
1

Topological Vulnerability Analysis: A Powerful New Approach

For Network Attack Prevention, Detection, and Response

Sushil Jajodia and Steven Noel

Center for Secure Information Systems, George Mason University

4400 University Drive, S-113 85 Fairfax, Virginia, USA

E-mail: {jajodia, snoel}@gmu.edu

This chapter examines issues and methods for survivability of systems under

malicious penetrating attacks. To protect from such attacks, it is necessary to

take steps to prevent them from succeeding. At the same time, it is important to

recognize that not all attacks can be averted at the outset; those that are partially

successful may be unavoidable, and comprehensive support is required for

identifying and responding to such attacks. We describe our Topological

Vulnerability Analysis (TVA) system, which analyzes vulnerability to multi-

step network penetration. At the core of the TVA system are graphs that

represent known exploit sequences that attackers can use to penetrate computer

networks. We show how TVA attack graphs can be used to compute actual sets

of hardening measures that guarantee the safety of given critical resources.

TVA can also correlate received alerts, hypothesize missing alerts, and predict

future alerts. Thus, TVA offers a promising solution for administrators to

monitor and predict the progress of an intrusion, and take quick appropriate

countermeasures.

1.1. Introduction

Computer networks are inherently difficult to secure against attack. They are

often connected to the Internet, for which security was not an original design

goal. Default configurations for many software components are insecure, and

these configurations often remain unchanged by the user. There is generally little

economic incentive to develop secure software, so vulnerabilities are

commonplace.

Moreover, network security concerns are highly interdependent, so that a

machine’s susceptibility to attack can depend on vulnerabilities across the

network. Attackers can combine vulnerabilities in unexpected ways, allowing

them to incrementally penetrate a network and compromise critical systems. We

can reduce the impact of attacks by knowing the paths of vulnerability through

our networks. To do so, we need to transform raw security data into topological

maps that let us prepare for attacks, manage risks, and have real-time situational

awareness.

Traditional tools for network vulnerability assessment simply scan individual

machines on a network and report their known vulnerabilities. Security

conscious organizations may then employ Red Teams of network penetration

testers, who attempt to combine vulnerabilities in ways that real attackers might.

But penetration-testing experts are expensive, changes to the network

S. Jajodia and S. Noel

2

configuration render the test results obsolete, and the only attack paths reported

are those found within the allotted test time.

The processes for tracking network vulnerabilities are labor-intensive,

require a great deal of expertise, and are error prone because of the complexity,

volume, and frequent changes in security data and network configurations. But

through automated simulation of possible attack paths, we can understand our

overall security posture in the face of actual attacks.

Our innovative approach to network attack survivability is termed

Topological Vulnerability Analysis (TVA)
1
. TVA simulates incremental network

penetration, building complete maps of multi-step attacks showing all possible

paths into a network. It maintains models of the network configuration and

potential threats. From these models, it discovers attack graphs that convey the

impact of combined vulnerabilities on overall security. TVA technology

includes recursive attack graph aggregation with interactive drill down of

scenarios in the cyber domain. It incorporates a variety of types of network scan

data, providing the ability to easily model and analyze even large networks.

Currently available tools generally give few clues as to how attackers might

exploit combinations of vulnerabilities among multiple hosts to advance an attack

on a network. The security analyst is left with just a set of known vulnerabilities.

It can be difficult even for experienced analysts to recognize how an attacker

might combine individual vulnerabilities to seriously compromise a network.

For larger networks, the number of possible vulnerability combinations to

consider can be overwhelming.

In this chapter, we describe a mature system that implements TVA. This tool

considers combinations of modeled attacker exploits on a network and then

discovers attack paths (sequences of exploits) leading to specific network targets.

The discovered attack paths allow an assessment of the true vulnerability of

critical network resources. TVA automates the type of labor-intensive analysis

usually performed by penetration-testing experts. It encourages inexpensive

“what-if” analyses, in which candidate network configurations are tested for

overall impact on network security. It also allows for the computation of

network-hardening options that protect given critical resources while requiring

minimal network changes.

To meet network availability requirements, there must usually remain some

residual vulnerability after all protective measures have been applied. In such

cases, we must then rely on the detect/react phases of security. While we cannot

predict the origin and timing of attacks, TVA can reduce their impact by

providing knowledge of the possible attack paths through the network. For

example, TVA attack graphs can be used to correlate and aggregate network

Topological Vulnerability Analysis

3

attack events, across platforms as well as across the network. TVA attack graphs

can also provide the necessary context for optimal reaction to attacks.

1.2. Topological Analysis of Network Vulnerability

Because of the interdependencies of exploits across the network, a topological

approach is necessary for full understanding of attack vulnerability. The

traditional approach of considering network components in isolation and

reporting vulnerabilities independent of one another is clearly insufficient. TVA

models vulnerabilities and combines them in ways that real network attackers

might do. The result is the discovery of all attack paths through a network.

Figure 1.1 shows the overall flow of processing in TVA. There are three

inward flows of information: a model of the network configuration, a knowledge

base of modeled attacker exploits, and a desired attack simulation scenario.

From these, TVA then simulates incremental attacks through the network,

thereby discovering all possible attack paths (organized as a graph) to the given

critical network resources. Various innovative visualization capabilities support

interactive analysis of resulting attack graphs, while keeping visual complexity

manageable. TVA can also use the attack graphs to compute optimal network

protection measures.

To model the various elements of the network and network attack events, our

TVA system automatically processes the output of various network scanning and

Exploit
Modeling
Exploit

Modeling

Attack

Scenario

Simulation
Engine

Workstation

Bridge HubHub

ServerComputer Computer

Laptop Network
Workstation

Bridge HubHub

ServerComputer Computer

Laptop

Workstation

Bridge HubHub

ServerComputer Computer

Laptop Network

Threat
Reporting

Threat
Reporting

Network
Modeling

Attack
Graph

Visualization

Network

Protection

Network

Protection

Fig. 1.1. Topological Vulnerability Analysis (TVA). From the network configuration and modeled

attacker exploits, multi-step attacks are simulated, analyzed through interactive visualization, and

used to formulate optimal network protection.

S. Jajodia and S. Noel

4

logging tools. It can combine scans from various network locations, building a

complete map of connectivity to vulnerable services throughout the network, and

can map actual intrusion events to elements of the resulting attack graph.

Figure 1.2 shows the inputs to our TVA system (current and proposed). The

inputs occur in two phases. In the pre-attack protect phase, network scan tools

provide information about network configuration and known vulnerabilities. For

this, we can map vulnerability scanner output directly to corresponding

vulnerable services on network machines. Our system is currently integrated

with the Nessus
2
 (open-source) and Retina

3
 vulnerability scanners, and

integration with the FoundScan4 vulnerability scanner is under development. Or

we can map the output of asset discovery tools (detected software on a machine)

to the known vulnerabilities for each software package. For this, our system is

integrated with Symantec Discovery
5
, which we map to known vulnerabilities

through integration with Symantec DeepSight
6
 (a direct feed of the Bugtraq

7

vulnerability data). Cross-referencing data, including MITRE’s Common

Vulnerabilities and Exposures8 (CVE), are used to correlate vulnerabilities across

various sources.

In the detect phase, the TVA system maps detected attack events to their

corresponding elements of the predicted attack graph. This provides the context

Attack ScenariosAttack Scenarios

Asset DiscoveryAsset Discovery

TVA Engine
And Visualizer

NetworkNetwork

Intrusion Detection

Web LogsWeb Logs

Netflow DataNetflow Data

TCP Dump DataTCP Dump Data

System LogsSystem Logs

Intrusion Detection

Web LogsWeb Logs

Netflow DataNetflow Data

TCP Dump DataTCP Dump Data

System LogsSystem Logs

Detect

Protect

Known Threats

Vulnerability Scans

Fig. 1.2. Inputs to TVA system. During protect phase, pre-attack scans are used to build models of

the network. During the detect phase, attack events are mapped to the predicted attack graph.

Topological Vulnerability Analysis

5

for correlating events, predicting the next possible attack steps, and responding in

the best way. It also helps remove clutter by prioritizing those predicted exploits

that are correlated with recent real-time data. Our TVA system is currently

integrated with the Snort
9
 intrusion detection system. Integration with other

intrusion detection systems (e.g., Dragon) is also possible, as well as with other

sources of real-time data, such as web server logs (e.g., Apache and Microsoft

IIS), operating system logs, and network traffic data (e.g., Netflow and TCP

Dump).

To keep our TVA input exploit model current, we monitor emerging cyber

threats, in the form of vulnerabilities that are discovered for particular software

and the ways in which attackers can exploit these vulnerabilities. From this

threat information, we model individual attacker exploits in terms of

preconditions and postconditions. The modeled exploits are in terms of generic

attacker/victim machines, which the simulation engine maps to a particular target

network.

Because of all this pre-populated data, when using our TVA system the

security analyst need not be burdened with all the details of the network and

exploit data. All that is needed is to define the attack scenario, e.g., the starting

point, the attack goal, and any what-if changes to the network configuration. The

attack scenario could also be less constrained, such as finding all possible attack

starts leading to one or more goals, or finding all possible paths from particular

starting points.

1.3. A Motivating Example

As a motivating example, we demonstrate how TVA combines vulnerabilities in

a network to find all attack paths from a particular starting point to a given goal.

We then show how TVA determines optimal ways of hardening the network

against these attacks.

Consider the small example network shown in Fig. 1.3. Here, a restrictive

firewall protects the machines that support public web and email services. TVA

shows how vulnerable services on a network can still be exploited through multi-

step attacks, when the attacker cannot access them directly.

The firewall implements the following policy to restrict access to the network

from the outside:

• Incoming web traffic is permitted only to the web server, which is running

Microsoft IIS.

• Incoming email traffic is permitted to the mail server.

S. Jajodia and S. Noel

6

• Incoming FTP is blocked because the mail server is running wu_ftpd, which

has a history of vulnerabilities.

• All other incoming traffic is blocked.

For this example, we populate the TVA network model through Nessus

scans. In particular, we scan the web server and mail server from outside the

firewall, to obtain vulnerable connectivity from the initial attack vantage point.

We also scan these two servers behind the firewall, showing any subsequent

vulnerable connectivity once the attacker gains entry into the network. These

scan results are merged to form an overall model of the network for TVA.

The attack goal for this example is to obtain super user (root) access on the

mail server, starting from outside the network. This is not directly possible

because (1) there are no known vulnerabilities for the version of sendmail

running on the mail server, and (2) the firewall blocks access to the vulnerable

wu_ftpd service from the attack machine. TVA analyzes whether the attack goal

can be realized indirectly, i.e., through a sequence of multiple exploits.

Figure 1.4 shows the resulting TVA attack graph for the example network in

Fig. 1.3. Here, shaded ovals are simulated attacker exploits. For each exploit,

incoming edges represent preconditions, all of which must be met for the exploit

to be successful. Then for each exploit, outgoing edges represent postconditions,

i.e., the conditions induced when the exploit is successful. Preconditions with the

5-digit Nessus identifiers represent connections to vulnerable network services

detected by Nessus.

Firewall

Attacker

Web Server Mail ServerHub

NT4.0

IIS

NT4.0

IIS

Linux
attack tools

Linux
attack tools

10.10.100.10

10.10.101.10

10.10.100.20

Linux

wu_ftpd

Linux

wu_ftpd

Fig. 1.3. Small example network for illustrating TVA. The firewall allows web traffic to the web

server, allows email traffic to the mail server, and blocks all other incoming traffic.

Topological Vulnerability Analysis

7

The initial condition execute(attack) represents the fact that the attacker can

execute arbitrary code on his own machine. This enables three separate exploits

from attack to the web server (machine m20). Each of these exploits provides

the ability to execute arbitrary code on the web server. This subsequently

enables four new exploits from the web server to the mail server (machine m10),

each yielding the ability to execute arbitrary code on the mail server. Two of

these exploits provide access at a super user level of privilege. The other two

exploits provide user-level privilege only, but two subsequent local privilege

escalation exploits on the mail server provide other paths to super user.

Finding such attack paths is a unique TVA capability. Vulnerability

scanning tools connected outside the firewall report only the IIS vulnerabilities

on the web server. Such scans from inside the firewall would report the

vulnerable wu_ftpd service, but TVA is required to build an attack path from the

outside through the web server to the mail server. While easy enough for an

experienced penetration tester on such a small network, it becomes

unmanageable for networks where voluminous outputs must be analyzed for

large numbers of machines.

Solution 1

Solution 2

Solution 1 Solution 1

Solution 2

Solution 2 Solution 2

No Impact No Impact

Fig. 1.4. Attack graph illustrating TVA. This graph shows all possible ways an outside attacker can

obtain the ability to execute arbitrary code as a super user on the mail server.

S. Jajodia and S. Noel

8

TVA can not only find attack graphs, but can also use these graphs for

finding optimal solutions for hardening the network. In particular, though TVA

we can find combinations of network-hardening measures that prevent a given

attack scenario, while requiring a minimal number of changes to the network

configuration. Figure 1.4 illustrates this. For this network, one such solution is

to remediate (e.g., patches or firewall blocking) the three vulnerabilities from

attack to m20. Hardening these three vulnerabilities is necessary and sufficient

for preventing the attack goal. The other solution is to harden the two

vulnerabilities on m10 that enable the four exploits yielding super user access.

Interestingly, TVA shows that hardening the other two vulnerabilities on m10

(yielding user-level access only) has no impact on blocking access to the goal,

i.e., hardening them is neither necessary nor sufficient.

The next section describes the TVA process for optimal network hardening

in more detail.

1.4. Minimal-Cost Network Hardening

Attack graphs reveal threats by predicting combinations of attacker exploits that

compromise given critical resources. But alone, they do not directly provide a

solution to remove the threat. Finding such solutions manually can be tedious

and error prone, especially for larger and less secure networks.

TVA automates the task of hardening a network against multi-step attacks.

Unlike previous approaches whose solutions are in terms of attacker

exploits10,11,12, our solutions are in terms of network configuration elements.

These solutions are therefore more enforceable, because the configuration

elements can be independently hardened, whereas exploits are usually

consequences of other exploits and cannot be disabled without removing the root

causes. Also, our solutions are optimal in the sense that they incur minimal cost

in terms of changes to the network.

Consider the network in Fig. 1.5, which we model using multiple layers of

the TCP/IP stack. This example shows how complicated interdependencies

among exploits can be resolved to an optimal set of hardening measures. It also

demonstrates how purely exploit-based hardening approaches are insufficient for

network hardening, i.e., that solutions in terms of network configuration elements

are needed.

Topological Vulnerability Analysis

9

In Fig. 1.5, an Ethernet switch provides connectivity at the link layer. At the

transport layer, unused services have been removed, secure shell replaces FTP,

telnet and other cleartext password-based services, and there is tcpwrapper

protection on RPC services. Application-layer trust relationships further restrict

NFS and NIS domain access. The exploits and network configuration elements

(exploit conditions) for this example are described in Table 1.1 and Table 1.2,

respectively.

Ethernet
switch

attack

bart

NIS client

ssh (password auth)

homer:/home autofs

homer

NIS server

ssh (RSA key auth)

/home nfs export to bart

/home/root/.ssh for RSA keys

Ethernet
switch

attack

bart

NIS client

ssh (password auth)

homer:/home autofs

homer

NIS server

ssh (RSA key auth)

/home nfs export to bart

/home/root/.ssh for RSA keys

Fig. 1.5. Network illustrating TVA minimal-cost network hardening. Complicated

interdependencies among exploits are to be resolved to optimal hardening measures.

Table 1.1. Exploits for network shown in Fig. 1.5.

Exploit Description

arp_spoof Spoof (impersonate) machine identity via ARP poison

attack

ypcat_passwd Dump encrypted NIS password file

crack_passwd Crack encrypted user password(s)

scp_upload_pw Secure shell copy, upload direction, using password

authentication

scp_download_pw Secure shell copy, download direction, using password

authentication

ssh_login_pw Secure shell login using password authentication

rh62_glibc_bof Red Hat 6.2 buffer overflow in glibc library

create_nfs_home_ssh_pk_su Exploit NFS home share to create secure shell key pair

used for superuser authentication

ssh_login_pk_su Secure shell login using public key authentication

S. Jajodia and S. Noel

10

Figure 1.6 shows the attack graph for the network in Fig. 1.5 modeled via the

exploits and network conditions in Table 1.1 and Table 1.2. Using our

previously described algorithm for minimal-cost hardening13, 14, we traverse the

attack graph to construct a logical expression for the attack goal g (execute code

as superuser on machine homer) in terms of the initial network conditions:

() () ()
αβχφγη

ηαβχφγαβχδεαβχ

=

⋅⋅⋅+=g

The attack graph has been reduced to an expression that leads to simple

choices for network hardening. Note that two initial conditions in the graph do

not appear in the expression for goal g:

(i) ()attackbartpwsshtrans ,__≡δ , and

(ii) ()attackbartpwauthapp ,_≡ε .

These drop out in this fashion:

()
()

αβχ

δεαβχ

αβχδεαβχ

=

+=

+=

1

,__62 bartbartbofglibcrh

Table 1.2. Configuration elements for network shown in Fig. 1.5.

Network Condition Description

link_arp Attacker shares link-level connectivity with victim (both on

same LAN)

trans_yp Transport layer connectivity to NIS server

trans_ssh_pw Transport layer connectivity to secure shell server that

supports password authentication

trans_ssh_pk Transport layer connectivity to secure shell server that

supports public key authentication

trans_nfs Transport layer connectivity to NFS server

app_nfs_home_su Application “connection” representing sharing superuser’s

home directory

app_yp_domain Application “connection” representing NIS domain

membership

app_yp_passwd Application “connection” representing acquisition of

encrypted NIS password database

app_pwauth Application “connection” representing acquisition of

unencrypted user password

app_ssh_pk_su Application “connection” representing acquisition/creation

of key pair used for superuser authentication

pgm_glibc_bof Program used to exploit glibc library buffer overflow

vulnerability

execute Ability to execute arbitrary code

superuser Super user privilege

Topological Vulnerability Analysis

11

Through our approach, such irrelevant conditions as δ and ε do not get

considered for network hardening. Overall, our goal expression contains initial

conditions that are both necessary and sufficient for network-hardening

decisions.

This kind of sufficiency is not present in previous approaches to network

hardening via exploit set minimization. These approaches search for minimal

sets of exploits, in which every exploit is needed in reaching the goal. In this

example, there are two such minimal exploit sets:

• All exploits except scp_upload_pw(attack,bart), and

• All exploits except scp_download_pw(bart, attack).

For network hardening using these minimal exploit sets, we must assume that

all exploits in the union of the minimal exploit sets must be stopped. In this

example, we would therefore conclude that scp_download_pw(bart,attack) must

be stopped, even though stopping it has no effect on the attacker reaching the

goal.

δ

α

β

χ

ε

χ

φ γ

η

g

δ

α

β

χ

ε

χ

φ γ

η

g

Fig. 1.6. Attack graph illustrating TVA minimal-cost network hardening. A logical expression is

formed for the attack goal g in terms of initial network conditions.

S. Jajodia and S. Noel

12

Also, hardening initial condition trans_ssh_pw(attack,bart) simultaneously

stops two exploits, i.e., scp_upload(attack,bart) and ssh_login_pw(attack, bart).

This would not be apparent by considering minimal exploit sets only. In other

words, a single initial condition could control many exploits. In general,

relationships among initial conditions and exploits can be many-to-many and

complex. To solve the network-hardening problem, analysis must be at the level

of network elements rather than exploits.

Our TVA network-hardening solutions not only prevent attacks against given

critical resources, but also allow choices with minimal cost in network changes.

In Fig. 1.6, the expression αβχφγη=g implies that hardening any one of these

will protect the goal:

1. link_arp(attack,bart),

2. trans_yp(attack,homer),

3. trans_ssh_pw(attack,bart),

4. app_nfs_home_su(bart,homer),

5. trans_nfs(bart,homer), or

6. trans_ssh_pk(bart,homer).

Implementing Solutions 2, 5, or 6 would require shutting down critical network

services. Solution 1 requires hard-coding IP/MAC address relationships.

Solution 4 requires removing the super user home directory file share. Solution 3

requires using public-key authentication rather than password authentication.

Among all these options, Solution 3 is the best (lowest-cost) choice.

1.5. Attack Graph Visualization

One of the greatest challenges in TVA is managing the complexity of the

resulting attack graphs, particularly for larger and less secure networks.

Visualization is a natural choice for conveying complex graph relationships to

the user. Still, attack graphs in their raw form often yield overly cluttered views

that are difficult to understand, as in Fig. 1.7. Therefore, in developing our TVA

system, we have devoted considerable effort in managing attack graph visual

complexity.

Our TVA attack graphs scale quadratically rather than exponentially15, so

that graphs such as Fig. 1.7 can be computed in a fraction of a second. However,

when shown in their full complexity, such graphs are too complicated for easy

comprehension.

Topological Vulnerability Analysis

13

To manage visual complexity of attack graphs, our TVA system employs

sophisticated methods of graph clustering16. This is illustrated in Fig. 1.8.

Fig. 1.7. Attack graph visual complexity. In their raw form, such graphs can overwhelm an analyst.

(a) (b)

(c)
(d)

Fig. 1.8. Recursively clustered attack graphs. At each level of clustering, the attack graph view

becomes progressively summarized and simplified.

S. Jajodia and S. Noel

14

Fig. 1.8(a) is the original attack graph in its full complexity. Figure 1.8(b)

shows the same attack graph, this time aggregated to the level of machines and

the sets of exploits between each pair of them. In Figure 1.8(c), this is further

aggregated to sets of machines with unlimited connectivity to one another’s

vulnerabilities (e.g., subnets). In Figure 1.8(d), subnets are collapsed to single

vertices, as are the exploits between them. Thus each level of aggregation

provides a progressively summarized (less complicated) view of the attack graph.

In our TVA system, analysts can start with high-level overviews, and drill

down through successive levels of detail as desired. The system begins with the

graph automatically aggregated based on known network attributes. The analyst

can also interactively aggregate graph elements as desired. Graph visualization

and interaction is done through our custom Visio-style user interface.

In this way, arbitrarily large and complex attack graphs can be explored

through manageable, meaningful interactive displays. Figure 1.9 shows such

interactive attack graph visualization, showing how the analyst can show

arbitrary levels of detail across the graph all within a single view. In this

example, several hundred host machines are included in the attack graph.

Fig. 1.9. Interactive TVA attack graph visualization. Arbitrarily complex attack graphs can be

explored through interactive displays, with mixed levels of detail within a single graph view.

Topological Vulnerability Analysis

15

1.6. Real-Time Event Correlation

Once actual attacks are detected, the TVA attack graph provides the necessary

context for correlating intrusion detection events and predicting next possible

attack steps. In other words, we embed incoming intrusion alarms in the TVA

attack graph, which is based on known vulnerabilities across the network. While

multi-step intrusion alarm correlation has been proposed in the past
17

, it lacks

predictive power without the context provided by our vulnerability-based attack

graphs. Further, using our pre-computed attack graphs, we can correlate alarms

faster than typical intrusion detection systems can generate them18, 19, 20.

From the TVA attack graph predicting all possible attacks, incoming

intrusion alarms are assigned to their corresponding predicted exploits. We then

visualize the joint predicted/observed attack graph, as shown in Fig. 1.10. Here,

red ovals are detection events placed in the predicted attack graph. In this

example, one red event immediately follows another in the graph, thus

correlating these as a possible two-step attack. In this way, isolated detection

events can be quickly assessed as possible multi-step attacks. Such predictive

graphs also reduce false alarms, i.e., they contain only those attacks that the

network is actually vulnerable against.

Detected

Response

Vulnerable

Fig. 1.10. Graph of predicted and actual attacks. Attack events detected in real time are embedded

in TVA graph of predicted attacks, providing context for event correlation and attack response.

S. Jajodia and S. Noel

16

With TVA attack graphs, we can also provide recommendations in response

to detected attacks. For example, in Fig. 1.10 the orange ovals are predicted

exploits that immediately follow intrusion alarms in the attack graph. Since these

are the next possible exploits an attacker could take (based on known

vulnerabilities), stopping them is a high-priority for containing the attack. The

blue ovals in this figure are predicted exploits that are further away from the

detected attacks, and are therefore less time-critical. Without the predictive

power of our vulnerability-based TVA attack graphs, we could perform alarm

correlation (red ovals) only.

Our attack response recommendations are optimal in the sense that they

address the exact next-step vulnerabilities in the network – no more and no less.

For example, rather than blocking traffic from an entire subnet (an overly

cautious and disruptive response based on limited information), our responses

could give precise blocking rules down to a single vulnerable host port.

With TVA attack graphs, we can also predict missed events (false negatives)

when correlating detection events into multi-step attacks. In this way, we

account for uncertainty in the accuracy of our intrusion detection systems. For

example, we can use attack graph distances as measures of causal correlation

between detection events
18

. This is illustrated in Fig. 1.11. Here, real-time

intrusion events are assigned to their corresponding predicted exploits.

Correlation scores are then computed as the inverse of event distance in the graph

(higher correlation for shorter distances).

Exploit 1
machine1->machine2

vulnerability1

Exploit 2
machine2->machine3

vulnerability2

Exploit 3
machine3->machine4

vulnerability3

Event 1
machine1->machine2

signature1

Event 2
machine2->machine3

signature2

Distance = 1

Correlation = 1

Exploit 1
machine1->machine2

vulnerability1

Exploit 2
machine2->machine3

vulnerability2

Exploit 3
machine3->machine4

vulnerability3

Event 1
machine1->machine2

signature1

Event 2
machine2->machine3

signature2

Distance = 1

Correlation = 1

Exploit 2
machine2->machine3

vulnerability2

Exploit 3
machine3->machine4

vulnerability3

Event 2’
machine3->machine4

signature3

Distance = 2

Correlation = 1/2

Exploit 1
machine1->machine2

vulnerability1

Event 1
machine1->machine2

signature1

Exploit 2
machine2->machine3

vulnerability2

Exploit 3
machine3->machine4

vulnerability3

Event 2’
machine3->machine4

signature3

Distance = 2

Correlation = 1/2

Exploit 1
machine1->machine2

vulnerability1

Event 1
machine1->machine2

signature1

(a)

(b)

Fig. 1.11. TVA attack graph for intrusion event correlation. Distance between incoming alarms in

predicted attack graph provides a measure of correlation.

Topological Vulnerability Analysis

17

In the case of Fig. 1.11(a), the two intrusion events are directly connected in

the graph (unity distance), giving the maximum possible correlation score (unity)

between the events. In Fig. 1.11(b), rather than being directly connected, there is

an intervening predicted exploit between the two events, i.e., they are separated

by a distance of 2. For this pair of events we compute the lower correlation score

of 0.5 (the inverse of distance 2).

We thus have a numerical score that measures how strongly events are

connected in the attack graph. We can then select a threshold value of

correlation to form multi-step attack attacks from isolated alarms. That is, event

pairs that are sufficiently well correlated can be combined into a single multi-step

attack. This is an extension of the idea shown in Fig. 1.10, now taking into

account missed detections.

We can further refine this analysis by including recent event history when

computing correlations. The idea is that occasional missed detections should be

scored higher than isolated events that happen to occur nearby. For example, a

missed detection (distance of 2) within a series of unity-distance events should be

scored higher than a pair of distance-2 events among unrelated (large-distance)

ones. As shown in Fig. 1.12, we can apply local signal averaging operations to

enhance the contrast between regions of higher and lower correlation. In this

way, we detect multi-step attacks with greater confidence, to address the

uncertainty of our intrusion detection systems.

5 10 15 20 25 30 35 40 45
0

5
Event Distances

5 10 15 20 25 30 35 40 45
0

5
Event Distances

5 10 15 20 25 30 35 40 45
0

0.5

1

Correlation

Scores

TrackTrack Track

Threshold

Fig. 1.12. Signal averaging to improve event correlation scores. Averaging attack-graph distances

for recent events provides robust event correlation in the face of intrusion detection uncertainties.

S. Jajodia and S. Noel

18

1.7. Conclusions and Outlook

To protect our critical networks, we must understand not only individual system

vulnerabilities, but also their interdependencies. The TVA approach places

vulnerabilities and their protective measures within the context of overall

network security by modeling their interdependencies via attack graphs. The

analysis of attack graphs provides alternative sets of protective measures that

guarantee safety of critical systems, ranked by cost, e.g., maximum service

availability and/or minimum number of required protective measures. Through

this unique new capability, administrators are able to determine the best sets of

protective measures that should be applied in their environment.

Our TVA system monitors the state of network assets, maintains models of

network vulnerabilities and residual risk, and combines these to produce models

that convey the impact of individual and combined vulnerabilities on overall

security posture. The central product of this system is a graph-based model

showing all the ways an attacker can penetrate a network, built from models of

network vulnerabilities and attacker exploits.

TVA is not a mere cross-referencing of security data – it is a framework for

general-purpose modeling, analysis, and visualization of network penetration.

Our TVA system provides a unique new capability, transforming raw security

data into a roadmap that lets one proactively prepare for attacks, manage

vulnerability risks, and have real-time situational awareness. It supports both

offensive (e.g., penetration testing) and defensive (e.g., network hardening)

applications, across all phases (protect, detect, react) of the information security

lifecycle.

The portrayal of attack paths through a network via TVA provides a concrete

understanding of how individual and combined vulnerabilities impact overall

network security. For example, it is possible to

• Compare possible expenditures of resources to determine which will have the

greatest impact on overall security,

• Graphically determine how much a new vulnerability will impact overall

security,

• Determine whether risk-mitigating efforts have a significant impact on

overall security, or

• Immediately observe any changes to individual machine configurations that

increase the overall risk to the enterprise.

Our TVA system transforms raw security data into a model of all possible

attack paths into a network. In providing this new capability, we have met key

technical challenges, including the design of appropriate models, efficient model

Topological Vulnerability Analysis

19

population, effective visualizations and decision support tools, and the

development of scalable mathematical representations and algorithms. Our

system addresses all these challenges, and delivers a product that offers truly

unique capabilities among security tools.

Acknowledgments

This material is based upon work supported by Homeland Security Advanced

Research Projects Agency under the contract FA8750-05-C-0212 administered

by the Air Force Research Laboratory/Rome; by Air Force Research

Laboratory/Rome under the contract FA8750-06-C-0246; by Army Research

Office under the grant W911NF-05-1-0374; by Federal Aviation Administration

under the contract DTFAWA-04-P-00278/0001; and by the National Science

Foundation under grants CT-0627493, IIS-0242237, and IIS-0430402. Any

opinions, findings, and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect the views of the

sponsoring organizations.

References

1. S. Jajodia, S. Noel, B. O’Berry, “Topological Analysis of Network Attack Vulnerability,” in

Managing Cyber Threats: Issues, Approaches and Challenges, V. Kumar, J. Srivastava, A.

Lazarevic (eds.), Kluwer Academic Publisher, 2005.

2. R. Deraison, Nessus, http://www.nessus.org, last retrieved April 2007.

3. eEye Digital Security, Retina® Network Security Scanner,

http://www.eeye.com/html/Products/Retina/index.html, last retrieved April 2007.

4. Foundstone, FoundScan Frequently Asked Questions,

http://www.foundstone.com/pdf/foundscan_general_faq.pdf, last retrieved April 2007.

5. Symantec Corporation, Symantec Discovery Overview,

http://www.symantec.com/enterprise/products/overview.jsp?pcid=1025&pvid=923_1, last

retrieved April 2007.

6. Symantec Corporation, Symantec DeepSight Threat Management System,

https://tms.symantec.com/Default.aspx, last retrieved April 2007.

7. Security Focus, Bugtraq Vulnerabilities, http://www.securityfocus.com/vulnerabilities, last

retrieved April 2007.

8. MITRE, CVE – Common Vulnerabilities and Exposures, http://cve.mitre.org/, last retrieved

April 2007.

9. Sourcefire, Snort – The De Facto Standard for Intrusion Detection/Prevention,

http://www.snort.org/, last retrieved April 2007.

10. O. Sheyner, J. Haines, S. Jha, R. Lippmann, J. Wing, “Automated Generation and Analysis of

Attack Graphs,” in Proceedings of the 2002 IEEE Symposium on Security and Privacy,

Oakland, CA, 2002.

S. Jajodia and S. Noel

20

11. S. Jha, O. Sheyner, J. Wing, “Two Formal Analyses of Attack Graphs,” in Proceedings of the

15th Computer Security Foundation Workshop, Nova Scotia, Canada, 2002.

12. P. Ammann, D. Wijesekera, S. Kaushik, “Scalable, Graph-Based Network Vulnerability

Analysis,” in Proceedings of the 9th ACM Conference on Computer and Communications

Security, Washington, DC, 2002.

13. S. Noel, S. Jajodia, B. O’Berry, M. Jacobs, “Efficient Minimum-Cost Network Hardening via

Exploit Dependency Graphs,” in Proceedings of the 19th Annual Computer Security

Applications Conference, Las Vegas, Nevada, 2003.

14. L. Wang, S. Noel, S. Jajodia, “Minimum-Cost Network Hardening Using Attack Graphs,”

Computer Communications, 29(18), 3812-3824, 2006.

15. S. Noel, S. Jajodia, “Managing Attack Graph Complexity through Visual Hierarchical

Aggregation,” in Proceedings of the ACM CCS Workshop on Visualization and Data Mining

for Computer Security, Fairfax, Virginia, 2004.

16. S. Noel, M. Jacobs, P. Kalapa. S. Jajodia, “Multiple Coordinated Views for Network Attack

Graphs,” in Proceedings of the 2nd International Workshop on Visualization for Computer

Security, Minneapolis, Minnesota, 2005.

17. P. Ning, Y. Cui, D. Reeves, “Constructing Attack Scenarios through Correlation of Intrusion

Alerts,” in Proceedings of the 9th ACM Conference on Computer and Communications

Security, Washington, D.C., 2002.

18. S. Noel, E. Robertson, S. Jajodia, “Correlating Intrusion Events and Building Attack

Scenarios through Attack Graph Distances,” in Proceedings of the 20th Annual Computer

Security Applications Conference, Tucson, Arizona, December 2004.

19. L. Wang, A. Liu, S. Jajodia, “An Efficient and Unified Approach to Correlating,

Hypothesizing, and Predicting Network Intrusion Alerts,” in Proceedings of the 10th

European Symposium on Research in Computer Security, Milan, Italy, September 2005.

20. L. Wang, A. Liu, S. Jajodia, “Using Attack Graphs for Correlating, Hypothesizing, and

Predicting Network Intrusion Alerts,” Computer Communications, 29(15), 2006.

