.	Currently	we	sort	of	intuitively	know	continuity	when	we	see	it.	Certainly,	looking	at
two	functions	in	Figures	24(a)	and	24(b),	it	seems	reasonable	to	say	f(x)	is	continuous	and	g(x)	is
not	continuous,	and	further	that	g(x)	is	discontinuous	only	at	 .	(The	full	disc	on	the	graph
shows	where	the	function	takes	its	value,	so	that	 .)	But	what	does	intuition	say	about
Figure	24(c)?	Is	h(x)	continuous	or	not?	It	seems	that,	if	h(x)	is	discontinuous,	the	only	point	of
discontinuity	is	 ,	but	the	function	oscillates	so	wildly	there,	we	may	now	be	thinking	that
our	intuition	didn’t	have	all	the	answers.



24.	Continuous	and	discontinuous	functions	(a)	y	=	f (x)	=	sin x,	(b)	 ,	(c)	

.

Back	to	Figure	24(b),	what	is	it	about	the	function’s	behaviour	at	 	that	makes	us	think	g(x)	is
discontinuous?	For	input	x	a	little	more	than	1,	then	g(x)	has	much	the	same	value	as	g(1);
however	for	input	x	a	little	less	than	1	then	g(x)	is	noticeably	different	from	g(1).	It	is	this	jump	in
output	at	1	that	is	crucial	to	g(x)	being	discontinuous	at	 .

At	first,	we	might	be	tempted	to	think	this	is	because	g(1)	is	different	from	the	value	of	g(x)
achieved	immediately	before	we	get	to	x	equalling	1.	But	there	are	all	sorts	of	problems	with	this
thinking.	First,	there	is	no	real	number	x	that	is	‘immediately	before’	1.	Given	a	number	like
0.999,	close	to	1,	then	we	can	always	improve	on	that	and	see	0.9999	is	a	little	closer.	Or	we
might	suggest	using	0.999	…	(where	the	ellipsis	means	that	there	are	infinitely	many	recurring
9s)	but	this	is	just	another	decimal	expansion	for	1.	More	rigorously,	for	any	input	x	<	1	then
(1+x)/2	is	less	than	1	but	closer	to	1	than	x	is.	Instead	we	might	be	tempted	to	talk	about	an	input
that	is	infinitesimally	close	to	1	but	then—whatever	we	mean	by	this—we	are	no	longer	talking
about	the	real	numbers	and	have	just	replaced	resolving	one	definition	with	resolving	a	different
one.

We	need	another	approach	that	can	be	comfortably	expressed	entirely	in	terms	of	real	numbers.



This	problem	was	independently	resolved	in	the	19th	century	by	Bernard	Bolzano	and	Karl
Weierstrass.	We	feel	that	g(x)	is	discontinuous	at	 	because	g(x)	is	noticeably	different	from
g(1)	for	some	inputs	x	nearby	to	1.

There	is	still	quite	a	bit	of	subtlety	needed	to	fully	capture	what	this	means.	In	our	example,	g(x)
has	a	jump	of	1	from	output	values	near	2	(just	before	 )	to	output	values	near	1	(just	after	

).	The	size	of	that	jump	was	unimportant,	the	presence	of	any	jump	at	all	was	sufficient.	And
the	notion	of	‘nearby	inputs’	should	not	be	interpreted	as	several	inputs	that	are	in	some	sense
close	to	1;	rather	we	mean	there	are	inputs	x	arbitrarily	close	to	1	such	that	g(x)	is	noticeably
different	from	g(1).	Necessarily	this	means	that	we	are	talking	about	infinitely	many	such	inputs	x,
not	just	several	x.	By	way	of	example,	it	is	enough	to	note	that:

This	rigorously	shows	that	g(x)	is	discontinuous	at	 .	The	sequence	of	inputs	0.9,	0.99,	0.999,
0.9999,	…	gets	arbitrarily	close	to	1.	What	this	means	is:	however	demanding	‘nearby	to	1’	is
required	to	be,	there	are	inputs	from	this	sequence	that	are	at	least	that	close.

Whilst	we	still	haven’t	quite	defined	just	what	we	mean	by	discontinuous,	we	have	made	some
progress	with	regard	to	the	function	h(x)	(Figure	24(c)).	This	function	does	not	appear	to	have	any
noticeable	‘jump’	in	outputs,	but	it	does	seem	to	meet	the	definition

h(x)	is	noticeably	different	from	h(0)	for	some	inputs	x	arbitrarily	near	to	0.

Near	 	the	function	h(x)	is	varying	crazily.	From	the	graph	we	can	see	that	there	are	inputs
x,	arbitrarily	close	to	0,	where	 	whilst	we	have	 .	It	now	seems	clear	by	our
emerging	sense	of	continuity	that	h(x)	is	discontinuous	at	 .

An	example	in	detail
We	still	need	to	be	careful	turning	these	nascent	thoughts	into	a	rigorous	definition.	We’ll	consider
in	detail	the	function	 	which	is	continuous	for	all	inputs	x.	If	f(x)	is	continuous	at	an
input	 	then—based	on	our	previous	thoughts—we	need	that

f(x)	is	not	noticeably	different	from	f(a)	for	all	inputs	x	suitably	near	to	a.

Take	a	moment	to	appreciate	why	we	need	all	inputs	x	suitably	near	to	a	to	produce	not	noticeably
different	outputs	f(x)	to	f(a).	If	some—but	only	one—nearby	input	x	to	a	resulted	in	noticeably
different	outputs	f(x)	and	f(a),	then	we	could	just	tighten	our	notion	of	‘suitably	near’	to	exclude
the	problem	input	x.	In	fact,	if	we	can	never	get	‘suitably	near’	with	our	inputs,	then	this	means
that	there	were	arbitrarily	close	problematic	inputs	x	to	a	where	f(x)	was	noticeably	different	from
f(a)—so,	f(x)	would	be	discontinuous	at	 .

To	begin,	what	does	it	mean	for	 	to	be	continuous	at	 ?	Is	it	true	that

x2	is	not	noticeably	different	from	 	for	all	inputs	x	suitably	near	to	0?

We	try	out	some	values	in	Table	3.



Table	3. 	Sample	input	and	output	values	for	

It	seems—admittedly	only	on	the	basis	of	five	choices	of	x—that	x2	is	closer	to	0	than	x	is	to	0,	and
some	quick	algebra	checks	that	small	numbers	generally	square	to	smaller	numbers	(in
magnitude).	We	cannot	find	inputs	x	close	to	0	where	the	outputs	x2	and	0	are	noticeably
different.

Now	we	can	hang	some	rigorous	mathematics	on	these	initial	thoughts:	whatever	potential
‘noticeable	difference’	in	the	outputs	x2	and	 	we	consider,	represented	by	a	positive
number	e,	then	there	need	to	be	‘suitably	close’	inputs	x	to	0,	represented	by	a	positive	number	d,
such	that

if	inputs	x	and	0	differ	by	less	than	d	then	outputs	x2	and	0	differ	by	less	than	e.

As	the	outputs	here	are	closer	to	one	another	than	the	inputs	are—that	is,	as	x2	is	closer	to	0	than
x	is	to	0—then	we	can	just	choose	d	to	equal	e.	So	if	inputs	differ	by	e	or	less	so	do	the	outputs.
We	have	then	shown	that	 	is	continuous	at	 .

What	about	continuity	at	a	different	input,	say	 ?	We	can	create	a	similar	table	to	Table
3	(see	Table	4).

Table	4. 	More	sample	input	and	output	values	for	

The	function	 	is	growing	much	more	rapidly	at	 	than	it	is	at	 .	A
change	of	around	0.1	in	the	inputs	leads	to	a	change	in	the	outputs	of	around	200;	a	change	of
0.01	in	the	inputs	still	leads	to	a	difference	of	around	20	in	the	outputs.	This	may	lead	you	to	think
that	the	outputs	are	‘noticeably	different’	here,	but	a	more	careful	check	of	other	inputs	would
show	that	these	large	differences	have	been	incrementally	achieved.	All	this	is	a	consequence	of
the	function	changing	more	rapidly	near	 ,	and	what	needs	tightening	is	our	notion	of
‘suitably	near’.	As	the	function	is	growing	more	rapidly,	small	changes	in	the	input	will	lead	to
relatively	large	changes,	but	still	in	a	continuous	fashion.	If	we	consider	the	input	
,	a	little	larger	than	the	input	1000,	then	the	difference	in	the	outputs	equals

as	d2	<	d	when	d	<	1.	So	a	shift	in	inputs	by	d	results	in	a	shift	of	outputs	roughly	2000	times
larger.	(Note	similar	behaviour	in	Table	4.)	This	is,	in	itself,	not	a	problem	but	it	does	mean	that	if
we	want	the	outputs	to	differ	by	no	more	than	e	then	we	should	only	allow	the	inputs	to	differ	by
no	more	that	e/2001.	This	still	shows	the	continuity	of	 	at	 ,	we	just	needed



•

•

•
•

•

a	tighter	sense	of	‘suitably	near’	with	the	inputs	as	the	function	was	growing	so	fast.	For
continuity	at	yet	larger	inputs	that	notion	would	have	to	become	yet	more	stringent,	but	we	would
always	be	able	to	find	some	small	wiggle	room	about	an	input	for	which	the	outputs	don’t	differ
beyond	the	desired	amount	e.

A	rigorous	definition
Putting	all	this	thinking	together	gives	us	a	rigorous	definition	of	continuity.	I’d	suggest	reading
the	definition	and	seeking	to	understand	how	this	means	that	the	function	in	Figure	25(a)	is
continuous	and	the	one	in	Figure	25(b)	isn’t,	but	if	you	find	the	generality	of	the	definition	and	the
technical	level	of	the	language	difficult	then	move	on	to	the	next	section	on	the	properties	of
continuous	functions.	And	be	reassured,	as	it	took	generations	of	mathematicians	to	finally	get
this	definition	right,	and	current	and	past	generations	of	mathematics	undergraduates	still	wrestle
with	proofs	involving	this	definition	in	their	analysis	courses.

25.	The	rigorous	definition	of	continuous	and	discontinuous	(a)	A	continuous	function,	(b)	A
discontinuous	function.

Formally,	then,	a	function	with	real	inputs	x	and	real	outputs	f(x)	is	continuous	at	an	input	
if:

for	any	positive	e	there	is	some	positive	d

such	that	the	difference	between	the	outputs	f(x)	and	f(a)	is	less	than	e

when	the	difference	between	the	inputs	x	and	a	is	less	than	d.

In	Figure	25(a),	we	are	focusing	on	demonstrating	the	continuity	of	f(x)	at	input	 .	A
particular	choice	of	e	>	0	has	been	made	and	our	task	now	is	to	make	sure	that	the	outputs	don’t
differ	from	f(a)	by	more	than	this	e.	So	the	outputs	have	to	remain	below	f(a)	+	e	and	above	f(a)	–
e	(as	shown	on	the	y-axis).	And	this	has	to	happen	for	inputs	x	in	some	range	a	–	d	<	x	<	a+d.	We
can	see	from	Figure	25(a)	that	some	such	interval	has	been	found,	as	shown	on	the	x-axis—the
range	of	outputs	on	this	interval	are	bounded	by	the	dashed	lines	and	these	fall	within	the
permitted	range	for	the	outputs.	To	show	continuity	of	f(x)	at	an	input	 	we’d	have	to	show
that	this	can	be	done	for	all	e	>	0,	however	small;	to	show	continuity	of	the	function	f(x)	we’d	have
to	do	this	for	all	inputs	x.

There	are	several	important	points	to	note	here:

we	require	that	the	outputs	can	be	constrained	in	a	certain	way	if	the	inputs	are	appropriately
constrained;
we	need	to	be	able	to	do	this	for	all	constraints	e	in	the	outputs;	for	each	choice	of	e	we	will
need	a	choice	of	d	that	meets	the	requirement;
for	a	smaller	choice	of	e	then	d	will	usually	need	to	be	smaller	as	well;
given	a	positive	e,	then	any	positive	d	that	meets	the	requirement	is	fine—we’re	not	looking	for
a	largest	such	d,	say;
the	faster	the	function	f(x)	is	changing	at	a,	the	smaller	d	will	need	to	be	relative	to	e.

A	function	is	then	said	to	be	continuous	if	it	is	continuous	at	all	its	inputs.	And	for	a	function	f(x)	to
be	discontinuous	at	an	input	 	means:

there	is	some	positive	e	such	that	for	any	positive	d



the	difference	between	the	outputs	f(x)	and	f(a)	is	greater	than	e
for	some	input	x	where	the	difference	between	x	and	a	is	less	than	d.

Note	how	this	captures	there	being	inputs	x	arbitrarily	close	to	a	(as	they	can	be	found	within	any
distance	d	of	a)	for	which	the	inputs	f(x)	and	f(a)	are	‘noticeably	different’	(here	meaning	differing
by	more	than	e).	In	Figure	25(b)	if	we	choose	e	to	be	smaller	than	the	jump	in	the	output	that
occurs	at	 	then	outputs	f(a	+	d)	will	be	greater	than	f(a)	+	e	and	so	outside	the	permitted
range—no	matter	how	small	we	make	d.

Properties	of	continuous	functions
There	would	be	limited	reason	to	be	interested	in	continuous	functions	if	there	wasn’t	some
payback	in	what	can	be	guaranteed	about	continuous	functions,	when	compared	with	what	can	be
said	of	functions	in	general.	The	intermediate	value	theorem,	as	you	might	guess	from	the
name,	states:	if	we	have	a	continuous	function	f(x)	that	is	negative	at	some	input	 	and
positive	at	some	later	input	 ,	there	is	some	input	 	between	a	and	b—possibly	more
than	one—where	 .	Zero	here	is	the	eponymous	‘intermediate	value’	between	the
negative	starting	output	f(a)	and	the	final	positive	output	f(b).

If	f(x)	is	continuous,	then	this	seems	like	something	that	just	has	to	be	true:	if	we	were	to	draw	the
graph	of	 	between	the	point	(a,	f(a))	below	the	x-axis	and	(b,	f(b))	above	the	x-axis,
without	taking	pen	off	paper,	we	surely	must	cross	the	x-axis	at	least	once.	But,	now	that	we	have
a	formal	definition	of	continuity,	is	it	particularly	clear	how	we	would	go	about	proving	this	result?
It’s	not	hard	to	come	up	with	a	counter-example	to	the	result	when	the	function	is	discontinuous.
Such	a	function	(with	 ,	 ,	say)	is

which	is	sketched	in	Figure	26(b).	Note	that	its	only	outputs	are	–1	and	1,	so	that	there	are
definitely	no	solutions	to	 .	But	to	prove	the	intermediate	value	theorem,	we	would	need
to	show	that	a	function	f(x)	satisfying	the	theorem’s	requirements	takes	the	value	zero	somewhere
—importantly	we	would	know	very	little	specifically	about	f(x)	save	that	it	is	continuous,	begins
negatively,	and	finishes	positively,	so	any	approach	to	a	proof	would	have	to	be	similarly	general.
Visualizing	drawing	the	graph	from	beneath	to	above	the	x-axis,	it	seems	as	though	there	would
have	to	be	a	first	time	that	we	cross	the	x-axis	and	this	is	indeed	the	case.	That	input	value	c
where	we	first	cross	would	be

26.	The	intermediate	value	theorem	(a)	Intermediate	value	theorem,	(b)	A	discontinuous
function.

But	writing	down	this	definition	of	c	doesn’t	itself	constitute	a	proof	and	carefully	proving	the
intermediate	value	theorem	is	well	beyond	the	aims	of	this	book.	The	above	line	is	the	proof’s
starting	point,	we	have	a	candidate	input	c	where	we	think	the	function	is	zero,	but	it	remains	to
carefully	show	that	 f(c)	=	0.	The	intermediate	value	theorem	was	first	proved	by
Bolzano	in	1817.

Another	important	theorem	is	the	boundedness	theorem.	A	function	f(x)	is	said	to	be	bounded
if	there	are	bounds	M	and	N	such	that	M	⩽	f(x)	⩽	N	for	all	x.	Continuous	functions—like	



—can	be	unbounded	(here	no	such	N	exists)	when	we	consider	all	possible	inputs	x,
but	when	we	restrict	the	inputs	to	a	domain	such	as	the	interval	a	⩽	x	⩽	b	then	the	outputs	f(x)
will	be	bounded.	More	than	that,	there	will	be	a	maximum	output	and	a	minimum	output	which
are	achieved	at	some	inputs.	For	example,	the	function	 	on	the	interval	–1	⩽	x	⩽	2	has
a	maximum	output	of	4	achieved	at	 	and	a	minimum	output	of	0	achieved	at	 .	On	the
other	hand	a	function	like

is	not	bounded	on	the	interval	0	⩽	x	⩽	2.	As	x	becomes	small,	but	remains	non-zero,	then	
	becomes	arbitrarily	large.	The	crucial	point	here	is	that	g(x)	is	not	continuous,

specifically	at	 ,	and	so	the	boundedness	theorem	does	not	apply	in	this	case.	The
boundedness	theorem	was	first	proved	by	Weierstrass	during	the	1840s,	though	the	result	did	not
become	widely	known	until	he	began	lecturing	in	Berlin	in	1859.

The	continuous	functions	form	an	important	part	of	mathematics	because	of	powerful	results,	like
the	intermediate	value	theorem	and	boundedness	theorem,	guaranteeing	certain	properties	for
continuous	functions.	There	are	also	theorems	that	guarantee	the	continuity	of	functions	that	can
be	constructed	from	other	functions:	if	f(x)	and	g(x)	are	continuous	functions	then	so	are

Consequently,	the	continuous	functions	include	many	of	the	functions	that	mathematicians	and
scientists	routinely	meet	and	work	with.	For	example,	any	function	with	a	defined	gradient	will
also	be	continuous.	However,	be	aware	that	there	are	still	some	nasty,	pathological	examples
amongst	the	continuous	functions—for	example,	the	blancmange	function	(Figure	27(d))	is	a
continuous	function	that	has	a	defined	gradient	at	no	input	at	all.

27.	The	blancmange	function	(a)	y	=	f1(x),	(b)	y	=	f2(x),	(c)	y	=	f3(x),	(d)	Blancmange	function.

The	blancmange	function	can	be	defined	by	adding	together	an	infinite	list	of	functions	f1(x),	f2(x),
f3(x),	…	The	first	three	functions	appear	in	Figures	27(a),	27(b),	27(c).	Note	that	f1(x)	has	a
defined	gradient/slope	at	each	point	except	its	two	peaks	and	the	trough	in	the	middle.	There	are
more	inputs—but	still	finitely	many—where	the	second	and	third	functions	don’t	have	a	defined
gradient.	Rather	astonishing	though	if	we	add	the	whole	list	of	functions	f1(x),	f2(x),	f3(x),	…	then
we	arrive	at	the	blancmange-shaped	function	drawn	in	Figure	27(d)	and	this	hasn’t	a	defined
gradient	at	any	point	of	its	graph.



To	conclude,	recall	the	earlier	comment	that	a	function	is	the	whole	package	of	domain,	codomain,
and	the	assignment	rule.	We	cannot	simply	say	whether	x2	is	a	bounded	function.	The	assignment
x2	is	part	of	an	unbounded	function	when	the	domain	and	codomain	are	both	the	real	line,	but
when	we	restrict	the	domain	to	the	interval	a	⩽	x	⩽	b	then	the	assignment	x2	yields	a	bounded
function.	This	pre-empts	somewhat	a	more	detailed	discussion	for	Chapter	4:	what	is	it	about	the
domain	a	⩽	x	⩽	b	that	means	continuous	functions	are	bounded	on	that	domain	or	satisfy	the
intermediate	value	theorem?	The	answer	to	the	first	question	is	that	the	interval	is	compact	and	to
the	second	question	is	that	the	interval	is	connected.	We	will	see	in	Chapter	4	what	these	terms
mean	more	generally.



Chapter	4
The	plane	and	other	spaces

More	on	functions
In	Chapter	3	we	discussed	the	continuity	of	functions	that	take	one	numerical	input	and	produce
one	numerical	output.	Most	functions	are	not	of	such	a	simple	form.	As	you	read	this,	the	density
of	matter	in	the	room	around	you	is	a	function	of	three	spatial	coordinates	(needed	to	describe	a
point	of	the	room	you’re	in)	and	one	coordinate	describing	time.	If	you	are	reading	the	paperback
version,	that	density	function	takes	a	roughly	constant	value	(the	density	of	paper)	at	points	in	the
book	you’re	reading	but	that	value	changes	(discontinuously)	at	the	book’s	edges	and	takes	on	a
new	value	(the	density	of	air)	at	points	outside	the	book.	If	you’re	reading	this	outside,	the	wind’s
velocity	is	an	output	with	three	components	measuring	to	what	extent	the	wind	is	blowing
ahead/behind,	up/down,	left/right;	each	of	these	three	components	is	again	a	function	of	one
temporal	and	three	spatial	inputs.	We’d	expect	wind	velocity	to	be	a	continuous	function,	even	if	it
may	sometimes	change	quite	quickly.	To	have	you	thinking	a	little	harder,	is	it	reasonable	to	say
that	the	distance	a	car	has	travelled	is	a	continuous	function	of	its	speed?	This	really	is	a	subtle
question	as	neither	the	input	nor	output	are	numbers,	but	rather	functions	of	time,	with	input	the
speed	function	s(t)	and	output	the	distance	function	d(t)	(Figure	22).	If	you	have	some	sense	of
what	the	question	is	asking—will	my	journey	to	work	tomorrow	be	much	the	same	as	my	journey
today	if	I	keep	to	much	the	same	speed	during	my	journey?—then	your	intuition	is	doing	well.
Even	then,	there	are	important	details	to	be	filled	in,	namely	describing	in	each	case	just	what
‘much	the	same’	means.

Thoughts	on	distance
Consider	the	important	notions	needed	to	define	continuity	in	Chapter	3.	Loosely	put,	continuity
requires	that	we	can	constrain	the	difference	in	outputs	by	suitably	constraining	the	difference	in
inputs.	We	will	need	a	more	general	notion	of	the	difference	between	other	types	of	input	and
output:	for	example,	what	is	the	‘difference’	between	two	points	of	the	plane?

Given	two	real	numbers,	x	and	y,	we	denote	the	difference	between	them	as	|x–y|,	and	this	is	just
another	expression	for	the	distance	between	x	and	y	as	points	on	the	real	line	(Figure	20(b)).
Likewise,	given	two	points	(x1,	y1)	and	(x2,	y2)	in	the	plane,	we	might	take	the	‘difference’
between	them	to	mean	the	straight-line	distance	between	them	(Figure	28(a)).	Pythagoras’
Theorem	tells	us	this	distance	equals



28.	Visualizing	different	metrics	(a)	Straight	line	distance,	(b)	Taxicab	distance,	(c)	Distance
between	functions.

so	that	the	points	(1,1)	and	(3,2)	in	Figure	28(a)	are	a	distance	 	apart.	But	in
some	circumstances,	you	might	decide	that	the	straight-line	distance	is	not	the	best	way	to
describe	distance	realistically.	For	example,	a	taxi	driver	in	Manhattan	would	be	constrained	by
New	York’s	grid	of	streets	and	so	would	need	to	take	a	journey	as	in	Figure	28(b),	travelling	along
perpendicular	streets	and	avenues.	That	distance	is	given	by	the	formula

For	the	taxi	driver,	the	points	(1,1)	and	(3,2)	are	a	distance	 	apart,	as	the	taxi	may	not
go	along	the	straight	path	through	Manhattan’s	skyscrapers.

A	more	complicated	example	appears	in	Figure	28(c):	what	might	we	mean	by	the	distance
between	two	functions?	Again,	we	might	choose	different	ways	to	measure	that	distance;	looking
at	the	two	functions	f(x)	and	g(x)	graphed	we	might	define	the	distance	between	them	to	be

the	maximum	distance	between	f(x)	and	g(x)	as	we	range	over	all	inputs	x,

as	highlighted	by	the	two	dotted	lines.	But	another	reasonable	notion	of	the	distance	between	the
functions	might	be

the	total	area	between	the	graphs	of	f	(x)	and	g(x).

Again,	what	makes	the	better	definition	of	distance	between	two	functions	may	depend	on	what
the	functions	signify.

Whilst	these	examples	might	seem	reasonable	definitions	for	distance,	we	are	going	to	need	a
more	detailed,	firmer	sense	of	the	properties	of	distance	before	any	mathematical	theory	can	be
produced.	What	do	we	expect	of	distance?	In	answering	this,	we	find	ourselves	defining	what	it	is
to	be	a	metric.



1.
2.
3.
4.

Sets	and	metric	spaces
Metric	spaces	were	first	introduced	by	Maurice	Fréchet	in	1906,	though	his	work	was	little
appreciated	at	the	time.	A	metric	space	is	a	set	M	together	with	a	distance	function	d	called	the
metric.	This	function	d	has	two	points	x	and	y	from	M	as	its	inputs	and	its	outputs	a	number	d(x,	y)
representing	the	distance	from	x	to	y.	Further	the	metric	d	must	satisfy	the	following	properties
for	all	x,	y,	and	z	in	M

;
	and	if	 	then	 ;

.

The	first	property	says	that	distances	can’t	be	negative	and	the	second	implies	that	the	distance
between	two	distinct	points	is	positive.	The	third	says	that	the	distance	going	from	one	point	to
another	is	the	same	as	the	distance	coming	back.

The	fourth	property	is	called	the	triangle	inequality.	In	a	triangle,	the	combined	length	of	two
sides	is	always	greater	than	the	length	of	the	third	side.	Similarly	property	4	says	that	the
distance	d(x,z)	between	two	points	x	and	z	is	never	more	than	the	distance	from	x	to	z	via	a	third
point	y,	namely	 .	These	combined	distances	might	be	the	same	if	y	is	in	some
sense	‘on	the	way’	from	x	to	z	but	typically	the	diversion	to	y	will	make	for	a	journey	of	greater
combined	distance.

Figure	28’s	examples	are	all	metrics—straight-line	distance	and	taxicab	distance	are	metrics	on
the	plane;	maximum-distance-apart	and	area-between	both	define	metrics	for	continuous
functions	on	an	interval	 .	Other	metrics	are	common	in	mathematics,	an	important
metric	in	coding	and	information	theory	being	Hamming	distance,	introduced	by	Richard
Hamming	in	1950.	Hamming	distance	is	a	metric	for	binary	strings	of	0s	and	1s,	called
codewords,	used	in	coding	and	is	useful	when	dealing	with	errors	when	transmitting	code.	Given
three	codewords	of	the	same	length	(here	length	8),

should	we	consider	these	codewords	as	being	close	to	one	another?	Note	w1	and	w2	differ	in	only
the	first	and	last	digits,	whilst	w1	and	w3	differ	in	four	positions	as	do	w2	and	w3.	It	seems
reasonable	to	say	w1	and	w2	are	closer,	as	being	less	distinct,	and	the	Hamming	distance	between
two	codewords	is	defined	to	be	the	number	of	positions	where	the	two	codewords	differ,	so	that
w1	and	w2	are	distance	2	apart.

If	codewords	are	communicated	across	distance,	there	may	be	a	chance	of	transmission	error.	We
might	hope	that	the	chance	of	two	errors	occurring	while	sending	a	single	codeword	is	small
enough	to	be	considered	negligible,	but	single	errors	might	occur.	It	may	be	that	the	string
11101101	is	received,	which	agrees	with	none	of	the	codewords	and	is	frustratingly	Hamming
distance	1	from	both	w1	and	w2.	The	receiver	would	not	know	whether	w1	had	been	transmitted
and	the	last	digit	mis-sent	or	w2	had	been	sent	with	the	first	digit	wrongly	received.	However,	if
we	make	sure	to	use	codewords	that	are	distance	3	or	more	apart,	and	no	more	than	a	single
error	takes	place	per	codeword,	then	the	receiver	can	correct	the	error	by	replacing	the	mis-sent
code	with	the	nearest	codeword.

Continuity	between	metric	spaces
Continuity	for	a	function	with	a	single	numerical	input	and	output	requires	that	we	can	constrain
the	difference	in	outputs	to	any	degree	by	constraining	the	difference	in	the	inputs.	And	recall
that	the	difference	 	between	two	numbers	x,	y	is	also	the	distance	between	them	on	the
real	line.	To	generalize	the	definition	of	continuity	to	functions	between	metric	spaces,	we	need	to
replace	that	previous	notion	of	difference	with	that	of	distance,	as	given	by	some	appropriate
metric.

More	specifically,	if	we	have	a	function	f(x)	taking	inputs	in	a	metric	space	M	with	outputs	in	a
second	metric	space	N,	then	f(x)	is	continuous	at	input	 	if



for	any	positive	e	there	is	some	positive	d
such	that	the	distance	in	N	between	the	outputs	f(x)	and	f(a)	is	less	than	e
whenever	the	distance	in	M	between	the	inputs	x	and	a	is	less	than	d.

Note	here	that	the	input	x	need	no	longer	be	a	single	numerical	input:	x	could	be	a	point	in	the
plane,	a	subset	of	the	plane,	or	a	function	itself,	amongst	other	possibilities,	and	likewise	there	is
no	restriction	on	the	output	f(x)	being	a	single	number.

As	we	have	seen	there	are	different	choices	of	metrics	on	the	same	set—for	example	straight-line
or	taxicab	on	the	plane—and	two	different	metrics	might	have	quite	different	views	of	whether
two	points	are	close	to	one	another	or	not.	So	it	is	quite	possible	that	the	same	function	between
two	sets	might	be	continuous	when	using	certain	metrics,	and	discontinuous	for	a	different	choice
of	metrics.

Before	generalizing	overly,	let’s	aim	to	understand	what	it	means	for	a	function	f(x,	y)	to	be
continuous	when	there	is	an	input	(x,	y)	from	the	plane	and	the	output	f(x,	y)	is	a	single	real
number.	We’ll	use	straight-line	distance	in	the	plane	(Figure	28(a))	for	the	inputs	and	the	usual
notion	of	distance	(or	difference)	for	the	outputs.

Here	are	three	such	functions.

with	their	graphs	sketched	in	Figures	29(a)–(c).

29.	Graphs	of	functions	of	two	variables	(a)	Graph	of	 ,	(b)	Graph	of	
,	(c)	Graph	of	 ,	(d)	Eects	of	G	and	H,	(e)	Close	and	distant	functions.

Based	on	the	graphs,	you	may	think	that	f(x,	y)	and	h(x,	y)	are	continuous,	whilst	g(x,	y)	is
discontinuous—all	of	which	is	true.	You	may	further	suspect	that	g(x,	y)	is	discontinuous	at	the
points	(0,	y)	on	the	line	 ,	which	is	again	correct.	The	jump	in	output	g(x,	y)	across	the	line	

,	as	we	move	between	the	two	rules	that	define	the	function,	is	precisely	why	g(x,	y)	is
discontinuous	there.	h(x,	y)	is	also	defined	by	two	separate	rules,	one	for	inputs	where	

,	one	for	when	 .	The	graph	of	h(x,	y),	when	 	is	the	bowl-
shaped	part	of	Figure	29(c).	As	we	move	towards	the	boundary	of	that	rule’s	application,	the
circle	 ,	then	 	gets	ever	closer	to	equalling	1	which	is	the	rule



for	h(x,	y)	outside	of	the	disc.	So	whilst	h(x,	y)	is	defined	by	two	rules,	the	rule	for	
nicely	hands	over	to	the	second	rule	for	 	without	any	jump	in	the	output.	This	is	why
h(x,	y)	is	continuous.

As	before	there	are	nice	algebraic	results	guaranteeing	that	if	f (x,	y)	and	g(x,	y)	are	continuous
functions	from	the	plane	to	the	real	numbers	then	so	are	the	functions

With	the	general	approach	of	metric	spaces,	we	can	consider	more	complicated	examples,	such	as
the	set	of	continuous	functions	on	the	interval	 .	Here	are	three	examples	F,	G,	H	of
functions	which	take	inputs	f(x)	that	themselves	are	functions.

F	outputs	real	numbers,	just	evaluating	the	input	function	at	0,	whereas	G	and	H	output	functions:
G	increases	the	input	function	by	1	so	that	its	graph	moves	up	by	1	and	H	reflects	the	graph	of	a
function	in	the	y-axis	(Figure	29(d)).

We	cannot	say	whether	F,	G,	H	are	continuous	until	we	make	clear	which	metrics	we’re	using.	But
whether	we	use	the	maximum-distance-apart	metric	or	the	area-between	metric,	the	functions	G
and	H	are	continuous	as	the	maximum	distance	between	two	graphs	is	unchanged	by	a	vertical
move	of	1,	nor	is	the	area	between	the	graphs.	The	same	is	equally	true	when	H	reflects	the
graphs	in	the	y-axis.

Our	choice	of	metric	does	matter	for	F,	which	evaluates	an	input	f (x)	at	 .	Continuity	means
being	able	to	constrain	the	outputs	by	constraining	the	inputs:	must	two	functions	be	close	at	0	if
the	functions	f (x)	and	g(x)	are	close?	The	answer	is	yes	if	we’re	using	the	maximum-distance-apart
metric;	the	difference	between	the	functions	at	the	single	input	0	can	be	no	more	than	the
greatest	distance	between	the	functions	when	considering	all	inputs.	However,	we	cannot
constrain	the	difference	between	the	functions	at	0	by	constraining	the	area	between	the
functions	(Figure	29(e)).	A	function	g(x)	with	a	tall,	but	very	thin	spike	around	 	would
produce	a	large	difference	between	f (0)	and	g(0)	whilst	f (x)	and	g(x)	would	be	close	in	terms	of
the	area-between	metric.

And	we	can	now	properly	ask	and	answer	the	question	that	started	this	chapter:	is	the	distance	a
car	has	travelled,	d(t),	a	continuous	function	of	its	speed,	s(t)?	(See	Figure	22.)	Any	journey	to
work	taking	time	T	or	less	can	be	represented	by	a	continuous	function	d(t)	on	the	interval	0	⩽	t	⩽
T.	Is	the	function	that	takes	input	s(t)	to	output	d(t)	continuous?	If	two	cars	have	speeds	s1(t)	and
s2(t)	that	never	differ	by	more	than	S	then	the	two	cars	will	never	be	more	than	distance	ST	apart
on	their	journeys.	So	using	maximum-distance-apart,	we	can	constrain	the	distance	between	two
journeys	d1(t)	and	d2(t)	by	constraining	the	distance	between	their	speeds	s1(t)	and	s2(t).	We	have
just	shown	d(t)	is	a	continuous	function	of	s(t)	when	using	the	maximum-distance-apart	metric.
Using	a	little	calculus,	a	similar	argument	can	be	made	for	the	area-between	metric.

Equivalent	metrics	and	continuity
Our	main	reason	for	introducing	metric	spaces	was	to	provide	a	more	general	setting	in	which	to
discuss	continuity.	But	sometimes	different	metrics	on	a	set	lead	to	precisely	the	same	continuous
functions.	Two	such	metrics	are	the	straight-line	distance	and	taxicab	distance	on	the	plane.

To	help	appreciate	this,	we	introduce	the	idea	of	open	balls	which	generalize	discs	in	the	plane
when	we’re	using	straight-line	distance.	The	open	ball	B(a,	r)	of	radius	r	about	a	point	a	in	a
metric	space	is	the	set	of	points	in	the	metric	space	that	are	less	than	distance	r	from	a.	When
using	straight-line	distance	in	the	plane,	this	is	the	interior	of	the	circle	of	radius	r	with	centre	a
(Figure	30(a)).	The	dashed	circle	in	the	figure	indicates	that	the	circumference	is	not	included	in
the	open	ball.



30.	Open	balls	in	the	plane	(a)	Open	balls	in	the	plane,	(b)	Open	balls	within	others.

However,	if	we	were	using	the	taxicab	distance	in	the	plane	the	ball	B(a,	r)	looks	different.	The
taxicab	distance	between	two	points	 	and	 	equals	
and	so	the	points	 	within	(taxicab)	distance	r	of	a0	are	those	satisfying

Some	algebraic	manipulation	shows	that	these	points	form	the	interior	of	a	diamond	(Figure
30(a)).

It	is	possible	to	fit	such	a	diamond	into	any	disc	of	the	plane,	and	vice	versa	it	is	possible	to	fit	a
disc	into	any	given	diamond	(Figure	30(b)).	This	is	what	it	means	for	two	metrics	to	be	equivalent.
More	precisely,	two	different	metrics	d1	and	d2	are	said	to	be	equivalent	if	any	ball	B1(a,	r)
contains	some	ball	B2(a,	s)	and	any	ball	B2(a,	R)	contains	some	ball	B1(a,	S).	The	subscripts	here
refer	to	which	metric	is	being	used	and	the	smaller	ball’s	radii	s	and	S	will	usually	be	different
from	the	radii	r	and	R	of	the	original	balls.

The	straight-line	distance	is	always	less	than	or	equal	to	taxicab	distance,	as	the	former	is
distance	measured	‘as	the	crow	flies’.	But	there	are	limits	to	how	much	greater	taxicab	distance
can	be	compared	with	straight-line	distance.	The	greatest	taxicab	distance	from	the	centre	of	a
circle	of	radius	r	to	a	point	of	the	circle	equals	 .	These	are	the	points	on	the	circle	that	are
north-east,	north-west,	south-west,	and	south-east	of	the	centre.	This	means	that	taxicab	distance
can	be	no	more	than	 	times	bigger	than	straight-line	distance,	or	expressed	as	an	inequality,

for	any	points	a	and	b,	and	where	the	subscripts	SL	and	T	signify	the	metric.	So	BT(a,	r)	is
contained	in	BSL(a,	r)	which	is	contained	in	 ,	for	any	point	a	and	radius	r	(Figure
30(b)).



By	contrast,	the	maximum-distance-apart	and	area-between	metrics	for	functions	are	not
equivalent	metrics.	The	maximum	distance	between	two	graphs	is	a	constraint	on	how	great	the
area	between	the	graphs	can	be,	but	constraining	the	area	between	graphs	does	not	constrain	the
maximum	distance	between	two	graphs.	We	saw	this	earlier	in	Figure	29(e)	where	two	graphs
differing	only	by	a	high,	very	thin	spike	have	a	large	maximum	distance	between	them	but	only	a
small	area	between	them.

The	important	point	here	is	that	two	different	but	equivalent	metrics	lead	to	the	same	functions
being	continuous.	Now	we	can	rewrite	the	definition	of	continuity	in	terms	of	open	balls:	a
function	f(x),	with	inputs	from	M	and	outputs	in	N,	is	continuous	at	input	 	if

for	any	positive	e	there	is	some	positive	d	such	that	f	sends	B(a,	d)	into	B(f(a),	e).

This	is	purely	a	notational	rewriting	of	the	definition	given	on	p.	69—all	the	points	within	distance
d	of	a,	namely	those	in	B(a,	d),	need	to	be	sent	to	points	within	distance	e	of	f(a),	namely	sent	into
B(f(a),	e).	If	a	function	is	continuous	at	 	when	using	a	metric	d1	on	M	then	it	would	also	be
continuous	when	using	an	equivalent	metric	d2.	This	is	because	the	ball	B1(a,	d)	would	contain	a
ball	B2(a,	D)	using	the	second	metric,	and	if	B1(a,	d)	is	sent	into	B(f(a),	e),	then	so	is	B2(a,	D).

Open	sets	and	continuity
An	open	ball	is	a	basic	example	of	a	more	general	notion,	that	of	an	open	set.	Recall	that	an	open
ball	consists	of	all	points	strictly	less	than	a	given	distance	away	and	so	does	not	include	the
circumference	of	the	ball.	Similarly,	open	sets	can	be	thought	of	as	those	sets	that	don’t	contain
any	of	their	boundary	points.	The	formal	definition	is	that	a	set	U,	contained	in	a	metric	space	M,
is	open	if	around	each	point	a	in	M	there	is	an	open	ball	B(a,r)	still	contained	in	U	(Figure	31(a)).
Open	balls	are	unsurprisingly	examples	of	open	sets.	If	a	point	b	lies	in	B(a,	r),	at	a	distance	s
from	a,	then	the	ball	B(b,	r-s)	is	contained	in	B(a,	r)	(Figure	31(b)).	As	before	the	dotted	lines	in
Figure	31	denote	that	the	boundary	points	aren’t	included	in	the	sets.

31.	Open	sets	in	the	plane	(a)	An	open	set	in	the	plane,	(b)	Open	balls	are	open,	(c)	Union	and
intersection.

Two	equivalent	metrics	determine	the	same	collection	of	open	sets.	To	appreciate	this,	note	that	if
a	is	in	an	open	set	U,	we	can	place	an	open	ball	B(a,	r)	around	it	inside	U.	If	we	have	a	second
equivalent	metric,	then	we	can	place	another	open	ball	centred	at	a—using	this	second	metric—
contained	in	B(a,	r)	and	so	inside	U	as	well.	This	means	U	is	also	an	open	set	when	using	the
second	metric.

Equivalent	metrics	were	mentioned	earlier	because	a	function	that	is	continuous	when	using	one
metric	is	continuous	when	using	an	equivalent	metric.	And	we	have	just	seen	that	equivalent
metrics	lead	to	the	same	collection	of	open	sets.	These	two	facts	are	not	unconnected	and	indeed
knowledge	of	which	sets	are	open	is	sufficient	to	determine	which	functions	are	continuous.	It	is
relatively	straightforward	to	show	that	the	following	definition	of	continuity	in	terms	of	open	sets
is	equivalent	to	the	ones	given	on	p.	69	and	p.	75;	one	advantage	of	this	new	definition	is	that	it	is
much	more	generally	applicable.	Our	new	definition	reads:	a	function	f	between	metrics	spaces	M
and	N	is	continuous	if

whenever	U	is	an	open	set	in	N,	then	the	preimage	f	–1(U)	is	an	open	set	in	M.

The	preimage	f	–1(U)	consists	of	all	elements	of	M	that	f	sends	into	U.	For	example,	if	
	and	U	is	the	interval	0	<	x	<	2	then	the	pre-image	f–1(U)	is	the	interval	–1	<	x	<

1	as	these	are	precisely	those	x	that	satisfy	the	inequality	 .



•
•

•
•
•
•

That	different	metrics	can	lead	to	the	same	continuous	functions	and	that	continuity	can	be
rephrased	in	terms	of	open	sets,	making	no	mention	of	metrics,	suggest	that	the	open	sets,	more
so	than	metrics,	are	crucial	to	continuity.	However,	if	we	are	going	to	take	this	approach—starting
with	open	sets	rather	than	metrics—we	need	to	decide	what	properties	open	sets	need	to	have;	so
far	we	have	only	defined	open	sets	in	terms	of	metrics.	The	two	main	properties	of	open	sets	are:

for	any	collection	of	open	sets,	their	union	is	also	open;
for	any	finite	collection	of	open	sets,	their	intersection	is	also	open.

Given	a	collection	of	sets	their	union	consists	of	those	elements	that	are	in	one	or	more	of	those
sets;	the	intersection	of	those	sets	consists	of	those	elements	that	are	in	every	one	of	those	sets
(see	Figure	31(c)).	The	union	of	any	collection	of	open	sets	is	open,	but	in	general	the	intersection
of	an	infinite	collection	of	open	sets	need	not	be	open.	Consider	the	interval	–r	<	x	<	r	where	r	is	a
positive	number.	If	we	consider	all	such	sets	for	positive	r,	then	the	only	element	in	each	set	is	0.
So	the	intersection	of	these	sets	is	{0},	the	set	with	sole	element	0,	an	intersection	which	is	not
open.

Felix	Hausdorff	sought	to	capture	and	generalize	the	necessary	properties	of	open	sets	in	his	1914
magnum	opus	Grundzüge	der	Mengenlehre	or	Essentials	of	Set	Theory.	There	Hausdorff
introduced	many	key	ideas	of	set	theory	and	general	topology,	extending	and	synthesizing	the
work	of	Fréchet	and	others	into	a	coherent	whole.	It	was	also	here	that	he	coined	the	term	metric
space	for	the	spaces	Fréchet	had	introduced.

Given	a	set	M,	then	any	collection	 	of	sets	in	M	which	satisfies	the	following:

for	any	collection	of	sets	in	 ,	then	their	union	is	also	in	 ;
for	any	finite	collection	sets	in	 ,	then	their	intersection	is	also	in	 ;
M	is	in	 ;
the	empty	set—the	set	with	no	elements—is	in	 .

is	called	a	topology	on	M	and	a	set	M,	with	a	topology	of	sets	 ,	is	known	as	a	topological
space.

Note	that	M,	by	itself,	is	‘just’	a	set,	not	a	metric	space,	with	elements	having	no	sense	of	being
close	to	one	another;	the	collection	of	sets	 	is	an	effort	to	separate	out	M	without	necessarily
going	so	far	as	introducing	a	metric.	Given	a	metric	space	then	its	open	sets	form	a	topology,	but
not	all	topologies	arise	from	metrics.

The	following	is	an	example	of	a	topology	on	the	set	of	whole	numbers	which	does	not	arise	from	a
metric.	Necessarily	the	entire	set	of	whole	numbers	and	the	empty	set	must	be	in	the	topology;
the	only	other	sets	in	this	topology	are	those	of	the	form

where	n	is	a	whole	number.	The	intersection	of	finitely	many	Ui	is	Umax(i),	where	max(i)	denotes
the	largest	of	the	is,	and	so	in	the	topology;	the	union	of	any	collection	of	Ui	is	Umin(i)	if	the
minimum	min(i)	exists	and	is	otherwise	the	set	of	all	whole	numbers—in	either	case	the	union	is	in
the	topology.	So,	we	have	just	verified	that	this	collection	of	sets	satisfies	the	rules	of	being	a
topology.	In	this	space	non-empty	open	sets	always	overlap,	which	isn’t	true	of	metric	spaces,	so
this	is	one	way	to	be	sure	this	topology	doesn’t	arise	from	a	metric.

The	smallest	topology	 	on	M	just	includes	the	empty	set	and	the	set	M.	This	is	known	as	the
trivial	topology—it	does	not	separate	out	the	elements	of	M	at	all	and	the	only	continuous
functions	on	M	are	the	constant	ones.	The	largest	topology	is	the	discrete	topology	in	which	case
every	set	is	in	 ,	including	single	points;	it	introduces	extreme	separation,	placing	each	element
of	the	set	away	from	others	and	all	functions	on	M	are	continuous.	In	practice,	important
topologies	are	somewhere	between	these	two	extremes.	Many	important	topologies	arise	from
metrics,	but	there	are	important	ones	that	do	not,	such	as	the	Zariski	topology,	important	in
algebraic	geometry	which	studies	sets	defined	by	polynomial	equations.

Working	with	topological	spaces,	rather	than	metric	spaces,	does	more	than	just	generalize
further	the	ideas	of	continuity.	Many	proofs	in	topology	appear	cleaner,	with	the	logic	of	the	proof
and	the	rules	of	being	a	topological	space	meshing	together	much	more	naturally.



Convergence	and	continuity
Metric	spaces	are	also	a	natural	setting	in	which	to	define	convergence,	a	central	idea	of	calculus
and	of	mathematical	analysis.	A	sequence	from	a	set	is	a	list	of	elements	in	that	set;	for	example,
the	following	are	three	sequences	of	real	numbers.

The	ellipsis	‘. . .’	at	the	end	of	each	list	denotes	that	the	list	goes	on	forever.	A	sequence	is
commonly	denoted	as	x1,	x2,	x3,	…	and	the	terms	in	these	sequences	can	each	be	described	by
giving	a	formula	for	the	nth	term	xn:

Only	the	first	of	these	sequences	converges;	the	terms	of	the	sequence	are	steadily	getting
smaller	and	I	hope	it’s	not	surprising	that	this	sequence	converges	to	0	which	is	known	as	the
sequence’s	limit.	The	second	sequence	does	not	converge	to	any	limit;	some	of	its	terms	though—
like	the	even	terms	(second,	fourth,	sixth,	etc.)	which	are	all	1—do	converge	but	overall	the
sequence	does	not.	The	final	sequence	does	not	converge	either	and	in	fact	no	selection	of	its
terms	converges	either.

The	very	word	‘converge’	suggests	that	the	terms	of	the	sequence	get	closer	and	closer	to	some
limit.	Rigorously,	a	sequence	xn,	in	a	metric	space	M,	converges	to	a	limit	a	in	M	if	any	ball	B(a,	r)
contains	a	tail	of	the	sequence;	this	means	that	from	some	term	onwards,	all	remaining	terms	of
the	sequence	are	inside	B(a,	r).

Using	this	definition,	we	can	see	why	the	sequence	 	converges	to	0.	The	ball	B(0,	r)
contains	all	terms	xn	of	the	sequence	where	n	>	1/r,	which	is	a	tail	of	the	sequence.	In	Figure
32(a),	a	sequence	spirals	in	to	its	limit	(0,	0).	The	pictured	dashed	disc	B((0,	0),	r)	contains	x10	and
every	term	afterwards;	we	would	need	to	go	farther	down	the	sequence	to	find	a	tail	contained
within	a	smaller	open	ball.	If	a	sequence	converges	to	a	limit	in	a	metric	space,	then	the	sequence
converges	to	the	same	limit	if	we	use	any	equivalent	metric.

32.	Visualizing	convergence	(a)	A	sequence	converging	in	the	plane,	(b)	Neither	open	nor
closed	set.

Sequences	also	provide	an	alternative	means	of	defining	continuity.	For	a	continuous	function	f
between	metrics	spaces	M	and	N,	if	a	sequence	xn	of	inputs	converges	to	a	limit	a	in	M,	then	the
sequence	f(xn)	of	outputs	converges	to	f(a).	For	example,	with	the	sequence	 	which
converges	to	0,	and	the	continuous	function	 	then	f(xn)	is	the	sequence	

	which	converges	to	 .	Similarly	for	the	continuous

function	 ,	then	g(xn)	is	the	sequence	 	which

converges	to	 .	And	the	converse	is	also	true:	if,	whenever	a	sequence	xn



converges	to	a,	then	f(xn)	converges	to	f(a),	the	function	f(x)	is	continuous	at	 .

Having	defined	convergence,	we	can	now	define	what	it	means	for	a	set	to	be	closed.	If	C	is	a	set
in	a	metric	space	M,	then	it	is	closed	if	whenever	a	sequence	of	points	in	C	converges	then	the
limit	is	also	in	C.	Closed	sets	might	be	thought	of	as	those	sets	that	contain	all	their	boundary
points.	An	alternative	definition	of	C	being	a	closed	set	in	M	is	that	the	complement	of	C,	that	is
all	the	points	in	M	that	aren’t	in	C,	is	an	open	set.

So,	an	open	set	is	one	which	contains	none	of	its	boundary	points,	and	a	closed	set	is	one	which
contains	all	its	boundary	points.	Clearly	most	sets	fall	into	neither	of	these	categories	and	will
contain	some	but	not	all	of	their	boundary	points;	it’s	important	to	realize	that	being	open	and
being	closed	are	not	opposites	of	one	another.	In	Figure	32(b)	is	a	set	which	is	neither	open	nor
closed:	a	disc	with	its	upper	circumference	included	but	the	lower	half	omitted.	The	boundary
point	a	is	contained	within	the	set	so	the	set	is	not	open—or	equally	no	open	ball	B(a,	r)	around	a
is	contained	within	the	set.	And	the	boundary	point	b	isn’t	contained	within	the	set,	so	the	set	is
not	closed—or	equally	there	is	a	sequence	of	points	in	the	set	that	converges	to	b	despite	b	not
being	in	the	set.	And	some	sets	can	be	both	open	and	closed,	for	example	the	whole	plane	is	both
an	open	and	closed	set	of	the	plane—there	are	no	boundary	points,	so	all	and	none	of	them	are
simultaneously	in	the	set.

Subspaces
Any	set	S	in	a	metric	space	M	inherits	the	structure	of	a	metric	space,	as	two	points	of	S	are	also
points	of	M	and	we	may	assign	them	the	same	distance	as	before	when	they	were	considered	as
points	of	M.	For	example,	if	M	was	the	set	of	cities	in	the	United	States,	and	S	is	the	set	of
Californian	cities,	then	it’s	natural	to	think	of	Los	Angeles	and	San	Francisco	as	being	the	same
distance	apart	whether	they’re	being	considered	as	American	cities	or	Californian	cities.	The	set	S
naturally	becomes	a	metric	space,	in	its	own	right,	called	a	subspace	of	M.

Subtleties	arise	when	we	consider	the	open	sets	of	and	continuous	functions	on	a	subspace.	It	may
help	to	remember	the	Flatland	mindset	mentioned	in	Chapter	1;	we	need	to	imagine	life	as	an
inhabitant	of	the	subspace	S,	as	if	Californians	somehow	cannot	see	the	rest	of	the	USA.

For	example,	let	M	be	the	real	line	and	let	S	be	the	union	of	the	intervals	0	⩽	x	⩽	2	and	3	<	x	⩽	4
(Figure	33(a)).	What	are	the	open	balls	B(1,	1)	and	B(2,	1)	as	open	balls	in	S?	By	definition,	B(1,	1)
is	the	set	of	points	in	S	within	distance	1	of	the	point	1;	this	is	the	interval	0	<	x	<	2	which	agrees
with	what	B(1,	1)	is	in	the	real	line	M.	However	B(2,	1)	is	the	interval	1	<	x	⩽	2	as	an	open	ball	of
S;	this	is	the	set	of	points	in	S	that	are	within	distance	1	of	2.	This	is	different	from	the	situation
with	the	real	line,	and	is	yet	more	surprising	when	we	remember	open	balls	are	open	sets.	The
point	2	appears	incongruous	as	points	near	it	to	the	right	are	not	included	but,	from	the	Flatland
mindset	of	the	subspace	S,	those	points	are	essentially	invisible	as	they	are	not	in	S.	So,	the
interval	1	<	x	⩽	2	is	indeed	an	open	set	in	S.

33.	Relating	to	a	disconnected	subspace	(a)	Open	balls	in	a	union	of	two	intervals,	(b)	Graph	of
f(x)	on	S.

Also,	perhaps	surprisingly,	the	function

is	continuous	on	the	subspace	S	(Figure	33(b)).	Instinctively	you	notice	a	jump	between	the
outputs	of	–1	and	1	and	may	think	f	is	not	continuous,	but	there	is	no	point	in	S	where	a
discontinuity	can	be	identified.

Note	also	that	the	interval	0	⩽	x	⩽	2	is	open	as	a	set	in	S.	This	interval	is	the	open	ball	B(1,	2)	in	S



and	open	balls	are	open	sets;	those	points	in	S	which	are	within	distance	2	of	the	point	1	form	the
interval	0	⩽	x	⩽	2.	Similarly,	the	interval	3	<	x	⩽	4	is	open	as	a	set	in	S	as	it	is	the	open	ball	B(4,	1)
in	S.	As	the	complement	of	an	open	set	is	a	closed	set,	then	both	intervals	are	also	closed	sets	in
S.	This	again	may	seem	counter-intuitive	as	3	looks	to	be	a	boundary	point	that’s	missing	from	the
interval	3	<	x	⩽	4.	But	from	the	Flatland	mindset	of	S	the	point	3	is	effectively	invisible	and	so	not
missing	at	all.

Compactness	and	connectedness
In	Chapter	3	we	met	two	important	theorems	relating	to	continuous	functions	on	an	interval	a	⩽	x
⩽	b,	namely	the	boundedness	theorem	and	the	intermediate	value	theorem.	In	general	continuous
functions	need	not	be	bounded—for	example	x2	on	the	real	line	is	unbounded—nor	need	they
attain	intermediate	values—for	example	the	function	f(x)	in	Figure	33(b)	does	not	take	the	value	0
despite	attaining	–1	and	1.	There	must	be	some	property	or	properties	of	the	interval	a	⩽	x	⩽	b	of
inputs	that	means	continuous	functions	on	that	domain	are	bounded	or	attain	intermediate	values.

One	of	these	properties	can	be	captured	in	terms	of	the	behaviour	of	sequences	in	such	an
interval.	A	sequence	like	–1,	1,	–1,	1,	–1,	…	may	not	converge,	but	some	selections	of	the	sequence
do—for	example	the	odd	terms	(first,	third,	fifth . . .)	are	all	–1	and	so	converge	to	–1	and	the	even
terms	(second,	fourth,	sixth . . .)	similarly	converge	to	1.	But	some	sequences	like	1,	2,	3,	4,	5,	…
have	no	selection	that	converges;	any	selection	grows	towards	infinity.	The	Bolzano–Weierstrass
theorem	states	that	any	sequence	in	an	interval	a	⩽	x	⩽	b	has	a	selection	which	converges	in	that
interval.

A	metric	space	in	which	the	Bolzano–Weierstrass	theorem	holds,	so	that	all	sequences	in	the	space
have	a	selection	that	converges	to	a	limit	in	the	space,	is	called	compact.	The	theorem	shows	the
interval	a	⩽	x	⩽	b	is	compact,	the	sequence	1,	2,	3,	4,	5	…	in	the	real	line	shows	that	the	real	line

is	not	compact	as	no	selection	converges,	and	the	sequence	 	shows	the

interval	0	<	x	⩽	1	is	not	compact	as	it	has	no	selection	that	converges	in	that	interval;	this	last
sequence’s	limit	of	0	is	outside	the	interval	and	any	selection	from	this	sequence	also	converges	to
0.

For	the	real	line,	plane,	and	higher	dimensional	equivalents,	the	Heine–Borel	theorem	states
that	the	compact	sets	are	precisely	the	closed	and	bounded	sets.	We	have	already	defined	what	a
closed	set	is,	and	a	set	is	bounded	if	it	is	contained	in	some	ball	B(0,	R).	So	we	can	see	that	the
real	line	is	not	compact	as	it	is	not	bounded	and	the	interval	0	<	x	⩽	1	is	not	compact	as	it	is	not
closed,	missing	the	boundary	point	of	0.

Compactness	was	first	introduced	by	Fréchet	in	1906,	and	the	compactness	of	a	⩽	x	⩽	b	is	the
reason	that	the	boundedness	theorem	holds.	More	generally	it	is	true	that	real-output	continuous
functions	on	a	compact	domain	are	bounded	and	attain	their	bounds.	It	is	also	true	that
compactness	is	a	topological	invariant,	so	that	two	homeomorphic	metric	spaces	are	either	both
compact	or	neither	is	compact.	Compactness	is	a	much	more	important	notion	in	topology	than
these	few	examples	can	make	clear,	with	many	theorems	of	topology	concerning	compact	spaces.

However,	the	intermediate	value	theorem	on	the	interval	a	⩽	x	⩽	b	is	not	a	consequence	of
compactness,	but	rather	of	connectedness,	a	notion	first	introduced	by	Hausdorff	in	1914.
Intuitively,	connectedness	is	a	simple	idea:	being	connected	means	being	‘in	one	piece’,	but	how
can	we	capture	this	definition?	Surely	the	real	line	is	connected	and	the	set	of	whole	numbers
disconnected,	as	ought	to	be	the	earlier	space	S	which	is	the	union	of	the	intervals	0	⩽	x	⩽	2	and	3
<	x	⩽	4.

Intuition	tells	us	that	S	is	disconnected	and,	more,	that	S	is	made	up	of	just	two	pieces,	the	two
intervals.	We	noted	earlier	that	the	interval	0	⩽	x	⩽	2	is	both	open	and	closed	as	a	set	in	S,	as	is
the	second	interval.	In	general,	for	a	metric	space	M,	the	whole	set	M	and	the	empty	set—the	set
with	no	points	of	M—are	both	open	and	closed	sets	in	M.	A	space	M	is	defined	to	be	connected	if
these	are	the	only	open	and	closed	sets	in	M.	Or	equally	a	space	is	connected	if	it	cannot	be	split
as	the	union	of	two	non-empty,	open	sets	with	no	elements	in	common.

The	first	interval	0	⩽	x	⩽	2	and	second	3	<	x	⩽	4	which	make	up	the	set	S	are	called	the
connected	components	of	S;	these	are	the	largest	sets	contained	in	S	that	are	themselves
connected.	For	the	set	of	whole	numbers,	the	connected	components	are	the	sets	of	individual
numbers	such	as	{1}	or	{3}.	For	a	space	to	have	just	one	connected	component	is	just	another



way	to	say	that	a	space	is	connected.

The	intermediate	value	theorem	holds	on	a	connected	space:	let	M	be	a	connected	metric	space,	f
be	a	real-valued	continuous	function	on	M	and	a,b	be	points	in	M	such	that	f(a)	<	0	<	f(b).	Then
there	is	a	point	c	in	M	such	that	 .

This	definition	of	connectedness	may	seem	rather	abstract,	and	there	is	a	more	concrete	version
of	connectedness,	path-connectedness,	which	is	easier	to	appreciate.	Given	points	a	and	b	in	a
metric	space	M,	then	a	path	between	a	and	b	is	a	continuous	function	p	from	the	interval	0	⩽	x	⩽
1	to	M	such	that	 	and	 	(Figures	34(a),	34(b)).	You	might	consider	p	as	being	a
journey	from	the	point	a	as	a	starting	point	when	 	to	the	point	b	as	finishing	point	when	

.	The	points	p(x)	where	0	<	x	<	1	are	the	points	passed	through	getting	from	a	to	b.

34.	Relating	to	path-connectedness	(a)	A	path-connected	set,	(b)	A	convex	set,	(c)	Topologist’s
sine	curve.

Path-connected	metric	spaces	are	connected,	though	there	are	some	weird	spaces	that	are
connected	without	being	path-connected	(Figure	34(c)).	For	many	regions,	paths	between	points
can	be	straightforwardly	defined	and	a	space	quickly	shown	to	be	path-connected	and	so
connected.	For	example,	in	an	open	disc,	the	plane,	a	half-plane,	any	two	points	are	connected	by
a	straight	line.	These	are	all	examples	of	convex	sets,	which	means	that	given	any	two	points	in
the	set	then	the	line	segment	between	them	is	also	contained	in	the	set	(Figure	34(b))	which	is	not
true	of	the	Pacman-like	shape	(Figure	34(a)).

The	topologist’s	sine	curve	in	Figure	34(c)	is	an	example	of	a	space	which	is	connected	but	not
path-connected.	The	space	is	the	union	of	the	y-axis	and	the	curve	 	for	x	>	0.
Loosely	put,	the	space	is	connected	because	the	sine	curve	gets	arbitrarily	close	to	the	y-axis	but
it	is	not	path-connected	as	the	function	sin(1/x)	has	no	limit	as	x	becomes	small.	Any	two	points	on
the	sine	curve	can	be	connected	by	a	path,	as	can	any	two	points	on	the	y-axis,	but	a	point	on	the
y-axis	and	a	point	on	the	sine	curve	cannot	be	connected	by	a	path	in	the	space.

Again,	connectedness	is	a	topological	invariant—if	two	metric	spaces	are	homeomorphic	and	one
is	connected	then	so	is	the	other.	Similarly,	path-connectedness	is	a	topological	invariant.

Topological	invariants
In	Chapter	1	we	separated	out	which	letters	of	the	alphabet	were	topologically	the	same—
homeomorphic—or	not.	For	two	equivalent	letters,	we	described	a	way	of	deforming	each	into	the
other;	for	topologically	different	ones,	we	needed	to	find	a	feature—a	topological	invariant,	like
the	T-junction	in	the	E—that	would	remain	a	feature	of	the	letter,	even	when	deformed.
Compactness	and	connectedness	are	topological	invariants	and	so	can	be	used	to	differentiate
between	spaces.

In	Table	5	are	eight	spaces,	none	of	which	is	homeomorphic	to	another.	Some	are	compact—closed
and	bounded—others	not,	so	compactness	can	be	used	somewhat	to	separate	them.	Using	the
Heine–Borel	theorem,	we	see	the	top	row	are	compact,	each	being	closed	and	bounded,	and	the
bottom	row	are	not.	So	none	of	the	top	row	is	homeomorphic	to	one	from	the	bottom	row,	but
compactness	implies	nothing	about	whether	spaces	on	the	same	row	are	topologically	different.	(A
closed	disc	means	a	circular	disc	including	its	circumference.	A	closed	half-plane	means	all	the
points	on	and	to	one	side	of	a	line	in	the	plane;	so	the	bounding	line	is	included	in	the	closed	half-
plane.)



Table	5. 	Eight	spaces	which	are	not	homeomorphic

All	the	spaces	are	connected,	but	with	a	little	imagination	we	can	still	make	use	of	connectedness
to	discern	topological	differences.	A	point	of	a	connected	space	which,	when	removed,
disconnects	the	space	is	called	a	cut	point.	We	also	noted	in	Chapter	1	that	the	T-junction	in	an	E
is	the	special	cut	point	which,	if	removed,	breaks	E	into	three	connected	components;	removing	a
different	point	leaves	just	two	components	remaining.

Looking	at	the	top	row	of	Table	5,	neither	the	circle	nor	the	closed	disc	has	any	cut	points,	but	the
figure	8	and	interval	do	have;	this	means	the	former	two	are	not	homeomorphic	to	the	latter	two.
However,	we	can	disconnect	the	circle	by	removing	two	points	and	such	is	not	true	of	the	closed
disc.	Finally,	the	middle	point	of	the	figure	8	is	the	only	cut	point	whilst	any	point	of	the	interval,
except	the	ends,	is	a	cut	point.

In	the	bottom	row,	the	line	and	interval	have	cut	points,	but	not	the	half-plane	nor	plane.	But	1	is
not	a	cut	point	of	the	interval	whilst	every	point	of	the	line	is	a	cut	point.	All	that	remains	to	do	is
show	the	closed	half-plane	and	plane	aren’t	homeomorphic.

For	this	we	need	a	further	topological	invariant,	discussed	in	more	detail	in	Chapter	5.	The
boundary	points	of	a	closed	half-plane	seem	different	from	other	points.	Neither	the	plane	nor
half-plane	has	any	cut	points,	but	removing	a	boundary	point	from	the	half-plane	doesn’t	make	a
hole,	the	way	removing	a	point	not	on	the	boundary	does.	Informally	put,	a	space	with	no	holes	is
called	simply	connected	and	this	is	a	topological	invariant.	As	the	removal	of	a	point	of	the	half-
plane	can	leave	a	simply	connected	remainder	(without	holes),	and	as	this	is	not	true	of	the	plane,
then	the	closed	half-plane	and	plane	are	not	homeomorphic.

Taking	the	methods	and	theorems	of	continuity	for	single	input,	single	output	functions	and
applying	them	to	the	more	general	settings	of	metric	and	topological	spaces	proves	to	be	a	very
powerful	approach.	Consequently,	properties	such	as	compactness	and	connectedness	are	used
widely	in	mathematics	and	a	classical	theorem	guaranteeing	a	real	number	solution	to	an
equation	might	in	a	modern	setting	show	that	there	is	a	continuous	function	which	solves	a
differential	equation.	Seemingly	these	are	very	different	mathematical	problems,	but	this	abstract
mode	of	thinking	helps	mathematical	ideas	be	applied	in	their	fullest	generality.



Chapter	5
Flavours	of	topology

From	the	mid-19th	century,	topological	understanding	progressed	on	various	fronts.	The
geometric	topology	of	Chapter	2	concerned	surfaces	and	grew	out	of	the	work	of	Euler,	Möbius,
Riemann,	and	others.	The	general	topology	of	Chapters	3	and	4	was	more	analytical	and
foundational	in	nature;	Hausdorff	was	its	most	significant	progenitor	and	its	growth	mirrored
other	fundamental	work	being	done	in	set	theory.	There	are	yet	more	flavours	of	topology—a
topologist	might	have	texts	on	their	bookshelves	entitled	algebraic	topology,	differential	topology,
symplectic	topology,	and	other	books	on	the	subject	with	less	explicitly	topological	titles.

In	Chapter	2	we	met	the	Euler	number	and	saw	that	it,	together	with	knowing	whether	a	surface
is	one-	or	two-sided,	identifies	the	shape	of	a	closed	surface.	Further,	the	Euler	number	imposes
global	constraints	about	what	is	possible	on	a	closed	surface	as	we’ll	see	in	the	next	two	sections.

Differential	topology
The	continuous	functions	form	an	important	class	of	functions,	but	we	also	saw	in	Chapter	3	that
continuous	functions	can	still	be	quite	nasty;	for	example,	the	blancmange	function	does	not	have
a	defined	gradient	at	any	point.	The	smooth	functions	also	form	an	important	class.	A	function
might	be	continuous	but	still	fail	to	be	smooth	by	changing	in	a	jerky	fashion;	smooth	functions	by
contrast	have	a	defined	gradient	everywhere.	For	example,	the	speed	function	s(t)	in	Figure	22(b)
is	continuous	but	doesn’t	have	a	defined	gradient	at	the	times	t1,	…	t6.	Before	and	after	those
times,	the	gradient	is	clear	but	there	is	no	defined	gradient	of	s(t)	when	the	car	accelerates	or
brakes	suddenly.	The	study	of	functions	that	change	smoothly	on	surfaces	lies	within	the	field	of
differential	topology	and	we	will	see	that	the	Euler	number	of	a	closed	surface	impacts	on	what
properties	smooth	functions	on	a	closed	surface	can	(or	must)	have.

An	important	first	result	about	smooth	functions	is	that	the	gradient	of	the	function	is	zero	at	any
maximum	or	minimum.	Note,	in	Figure	24(a),	how	the	gradient	of	sinx	is	zero	at	its	extreme
values	whereas,	in	Figure	27(a),	the	(continuous	but	not	smooth)	function	f1(x)	has	no	defined
gradient	at	its	maxima.	This	result	is	known	as	Fermat’s	theorem	and	these	maxima	and	minima
are	known	as	critical	values	and	the	corresponding	inputs	as	critical	points.

But	a	function	of	two	inputs	can	have	a	greater	variety	of	critical	points	than	a	function	with	just
one	input.	When	we	have	two	inputs	and	one	output,	the	notion	of	gradient	is	a	little	less	clear.
Sketched	in	Figure	35	are	three	surfaces	 	exhibiting	different	types	of	critical	point.



35.	Examples	of	a	minimum,	maximum,	and	saddle	point	(a)	 ,	(b)	

,	(c)	 ,

In	Figure	35(a)	we	have	a	minimum	at	the	bottom	of	a	bowl-like	graph,	above	the	point	 ,	
.	In	whatever	direction	we	move	from	the	bowl’s	bottom,	we	move	upwards.	Likewise,	in

Figure	35(b),	we	have	a	hill-like	graph	with	a	maximum	at	the	top	and	however	we	move	away
from	that	maximum	we	move	downwards.	The	point	x	=	0,	y	=	0	in	Figure	35(c)	is	neither	a
maximum	nor	a	minimum.	The	function	is	zero	at	that	point	and	if	we	move	along	the	x-axis	we
get	to	a	point	where	 	so	that	the	function	has	increased;	but	if	we	were	to
move	along	the	y-axis	we	get	to	a	point	where	 	so	that	the	function	has
decreased.	This	critical	point	is	an	example	of	a	saddle	point	and	hopefully	the	name	is	not
surprising	given	the	shape	of	the	graph.	As	with	a	saddle	on	a	horse’s	back,	the	arc	of	the	horse’s
back	has	a	lowest	point	where	the	rider	sits,	but	the	rider	straddles	the	horse	in	a	manner	where
the	saddle	is	at	the	highest	point.	There	are	yet	more	complicated	examples	of	critical	values	with
two	inputs;	the	function	 ,	for	example,	has	a	graph	with	a	saddle-like
critical	point	that	would	suit	a	rider	with	two	legs	and	a	tail—so	this	is	called	a	monkey	saddle—
but	in	what	follows	we	will	be	interested	in	functions	that	only	have	maxima,	minima,	and	saddle
points	as	critical	points.

Consider	now	the	height	function	z	for	the	torus	drawn	in	Figure	36(a).	The	height	function	has	a
maximum	value	at	the	top	of	the	torus	A,	and	a	minimum	value	achieved	at	the	bottom	of	the	torus
D.	In	fact,	as	the	torus	is	compact,	the	boundedness	theorem	guarantees	that	any	continuous
function	on	it	must	have	at	least	one	maximum	and	at	least	one	minimum.



•
•
•

36.	Critical	points	of	functions	on	a	torus	and	sphere	(a)	Height	function	on	a	torus,	(b)	z2	–	y2
on	the	unit	sphere.

There	are	two	further	critical	points:	C,	at	the	bottom	of	the	hole	and	B,	at	the	hole’s	top.	If	we
move	through	C,	passing	through	the	hole,	then	our	height	is	at	its	greatest	as	we	pass	through	C;
but	if	we	slide	down	one	side	of	the	hole	and	up	the	other	side,	then	the	lowest	point	of	our
journey	is	at	C.	This	critical	point	C	is	a	saddle	point	and	similar	paths	can	be	made	through	B
which	include	it	as	the	highest	or	lowest	point	on	the	journey,	so	B	is	also	a	saddle	point.

In	Figure	36(b),	we	consider	the	function	 	on	the	sphere	with	equation	
.	With	a	little	work	we	can	show	that	this	function’s	critical	points	are

maxima	at	(0,	0,	1)	and	(0,	0,	–1),	the	sphere’s	north	and	south	poles;
minima	at	(0,	1,	0)	and	(0,	–1,	0),	two	points	lying	on	the	sphere’s	equator;
saddle	points	at	(1,	0,	0)	and	(–1,	0,	0),	two	more	points	lying	on	the	sphere’s	equator.

At	the	north	pole	(0,	0,	1),	z	is	as	large	as	it	can	be	on	the	sphere,	so	any	move	away	means	that	z2

–	y2	decreases	and	(0,	0,	1)	is	therefore	a	maximum	of	f.	The	same	argument	applies	at	the	south
pole.	Similarly,	at	(0,	1,	0),	y	is	as	large	as	it	can	be,	so	any	move	away	means	that	z2	–	y2
increases	and	so	(0,	1,	0)	is	a	minimum,	as	is	(0,	–1,	0).	Finally,	at	(1,	0,	0),	x	is	as	large	as	it	can
be.	As	we	move	from	(1,	0,	0)	then	x	will	decrease	and	either	y	or	z	or	both	might	increase,
meaning	that	f	may	decrease	or	increase.	This	means	that	(1,	0,	0),	and	likewise	(–1,	0,	0)	are
saddle	points	of	f.

At	this	point,	any	relationship	with	topology	probably	seems	unclear.	The	height	function	on	the
torus	had	one	maximum,	one	minimum,	and	two	saddle	points;	z2	–	y2	on	the	unit	sphere	had	two
maxima,	two	minima,	and	two	saddle	points.	However,	if	we	continued	considering	smooth
functions	on	the	torus,	in	each	case	we	would	find	that

(as	with	the	height	function	where	 )	and	for	any	smooth	function	on	the	sphere
we’d	find	that

(as	with	z2	–	y2	where	 ).	That	itself	is	perhaps	surprising	enough,	but	when	we
remember	that	0	and	2	are	the	Euler	numbers	of	the	torus	and	sphere	then	we	might	suspect	a
deeper	relation.	Generally,	then,	it	is	true	for	any	smooth	function	on	a	closed	surface	that

In	this	way	the	Euler	number	is	a	global	constraint	as	to	what	features	smooth	functions	may	have
on	a	closed	surface.	We	might	tweak	our	function	near	any	point	to	create	a	maximum,	a
minimum,	or	a	saddle	point,	but	there	will	necessarily	be	consequences	for	the	function
elsewhere.	The	Euler	number	limits	overall	possibilities	in	the	unavoidable	way	of	if-you-push-



down-here-it-pops-up-over-there	DIY	problems.	As	an	example,	we	can	deduce	that	any	smooth
function	on	a	torus	must	have	at	least	two	saddle	points:	a	smooth	function	on	a	torus	must	have
at	least	one	maximum	and	at	least	one	minimum	because	the	torus	is	compact,	and	so

In	fact,	we	can	see	that	the	sphere	(being	the	only	closed	surface	with	an	Euler	number	of	2	or
more)	is	the	only	closed	surface	on	which	a	smooth	function	may	have	no	saddle	points.	An
example	of	such	a	function	is	the	height	function	on	a	sphere.

The	Scottish	physicist	James	Clerk	Maxwell	was	one	of	the	first	to	appreciate	such	a	relation
amongst	critical	points	in	an	1870	paper	On	Hills	and	Dales,	but	he	was	working	solely	with
functions	on	the	plane—and	so	arrived	at	the	number	1	(the	Euler	number	of	the	plane	or	a
punctured	sphere).	Poincaré	would	generalize	the	result	to	closed	surfaces,	using	techniques	that
would	now	be	considered	Morse	theory,	after	Marston	Morse	who,	from	1925	onwards,	would
prove	a	series	of	deep	results	connecting	the	topology	of	spaces	and	the	analysis	of	functions	on
those	spaces.

The	hairy	ball	theorem
Informally	put,	the	hairy	ball	theorem	says	that	you	can’t	comb	a	hairy	ball	flat	without	creating
a	tuft	or	cow-lick	where	the	hair	refuses	to	lie	flat.	We	might	brush	and	sweep	the	hair	on	the
sphere	in	various	styles	but	something	about	the	sphere’s	underlying	shape	means	we	can’t	ever
get	the	hair	to	lie	flat	everywhere.	But	it’s	not	hard	to	imagine	how	the	hair	on	a	torus	could	all	be
swept	flat	in	the	same	direction	(Figure	37(b)).	As	before,	with	smooth	functions,	we’ll	see	that	it’s
the	sphere’s	topology	that	makes	this	impossible.

37.	Vector	fields	on	the	sphere	and	torus	(a)	A	hairy	ball	with	no	hair	at	poles,	(b)	A	hairy-
everywhere	torus.

The	hair	in	this	theorem	is	a	metaphor	for	a	tangent	vector	field	which	might	be	easiest	thought	of
as	a	fluid	flowing	on	a	surface;	the	hairy	ball	theorem	then	states	that	for	any	fluid	flow	on	a
sphere,	there	will	be	one	or	more	points	where	the	fluid	is	still	and	unmoving,	the	way	in	the	eye
of	a	storm	the	wind	is	calm	(Figure	37(a)).	Such	points,	where	the	fluid	is	still,	are	called
singularities	and	there	are	various	types	of	singularity	that	a	vector	field	can	have.	Three	vector
fields	in	the	plane	are	shown	in	Figure	38,	with	the	origin	(0,	0)	being	the	singular	point	for	each.



38.	Examples	calculating	indices	of	vector	fields	(a)	 ,	(b)	 ,
(c)	 .

The	velocity	of	the	flow	at	the	point	(x,	y)	is	given	by	a	formula	v(x,	y).	Figure	38(a)	has	a	source	at
(0,	0)	with	the	fluid	coming	out	of	the	origin;	Figures	38(b)	and	38(c)	are	more	complicated
examples	with	fluid	flowing	in	and	out	of	the	origin	along	different	lines.

We	can	associate	with	a	singularity	a	whole	number	called	its	index.	Around	each	of	the
singularities	in	Figure	38	is	drawn	a	circle,	redrawn	to	the	right	of	each	figure	with	the	vector
field	showing	on	the	circle	as	arrows.	If	we	walk	anti-clockwise	around	the	circle	then	the	arrows
initially	point	in	a	certain	direction,	change	as	we	move	around	the	circle,	but	ultimately	must
return	to	their	initial	direction	as	we	complete	the	circle.	The	index	of	the	singularity	is	the
number	of	times	that	the	arrows	themselves	have	gone	around	anti-clockwise.

So,	in	Figure	38(a)	if	we	start	at	12	o’clock	the	arrow	points	north	and	as	we	move	anti-clockwise
the	arrows	move	around	to	west	at	9	o’clock,	south	at	6	o’clock,	east	at	3	o’clock,	and	ultimately
back	to	north.	The	arrows	themselves	have	gone	once	anti-clockwise	around	the	compass	(north–



west–south–east–north)	and	so	the	index	is	1	in	this	case.	In	Figure	38(b)	at	12	o’clock	the	arrows
point	east;	as	we	move	clockwise	around	the	circle	they	go	from	east	to	south	(at	9	o’clock)	to
west	to	north	to	east—this	journey	of	east–south–west–north–east	is	a	single	journey	once	around
the	compass	clockwise	and	so	the	index	in	this	case	is	–1.	Finally	Figure	38(c):	at	12	o’clock	the
arrow	is	pointing	west,	by	10.30	it’s	pointing	south,	by	9	o’clock	it’s	pointing	east,	by	6	o’clock	it’s
already	back	to	west,	and	by	12	o’clock	the	arrows	have	gone	around	one	further	time	anti-
clockwise	before	returning	to	west.	The	arrows	have	been	around	twice	in	an	anti-clockwise
fashion	and	the	index	in	this	case	is	2.

Poincaré’s	theorem	is	a	generalization	of	the	hairy	ball	theorem	and	states	that

The	indices	of	the	singularities	of	a	vector	field	on	a	closed	surface	add	up	to	its	Euler	number.

(Indices	is	the	plural	of	index.)	If	we	look	at	the	flow	in	Figure	37(a)	then	we	see	that	there	is	a
source	at	the	north	pole	which	has	index	1,	and	a	sink	at	the	south	pole	which	a	check	shows	also
has	index	1	and	then	 	adds	up	to	the	Euler	number	of	the	sphere.	The	hairy-everywhere
torus	in	Figure	37(b)	has	no	singularities,	so	the	sum	of	the	indices	is	0,	the	Euler	number	of	the
torus.

The	hairy	ball	theorem	is	then	a	consequence	of	Poincaré’s	theorem—if	there	were	a	flow	on	the
sphere	with	no	singularities	at	all,	then	the	Euler	number	of	the	sphere	would	be	0	and	we	know	it
is	2.	In	fact,	we	can	see	that	the	only	closed	surfaces	on	which	there	may	be	flows	without
singularities	are	the	torus	and	Klein	bottle,	those	being	the	only	ones	with	an	Euler	number	of	0.
Again,	we	see	the	Euler	number	is	a	global	constraint	as	to	what	flows	are	possible	on	a	surface.
We	might	at	any	point	stir	a	fluid	in	such	a	way	as	to	make	a	singularity	of	our	choosing,	but	there
will	necessarily	be	consequences	elsewhere	on	the	surface,	so	that	the	total	sum	of	the	indices
still	equals	the	Euler	number.	Poincaré	proved	his	theorem	in	1881,	which	was	later	generalized	in
1926	by	Heinz	Hopf	to	higher-dimensional	equivalents	of	surfaces	(manifolds).	Consequently,	the
theorem	is	often	called	the	Poincaré–Hopf	theorem.

In	Chapter	2,	we	classified	surfaces	up	to	continuous	equivalence	(homeomorphism)—we	might
instead	have	considered	smooth	surfaces	up	to	smooth	equivalence	(the	technical	word	being
diffeomorphism).	At	first	glance	these	are	seemingly	different	classification	problems—going	back
to	the	alphabet	I	hope	you	can	see	that	C	and	I	can	be	smoothly	deformed	into	one	another,	but
neither	into	a	V	because	of	its	pointy	base.	Continuous	deformations	can	be	jerky	but	smooth	ones
need	to	be	fluid.	However	it	turns	out	in	two	dimensions	that	the	classification	problem	has	the
same	solution:	if	we	consider	a	smooth	closed	surface	it	must	be	diffeomorphic	to	(a	smooth
version	of)	precisely	one	of	 	or	 .

The	classification	theory	for	three-dimensional	manifolds	is	yet	more	complicated	and	its
resolution	brings	us	into	the	21st	century,	but	it	remains	the	case	that	the	continuous	and	smooth
versions	of	the	classification	problem	lead	to	the	same	solution.	But	the	four-dimensional	problem
provided	further	colour	in	the	1980s,	when	it	was	found	that	it	is	impossible	to	‘make	smooth’
some	topological	four-dimensional	manifolds	and	some	others	are	‘smoothable’	in	essentially
different	ways.

Structures
Shortly	we	will	move	on	to	a	discussion	of	algebraic	topology	which	associates	with	a	surface	(and
other	spaces)	algebraic	structures	that	capture	something	of	the	essence	of	the	surface’s	topology.
In	Chapter	4	we	met	compactness	and	connectedness,	and	these	are	important	topological
invariants	but,	ultimately,	they	are	also	binary.	A	space	can	be	compact	or	not—there	are	no
shades	of	grey	here.	It	would	be	useful	to	have	an	invariant	that	retained	something	subtler	of	the
topological	character	of	a	space.	Before	that	we	will	need	to	consider	the	algebraic	structures
such	topological	invariants	might	take	the	form	of.

Much	of	mathematics	is	concerned	with	the	study	of	structures.	The	objects	of	mathematics—
whether	numbers,	sets,	functions—are	often	in	some	relation	to	one	another	or	may	be	combined
in	certain	ways.	Much	of	the	technical	language	of	mathematics	describes	the	details	governing
such	relationships	and	combinations.	A	set	(loosely	speaking)	is	a	collection	of	objects	without	any
further	structure	and	we	needed,	for	example,	a	metric	to	introduce	a	notion	of	distance	to	a	set
to	make	it	a	metric	space.	The	important	sets	of	mathematics	typically	come	naturally	with	some
further	structure.	For	example,	with	the	natural	numbers

{0,	1,	2,	3,	4 . . .},



1.
2.
3.

•

•

•

•

we	might	identify	0	as	the	smallest	of	these	numbers,	but	then	we’re	already	recognizing	the	set’s
implicit	order,	and	we	might	recognize	the	numbers	can	be	added	together	but	not	subtracted,	at
least	not	if	we	want	the	result	to	remain	in	the	set	(e.g.	 	is	in	the	set	but	 	is
not).

One	of	the	most	common	algebraic	structures	within	mathematics	is	a	group.	A	group	is	a	set	G
together	with	an	operation	*	which,	for	two	inputs	x	and	y	from	G,	combines	them	into	an	output
which	we	denote	as	x	*	y	and	which	is	importantly	also	in	G.	The	set	G	might	be	a	set	of	numbers,
functions,	geometric	transformations	or	even	a	set	of	sets,	and	the	operation	*	might	be	addition,
multiplication,	composition	of	functions	or	some	set	operation.	But,	to	be	a	group,	further	rules
must	also	apply:	for	G	and	*	to	form	a	group	we	need:

	for	all	x,	y,	z	in	G;
there	is	an	element	e	in	G	such	that	 	for	all	x	in	G;
for	any	x	in	G	there	is	an	element	x–1	in	G	such	that

The	element	e	in	rule	2	is	called	the	identity	and	the	element	x–1	which	combines	with	x	to	give	e
is	called	the	inverse	of	x.	Rule	1	is	known	as	associativity	and	the	purpose	of	this	rule	is	that	any
product	like	a	*	b	*	c	*	d	needs	no	further	clarification—we’ll	always	arrive	at	the	same	answer	no
matter	in	what	order	we	carry	out	the	three	multiplications	involved	in	this	product.

The	natural	numbers	and	addition	meet	rules	1	and	2	(with	 )	as

for	any	natural	numbers	x,	y,	and	z,	but	fail	rule	3,	as	there	is	no	natural	number	x–1	we	can	add
to	 	to	get	a	sum	of	 .	We	would	like	x–1	to	be	–2	but	this	is	not	a	natural	number,	being
negative.	However,	there	are	many	important	sets	and	operations	that	do	meet	the	three	rules—
the	subject	group	theory	is	a	significant	part	of	modern	algebra—but	as	our	focus	here	is	topology,
we	only	mention	a	handful:

The	set	of	whole	numbers,	denoted	ℤ,	with	operation	+.	In	this	case	 	and	 .

The	set	of	non-zero	real	numbers,	denoted	ℝ*,	with	operation	≈.	In	this	case	 	and	
.

The	set	of	rotations	in	the	plane	about	the	origin,	with	the	operation	°	denoting	composition.	So
x	°	y	means	doing	rotation	y	and	then	doing	rotation	x.	Here	e	is	rotation	through	zero	degrees
and	if	x	is	a	rotation	through	some	angle	anti-clockwise,	then	its	inverse	x–1	is	the	rotation
through	the	same	angle	clockwise.
The	set	ℤ2	of	pairs	(x,	y)	of	whole	numbers	with	the	operation	+	defined	by

If	we	could	assign	groups	as	topological	invariants	to	spaces,	this	would	be	useful	as	there	is
considerable	variety	amongst	groups	compared	with	just	being	able	to	say	that	a	metric	space	is
compact,	or	not,	connected,	or	not.	Further,	the	connection,	between	the	groups	we	will	introduce
and	the	spaces	they	help	describe,	has	a	naturality	to	it	as	we’ll	see	continuous	functions	between
two	spaces	yield	algebraically	nice	functions	between	their	associated	groups.

Algebraic	topology
Our	aim	now	is	to	associate	with	a	space	a	group	that	captures	something	of	that	space’s
topological	essence.	The	great	French	mathematician	and	physicist	Henri	Poincaré	had	the	idea	to
consider	loops,	paths	in	the	space	that	begin	at	a	point	and	return	to	the	same	point.	We	might



first	try	appreciating	Poincaré’s	ideas	on	a	torus.	Our	first	problem	is	that	there	are	just	too	many
loops;	two	different	loops,	such	as	l1	and	l3	in	Figure	39(a),	both	go	once	around	the	hole	in	the
torus	in	the	same	direction,	but	both	capture	much	the	same	about	the	shape	of	the	torus.
Secondly,	Poincaré	was	seeking	to	define	a	group	and	so	he	needed	to	find	ways	to	combine	loops
with	some	operation.

39.	Loops	on	a	torus	(a)	Loops	on	a	torus,	(b)	As	on	a	glued	square,	(c)	Loops	from	a	base
point.

Addressing	this	second	point,	we	could	combine	loops	by	going	around	one	loop	after	going
around	the	other;	at	least	we	could	if	the	second	loop	began	where	the	first	loop	ended.	So,	first,
we	choose	a	fixed	point	of	the	torus,	a	base	point,	and	consider	only	loops	that	begin	and	end	at
the	base	point;	then,	given	two	such	loops	l1	and	l2,	their	product	l2	*	l1	is,	reading	from	the	right,
the	path	that	starts	at	the	base	point,	follows	l1	and	then	l2,	still	ultimately	returning	to	the	base
point.

Would	the	set	of	loops	based	at	a	point,	together	with	this	operation	*,	make	a	group?	What,	for
example,	would	the	identity	loop	e	be,	as	described	in	rule	2?	This	loop	e	would	have	to	be	such
that	 	for	all	loops	l.	This	means	that	the	path	l	followed	by	e	would	have	to	be	the	same	as
just	the	path	l	and	so	e	would	need	to	be	the	path	that	goes	nowhere—e	starts	at	the	base	point
and	immediately	finishes	at	the	base	point.

And	what	would	the	inverse	l–1	of	a	loop	l	be,	as	described	in	rule	3?	The	inverse	l–1	of	l	must
satisfy	 ,	knowing	that	e	is	the	‘don’t	move’	path	at	the	base	point.	This	is	problematic;
even	if	we	defined	l–1	to	be	the	return	journey	of	l,	that	is	going	around	l	in	the	opposite	direction,
e	and	l–1*	l	would	not	be	equal.	To	travel	from	London	to	Paris	and	back	by	the	same	route	is	in	no
obvious	way	the	same	as	just	staying	put	in	London.

Poincaré	was	able	to	resolve	this	issue	with	the	same	idea	that	he	resolved	the	first	problem,	that
of	there	being	too	many	loops.	The	two	loops	l1	and	l3	in	Figure	39(a)	seem	to	capture	the	same
aspect	of	the	topology	of	a	torus,	but	they’re	different	loops.	However,	either	of	them	could	be
continuously	deformed	into	the	other.	The	technical	term	for	this	is	that	the	two	loops	are
homotopic.	Any	loop	in	the	torus	that	is	homotopic	to	l1	in	Figure	39(a)	is	a	loop	that	goes	once
around	the	torus’s	hole	in	the	same	direction.	But	l2,	a	loop	which	goes	once	through	the	hole,	is
not	homotopic	to	either	l1	or	l3.	In	Figure	39(b)	these	loops	are	again	depicted	on	a	torus
represented	as	a	glued	square.

Why	would	it	now	be	that	following	a	path	l,	and	returning	along	that	same	path,	is	homotopic	to
making	no	journey	at	all?	You	might	think	of	a	journey	that	did	99	per	cent	of	the	path	l	and
returned	from	there,	and	then	one	that	did	the	same	for	98	per	cent,	etc.	Hopefully	you	now	have
the	idea	that	you	can	gradually	do	less	and	less	of	that	return	trip	to	Paris	to	the	point	where	you
just	stay	in	London—a	kind	of	spectrum	of	increasingly	frustrating	weekend	breaks!

Poincaré	introduced	the	fundamental	group	of	a	space	in	1895	in	his	seminal	work	Analysis
Situs	(the	title	being	an	old,	now	obsolete,	name	for	topology).	The	elements	of	the	fundamental
group	are	loops	based	at	some	point	in	the	space,	but	with	the	understanding	that	two	loops	that
can	be	continuously	deformed	into	one	another	are	to	be	considered	the	same.	In	the	case	of	the
torus—or	indeed	of	any	path-connected	space—the	fundamental	group	doesn’t	depend	on	our
choice	of	base	point.

In	Figure	39(c)	a	base	point	b	is	shown,	and	two	loops	l1	and	l2,	similar	to	before	but	now	based	at
b.	A	loop	(based	at	b)	that	goes	once	around	the	hole	of	the	torus	is	homotopic	to	l1	and	these



loops	are	equal	in	the	fundamental	group.	A	loop	that	goes	once	through	the	hole	is	homotopic	to
l2.	In	fact	it	can	be	shown	that	any	loop	in	the	torus	(based	at	b)	is	homotopic	to	a	journey	around
l1	some	number	of	times	followed	by	the	journey	around	l2	a	certain	number	of	times.	What	is
being	claimed	here	is	that	knowing	how	many	times	a	loop	wraps	around	the	torus’s	hole	and	how
many	times	it	wraps	through	the	hole	determines	the	essence	(up	to	homotopy)	of	a	loop	on	the
torus.

There	is	a	subtle,	implicit	point	here	worth	noting.	The	order	in	which	the	loops	wrap	around	or
through	the	hole	does	not	matter	on	the	torus	(but	does	for	other	surfaces).	This	is	because	

.	This	is	easiest	seen	in	Figure	39(c).	l1	is	the	loop	running	along	the	base	(or	top)
of	the	square	and	l2	is	the	loop	running	along	the	left	(or	right)	side	of	the	square.	The	loop	l2	*	l1
is	then	the	loop	starting	in	the	bottom	left	corner	and	going	right	along	the	bottom	and	then	up
the	right	side,	and	l1	*	l2	is	the	loop	starting	in	the	bottom	left	corner	and	going	up	the	left	side
and	then	right	across	the	top.	We	can	see	that	l1	*	l2	and	l2	*	l1	are	homotopic—and	so	equal	in
the	fundamental	group—by	imagining	the	right-then-up	path	being	continuously	dragged	across
the	square	until	it	becomes	the	up-then-right	path.	The	square’s	diagonal,	as	in	Figure	39(c),	is	a
loop	equal	to	either	product.

Because	l1	*	l2	=	l2	*	l1,	a	loop	like	l2	*	l1	*	l1	*	l2	*	l2	*	l1	*	l1	in	the	fundamental	group	is	the	same
as	l1	*	l1	*	l1	*	l1	*	l2	*	l2	*	l2—the	order	that	the	loops	are	travelled	does	not	matter,	only	that	four
l1s	and	three	l2s	are	followed.	A	loop	on	the	torus	is	essentially	characterized	by	how	many	times
it	wraps	around	the	hole	of	the	torus	(as	l1	does)	and	through	the	hole	of	the	torus	(as	l2	does).
The	full	consequence	of	all	this	is	that	the	fundamental	group	of	a	torus	is	ℤ2,	the	group	of	pairs	of
whole	numbers,	with	(m,	n)	representing	those	loops	going	around	the	hole	m	times	and	through
the	hole	n	times.

It	may	not	now	be	that	surprising	to	find	that	the	fundamental	group	of	a	circle	is	ℤ,	the	group	of
whole	numbers	under	addition,	as	a	loop	in	the	circle	is	essentially	characterized	by	how	many
times	it	wraps	around	the	circle.	Let’s	remind	ourselves	of	just	what’s	being	claimed:	a	loop	that
goes	around	the	circle,	starting	and	finishing	at	the	same	point,	goes	around	the	circle	a	certain
number	of	times	(counted	in	an	anti-clockwise	sense).	Another,	different	loop	may	go	around	the
loop	the	same	number	of	times;	this	second	journey	might	have	digressions	here	and	there,	back-
and-forth,	but	because	the	two	journeys	overall	go	around	the	circle	the	same	number	of	times
then	one	journey	can	bit-by-bit	be	deformed	into	the	second	journey;	if	the	first	journey	gets
behind/ahead	of	the	second	journey	then	it	can	become	increasingly	hurried/delayed	to	rectify
that.	But	a	loop	that	goes	around	the	circle	twice	anti-clockwise	could	never	be	deformed	into	one
that	goes	once	clockwise;	these	two	journeys	are	essentially	different—that	is,	they’re	not
homotopic.	These	two	journeys	correspond	to	the	numbers	2	and	–1	in	the	circle’s	fundamental
group.	Any	deformation	of	a	loop	that	goes	twice	around	the	circle	will	always	be	another	loop
that	still	goes	twice	around	the	circle.

Finally,	to	say	that	the	fundamental	group	of	a	circle	is	the	group	of	whole	numbers	under
addition,	means	that	loops	around	the	circle	combine	in	the	same	way	integers	add.	In	the	group
ℤ	of	whole	numbers,	we	know	that	the	numbers	2	and	–1	add	to	give	1.	In	the	fundamental	group,
2	represents	any	loop	that	goes	twice	anti-clockwise	around	the	circle	and	–1	represents	any	loop
that	goes	once	clockwise	around	the	circle.	If	we	combine	such	loops	using	*	then	we	get	a	loop
that	goes	in	total	once	anti-clockwise	around	the	circle	and	such	a	loop	corresponds	to	1	in	the
group	of	whole	numbers.	So	not	only	do	the	whole	numbers	correspond	to	loops	around	the	circle,
but	how	whole	numbers	add	corresponds	to	how	loops	combine	using	*.

In	Chapter	1,	we	mentioned	that	the	letter	O	is	not	simply	connected,	meaning	O	‘has	a	hole	in	it’.
Unsurprisingly	neither	the	circle	nor	torus	are	simply	connected	either.	But	we	can	now	formally
say	what	it	is	for	a	space	to	be	simply	connected,	which	means	that	the	space	is	path-connected
with	fundamental	group	{e}.	This	means	that	every	loop	is	homotopic	to	the	constant	loop	e.	So
lines,	planes,	discs	are	simply	connected;	cylinders	and	Möbius	strips	aren’t	as	a	loop	going	once
around	either	is	not	homotopic	to	e.	In	general,	a	loop	going	around	a	hole	in	a	space—like	an
elastic	band	caught	around	a	stick—cannot	be	transformed	to	a	constant	loop.	The	elastic	band
analogy	is	a	useful	one:	the	plane	with	a	point	removed	is	not	simply	connected—an	elastic	band
can	be	hooked	around	the	missing	point—but	3D	space	minus	a	point	is	simply	connected	as	an
elastic	band	cannot	be	hooked	by	a	single	missing	point	in	3D.	But	3D	space	missing	a	line	isn’t
simply	connected	as	the	elastic	band	can	become	irremovably	hooked	on	the	line.

A	further	important	feature	of	fundamental	groups	is	how	a	continuous	function	between	two
spaces	leads	to	a	nice	algebraic	function	between	their	fundamental	groups.	Say	f	is	a	continuous



function	between	two	spaces	X	and	Y.	If	l	is	a	loop	in	a	space	X	based	at	a	point	b,	then	f(l)	is	a
loop	in	the	space	Y	based	at	the	point	f(b).	Take	a	moment	to	appreciate	this:	f	takes	points	of	X	to
points	of	Y	and	l	is	a	journey	through	such	points	of	X	beginning	and	ending	in	b.	So	f(l)	is	a
journey	of	points	in	Y	beginning	and	ending	at	f(b).

As	an	example,	consider	when	f	is	the	function	which	wraps	the	circle	twice	on	to	itself	as	shown
in	Figure	40(a).	A	point	making	angle	θ	with	the	horizontal	is	sent	to	a	point	making	angle	2θ	with
the	horizontal	axis—so	the	arc	from	a	to	p	would	map	to	the	arc	from	a	to	f(p),	and	the	upper
semicircle	from	a	to	b	would	map	to	the	whole	circle.	And	if	we	had	a	loop	l	in	the	circle	that	goes
once	(anti-clockwise)	around	the	circle	then	f (l)	goes	twice	around	the	circle;	if	l	goes	twice
around	the	circle	then	f (l)	goes	four	times	around	the	circle.	Loops	that	go	n	times	around	the
circle	are	what	n	represents	in	the	fundamental	group	of	the	circle,	and	these	loops	are	sent	to
loops	that	go	2n	times	around	the	circle,	which	are	what	2n	represents	in	the	fundamental	group.
The	function	f	wraps	the	circle	twice	onto	itself	and	naturally	gives	a	corresponding	function	f	for
loops,	with	a	loop	l	that	wraps	n	times	around	the	circle	being	sent	to	a	loop	f(l)	that	wraps	2n
times	around	the	circle.

40.	Functions	on	the	disc	(a)	f	wrapping	the	circle	twice	around,	(b)	A	function	f	from	D	to	D,
(c)	Defining	the	function	g.

Say	l1	and	l2	are	loops	that	wrap	around	the	circle	n1	and	n2	times,	so	that	l2	*	l1	is	a	loop	that
wraps	around	the	circle	 	times.	So	f(l1),	f(l2),	f(l2	*	l1)	are	loops	that	wrap	around	the
circle	2n1,	2n2,	and	 	times;	similarly	f(l2)*f(l1)	wraps	around	the	circle	
times.	As

then	both	f(l2	*	l1)	and	f(l2)*f(l1)	wrap	around	the	circle	an	equal	number	of	times,	meaning	they
are	homotopic—that	is

(H)

as	elements	of	the	fundamental	group.

More	generally	a	continuous	function	f	between	two	spaces	X	and	Y	naturally	gives	a
corresponding	function	f	from	the	fundamental	group	of	X	to	the	fundamental	group	of	Y,	as	a	loop
l	based	at	x	is	sent	to	a	loop	f (l)	based	at	f (x)	and	this	function	satisfies	(H)	in	general.	Any
function	between	groups	that	satisfies	(H)	is	called	a	homomorphism.	For	groups,
homomorphisms	are	the	natural	functions	to	study,	being	the	functions	that	respect	group
operations.

We	now	use	these	ideas	to	prove	Brouwer’s	fixed	point	theorem,	first	proved	by	L.	E.	J.
Brouwer	in	1910,	which	states:

Let	D	be	a	closed	disc	and	f	be	a	continuous	function	with	inputs	and	outputs	in	D.

Then	f	has	a	fixed	point:	there	is	some	x	in	D	such	that	 .

The	theorem	applies	to	a	closed	disc	D,	a	disc	including	its	circumference.	(It’s	not	hard	to
construct	a	function	from	an	open	disc	to	itself	with	no	fixed	points.)	There	are	many	continuous
functions	from	D	to	D.	Such	a	function	is	rotation	of	D	about	its	centre,	and	in	this	case	the	only
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fixed	point	is	the	centre.	In	Figure	40(b),	the	disc	has	been	shrunk	and	moved	somewhat	to	the
left.	Again,	the	theorem	states	that	there	is	a	fixed	point	(which	is	unique	again	in	this	case).	It’s
not	hard	to	visualize	lots	of	different	ways	that	D	might	be	transformed	into	D	and,	in	all	cases,
there	must	be	at	least	one	fixed	point.

The	theorem’s	proof	is	not	easy,	perhaps	involving	the	most	conceptual	ideas	in	this	text.	First	the
proof	is	by	contradiction	which	means	that	we	consider	the	possibility	of	there	being	a	function	f
with	no	fixed	points	and	argue	from	that	assumption	to	a	position	that	is	logically	impossible.	If	a
function	f	has	no	fixed	points,	then	 	for	all	x	in	D.	Because	of	this	we	can	define	the
function	g,	from	D	to	its	circumference	C	as	follows	(Figure	40(c)):	as	f(x)	and	x	are	different
points,	then	we	can	draw	a	line	starting	from	f(x)	and	going	through	x	which	eventually	meets	the
circumference	C	at	the	point	g(x).	This	way	any	point	x	in	the	disc	D	has	been	sent	to	a	point	g(x)
that	lies	on	its	circumference	C.	Note	that	if	x	is	itself	on	the	circumference	C,	then	 .

So,	there	are	now	several	functions	we	can	consider:

i,	inclusion,	which	has	inputs	in	C	and	outputs	in	D;
g	which	has	inputs	in	D	and	outputs	in	C;
the	composition	g	°	i,	which	has	inputs	in	C	and	outputs	in	C.

Here	inclusion	means	the	function	which	takes	a	point	of	C,	the	circumference,	as	an	input,	and
returns	the	same	point	as	the	output,	now	considered	as	a	point	of	the	disc	D.	The	composition	g	°
i	means	the	function	which	performs	inclusion	i	first	and	then	performs	g	second.	Earlier	we	noted
g	fixes	points	on	the	circumference	C	and	so,	importantly,	the	function	g	°	i	fixes	all	points	of	C.

We	arrive	at	our	contradiction	by	considering	the	corresponding	functions	on	the	fundamental
groups	of	C	and	D.	Recall	that	the	fundamental	group	of	C,	a	circle,	is	the	group	of	whole
numbers,	with	the	number	n	representing	those	loops	that	wrap	n	times	anti-clockwise	around	the
circle;	the	fundamental	group	of	the	disc	D,	which	is	simply	connected,	is	{e}.	The	corresponding
functions	for	the	fundamental	groups	satisfy	the	following:

i	has	inputs	in	the	whole	numbers	and	an	output	of	e,	whatever	the	input,	so	that	this	function	is
constant;
g	has	a	single	input	e	and	so	some	single	output	in	the	whole	numbers;
the	composition	g	°	i,	which	has	inputs	and	outputs	in	the	whole	numbers.

Remember	that	the	composition	g	°	i	fixes	all	points	of	C	and	so	any	loop	in	C	is	sent	to	the	same
loop	by	the	corresponding	function	g	°	i	on	loops.	So,	in	terms	of	the	fundamental	group	of	C,	the
function	g	°	i	sends	each	whole	number	n	to	itself.	Instead	we	can	consider	the	separate	effects	of
doing	the	corresponding	function	i	first	and	then	the	corresponding	function	g.	As	noted,	i	sends
all	the	whole	numbers	to	e,	which	g	subsequently	sends	to	g(e).	Note	that	this	number	g(e)	is	a
single	whole	number	not	depending	on	n.

Looked	at	one	way,	the	function	g	°	i	on	loops	sends	all	whole	numbers	n	to	themselves,	but
considering	the	functions’	effects	separately,	every	n	is	sent	to	g(e);	whatever	this	value	g(e)	is,	it
is	a	single	value	and	so	g	°	i	is	a	constant	function.	This	is	the	required	contradiction—the	function
g	°	i	cannot	both	send	each	n	to	n	and	also	send	each	n	to	a	single	value	g(e).	So	a	function	f,
without	fixed	points,	cannot	exist	or	else	we’d	be	able	to	define	the	function	g	and	arrive	at	a
contradiction.

The	ideas	of	this	proof	are	subtle,	but	the	crux	of	it,	and	what	makes	such	methods	powerful,	is
the	following:	fundamental	groups	(and	other	similar	algebraic	invariants)	are	able	to	capture
something	of	the	topological	essence	of	a	space;	continuous	functions	between	spaces	lead	to
algebraically	nice	functions	(homomorphisms,	that	have	the	earlier	property	H)	between	the
spaces’	fundamental	groups;	if	it	can	be	shown	no	such	homomorphism	exists,	then	no	such
continuous	function	existed.

There	are	further	algebraic	topological	invariants	capturing	the	essence	of	a	space	in	higher
dimensions.	The	plane	with	a	point	missing	is	not	simply	connected	as	a	loop	that	goes	around	the
missing	point	cannot	be	‘unhooked’.	3D	space	missing	a	point	is	simply	connected	though—an
elastic	band	(a	metaphorical	circle)	in	3D	cannot	be	hooked	by	a	single	missing	point,	but	we	can
imagine	a	balloon	(a	metaphorical	sphere)	being	hooked	onto	the	missing	point.	So	there	is
something	topological	occurring	in	punctured	3D	space,	but	in	a	higher	dimension	than	the



fundamental	group,	with	its	loops,	can	measure.

Some	such	information	can	be	captured	by	Betti	numbers,	named	by	Poincaré	after	Enrico	Betti
who	first	studied	these.	These	Betti	numbers	are	topological	invariants	and	an	n-dimensional
space	has	Betti	numbers	b0,	b1,	b2	…	bn	with	the	ith	Betti	number	bi	capturing	something	of	the
essence	of	the	space’s	topology	in	the	ith	dimension.	 ,	the	torus	with	g	holes,	has	Betti
numbers

where	b1	captures	there	being	2g	loops	in	the	torus,	one	around	each	of	the	g	holes	of	the	torus,
and	one	in	and	through	each	hole.	And	the	Betti	numbers	of	ℙ#k	are

The	Euler	number	of	a	space	is	defined	in	terms	of	its	Betti	numbers	as	the	alternating	sum

so	that	the	Euler	number	of	 	equals	 	and	of	ℙ#k	equals	
.	That	these	Betti	numbers	are	topological	invariants	then	means	that

the	Euler	number	is	a	topological	invariant.

Poincaré	is	often	considered	as	the	last	universalist	in	mathematics,	someone	making	research
contributions	across	mathematics,	and	he	became	interested	in	topology	via	various	routes.	In
1889	he	won	a	mathematical	competition	funded	by	Oscar	II,	King	of	Sweden	and	Norway,	for
contributions	to	understanding	how	a	multiple	body	system	(like	the	planets	in	the	solar	system
under	gravity)	evolves	with	time.	So,	for	Poincaré,	topology	was	a	means	for	qualitatively
analysing	such	systems.	In	pure	mathematics,	he	was	interested	in	the	topology	of	spaces	in	their
own	right,	essentially	studying	manifolds	though	still	lacking	at	the	time	a	wholly	rigorous
definition	for	such	spaces.

It	was	also	Poincaré	who	introduced	combinatorial	topology	to	help	calculate	algebraic
topological	invariants.	As	I	mentioned	in	Chapter	1,	there	are	many	complicated	examples	of
Jordan	curves	but,	ultimately,	all	of	them	are	homeomorphic	to	a	triangle;	likewise	the	sphere’s
topology	is	no	different	from	a	cube,	nor	a	torus’s	from	the	polyhedron	in	Figure	11(a).	By	using
polygons,	polyhedra,	and	higher-dimensional	equivalents,	quite	general	spaces	can	be
approximated	by	simpler	polyhedra	that	can	be	finitely	described	but	still	capture	all	of	their
topological	essence.	But,	again,	Poincaré’s	ideas	were	far-sighted	but	not	entirely	rigorously
realized.

For	around	the	next	forty	years,	topologists	would	take	forward	and	make	rigorous	Poincaré’s
vision,	making	algebraic	topology	a	major	theme	of	mathematics	and	fully	appreciating	the	range
and	power	of	his	ideas,	with	James	Alexander—more	of	him	in	Chapter	6—perhaps	being	most
prominent	in	that	role.	Arguably	the	last	piece	of	Poincaré’s	legacy	came	with	the	proof	in	2003	of
the	Poincaré	conjecture	by	Grigory	Perelman.	The	conjecture	states	that	every	simply
connected,	compact	three-dimensional	manifold	is	homeomorphic	to	the	three-dimensional	sphere
(this	does	not	mean	a	solid	ball	in	3D,	but	rather	a	3D	spherical	shell	that	sits	naturally	in	4D).	His
proof,	based	on	a	strategy	developed	by	Richard	Hamilton,	used	ideas	of	differential	geometry	far
beyond	even	Poincaré’s	imagination	at	the	time.	However,	its	solution	is	more	evidence	for	how
the	great	problems	of	mathematics	have	led	to	progress	in	highly	novel	directions.



Chapter	6
Unknot	or	knot	to	be?

Describing	knots
A	knot	is	a	smooth,	simple,	closed	curve	in	3D	space.	Being	simple	and	closed	means	the	curve
does	not	intersect	itself	except	that	its	end	returns	to	its	start.	Basically	a	knot	is	a	loop	in	3D
space	and	by	requiring	smoothness	we	exclude	some	nasty,	so-called	wild,	knots	from	our	study.
As	I	noted	in	Chapter	1,	all	knots	are	topologically	the	same	as	a	circle;	what	makes	a	circle
knotted—or	not—is	how	that	circle	has	been	placed	into	3D	space.

As	knots—in	and	of	themselves—are	just	circles,	then	we	need	a	new	notion	to	say	when	two	knots
are	the	same,	as	situated	in	3D	space.	That	notion	needs	to	capture	the	idea	that	one	knot,	and
the	space	around	it,	can	be	continuously	deformed	into	the	other,	and	the	space	around	it;	this	is
called	an	ambient	isotopy.

So,	two	knots	K1	and	K2	are	to	be	considered	equivalent	if	we	can	start	with	knot	K1	and	over	a
period	of	time	continuously	deform	3D	space	so	that	K1	becomes	K2.	If	we	set	the	time	taken	to
deform	the	knots	as	a	unit	interval	0	⩽	t	⩽	1,	then	by	some	time	t	in	the	middle	of	that	interval	we
will	have	deformed	3D	space	by	some	homeomorphism	ht.	An	ambient	isotopy	is	then	a	continuous
family	of	such	ht,	where	at	time	 	we	have	yet	to	start	deforming	so	that	 	and	by
the	time	 	the	first	knot	has	been	deformed	into	the	second,	that	is	 .

The	central	problem	of	knot	theory	is	then	a	classification	theorem:	when	are	two	knots	equivalent
—there	is	an	ambient	isotopy	between	them—or	how	do	we	show	that	no	such	isotopy	exists?	This
problem	was	first	identified	by	Maxwell	in	1868,	though	his	work	went	unpublished	at	the	time.

A	more	basic	problem	of	knot	theory	is	first	a	means	of	describing	knots.	We	can	imagine	laying
any	knot	flat	on	a	table	top.	Not	literally	flat—the	essence	of	the	knot	will	be	in	how	at	certain
crossings	one	part	of	the	knot	goes	over	or	under	another	bit	of	the	knot	(Figure	41);	we	can	also
be	careful	to	separate	out	those	crossings	so	that	no	more	than	two	parts	of	the	knot	cross	at	the
same	place.	The	minimal	number	of	crossings	of	a	knot	is	a	knot	invariant,	so	that	equivalent
knots	have	the	same	minimal	number	of	crossings.	In	Figure	41(a)	appears	a	version	of	the
unknot;	by	an	unknot	we	mean	a	loop	that	is	not	actually	knotted,	and	so	is	isotopic	to	a	circle.
Figure	41(a)	has	two	crossings	but	the	same	unknot	can	be	represented	as	a	circle	with	zero
crossings.	The	first	significant	effort	at	describing	and	classifying	knots	by	means	of	over-and-
under	crossings	was	by	Peter	Guthrie	Tait,	between	1877	and	1885,	who	classified	all	knots	with
ten	or	fewer	crossings.

41.	The	unknot	and	trefoils	(a)	An	unknot,	(b)	Left-handed	Trefoil,	(c)	Right-handed	Trefoil.

Knots	only	exist	in	3D;	any	loop	in	4D	can	be	unknotted.	Beginning	from	the	rightmost	point	of	the
unknot	in	Figure	41(a),	and	moving	anti-clockwise	around	the	loop,	we	see	that	the	two	crossings



both	go	over	the	other	part	of	the	knot.	More	generally	any	loop	that	we	could	lay	flat	on	the
table,	at	each	crossing	laying	the	loop	over	a	previous	part	of	the	loop,	would	lead	to	an	unknot,	as
we	could	lift	the	loop	off	the	table	one	crossing	at	a	time	to	make	a	circle.	Imagine	a	genuine	knot,
with	various	under-	and	over-crossings,	but	with	us	now	permitted	to	move	in	4D.	Much	as	we
earlier	used	time	as	the	fourth	dimension	to	avoid	the	Klein	bottle	intersecting	itself,	we	could	use
this	extra	dimension	to	make	any	under-crossing	into	an	over-crossing;	we	could	take	the	under-
part	of	the	knot	smoothly	into	the	future,	raise	it	above	the	over-part	of	the	knot	which	only	exists
in	the	present,	and	then	smoothly	return	the	knot	from	the	future	to	the	present,	now	as	an	over-
part.	In	this	way	all	knots	could	be	unknotted	in	4D.

The	trefoil	is	the	simplest	genuine	knot	and	has	three	crossings.	(You	might	want	to	sketch	for
yourself	loops	with	one	or	two	crossings	and	convince	yourself	these	aren’t	proper	knots.)	The
trefoil	though	is	complicated	enough	to	exhibit	an	important	feature,	that	of	chirality.	The	trefoil
knots	in	Figures	41(b)	and	41(c)	are	mirror	images	of	one	another	and	aren’t	isotopic	to	one
another.	The	trefoil	is	also	an	example	of	an	alternating	knot,	a	knot	where	the	crossings
alternate	between	over-	and	under-crossings	as	we	travel	around	the	knot.	Alternating	knots
provide	a	somewhat	simpler	class	of	knots	which	are	well	understood	compared	with	knots
generally.

Reidemeister	moves
The	unknot	in	Figure	41(a)	can	be	quickly	deformed	into	a	circle	by	untwisting	it	at	the	top,	and
doing	similar	to	the	twist	at	the	bottom.	Such	a	move—a	twist	or	untwist—is	the	first	of	three
Reidemeister	moves	that	between	them	can	be	used	to	show	any	equivalent	knots	are	indeed
equivalent.	These	moves	are	named	after	Kurt	Reidemeister,	who	proved	this	result	in	1927,
though	the	same	result	had	been	independently	proved	by	Alexander	and	Briggs	in	1926,	and	in
fact	the	moves	were	known	much	earlier	to	Maxwell.

The	first	move	then,	R1,	is	a	twist	or	untwist	of	a	small	part	of	the	knot	(Figure	42).	The	second
move	R2	takes	a	small	part	of	the	knot	and	pokes	it	under	another	part	of	the	knot	or	undoes	this.
Finally,	the	third	move	R3	is	to	slide	a	single	crossing	over	a	small	part	of	the	knot.	Hopefully	none
of	these	moves	seems	controversial	and	are	evidently	permitted	manipulations	of	the	knot.	The
significant	result	is	that,	given	any	two	equivalent	knots,	repeated	use	of	these	three	moves	alone
is	sufficient	to	show	that	the	two	knots	are	indeed	equivalent.

42.	The	three	Reidemeister	moves.

Unfortunately,	many	theorems	in	mathematics	demonstrate	the	existence	of	a	solution,	without
being	constructive—that	is,	providing	a	means	to	find	that	solution—or,	even	better,	providing	an
efficient	constructive	means	to	finding	a	solution.	In	1961	Wolfgang	Haken	showed	that	the
unknotting	problem	is	decidable,	in	the	sense	that	there	is	a	general	algorithm	that	can	be
implemented	to	decide	whether	a	knot	is	the	unknot.	Others	would	later	extend	this	result	to	show
the	equivalence	problem	is	decidable,	that	there	is	an	algorithm	for	checking	whether	two	knots
are	equivalent.	But	it	is	still	an	open	problem	as	to	whether	there	is	an	efficient	algorithm	for	this
problem.

Prime	knots	and	adding	knots
In	Figure	43	appear	the	granny	knot	and	the	reef	knot.	Notice	how	the	granny	knot	is	reminiscent



of	two	merged	trefoil	knots—in	fact,	it	is	the	connected	sum	of	two	trefoil	knots	with	the	same
handedness,	whilst	the	reef	knot	is	the	connected	sum	of	a	trefoil	with	its	mirror	image.	As	in
Chapter	2	with	surfaces,	we	can	create	the	connected	sum	K1#K2	of	two	knots	K1	and	K2	by
removing	a	small	arc	of	each	knot	and	gluing	opposite	loose	ends	together.

43.	The	granny	and	reef	knots	(a)	A	granny	knot,	(b)	A	reef	(or	square)	knot.

If	K1	and	K2	have	n1	and	n2	minimal	crossings,	then	K1#K2	can	clearly	be	drawn	with	
crossings.	However,	it	is	a	currently	unsolved	problem	as	to	whether	the	minimal	number	of
crossings	for	K1#K2	equals	 .	This	has	been	shown	to	be	true	for	alternating	knots,	and	is
suspected	to	be	true	in	general,	but	remains	unresolved.

As	our	central	problem	is	to	classify	knots	then	it	makes	sense	to	focus	on	those	knots	that	are	not
connected	sums	of	simpler	knots.	Such	knots	are	called	prime	knots.	Not	counting	mirror
images,	then	the	numbers	of	prime	knots	with	crossing	number	of	12	or	less	are	given	in	Table	6.

Table	6. 	Number	of	prime	knots	sorted	by	minimal	crossing	number

Note	how	this	number	of	different	prime	knots	spirals	enormously	as	the	minimal	crossing
number	increases.	It	is	an	open	and	active	area	of	research	seeking	to	prove	asymptotic	estimates
for	how	quickly	the	number	of	prime	knots	grows	as	the	crossing	number	becomes	large.	Figure
44	depicts	these	prime	knots	up	to	a	minimal	crossing	number	of	seven,	all	of	which	are
alternating;	the	simplest	non-alternating	prime	knots	have	a	minimal	crossing	number	of	eight.	In
1998	asymptotic	estimates	were	demonstrated	for	prime,	alternating	knots;	the	same	result	also
showed	that	alternating	knots	become	increasingly	rare,	as	a	fraction	of	all	knots,	as	the	minimal
crossing	number	increases.

44.	Prime	knots	with	seven	or	fewer	crossings.



The	knot	group
Reidemeister	moves	provide	a	difficult-to-implement	means	for	deciding	whether	two	knots	are
equivalent	or	not,	and	so	topologists	seek	knot	invariants	that	are	easy	to	calculate	but,	ideally,
separate	out	inequivalent	knots.	All	knots	are,	in	themselves,	just	circles—it’s	how	that	circle	has
been	situated	in	3D	space	that	makes	it	a	particular	knot.	So	we	might	focus	instead	on	the
complement	of	the	knot,	the	remainder	of	3D	space	that	isn’t	the	knot,	to	better	understand	knots.
We	might	consider	the	fundamental	group	of	the	complement,	and	this	is	known	as	the	knot
group.

Recall	that	the	elements	of	a	fundamental	group	are	loops	based	at	a	point,	with	loops	understood
to	be	the	same	if	one	can	be	deformed	into	the	other.	So,	starting	from	and	finishing	at	a	point
outside	a	knot,	these	different	loops	might	weave	in	and	out	of	a	knot	helping	to	capture
something	of	the	essence	of	the	knot.	And	this	is	indeed	the	case,	but	unfortunately	knot	groups
remain	very	complicated	objects.	The	knot	group	of	the	unknot	(a	circle)	is	just	the	group	of	whole
numbers,	with	a	loop	being	entirely	characterized	by	how	many	times	it	wraps	in	and	through	the
unknot.	But	even	the	knot	group	of	the	trefoil	is	a	difficult	group	to	describe.

Wilhelm	Wirtinger,	around	1905,	found	a	way	to	describe	such	knot	groups	in	general.	In	Figure
45	is	drawn	an	oriented	trefoil	with	the	three	unbroken	arcs	between	the	crossings	labelled	as	a1,
a2,	a3	and	the	five	regions	the	trefoil	splits	the	plane	into	denoted	R1	…	R5.	Imagine	the	base
point	b	of	the	knot	group	being	outside	the	trefoil,	and	loops	beginning	at	the	base	point,	weaving
in	and	out	of	the	knot,	and	returning	back	to	the	base	point.	We	will	write	l1	for	a	loop	that	goes
down	through	R3	and	returns	back	out	of	R5,	or	equally	down	through	R1	and	returns	back	out	of
R4.	This	is	a	loop	from	the	base	point	b	that	‘hooks’	a1	going	in	on	the	left	of	a1	and	coming	back
out	on	the	right	of	a1.	We	denote	by	l2	and	l3	similar	loops	that	hook	a2	and	a3	in	a	left-to-right
manner.	Their	inverses	 	are	loops	that	hook	a1,	a2	and	a3	in	the	reverse	right-to-left
direction.	Any	loop	beginning	and	ending	in	the	base	point	b	can	be	written	as	a	string	using	the
symbols	 	such	as

45.	The	knot	group	of	a	trefoil.

a	recipe	for	how	the	loop	weaves	in	and	out	of	the	knot,	with	careful	attention	as	to	whether	the
loop	went	in-left	and	out-right	or	vice	versa.	But	already	we	see	that	this	can’t	be	the	whole
description	of	the	knot	group:	in	the	middle	of	the	above	‘recipe’	is	the	expression	 	which
cancel	out	one	another	(remembering	back	to	Chapter	5	and	the	diminishing	London–Paris	return
trip).	To	do	a	loop	and	then	do	it	in	reverse	is	essentially	the	same	as	not	moving.	So,	we	should
omit	all	occurrences	of	expressions	like	 ,	etc.

However,	there	are	other	‘relations’	between	these	loops	l1,	l2,	l3	and	there	is	one	such	relation
for	each	crossing	of	the	knot.	Consider	a	loop	from	b	that	hooks	the	knot	at	the	crossing	between
R1,	R3,	R4,	R5;	this	is	a	loop	that	goes	down	through	R1	and	back	out	through	R5.	This	can	be
achieved	as	l3l1,	which	means	doing	l1	first	and	l3	second;	so	we	go	in	through	R1	and	return	out
of	R4	and	then	back	in	through	R4	and	out	of	R5.	Or	we	could	manage	the	same	by	doing	l1l2



which	means	doing	l2	first	and	l1	second;	this	takes	us	in	through	R1	and	returns	out	of	R3	and
then	down	through	R3	and	out	of	R5.	Either	of	these	loops	hooks	the	knot	at	the	crossing	point
and	so	it’s	the	case	that	l3l1	=	l1l2.

Now	if	there	were	n	crossings	in	a	knot,	then	we’d	have	strings	involving	l1	…	ln	and	 	in
the	knot	group.	Wirtinger’s	theorem	showed	that	the	knot	group	consists	of	all	such	strings,	with
two	such	strings	describing	the	same	loop	if	one	string	can	be	turned	into	the	other	by	cancelling
terms	like	 	or	using	rules,	like	l3l1	=	l1l2,	with	one	such	rule	coming	from	each	crossing.

All	this	is	impressive,	given	its	generality,	but	is	not	very	tractable	given	our	aim	is	to	describe
simple	invariants	to	separate	out	inequivalent	knots.	It’s	also	frustrating	to	find	that	inequivalent
knots,	such	as	the	reef	knot	and	the	granny	knot,	can	have	the	same	knot	groups,	as	do	left-	and
right-handed	trefoils.	However,	it	was	shown	in	the	late	1980s	that	the	knot	group	determines	a
prime	knot	up	to	mirror	images:	two	prime	knots	with	the	same	knot	group	are	isotopic	knots,	or
each	knot	is	isotopic	to	the	mirror	image	of	the	other.

Alexander	and	Jones	polynomials
In	1928	James	Alexander	introduced	what	is	now	known	as	the	Alexander	polynomial	and
which,	for	a	knot	K,	is	usually	denoted	ΔK(x).	Here	x	is	the	variable	of	the	polynomial.	The
Alexander	polynomial	is	a	knot	invariant	and	much	simpler	than	the	knot	group,	though	it
ultimately	conveys	less	information	about	a	knot—knots	with	the	same	knot	group	have	equal
Alexander	polynomials.

The	Alexander	polynomial	for	the	unknot	is	the	constant	polynomial	1	and	the	Alexander
polynomial	of	the	trefoil	T	equals

So	technically	the	Alexander	polynomial	is	a	polynomial	in	the	variables	x	and	x–1.	In	his	1928
paper	Alexander	described	an	algorithm	for	calculating	his	polynomial	from	an	over-	and	under-
crossings	description	of	the	knot	and	that	calculation,	for	the	trefoil,	is	done	in	the	Appendix.	The
algorithm	is	a	little	technical	but	ultimately	uses	mathematics	taught	in	schools	and	colleges.

The	Alexander	polynomial	also	deals	well	with	composite	knots,	having	the	nice	algebraic
property

for	two	knots	K	and	L,	with	K#L	denoting	their	connected	sum.	So,	the	reef	and	granny	knots	both
have	Alexander	polynomial	 .

The	Alexander	polynomial	cannot	distinguish	between	mirror	images,	but	does	distinguish
between	prime	knots	of	up	to	eight	crossings.	Surprisingly	there	are	non-trivial	knots,	including
one	with	just	eleven	crossings	that	has	a	constant	Alexander	polynomial	equal	to	1,	so	the
Alexander	polynomial	cannot	distinguish	the	unknot	from	all	other	knots.

It	was	some	considerable	time	later,	1984,	when	a	second	polynomial	invariant,	the	Jones
polynomial,	was	discovered	by	Vaughan	Jones,	for	which	he	would	win	the	Fields	Medal	in	1990.
I	won’t	define	the	Jones	polynomial	algorithmically	here,	but	rather	describe	properties	which
characterize	it	uniquely.

The	Jones	polynomial	of	a	knot	L	is	denoted	VL(x)	and	is	actually	a	polynomial	in	the	variables	

and	 .	The	Jones	polynomial	of	the	unknot	is	1.	The	following	skein	relation	then
characterizes	the	Jones	polynomial.	(The	word	‘skein’	means	a	quantity	of	thread	or	yarn.)

We	consider	three	knots	L+,	L0,	and	L–	that	differ	only	at	one	crossing.	The	knots	L+	and	L–	differ
in	which	part	of	the	knot	makes	the	over-crossing	and	the	knot	L0	has	no	crossing	at	all	at	this
point	(Figure	46).



46.	Links	involved	in	the	skein	relation.

The	skein	relation	then	states	that

As	mentioned	before,	if	we	made	all	the	crossings	of	a	knot	over-crossings	(or	all	under-crossings)
then	we	make	the	unknot.	If	in	a	knot	an	over-crossing	L+	makes	that	knot	more	‘knotted’	than	an
under-crossing	L–	then	the	skein	relation	describes	the	Jones	polynomial	of	the	more	complicated
knot	L+	in	terms	of	the	less	complicated	knot	L–	and	a	knot	L0	with	one	fewer	crossing.

We	will	shortly	use	the	skein	relation	to	calculate	the	Jones	polynomial	of	the	trefoil,	but	an
important	point	has	so	far	been	ignored.	Even	if	L+	and	L–	are	knots,	L0	need	not	be.	As	we	will
see	in	the	example	of	the	trefoil,	eliminating	a	crossing	might	disconnect	a	knot	and	create	what	is
called	a	link,	which	is	just	a	collection	of	knots.	The	skein	relation,	and	Jones	polynomial	generally,
should	be	seen	as	relating	to	such	links.

The	Jones	polynomial	can	sometimes	differentiate	between	a	knot	K	and	its	mirror	image	K*	as	the
identity	 	holds;	so,	we	need	to	specify	the	trefoil	being	considered	as	right-
handed.	In	our	calculation	we’ll	need	to	consider	various	knots	and	links	(Figure	47).

47.	Simple	examples	of	links	(a)	Right-handed	trefoil,	(b)	Twisted	unknot,	(c)	Unlinked	circles,
(d)	Linked	circles.



We	will	take	L+	as	the	trefoil	and	focus	on	the	bottom-right	of	the	three	crossings.	L-	is	then	the
unknot,	perhaps	easiest	seen	by	unpoking	the	bottom	part	of	the	knot	with	a	Reidemeister	move.
And	L0	has	become	disconnected	making	two	linked	circles	as	in	Figure	47(d).	Remembering	that	

	the	skein	relation	states

where	Vlinked(x)	is	the	Jones	polynomial	of	two	linked	circles.	Using	the	skein	relation	a	second
time,	we	take	L+	as	the	linked	circles,	and	consider	the	rightmost	crossing.	Then	L–	is	two
unlinked	circles	(Figure	47(c))	and	L0	is	the	unknot.	This	time	the	skein	relation	states

Finally,	we	apply	the	skein	relation	to	the	twisted	unknot	(Figure	47(b))	to	find	out	Vunlinked(x).	If
we	take	L+	as	the	twisted	unknot	then	L–	is	another	twisted	version	of	the	unknot	and	L0	is	two
unlinked	circles.	The	skein	relation	then	states

which	rearranges	to	give

Substituting	this	into	earlier	equations	gives

and	then	with	a	little	rearranging	we	find

So	 	for	the	trefoil’s	mirror	image,	and	the
Jones	polynomial	can	differentiate	between	the	left-	and	right-handed	trefoils.	The	Jones
polynomial	distinguishes	between	prime	knots	with	up	to	nine	crossings,	but	not	beyond.	Unlike
the	Alexander	polynomial	it	remains	an	unsolved	problem	as	to	whether	there	exists	a	genuine
knot	with	a	Jones	polynomial	equal	to	1.



Epilogue

In	1911	the	French	mathematician	Jacques	Hadamard	wrote	that

Analysis	situs	…	constitutes	a	revenge	of	geometry	on	analysis.

(Recall	that	‘analysis	situs’	is	an	old	name	for	topology.)	Certainly	geometric	topology	and	the
visualization	of	Riemann,	Klein,	Möbius,	and	Poincaré	were	in	marked	contrast	to	the	analysis	of
Weierstrass.	Riemann’s	and	Poincaré’s	work	would	have	massive	influence	on	the	development	of
mathematics.	Topology	would	go	on	to	become	one	of	the	central	themes	of	mathematics.

And	from	the	earliest	history	of	topology,	connections	with	physics	would	be	apparent.	In	the	19th
century	Gauss	and	Maxwell	would	both	recognize	such	in	electromagnetism—for	example,	in	the
study	of	the	work	done	by	a	magnetic	pole	moving	in	the	presence	of	a	wire	carrying	current,	with
Gauss’s	answer	being	in	terms	of	a	linking	number	for	the	pole’s	path	and	the	wire.	Both	Gauss
and	Maxwell	would	bemoan	the	lack	of	progress	with	the	study	of	topology	or	‘geometry	of
position’	as	Maxwell	referred	to	it	at	the	time.

The	20th	century	would	develop	a	yet	richer	connection	between	topology	and	physics.	In	1965,
Roger	Penrose	would	use	topological	ideas	to	demonstrate	how	the	gravitational	collapse	of	a
massive	star	would	lead	to	a	space-time	singularity	occurring,	such	as	a	black	hole.	The	use	of
topology	meant	that	Penrose	was	able	to	impose	qualitative	assumptions	about	the	mass
distribution,	compared	with	earlier	assumptions	about	the	symmetric	distribution	of	matter	that
had	been	considered	physically	questionable.

The	interaction	between	physics	and	topology	would	also	not	be	one	way.	A	problem	that	was
ostensibly	in	physics	would	become	of	interest	to	pure	mathematicians	if	it	could	be	rephrased
into	mathematical	language	involving	mathematical	objects.	This	was	particularly	the	case	with
Yang–Mills	theory,	a	physical	theory	seeking	to	provide	a	unified	description	for	electromagnetism
and	the	weak	force.	In	1983	Simon	Donaldson	would	use	ideas	from	Yang–Mills	theory	to	prove
astonishing	results	about	the	topology	of	four-dimensional	manifolds.

Topology	remains	a	large,	active	research	area	in	mathematics.	Unsurprisingly	its	character	has
changed	over	the	last	century—there	is	considerably	less	current	interest	in	general	topology,	but
whole	new	areas	have	emerged,	such	as	topological	data	analysis	to	help	analyse	big	data	sets.
The	interfaces	of	topology	with	other	areas,	including	physics,	have	remained	rich	and	numerous,
and	it	can	be	hard	telling	where	topology	stops	and	geometry	or	algebra	or	analysis	or	physics
begin.	Often	that	richness	comes	from	studying	structures	that	have	interconnected	flavours	of
algebra,	geometry,	and	topology,	but	sometimes	a	result,	seemingly	of	an	entirely	algebraic	nature
say,	can	be	proved	by	purely	topological	means.	In	the	words	of	Poincaré

Mathematics	is	the	art	of	giving	the	same	name	to	different	things

and	the	rise	of	topology	has	certainly	helped	demonstrate	the	interconnectedness	of	mathematics.



•
•
•
•

Appendix:	Calculating	an	Alexander	polynomial

Calculating	the	Alexander	polynomial	of	a	knot	is	a	little	technical	but	involves	only	mathematics
that	might	be	met	at	school	or	college,	a	knowledge	of	matrices	and	determinants.	The	method
below	was	given	by	Alexander	in	1928.

An	oriented	knot	K,	with	n	crossings	c1,	c2	…	cn,	divides	the	plane	into	 	regions,	
,	including	the	outside	of	the	knot.	Figure	48	shows	a	trefoil	labelled	in	this

manner.

48.	Calculating	the	Alexander	polynomial	of	a	trefoil.

From	such	a	diagram	we	create	a	matrix	with	n	rows	(corresponding	to	the	n	crossings)	and	
	columns	(corresponding	to	the	 	regions).	The	entries	of	this	matrix	are	then	filled

according	to	the	following	rules:

If	the	region	is	not	adjacent	to	the	crossing,	the	entry	is	0.
If	the	region	is	on	the	right	before	under-crossing,	the	entry	is	1.
If	the	region	is	on	the	left	after	under-crossing,	the	entry	is	x.
If	the	region	is	on	the	right	after	under-crossing,	the	entry	is	−1.

This	matrix	for	the	trefoil	in	Figure	48	is

To	explain	the	first	row,	R4	is	not	adjacent	to	c1	and	whilst	travelling	towards	c1	as	an	under-
crossing,	the	region	R1	is	on	the	left	and	R2	is	on	the	right	and	having	passed	through	c1	the
region	R3	is	on	the	left	and	R5	is	on	the	right.

We	now	remove	any	two	columns	corresponding	to	adjacent	regions,	say	R1	and	R2	in	this	case,	so
that	we	have	a	square	n	by	n	matrix,	and	we	take	the	determinant	of	this	matrix.	For	the	trefoil



this	gives

The	answer	at	this	point	depends	somewhat	on	which	columns	we	removed.	If	we	divide	by	a
power	of	x	so	that	the	highest	power	of	x	is	the	same	as	the	highest	power	of	x–1	(in	our	example
we	need	to	divide	by	x)	and	multiply	by	±1	so	that	the	polynomial	takes	value	1	at	x	=	1,	then	we
have	calculated	the	Alexander	polynomial.	In	the	case	of	the	trefoil	knot,	that	equals	 .



Historical	timeline



1639 Descartes’s	work	on	angular	defect,	equivalent	to	Euler’s	formula

1750 Euler	discovers	his	formula	

1817 Bolzano	defines	continuity,	proves	the	Bolzano–Weierstrass	and	intermediate	value	theorems

1836 The	word	‘topology’	is	coined	by	Johann	Listing

1851 Schläfli	generalizes	Euler’s	formula	to	higher	dimensional	polyhedra

1857 Riemann’s	paper	Theory	of	Abelian	Functions	makes	Riemann	surfaces	more	widely	known

1858 Möbius	and	Listing	independently	discover	the	Möbius	strip

1861 Weierstrass	lectures	on	the	boundedness	theorem

1861 Möbius	gives	a	first	sketch	proof	of	the	classification	theorem	for	closed	surfaces

1868 Maxwell	first	states	the	knot	classification	problem

1871 Betti	publishes	On	Spaces	of	any	Number	of	Dimensions

1874 Klein	shows	orientable	closed	surfaces	are	homeomorphic	if	and	only	if	they	have	equal	genus

1876 Klein	gives	his	definition	of	one-sidedness

1881 Poincaré’s	theorem,	later	generalized	by	Hopf	in	1926

1882 Klein	first	describes	the	Klein	bottle

1887 Jordan	curve	theorem	appears	in	his	Cours	d’analyse

1895 Borel	states	a	first	version	of	the	Heine–Borel	theorem

1895 Poincaré	defines	the	fundamental	group	in	his	Analysis	Situs

1906 Fréchet	defines	metric	spaces	in	his	doctoral	thesis

1907 Max	Dehn	and	Poul	Heegaard	give	the	first	rigorous	proof	of	the	classification	theorem

1910 Brouwer	proves	his	fixed	point	theorem

1914 Hausdorff	defines	topological	spaces	in	the	seminal	Grundzüge	der	Mengenlehre

1919 Hausdorff	dimension	introduced,	which	can	take	fractional	values

1925 Morse	publishes	his	paper	Relation	between	the	Critical	Points. . .

1927 Reidemeister	moves	introduced

1928 Alexander	introduces	his	polynomial	knot	invariant

1930 Kuratowski’s	theorem	on	planar	graphs

1932 Čech	defines	higher	homotopy	groups,	generalizing	the	fundamental	group

1936 Whitney	defines	manifolds	and	proves	his	embedding	theorem

1950 Hamming	distance	introduced	in	the	paper	Error	Detecting	and	Error	Correcting	Codes

1952 Moise	shows	that	every	three-dimensional	manifold	is	uniquely	smoothable

1961 Haken	shows	that	the	unknotting	problem	is	decidable

1982 Thurston	wins	Fields	Medal	for	work	on	three-dimensional	manifolds

1984 Jones	polynomial	introduced

1986 Donaldson	and	Freedman	win	Fields	Medals	for	their	work	on	four-dimensional	manifolds

2003 Perelman	proves	the	Poincaré	conjecture
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ECONOMICS
A	Very	Short	Introduction

Partha	Dasgupta

Economics	has	the	capacity	to	offer	us	deep	insights	into	some	of	the	most	formidable	problems	of	life,
and	offer	solutions	to	them	too.	Combining	a	global	approach	with	examples	from	everyday	life,	Partha
Dasgupta	describes	the	lives	of	two	children	who	live	very	different	lives	in	different	parts	of	the	world:	in
the	Mid-West	USA	and	in	Ethiopia.	He	compares	the	obstacles	facing	them,	and	the	processes	that	shape
their	lives,	their	families,	and	their	futures.	He	shows	how	economics	uncovers	these	processes,	finds
explanations	for	them,	and	how	it	forms	policies	and	solutions.

‘An	excellent	introduction	.	.	.	presents	mathematical	and	statistical	findings	in	straightforward
prose.’

Financial	Times
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INFORMATION
A	Very	Short	Introduction

Luciano	Floridi

Luciano	Floridi,	a	philosopher	of	information,	cuts	across	many	subjects,	from	a	brief	look	at	the
mathematical	roots	of	information	-	its	definition	and	measurement	in	‘bits’-	to	its	role	in	genetics
(we	are	information),	and	its	social	meaning	and	value.	He	ends	by	considering	the	ethics	of
information,	including	issues	of	ownership,	privacy,	and	accessibility;	copyright	and	open	source.
For	those	unfamiliar	with	its	precise	meaning	and	wide	applicability	as	a	philosophical	concept,
‘information’	may	seem	a	bland	or	mundane	topic.	Those	who	have	studied	some	science	or
philosophy	or	sociology	will	already	be	aware	of	its	centrality	and	richness.	But	for	all	readers,
whether	from	the	humanities	or	sciences,	Floridi	gives	a	fascinating	and	inspirational	introduction
to	this	most	fundamental	of	ideas.

‘Splendidly	pellucid.’
Steven	Poole,	The	Guardian
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INNOVATION
A	Very	Short	Introduction

Mark	Dodgson	&	David	Gann

This	Very	Short	Introduction	looks	at	what	innovation	is	and	why	it	affects	us	so	profoundly.	It	examines
how	it	occurs,	who	stimulates	it,	how	it	is	pursued,	and	what	its	outcomes	are,	both	positive	and	negative.
Innovation	is	hugely	challenging	and	failure	is	common,	yet	it	is	essential	to	our	social	and	economic
progress.	Mark	Dodgson	and	David	Gann	consider	the	extent	to	which	our	understanding	of	innovation
developed	over	the	past	century	and	how	it	might	be	used	to	interpret	the	global	economy	we	all	face	in
the	future.

‘Innovation	has	always	been	fundamental	to	leadership,	be	it	in	the	public	or	private	arena.	This
insightful	book	teaches	lessons	from	the	successes	of	the	past,	and	spotlights	the	challenges	and
the	opportunities	for	innovation	as	we	move	from	the	industrial	age	to	the	knowledge	economy.’

Sanford,	Senior	Vice	President,	IBM
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NOTHING
A	Very	Short	Introduction

Frank	Close

What	is	‘nothing’?	What	remains	when	you	take	all	the	matter	away?	Can	empty	space	-	a	void	-	exist?
This	Very	Short	Introduction	explores	the	science	and	history	of	the	elusive	void:	from	Aristotle’s	theories
to	black	holes	and	quantum	particles,	and	why	the	latest	discoveries	about	the	vacuum	tell	us
extraordinary	things	about	the	cosmos.	Frank	Close	tells	the	story	of	how	scientists	have	explored	the
elusive	void,	and	the	rich	discoveries	that	they	have	made	there.	He	takes	the	reader	on	a	lively	and
accessible	history	through	ancient	ideas	and	cultural	superstitions	to	the	frontiers	of	current	research.

‘An	accessible	and	entertaining	read	for	layperson	and	scientist	alike.’
Physics	World
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NUCLEAR	POWER
A	Very	Short	Introduction

Maxwell	Irvine

The	term	‘nuclear	power’	causes	anxiety	in	many	people	and	there	is	confusion	concerning	the	nature	and
extent	of	the	associated	risks.	Here,	Maxwell	Irvine	presents	a	concise	introduction	to	the	development	of
nuclear	physics	leading	up	to	the	emergence	of	the	nuclear	power	industry.	He	discusses	the	nature	of
nuclear	energy	and	deals	with	various	aspects	of	public	concern,	considering	the	risks	of	nuclear	safety,
the	cost	of	its	development,	and	waste	disposal.	Dispelling	some	of	the	widespread	confusion	about
nuclear	energy,	Irvine	considers	the	relevance	of	nuclear	power,	the	potential	of	nuclear	fusion,	and
encourages	informed	debate	about	its	potential.
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NUMBERS
A	Very	Short	Introduction

Peter	M.	Higgins

Numbers	are	integral	to	our	everyday	lives	and	feature	in	everything	we	do.	In	this	Very	Short	Introduction
Peter	M.	Higgins,	the	renowned	mathematics	writer	unravels	the	world	of	numbers;	demonstrating	its
richness,	and	providing	a	comprehensive	view	of	the	idea	of	the	number.	Higgins	paints	a	picture	of	the
number	world,	considering	how	the	modern	number	system	matured	over	centuries.	Explaining	the
various	number	types	and	showing	how	they	behave,	he	introduces	key	concepts	such	as	integers,
fractions,	real	numbers,	and	imaginary	numbers.	By	approaching	the	topic	in	a	non-technical	way	and
emphasising	the	basic	principles	and	interactions	of	numbers	with	mathematics	and	science,	Higgins	also
demonstrates	the	practical	interactions	and	modern	applications,	such	as	encryption	of	confidential	data
on	the	internet.
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TOCQUEVILLE
A	Very	Short	Introduction

Harvey	Mansfield

No	one	has	ever	described	American	democracy	with	more	accurate	insight	or	more	profoundly	than	Alexis
de	Tocqueville.	After	meeting	with	Americans	on	extensive	travels	in	the	United	States,	and	intense	study
of	documents	and	authorities,	he	authored	the	landmark	Democracy	in	America,	publishing	its	two
volumes	in	1835	and	1840.	Ever	since,	this	book	has	been	the	best	source	for	every	serious	attempt	to
understand	America	and	democracy	itself.	Yet	Tocqueville	himself	remains	a	mystery	behind	the	elegance
of	his	style.	In	this	Very	Short	Introduction,	Harvey	Mansfield	addresses	his	subject	as	a	thinker,	clearly	and
incisively	exploring	Tocqueville’s	writings-not	only	his	masterpiece,	but	also	his	secret	Recollections,
intended	for	posterity	alone,	and	his	unfinished	work	on	his	native	France,	The	Old	Regime	and	the
Revolution.
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