# Top PerfMon Counters for Analyzing SQL Server Performance Issues

Jeffry A. Schwartz

November 13, 2008 SQLRx® Webinar Series

<u>jeffrys@isi85.com</u>









#### Introduction

- Analysts often look in the wrong places to solve performance problems because
  - Users provide vague descriptions regarding poor performance
  - Misleading or misinterpreted published information
  - Inadequate training involving system and database performance
  - Database automatically blamed regardless of actual cause
- > Analysts must possess techniques for accurately determining
  - Causes of poor performance
    - Which hardware or software components are in actually in trouble
    - Using Windows Performance Monitor to identify major problem areas
  - Which queries are most troublesome, if any
  - How to develop appropriate solutions









#### Introduction

#### > Today's is first of several performanceoriented sessions

- Provide performance metrics and analysis techniques to expedite analyses
- Hardware-related and preliminary SQL Server performance analysis discussed today
- Described information and techniques applicable to Windows 2000/2003/2008 and SQL Server 2000/2005/2008
- More in-depth measurements and techniques presented in future sessions









#### Introduction

- Many analysts misled by metrics that are useless, incomplete or whose importance is overly inflated
  - Processor Queue Length
  - % Disk Time
  - Disk Queue Length
  - Buffer Cache Hit Ratio (SQL)

#### Unaware of invaluable metrics

- % User Time (Processor)
- % Idle Time (Disk)
- Avg. Disk sec/Transfer
- Available Bytes (Memory)
- Page Life Expectancy (SQL)
- Page Reads/sec (Memory and SQL)









# **Query Side-Effects**

- > Poorly designed SQL queries can cause a system to appear to be out of
  - Processor
  - Memory
  - Disk
- > Because they can perform excessive
  - Processor work while churning through memory-resident data buffers
  - Physical I/Os when data is not memory-resident that ultimately exhaust physical memory
- > Sorts often create all of the above









# Why Use Windows Performance Monitor?

- > Essential to focus any kind of analysis
- > Remember SQL Server is only an application that runs under Windows
  - If Windows does not perform well, neither will SQL Server
  - SQL Server can make Windows perform poorly if improperly configured
- > SQL Server metrics independent of hardware
  - Most imply hardware performance issues, but cannot definitively isolate hardware components
- > Can gather performance data over time









# **Analysis Methodology**

- > Use Windows Performance Monitor, a.k.a. PerfMon, to determine
  - Times when problems occur along with their durations
  - Which hardware components are involved
  - Many small queries or a few large resource-intensive queries?
- > Retain and analyze performance data using tool like Excel
- Correlate PerfMon data with other userexperience, business, or computer data









#### **PerfMon**

#### Capture PerfMon data continuously to log file

- All bad periods will be captured, even the unreported ones
- Dangerous to assume you know all the bad periods and their characteristics

#### Logging to a file

- Extremely low overhead unless process or thread objects captured
- Process or thread objects generally unnecessary on SQL Server machines

#### Information logged primarily in two ways

- Binary
- Comma-separated

#### On x64, must use version that matches SQL Server

• If using 32-bit SQL Server on x64, must use 32-bit collectors









#### **PerfMon**

#### Performance data buffers not locked

- Minimizes impact of performance data gathering on Windows performance
- Values not always synchronized with each other, even for the same object
- Reconciling multiple counters with each other may be difficult, if not impossible

#### Obtainable from local or remote machine

- Local collection can increase system overhead
  - Use binary format when captured on local machine to reduce overhead
- Remote collection (preferred) can increase network overhead
  - Almost never an issue
  - Can use CSV format to simplify analyses









#### **PerfMon**

#### Data collection frequency

- Do not use GUI default of one second for any monitoring
  - Places undue pressure on system
  - Displays misleading values caused by volatility
  - Minimize GUI usage unless small # of counters and low collection frequency
- 30 seconds usually sufficient for performance problems
- 1 to 5 minutes usually sufficient for trending/capacity planning

### > GUI default settings can be changed and saved so proper behavior automatic

- Update frequency
- Selected objects, instances, and counters









# Performance Data Analysis

#### > PerfMon

- Initially not intended as primary performance data analysis tool
- Evolved into just that
- Analysis typically VERY slow and laborious, especially with large files
- No really effective way to export substantial amounts of raw data via GUI

#### Most analysts familiar with Excel

- 2003 limited to 256 columns so smaller, i.e., 255 item counter sets must be used
- 2007 virtually unlimited, so full counter sets can be used









# PerfMon Analysis Considerations

#### > CSV format

- Easier to use outside of PerfMon, if # of counters < 256 or XL 2007
- Records can be impossibly long for spreadsheet programs
- Imposes 10x more overhead on collection machine (NOT target machine) than if binary used

#### Binary format

- Usually significantly larger than CSV format
- Cumbersome because primarily usable only with PerfMon
- Required if process data gathered
- Convertible using Relog program shipped with 2003
  - Converted files MUCH smaller, but NO data lost in conversion









# Relog

- Converts NT 4 and Windows 2000/2003/2008 logs for easier manipulation outside PerfMon
  - Any format → CSV, tab-delimited, SQL Server tables
- > Use 2003 version instead of 2000, XP, or Vista
  - 2003 version has fewest problems
- Runs properly on non-2003 OS when 2003 pdh.dll located in same directory as executable
  - XP pdh.dll ≠ 2003 pdh.dll
  - Vista pdh.dll ≠ 2003 pdh.dll







# PerfMon Analysis Procedures

- If PerfMon data file in binary format, convert using relog
- Import CSV into appropriate version of Excel
- > Add formulas for missing Disk data
  - Discussed later in this presentation
- Use Excel's conditional formatting to highlight warning, danger, and extreme danger conditions
- > Graph important entities against each other to create visual correlations









#### **Windows Performance Counters**

## Literally hundreds of unique counters

Potentially thousands of instance-counter combinations

#### > Imperative system categories to collect

- Processor
- Memory
- Physical Disk
- Logical Disk (usually present)
- Network I/O
- SQL Server all objects and instances









#### **SQL Server Performance Counters**

- > One set per SQL Server instance
- Sometimes will not appear in PerfMon when instance stopped
- Sometimes must be rebuilt because registry becomes corrupt
  - Seems to most often occur on SQL Server 2000 clustered environments
  - Occurs far less often on SQL Server 2005







#### > Processor

- % Processor Time
- % Privileged Time
- % User Time
- % Interrupt Time
- % DPC Time (Deferred Procedure Calls)

#### System

Context Switches/sec









#### > Physical Disk

- Avg. Disk sec/Transfer
  - Should be 0.020 seconds (20 ms) at most unless I/O size huge
- % Idle Time
  - Once this reaches zero, I/O rate cannot be increased
  - Performance usually degrades as it approaches zero
- Disk Transfers/sec, Disk Bytes/sec
  - Beware of disk specs because they usually cite very large I/Os
- Read and Write-specific counters also valuable, especially when read/write performance disparity exists or using RAID 5

#### Logical Disk

- Same counters available plus space-related ones
- Useful when multiple logical drives reside on one physical LUN







SQLRx.com

#### > Memory

- Page Reads/sec
  - Not just reads from paging file!
  - SQL Server I/Os not counted here
  - Should be almost zero on dedicated SQL Server machine except when
    - Reading flat files into the database
    - Working with backups
    - Recreating full text indices
- Available Bytes (Kbytes or Mbytes)
  - Should be at least 500 MB to allow for above activities
  - Some books suggest 4 MB ok it is NOT
  - System will stop responding long before this point







# Page Reads Example







2008 DATA MANAGEMENT SOLUTIONS
PARTNER OF THE YEAR-WINNER
Database Management

Database Management



#### Network Interface

- Bytes Total/sec (for each NIC)
- Packets/sec (for each NIC)
  - Packets usually saturate NICs long before byte traffic does
  - Especially true if outboard optimizations disabled
    - Many have been disabled by default in the past
- Sometimes helpful to highlight application server problems that really are not database server problems
  - If very little data is arriving, problems may lie elsewhere









# Minimal SQL Server Object List

| SQL Server Objects         | Category          |
|----------------------------|-------------------|
| SQL Server: Access Methods | Database access   |
| SQL Server: Buffer Manager | Memory management |
| SQL Server: Memory Manager | Memory management |







# **Interpreting Performance Counters**

- > Processor queue length cannot be used reliably unless long spikes occur
  - Most useful as relative measurement
- > Many counters misunderstood, e.g., % Disk Time
- Perpetuated by PerfMon explanation
  - "% Disk Time is the percentage of elapsed time that the selected disk drive was busy servicing read or write requests."
- Actually % Disk Time = 100 \* Avg. Disk Queue Length
  - Frequently referenced and interpreted as disk "busy" time
  - Completely useless metric
  - Artificially constrained to 100% by PerfMon
- > Actual busy = 100 % Idle Time









# **Physical I/O Measurements**

- Critical for SQL Server systems because they are most frequently I/O constrained
- > I/O time measured directly by disk driver
  - Provides transfer times to Windows
- I/O time = service time + queue time due to driver's location in I/O path
  - Disk response time
- Must know whether queuing causing large I/O times
  - Reducing large service times usually requires additional hardware









# **Interpreting Performance Counters**

#### Disk Queue lengths

- By far, most commonly quoted and used disk performance measurement
  - Actually **least** useful, except when outrageously high
- Use Avg. Disk sec/Transfer and % Idle Time instead







# **Utilization versus Queue Depth Graph**







2008 DATA MANAGEMENT SOLUTIONS
PARTNER OF THE YEAR-WINNER
Database Management

**SQLRx.com** 

# Performance Counters Incomplete

- > Two important metrics not measured or reported directly
  - Avg. Disk Service Time per Transfer
  - Avg. Disk Queuing Time per Transfer
- Missing values can be computed using the Utilization Law







# Using Utilization Law to Compute Missing I/O-Related Times

- > All calculations use PhysicalDisk counters
  - LogicalDisk counters can be used, if necessary
- > Disk Utilization = 100 % Idle Time
- Disk service time = Disk Utilization / Disk Transfers/sec
- Disk queue time = Avg. Disk sec/Transfer -Disk service time









# **RAID Example Calculations #1 and #2**

| LUN #1                                                   | LUN #2                                                   |
|----------------------------------------------------------|----------------------------------------------------------|
| Disk Utilization                                         | Disk Utilization                                         |
| 36.57%                                                   | 77.67%                                                   |
| Disk Transfers/sec                                       | Disk Transfers/sec                                       |
| 0.65                                                     | 30.89                                                    |
| Avg. Disk sec/Transfer                                   | Avg. Disk sec/Transfer                                   |
| 2.0095 seconds!                                          | 2.4424 seconds!                                          |
| Disk service time                                        | Disk service time                                        |
| 0.3657 / 0.65 = 0.563 seconds or <b>563 milliseconds</b> | 0.7767 / 30.89 = 0.025 seconds or <b>25 milliseconds</b> |
| Disk queue time                                          | Disk queue time                                          |
| 2.0095 - 0.563 = <b>1.447 seconds</b>                    | 2.4424 - 0.025 = <b>2.4174</b>                           |
| or 1,447 milliseconds                                    | seconds or 2,417 milliseconds                            |
| Bytes/Transfer                                           | Bytes/Transfer                                           |
| 1,307                                                    | 22,437                                                   |









## RAID Example #1 vs. #2

- > I/O times (2.0095 vs. 2.4424) not that different despite being outrageously high
- > Queuing occurred on both disks
- Low I/O rate of Disk #1 appears to contribute to high service times
  - 1,307 bytes should not require 563 milliseconds







# RAID Example #1 vs. #2

#### > Disk #2 doing much more work

- Utilization double that of Disk #1
- I/O size 17 times larger, but not huge
- Service time much more reasonable @ 25 milliseconds

#### > Problems began when faster processor complex attached

- Customer blamed new processor for poor performance
- Wanted vendor to take it back because architecture was supposedly defective and slower than original
- In reality, it was MUCH faster!

#### Solution was to reconfigure EMC drives

- Customer refused to state exactly what they changed
- Probably multiple LUNs shared same physical drives









#### **Database I/O Counters**

- > Page reads/sec and Page writes/sec counters
- > Measures physical I/Os, not logical I/Os
- May indicate
  - Insufficient database memory
  - Applications improperly accessing database
  - Improper database table implementation
- Useful to plot reads and writes together on same graph
  - Highlights changes in workload behavior
  - Heavy write activity may coincide with periods of poor performance









# **SQL Server I/O Activity Graph**







2008 DATA MANAGEMENT SOLUTIONS
PARTNER OF THE YEAR-WINNER
Database Management

SQLRx.com

# Memory Very Important to SQL Server

- Can reduce I/O subsystem load and improve performance
  - Remember disk speed still in 10<sup>-3</sup> seconds range, whereas memory speed in 10<sup>-9</sup> seconds range
  - Also depends upon Read/Write ratio
    - Reads helped by memory
    - # of writes may be reduced slightly until a checkpoint









#### **Buffer Cache Hit Ratio**

- > Frequency database read requests satisfied from database cache memory instead of disk
  - Often quoted exclusively as a measure of memory pressure
- > Higher values may result in lower disk usage
  - Recommended value at least 90%
  - Raw performance data can sometimes exceed 100%
- > Not nearly as useful as many believe
- > Observed numerous customer systems
  - BCHR **never** dropped below 90%
  - However, Page Life Expectancy was seldom above 300









# Page Life Expectancy

- Measures amount of time non-locked buffer remains in memory
- > Far more useful for identifying insufficient memory situations
  - Values consistently under 300 seconds indicate SQL Server does not possess enough memory







### **Detecting Insufficient SQL Memory**

- Compare Memory Manager object's Target Server Memory (KB) with Total Server Memory (KB) counters
  - If Total consistently less than Target, possibly insufficient memory
  - Procedure cache can be consuming remainder of memory
- > If Page Life Expectancy too low
  - Allocate more memory to SQL Server or optimize queries
  - Malformed queries that read inappropriate amounts of data can cause low Page Life Expectancy and Buffer Cache Hit Ratios









# **SQL Statement Handling**

#### > Definition of a Batch

- Group of SQL statements
- Possibly hundreds or thousands of lines
- Must be parsed and compiled into optimized execution plan









# **Batch Requests/sec**

- Does not adhere to actual batch definition
- > Each select, insert, or delete statement triggers a batch event
  - Causes counter to be incremented
  - Note: Each select, insert, or delete statement within a stored procedure counted







### Page Lookups/sec Counter

- Measures number of times database attempted to find page in buffer pool
- "Logical" read
  - Corresponds to a read in SQL Profiler Trace
- Compare
  - Batch Requests/sec with Page Lookups/sec
  - Page Life Expectancy with Page Lookups/sec









# Batch Requests vs. Page Lookups Graph







2008 DATA MANAGEMENT SOLUTIONS
PARTNER OF THE YEAR-WINNER
Database Management

**SQLRx.com** 

# Page Life Expectancy versus Page Lookups Graph







2008 DATA MANAGEMENT SOLUTIONS
PARTNER OF THE YEAR-WINNER
Database Management

**SQLRx.com** 

# Using SQLRx VitalSigns PerfMon Template

- Edit SQLRxVitalSignsV1.htm in Notepad
- > Replace CUSTOMERSYSTEM with desired server name and save file
- > Run PerfMon
- Select Counter Logs from Performance Logs and Alerts
- Right click in right pane and choose Select Log Settings From
- Navigate to SQLRxVitalSignsV1.htm (OK)
- If collecting remotely, change properties from binary to CSV
- Contact me for Vista or Server 2008 template









# Using SQLRx (SQLRxVitalSignsV1\_Sample.xls)

- > Open created CSV (or converted binary) log file in Excel
- Determine column letters for PhysicalDisk % Idle and Disk Transfers/sec
- Copy formulas in columns BJ and BK from SQLRxVitalSignsV1\_Sample.xls
- Change column values to reflect actual columns
- > Copy for all LUNs









# Using SQLRx (SQLRxVitalSignsV1\_Sample.xls)

|    | BJ2 ▼                                      |                                      |                                    |  |
|----|--------------------------------------------|--------------------------------------|------------------------------------|--|
|    | Ä                                          | BJ                                   | BK.                                |  |
| 1  | (PDH-CSV 4.0) (Eastern Daylight Time)(240) | PhysicalDisk(0 C:)\Disk Service Time | PhysicalDisk(0 C:)\Disk Queue Time |  |
| 2  | 9:32:56 PM                                 | 0.008                                | 0.013                              |  |
| 3  | 9:33:26 PM                                 | 0.002                                | 0.001                              |  |
| 4  | 9:33:56 PM                                 | 0.003                                | 0.003                              |  |
| 5  | 9:34:26 PM                                 | 0.004                                | 0.004                              |  |
| 6  | 9:34:56 PM                                 | 0.003                                | 0.001                              |  |
| 7  | 9:35:26 PM                                 | 0.003                                | 0.001                              |  |
| 8  | 9:35:56 PM                                 | 0.003                                | 0.001                              |  |
| 9  | 9:36:26 PM                                 | 0.003                                | 0.002                              |  |
| 10 | 9:36:56 PM                                 | 0.003                                | 0.001                              |  |
| 11 | 9:37:26 PM                                 | 0.003                                | 0.000                              |  |









#### Assessing Your System

#### > Potential problems exist if following counters consistently...

- % Processor Time > 70%
- % Privileged Time > 30%
- % Interrupt Time > 20%
- % DPC Time > 25% (Processor)
- Available Bytes < 500 MB (Memory)</li>
- % Idle Time < 40% for any Disk LUN and especially SQL LUNs</li>
- Avg. Disk sec/Transfer > 0.040 seconds (40 ms)
- Avg. Disk sec/Write > 0.040 seconds (40 ms)
- Page Life Expectancy < 300 seconds (SQLServer:Buffer Manager)









#### **Conclusions**

- > Windows Performance Monitor should always be used to focus tuning efforts
- Extremely important to combine Windows system performance and SQL Server information
  - Especially for processor, memory, I/O, and network
- Excel can be used to analyze PerfMon data
- Important missing Disk metrics can be computed









# **Topics Covered in Future Sessions**

- Usage and interpretation of additional
  - Windows and SQL Server Counters
  - Computed metrics from PerfMon counter data
- Disk SAN and RAID performance issues
- Internal SQL Server performance data
  - Usage of SQL Server 2005/2008 Dynamic Management Views
- Using lean SQL Traces to identify performance issues quickly
  - New SQL 2005/2008 SQL Trace event classes and their usage
- > Optimizing queries
- Your suggestions...









#### Next Steps

- 1. Download *VitalSigns* tools zip file from <u>www.sqlrx.com</u>.
- 2. Collect data using *VitalSigns* PerfMon template.
- 3. Import data into Excel & add disk formulas using sample workbook.
- 4. Schedule a 15-minute *HealthCheck* (no charge) to review collected data. Email me, Dan Hooper, at <a href="mailto:dhooper@isi85.com">dhooper@isi85.com</a> or use "Contact Us" link on <a href="www.sqlrx.com">www.sqlrx.com</a>.
- 5. Attend next in series and email suggested performance topics of interest to <a href="mailto:jeffrys@isi85.com">jeffrys@isi85.com</a>.







