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This chapter examines issues and methods for survivability of systems under 

malicious penetrating attacks.  To protect from such attacks, it is necessary to 

take steps to prevent them from succeeding.  At the same time, it is important to 

recognize that not all attacks can be averted at the outset; those that are partially 

successful may be unavoidable, and comprehensive support is required for 

identifying and responding to such attacks.  We describe our Topological 

Vulnerability Analysis (TVA) system, which analyzes vulnerability to multi-

step network penetration.  At the core of the TVA system are graphs that 

represent known exploit sequences that attackers can use to penetrate computer 

networks.  We show how TVA attack graphs can be used to compute actual sets 

of hardening measures that guarantee the safety of given critical resources.  

TVA can also correlate received alerts, hypothesize missing alerts, and predict 

future alerts.  Thus, TVA offers a promising solution for administrators to 

monitor and predict the progress of an intrusion, and take quick appropriate 

countermeasures. 

1.1.  Introduction 

Computer networks are inherently difficult to secure against attack.  They are 

often connected to the Internet, for which security was not an original design 

goal.  Default configurations for many software components are insecure, and 

these configurations often remain unchanged by the user.  There is generally little 

economic incentive to develop secure software, so vulnerabilities are 

commonplace. 

Moreover, network security concerns are highly interdependent, so that a 

machine’s susceptibility to attack can depend on vulnerabilities across the 

network.  Attackers can combine vulnerabilities in unexpected ways, allowing 

them to incrementally penetrate a network and compromise critical systems.  We 

can reduce the impact of attacks by knowing the paths of vulnerability through 

our networks.  To do so, we need to transform raw security data into topological 

maps that let us prepare for attacks, manage risks, and have real-time situational 

awareness. 

Traditional tools for network vulnerability assessment simply scan individual 

machines on a network and report their known vulnerabilities.  Security 

conscious organizations may then employ Red Teams of network penetration 

testers, who attempt to combine vulnerabilities in ways that real attackers might.  

But penetration-testing experts are expensive, changes to the network 
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configuration render the test results obsolete, and the only attack paths reported 

are those found within the allotted test time. 

The processes for tracking network vulnerabilities are labor-intensive, 

require a great deal of expertise, and are error prone because of the complexity, 

volume, and frequent changes in security data and network configurations.  But 

through automated simulation of possible attack paths, we can understand our 

overall security posture in the face of actual attacks. 

Our innovative approach to network attack survivability is termed 

Topological Vulnerability Analysis (TVA)
1
.  TVA simulates incremental network 

penetration, building complete maps of multi-step attacks showing all possible 

paths into a network.  It maintains models of the network configuration and 

potential threats.  From these models, it discovers attack graphs that convey the 

impact of combined vulnerabilities on overall security.  TVA technology 

includes recursive attack graph aggregation with interactive drill down of 

scenarios in the cyber domain.  It incorporates a variety of types of network scan 

data, providing the ability to easily model and analyze even large networks. 

Currently available tools generally give few clues as to how attackers might 

exploit combinations of vulnerabilities among multiple hosts to advance an attack 

on a network.  The security analyst is left with just a set of known vulnerabilities.  

It can be difficult even for experienced analysts to recognize how an attacker 

might combine individual vulnerabilities to seriously compromise a network.  

For larger networks, the number of possible vulnerability combinations to 

consider can be overwhelming. 

In this chapter, we describe a mature system that implements TVA.  This tool 

considers combinations of modeled attacker exploits on a network and then 

discovers attack paths (sequences of exploits) leading to specific network targets.  

The discovered attack paths allow an assessment of the true vulnerability of 

critical network resources.  TVA automates the type of labor-intensive analysis 

usually performed by penetration-testing experts.  It encourages inexpensive 

“what-if” analyses, in which candidate network configurations are tested for 

overall impact on network security.  It also allows for the computation of 

network-hardening options that protect given critical resources while requiring 

minimal network changes. 

To meet network availability requirements, there must usually remain some 

residual vulnerability after all protective measures have been applied.  In such 

cases, we must then rely on the detect/react phases of security.  While we cannot 

predict the origin and timing of attacks, TVA can reduce their impact by 

providing knowledge of the possible attack paths through the network.  For 

example, TVA attack graphs can be used to correlate and aggregate network 
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attack events, across platforms as well as across the network.  TVA attack graphs 

can also provide the necessary context for optimal reaction to attacks. 

1.2.  Topological Analysis of Network Vulnerability 

Because of the interdependencies of exploits across the network, a topological 

approach is necessary for full understanding of attack vulnerability.  The 

traditional approach of considering network components in isolation and 

reporting vulnerabilities independent of one another is clearly insufficient.  TVA 

models vulnerabilities and combines them in ways that real network attackers 

might do.  The result is the discovery of all attack paths through a network. 

Figure 1.1 shows the overall flow of processing in TVA.  There are three 

inward flows of information: a model of the network configuration, a knowledge 

base of modeled attacker exploits, and a desired attack simulation scenario.  

From these, TVA then simulates incremental attacks through the network, 

thereby discovering all possible attack paths (organized as a graph) to the given 

critical network resources.  Various innovative visualization capabilities support 

interactive analysis of resulting attack graphs, while keeping visual complexity 

manageable.  TVA can also use the attack graphs to compute optimal network 

protection measures. 

To model the various elements of the network and network attack events, our 

TVA system automatically processes the output of various network scanning and 
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Fig. 1.1. Topological Vulnerability Analysis (TVA).  From the network configuration and modeled 

attacker exploits, multi-step attacks are simulated, analyzed through interactive visualization, and 

used to formulate optimal network protection. 
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logging tools.  It can combine scans from various network locations, building a 

complete map of connectivity to vulnerable services throughout the network, and 

can map actual intrusion events to elements of the resulting attack graph. 

Figure 1.2 shows the inputs to our TVA system (current and proposed).  The 

inputs occur in two phases.  In the pre-attack protect phase, network scan tools 

provide information about network configuration and known vulnerabilities.  For 

this, we can map vulnerability scanner output directly to corresponding 

vulnerable services on network machines.  Our system is currently integrated 

with the Nessus
2
 (open-source) and Retina

3
 vulnerability scanners, and 

integration with the FoundScan4 vulnerability scanner is under development.  Or 

we can map the output of asset discovery tools (detected software on a machine) 

to the known vulnerabilities for each software package.  For this, our system is 

integrated with Symantec Discovery
5
, which we map to known vulnerabilities 

through integration with Symantec DeepSight
6
 (a direct feed of the Bugtraq

7
 

vulnerability data).  Cross-referencing data, including MITRE’s Common 

Vulnerabilities and Exposures8 (CVE), are used to correlate vulnerabilities across 

various sources. 

In the detect phase, the TVA system maps detected attack events to their 

corresponding elements of the predicted attack graph.  This provides the context 
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Fig. 1.2. Inputs to TVA system.  During protect phase, pre-attack scans are used to build models of 

the network.  During the detect phase, attack events are mapped to the predicted attack graph. 
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for correlating events, predicting the next possible attack steps, and responding in 

the best way.  It also helps remove clutter by prioritizing those predicted exploits 

that are correlated with recent real-time data.  Our TVA system is currently 

integrated with the Snort
9
 intrusion detection system.  Integration with other 

intrusion detection systems (e.g., Dragon) is also possible, as well as with other 

sources of real-time data, such as web server logs (e.g., Apache and Microsoft 

IIS), operating system logs, and network traffic data (e.g., Netflow and TCP 

Dump). 

To keep our TVA input exploit model current, we monitor emerging cyber 

threats, in the form of vulnerabilities that are discovered for particular software 

and the ways in which attackers can exploit these vulnerabilities.  From this 

threat information, we model individual attacker exploits in terms of 

preconditions and postconditions.  The modeled exploits are in terms of generic 

attacker/victim machines, which the simulation engine maps to a particular target 

network. 

Because of all this pre-populated data, when using our TVA system the 

security analyst need not be burdened with all the details of the network and 

exploit data.  All that is needed is to define the attack scenario, e.g., the starting 

point, the attack goal, and any what-if changes to the network configuration.  The 

attack scenario could also be less constrained, such as finding all possible attack 

starts leading to one or more goals, or finding all possible paths from particular 

starting points. 

1.3.  A Motivating Example 

As a motivating example, we demonstrate how TVA combines vulnerabilities in 

a network to find all attack paths from a particular starting point to a given goal.  

We then show how TVA determines optimal ways of hardening the network 

against these attacks. 

Consider the small example network shown in Fig. 1.3.  Here, a restrictive 

firewall protects the machines that support public web and email services.  TVA 

shows how vulnerable services on a network can still be exploited through multi-

step attacks, when the attacker cannot access them directly. 

The firewall implements the following policy to restrict access to the network 

from the outside: 

• Incoming web traffic is permitted only to the web server, which is running 

Microsoft IIS. 

• Incoming email traffic is permitted to the mail server. 
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• Incoming FTP is blocked because the mail server is running wu_ftpd, which 

has a history of vulnerabilities. 

• All other incoming traffic is blocked. 

 

For this example, we populate the TVA network model through Nessus 

scans.  In particular, we scan the web server and mail server from outside the 

firewall, to obtain vulnerable connectivity from the initial attack vantage point.  

We also scan these two servers behind the firewall, showing any subsequent 

vulnerable connectivity once the attacker gains entry into the network.  These 

scan results are merged to form an overall model of the network for TVA. 

The attack goal for this example is to obtain super user (root) access on the 

mail server, starting from outside the network.  This is not directly possible 

because (1) there are no known vulnerabilities for the version of sendmail 

running on the mail server, and (2) the firewall blocks access to the vulnerable 

wu_ftpd service from the attack machine.  TVA analyzes whether the attack goal 

can be realized indirectly, i.e., through a sequence of multiple exploits. 

Figure 1.4 shows the resulting TVA attack graph for the example network in 

Fig. 1.3.  Here, shaded ovals are simulated attacker exploits.  For each exploit, 

incoming edges represent preconditions, all of which must be met for the exploit 

to be successful.  Then for each exploit, outgoing edges represent postconditions, 

i.e., the conditions induced when the exploit is successful.  Preconditions with the 

5-digit Nessus identifiers represent connections to vulnerable network services 

detected by Nessus. 
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Fig. 1.3. Small example network for illustrating TVA.  The firewall allows web traffic to the web 

server, allows email traffic to the mail server, and blocks all other incoming traffic. 
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The initial condition execute(attack) represents the fact that the attacker can 

execute arbitrary code on his own machine.  This enables three separate exploits 

from attack to the web server (machine m20).  Each of these exploits provides 

the ability to execute arbitrary code on the web server.  This subsequently 

enables four new exploits from the web server to the mail server (machine m10), 

each yielding the ability to execute arbitrary code on the mail server.  Two of 

these exploits provide access at a super user level of privilege.  The other two 

exploits provide user-level privilege only, but two subsequent local privilege 

escalation exploits on the mail server provide other paths to super user. 

Finding such attack paths is a unique TVA capability.  Vulnerability 

scanning tools connected outside the firewall report only the IIS vulnerabilities 

on the web server.  Such scans from inside the firewall would report the 

vulnerable wu_ftpd service, but TVA is required to build an attack path from the 

outside through the web server to the mail server.  While easy enough for an 

experienced penetration tester on such a small network, it becomes 

unmanageable for networks where voluminous outputs must be analyzed for 

large numbers of machines. 

Solution 1

Solution 2

Solution 1 Solution 1

Solution 2

Solution 2 Solution 2

No Impact No Impact

 
 

Fig. 1.4. Attack graph illustrating TVA.  This graph shows all possible ways an outside attacker can 

obtain the ability to execute arbitrary code as a super user on the mail server. 
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TVA can not only find attack graphs, but can also use these graphs for 

finding optimal solutions for hardening the network.  In particular, though TVA 

we can find combinations of network-hardening measures that prevent a given 

attack scenario, while requiring a minimal number of changes to the network 

configuration.  Figure 1.4 illustrates this.  For this network, one such solution is 

to remediate (e.g., patches or firewall blocking) the three vulnerabilities from 

attack to m20.  Hardening these three vulnerabilities is necessary and sufficient 

for preventing the attack goal.  The other solution is to harden the two 

vulnerabilities on m10 that enable the four exploits yielding super user access.  

Interestingly, TVA shows that hardening the other two vulnerabilities on m10 

(yielding user-level access only) has no impact on blocking access to the goal, 

i.e., hardening them is neither necessary nor sufficient. 

The next section describes the TVA process for optimal network hardening 

in more detail. 

1.4.  Minimal-Cost Network Hardening 

Attack graphs reveal threats by predicting combinations of attacker exploits that 

compromise given critical resources.  But alone, they do not directly provide a 

solution to remove the threat.  Finding such solutions manually can be tedious 

and error prone, especially for larger and less secure networks. 

TVA automates the task of hardening a network against multi-step attacks.  

Unlike previous approaches whose solutions are in terms of attacker 

exploits10,11,12, our solutions are in terms of network configuration elements.  

These solutions are therefore more enforceable, because the configuration 

elements can be independently hardened, whereas exploits are usually 

consequences of other exploits and cannot be disabled without removing the root 

causes.  Also, our solutions are optimal in the sense that they incur minimal cost 

in terms of changes to the network. 

Consider the network in Fig.  1.5, which we model using multiple layers of 

the TCP/IP stack.  This example shows how complicated interdependencies 

among exploits can be resolved to an optimal set of hardening measures.  It also 

demonstrates how purely exploit-based hardening approaches are insufficient for 

network hardening, i.e., that solutions in terms of network configuration elements 

are needed. 
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In Fig. 1.5, an Ethernet switch provides connectivity at the link layer.  At the 

transport layer, unused services have been removed, secure shell replaces FTP, 

telnet and other cleartext password-based services, and there is tcpwrapper 

protection on RPC services.  Application-layer trust relationships further restrict 

NFS and NIS domain access.  The exploits and network configuration elements 

(exploit conditions) for this example are described in Table 1.1 and Table 1.2, 

respectively. 
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Fig. 1.5. Network illustrating TVA minimal-cost network hardening.  Complicated 

interdependencies among exploits are to be resolved to optimal hardening measures. 

 

Table 1.1. Exploits for network shown in Fig. 1.5. 

Exploit Description 

arp_spoof Spoof (impersonate) machine identity via ARP poison 

attack 

ypcat_passwd Dump encrypted NIS password file 

crack_passwd Crack encrypted user password(s) 

scp_upload_pw Secure shell copy, upload direction, using password 

authentication 

scp_download_pw Secure shell copy, download direction, using password 

authentication 

ssh_login_pw Secure shell login using password authentication 

rh62_glibc_bof Red Hat 6.2 buffer overflow in glibc library 

create_nfs_home_ssh_pk_su Exploit NFS home share to create secure shell key pair 

used for superuser authentication 

ssh_login_pk_su Secure shell login using public key authentication 

 



S. Jajodia and S. Noel 

 

10

Figure 1.6 shows the attack graph for the network in Fig. 1.5 modeled via the 

exploits and network conditions in Table 1.1 and Table 1.2.  Using our 

previously described algorithm for minimal-cost hardening13, 14, we traverse the 

attack graph to construct a logical expression for the attack goal g (execute code 

as superuser on machine homer) in terms of the initial network conditions: 

( ) ( ) ( )
αβχφγη

ηαβχφγαβχδεαβχ

=

⋅⋅⋅+=g
 

The attack graph has been reduced to an expression that leads to simple 

choices for network hardening.  Note that two initial conditions in the graph do 

not appear in the expression for goal g: 

(i) ( )attackbartpwsshtrans ,__≡δ , and 

(ii) ( )attackbartpwauthapp ,_≡ε . 

These drop out in this fashion: 

( )
( )

αβχ

δεαβχ

αβχδεαβχ

=

+=

+=

1

,__62 bartbartbofglibcrh

 

Table 1.2. Configuration elements for network shown in Fig. 1.5. 

Network Condition Description 

link_arp Attacker shares link-level connectivity with victim (both on 

same LAN) 

trans_yp Transport layer connectivity to NIS server 

trans_ssh_pw Transport layer connectivity to secure shell server that 

supports password authentication 

trans_ssh_pk Transport layer connectivity to secure shell server that 

supports public key authentication 

trans_nfs Transport layer connectivity to NFS server 

app_nfs_home_su Application “connection” representing sharing superuser’s 

home directory 

app_yp_domain Application “connection” representing NIS domain 

membership 

app_yp_passwd Application “connection” representing acquisition of 

encrypted NIS password database 

app_pwauth Application “connection” representing acquisition of 

unencrypted user password 

app_ssh_pk_su Application “connection” representing acquisition/creation 

of key pair used for superuser authentication 

pgm_glibc_bof Program used to exploit glibc library buffer overflow 

vulnerability 

execute Ability to execute arbitrary code 

superuser Super user privilege 
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Through our approach, such irrelevant conditions as δ  and ε  do not get 

considered for network hardening.  Overall, our goal expression contains initial 

conditions that are both necessary and sufficient for network-hardening 

decisions. 

 

This kind of sufficiency is not present in previous approaches to network 

hardening via exploit set minimization.  These approaches search for minimal 

sets of exploits, in which every exploit is needed in reaching the goal.  In this 

example, there are two such minimal exploit sets: 

• All exploits except scp_upload_pw(attack,bart), and 

• All exploits except scp_download_pw(bart, attack). 

For network hardening using these minimal exploit sets, we must assume that 

all exploits in the union of the minimal exploit sets must be stopped.  In this 

example, we would therefore conclude that scp_download_pw(bart,attack) must 

be stopped, even though stopping it has no effect on the attacker reaching the 

goal. 
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Fig. 1.6. Attack graph illustrating TVA minimal-cost network hardening.  A logical expression is 

formed for the attack goal g in terms of initial network conditions. 
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Also, hardening initial condition trans_ssh_pw(attack,bart) simultaneously 

stops two exploits, i.e., scp_upload(attack,bart) and ssh_login_pw(attack, bart).  

This would not be apparent by considering minimal exploit sets only.  In other 

words, a single initial condition could control many exploits.  In general, 

relationships among initial conditions and exploits can be many-to-many and 

complex.  To solve the network-hardening problem, analysis must be at the level 

of network elements rather than exploits. 

Our TVA network-hardening solutions not only prevent attacks against given 

critical resources, but also allow choices with minimal cost in network changes.  

In Fig. 1.6, the expression αβχφγη=g  implies that hardening any one of these 

will protect the goal: 

1. link_arp(attack,bart), 

2. trans_yp(attack,homer), 

3. trans_ssh_pw(attack,bart), 

4. app_nfs_home_su(bart,homer), 

5. trans_nfs(bart,homer), or 

6. trans_ssh_pk(bart,homer). 

Implementing Solutions 2, 5, or 6 would require shutting down critical network 

services.  Solution 1 requires hard-coding IP/MAC address relationships.  

Solution 4 requires removing the super user home directory file share.  Solution 3 

requires using public-key authentication rather than password authentication.  

Among all these options, Solution 3 is the best (lowest-cost) choice. 

1.5.  Attack Graph Visualization 

One of the greatest challenges in TVA is managing the complexity of the 

resulting attack graphs, particularly for larger and less secure networks.  

Visualization is a natural choice for conveying complex graph relationships to 

the user.  Still, attack graphs in their raw form often yield overly cluttered views 

that are difficult to understand, as in Fig. 1.7.  Therefore, in developing our TVA 

system, we have devoted considerable effort in managing attack graph visual 

complexity. 

 

Our TVA attack graphs scale quadratically rather than exponentially15, so 

that graphs such as Fig. 1.7 can be computed in a fraction of a second.  However, 

when shown in their full complexity, such graphs are too complicated for easy 

comprehension. 
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To manage visual complexity of attack graphs, our TVA system employs 

sophisticated methods of graph clustering16.  This is illustrated in Fig. 1.8. 

 

 
 

Fig. 1.7. Attack graph visual complexity.  In their raw form, such graphs can overwhelm an analyst. 

 

(a) (b)

(c)
(d)

 
 
Fig. 1.8. Recursively clustered attack graphs.  At each level of clustering, the attack graph view 

becomes progressively summarized and simplified. 
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Fig. 1.8(a) is the original attack graph in its full complexity.  Figure 1.8(b) 

shows the same attack graph, this time aggregated to the level of machines and 

the sets of exploits between each pair of them.  In Figure 1.8(c), this is further 

aggregated to sets of machines with unlimited connectivity to one another’s 

vulnerabilities (e.g., subnets).  In Figure 1.8(d), subnets are collapsed to single 

vertices, as are the exploits between them.  Thus each level of aggregation 

provides a progressively summarized (less complicated) view of the attack graph. 

In our TVA system, analysts can start with high-level overviews, and drill 

down through successive levels of detail as desired.  The system begins with the 

graph automatically aggregated based on known network attributes.  The analyst 

can also interactively aggregate graph elements as desired.  Graph visualization 

and interaction is done through our custom Visio-style user interface. 

In this way, arbitrarily large and complex attack graphs can be explored 

through manageable, meaningful interactive displays.  Figure 1.9 shows such 

interactive attack graph visualization, showing how the analyst can show 

arbitrary levels of detail across the graph all within a single view.  In this 

example, several hundred host machines are included in the attack graph. 

 

 
 

Fig. 1.9. Interactive TVA attack graph visualization.  Arbitrarily complex attack graphs can be 

explored through interactive displays, with mixed levels of detail within a single graph view. 
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1.6.  Real-Time Event Correlation 

Once actual attacks are detected, the TVA attack graph provides the necessary 

context for correlating intrusion detection events and predicting next possible 

attack steps.  In other words, we embed incoming intrusion alarms in the TVA 

attack graph, which is based on known vulnerabilities across the network.  While 

multi-step intrusion alarm correlation has been proposed in the past
17

, it lacks 

predictive power without the context provided by our vulnerability-based attack 

graphs.  Further, using our pre-computed attack graphs, we can correlate alarms 

faster than typical intrusion detection systems can generate them18, 19, 20. 

From the TVA attack graph predicting all possible attacks, incoming 

intrusion alarms are assigned to their corresponding predicted exploits.  We then 

visualize the joint predicted/observed attack graph, as shown in Fig. 1.10.  Here, 

red ovals are detection events placed in the predicted attack graph.  In this 

example, one red event immediately follows another in the graph, thus 

correlating these as a possible two-step attack.  In this way, isolated detection 

events can be quickly assessed as possible multi-step attacks.  Such predictive 

graphs also reduce false alarms, i.e., they contain only those attacks that the 

network is actually vulnerable against. 

 

Detected

Response

Vulnerable

 
 

Fig. 1.10. Graph of predicted and actual attacks.  Attack events detected in real time are embedded 

in TVA graph of predicted attacks, providing context for event correlation and attack response. 
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With TVA attack graphs, we can also provide recommendations in response 

to detected attacks.  For example, in Fig. 1.10 the orange ovals are predicted 

exploits that immediately follow intrusion alarms in the attack graph.  Since these 

are the next possible exploits an attacker could take (based on known 

vulnerabilities), stopping them is a high-priority for containing the attack.  The 

blue ovals in this figure are predicted exploits that are further away from the 

detected attacks, and are therefore less time-critical.  Without the predictive 

power of our vulnerability-based TVA attack graphs, we could perform alarm 

correlation (red ovals) only. 

Our attack response recommendations are optimal in the sense that they 

address the exact next-step vulnerabilities in the network – no more and no less.  

For example, rather than blocking traffic from an entire subnet (an overly 

cautious and disruptive response based on limited information), our responses 

could give precise blocking rules down to a single vulnerable host port. 

With TVA attack graphs, we can also predict missed events (false negatives) 

when correlating detection events into multi-step attacks.  In this way, we 

account for uncertainty in the accuracy of our intrusion detection systems.  For 

example, we can use attack graph distances as measures of causal correlation 

between detection events
18

.  This is illustrated in Fig. 1.11.  Here, real-time 

intrusion events are assigned to their corresponding predicted exploits.  

Correlation scores are then computed as the inverse of event distance in the graph 

(higher correlation for shorter distances). 
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Fig. 1.11. TVA attack graph for intrusion event correlation.  Distance between incoming alarms in 

predicted attack graph provides a measure of correlation. 
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In the case of Fig. 1.11(a), the two intrusion events are directly connected in 

the graph (unity distance), giving the maximum possible correlation score (unity) 

between the events.  In Fig. 1.11(b), rather than being directly connected, there is 

an intervening predicted exploit between the two events, i.e., they are separated 

by a distance of 2.  For this pair of events we compute the lower correlation score 

of 0.5 (the inverse of distance 2). 

We thus have a numerical score that measures how strongly events are 

connected in the attack graph.  We can then select a threshold value of 

correlation to form multi-step attack attacks from isolated alarms.  That is, event 

pairs that are sufficiently well correlated can be combined into a single multi-step 

attack.  This is an extension of the idea shown in Fig. 1.10, now taking into 

account missed detections. 

We can further refine this analysis by including recent event history when 

computing correlations.  The idea is that occasional missed detections should be 

scored higher than isolated events that happen to occur nearby.  For example, a 

missed detection (distance of 2) within a series of unity-distance events should be 

scored higher than a pair of distance-2 events among unrelated (large-distance) 

ones.  As shown in Fig. 1.12, we can apply local signal averaging operations to 

enhance the contrast between regions of higher and lower correlation.  In this 

way, we detect multi-step attacks with greater confidence, to address the 

uncertainty of our intrusion detection systems. 
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Fig. 1.12. Signal averaging to improve event correlation scores.  Averaging attack-graph distances 

for recent events provides robust event correlation in the face of intrusion detection uncertainties. 
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1.7.  Conclusions and Outlook 

To protect our critical networks, we must understand not only individual system 

vulnerabilities, but also their interdependencies.  The TVA approach places 

vulnerabilities and their protective measures within the context of overall 

network security by modeling their interdependencies via attack graphs.  The 

analysis of attack graphs provides alternative sets of protective measures that 

guarantee safety of critical systems, ranked by cost, e.g., maximum service 

availability and/or minimum number of required protective measures.  Through 

this unique new capability, administrators are able to determine the best sets of 

protective measures that should be applied in their environment. 

Our TVA system monitors the state of network assets, maintains models of 

network vulnerabilities and residual risk, and combines these to produce models 

that convey the impact of individual and combined vulnerabilities on overall 

security posture.  The central product of this system is a graph-based model 

showing all the ways an attacker can penetrate a network, built from models of 

network vulnerabilities and attacker exploits. 

TVA is not a mere cross-referencing of security data – it is a framework for 

general-purpose modeling, analysis, and visualization of network penetration.  

Our TVA system provides a unique new capability, transforming raw security 

data into a roadmap that lets one proactively prepare for attacks, manage 

vulnerability risks, and have real-time situational awareness.  It supports both 

offensive (e.g., penetration testing) and defensive (e.g., network hardening) 

applications, across all phases (protect, detect, react) of the information security 

lifecycle. 

The portrayal of attack paths through a network via TVA provides a concrete 

understanding of how individual and combined vulnerabilities impact overall 

network security.  For example, it is possible to 

• Compare possible expenditures of resources to determine which will have the 

greatest impact on overall security, 

• Graphically determine how much a new vulnerability will impact overall 

security, 

• Determine whether risk-mitigating efforts have a significant impact on 

overall security, or 

• Immediately observe any changes to individual machine configurations that 

increase the overall risk to the enterprise. 

Our TVA system transforms raw security data into a model of all possible 

attack paths into a network.  In providing this new capability, we have met key 

technical challenges, including the design of appropriate models, efficient model 
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population, effective visualizations and decision support tools, and the 

development of scalable mathematical representations and algorithms.  Our 

system addresses all these challenges, and delivers a product that offers truly 

unique capabilities among security tools. 

Acknowledgments 

This material is based upon work supported by Homeland Security Advanced 

Research Projects Agency under the contract FA8750-05-C-0212 administered 

by the Air Force Research Laboratory/Rome; by Air Force Research 

Laboratory/Rome under the contract FA8750-06-C-0246; by Army Research 

Office under the grant W911NF-05-1-0374; by Federal Aviation Administration 

under the contract DTFAWA-04-P-00278/0001; and by the National Science 

Foundation under grants CT-0627493, IIS-0242237, and IIS-0430402.  Any 

opinions, findings, and conclusions or recommendations expressed in this 

material are those of the authors and do not necessarily reflect the views of the 

sponsoring organizations. 

References 

1. S. Jajodia, S. Noel, B. O’Berry, “Topological Analysis of Network Attack Vulnerability,” in 

Managing Cyber Threats: Issues, Approaches and Challenges, V. Kumar, J. Srivastava, A. 

Lazarevic (eds.), Kluwer Academic Publisher, 2005. 

2. R. Deraison, Nessus, http://www.nessus.org, last retrieved April 2007. 

3. eEye Digital Security, Retina® Network Security Scanner, 

http://www.eeye.com/html/Products/Retina/index.html, last retrieved April 2007. 

4. Foundstone, FoundScan Frequently Asked Questions, 

http://www.foundstone.com/pdf/foundscan_general_faq.pdf, last retrieved April 2007. 

5. Symantec Corporation, Symantec Discovery Overview, 

http://www.symantec.com/enterprise/products/overview.jsp?pcid=1025&pvid=923_1, last 

retrieved April 2007. 

6. Symantec Corporation, Symantec DeepSight Threat Management System, 

https://tms.symantec.com/Default.aspx, last retrieved April 2007. 

7. Security Focus, Bugtraq Vulnerabilities, http://www.securityfocus.com/vulnerabilities, last 

retrieved April 2007. 

8. MITRE, CVE – Common Vulnerabilities and Exposures, http://cve.mitre.org/, last retrieved 

April 2007. 

9. Sourcefire, Snort – The De Facto Standard for Intrusion Detection/Prevention, 

http://www.snort.org/, last retrieved April 2007. 

10. O. Sheyner, J. Haines, S. Jha, R. Lippmann, J. Wing, “Automated Generation and Analysis of 

Attack Graphs,” in Proceedings of the 2002 IEEE Symposium on Security and Privacy, 

Oakland, CA, 2002. 



S. Jajodia and S. Noel 

 

20

11. S. Jha, O. Sheyner, J. Wing, “Two Formal Analyses of Attack Graphs,” in Proceedings of the 

15th Computer Security Foundation Workshop, Nova Scotia, Canada, 2002. 

12. P. Ammann, D. Wijesekera, S. Kaushik, “Scalable, Graph-Based Network Vulnerability 

Analysis,” in Proceedings of the 9th ACM Conference on Computer and Communications 

Security, Washington, DC, 2002. 

13. S. Noel, S. Jajodia, B. O’Berry, M. Jacobs, “Efficient Minimum-Cost Network Hardening via 

Exploit Dependency Graphs,” in Proceedings of the 19th Annual Computer Security 

Applications Conference, Las Vegas, Nevada, 2003. 

14. L. Wang, S. Noel, S. Jajodia, “Minimum-Cost Network Hardening Using Attack Graphs,” 

Computer Communications, 29(18), 3812-3824, 2006. 

15. S. Noel, S. Jajodia, “Managing Attack Graph Complexity through Visual Hierarchical 

Aggregation,” in Proceedings of the ACM CCS Workshop on Visualization and Data Mining 

for Computer Security, Fairfax, Virginia, 2004. 

16. S. Noel, M. Jacobs, P. Kalapa. S. Jajodia, “Multiple Coordinated Views for Network Attack 

Graphs,” in Proceedings of the 2nd International Workshop on Visualization for Computer 

Security, Minneapolis, Minnesota, 2005. 

17. P. Ning, Y. Cui, D. Reeves, “Constructing Attack Scenarios through Correlation of Intrusion 

Alerts,” in Proceedings of the 9th ACM Conference on Computer and Communications 

Security, Washington, D.C., 2002. 

18. S. Noel, E. Robertson, S. Jajodia, “Correlating Intrusion Events and Building Attack 

Scenarios through Attack Graph Distances,” in Proceedings of the 20th Annual Computer 

Security Applications Conference, Tucson, Arizona, December 2004. 

19. L. Wang, A. Liu, S. Jajodia, “An Efficient and Unified Approach to Correlating, 

Hypothesizing, and Predicting Network Intrusion Alerts,” in Proceedings of the 10th 

European Symposium on Research in Computer Security, Milan, Italy, September 2005. 

20. L. Wang, A. Liu, S. Jajodia, “Using Attack Graphs for Correlating, Hypothesizing, and 

Predicting Network Intrusion Alerts,” Computer Communications, 29(15), 2006. 


