
International Journal of Computational Intelligence Research

ISSN 0973-1873 Volume 13, Number 2 (2017), pp. 161-173

© Research India Publications

http://www.ripublication.com

Top-k Equities Pricing Search in the Large Historical

data set of NYSE

Ganesan Senthilvel

Research Scholar,
PG & Research Dept. of Computer Science,
Dr. Ambedkar Arts College, Chennai, India

A. Murugan

Associate Professor,
PG & Research Dept. of Computer Science,
Dr. Ambedkar Arts College, Chennai, India

Abstract

Stock exchange is a stock market, where brokers and traders can buy and sell

stocks. Stock exchange often functions as continuous auction markets. In this

paper, we describe the need to look into large data for analyzing the recorded

financial activities in the stock exchange. The study of historic data is very

crucial. As the size of the data huge we need better methods to retrieve data

efficiently. Hadoop framework is leveraged to resolve this problem.

Source data is ingested from NYSE (New York Stock Exchange) web site into

Hadoop file system. Perceived historical data is queried by the user with Top-k

stock details based on its closing price. We are using two techniques of

querying, Hive and Impala. Though the technical effort is completely built

using the existing framework like Hadoop, Hive, Impala, etc, Top-k query is

constructed. Top-k query is developed using in Java to extract the expected

result set.

The objective is to compare and analyse the execution and its performance of

Top-k Big Data query between disk based Hive and memory based Impala.

Keywords: Stock Market, New York Stock Exchange, Equities, Top-k

pricing.

162 Ganesan Senthilvel and A. Murugan

1. INTRODUCTION

Stock market is a place where brokers and traders can buy and sell stocks. Stock

exchange often functions as continuous auction markets. There are ups and downs in

the stock market. There are possibilities for an investor to experience losses due to

many factors. We can reduce the loss by studying historic data prior to investing. It is

not enough to just look at a stock's volatility from day by day.

2. PROBLEM STATEMENT

The problem statement pertains to the area of Top-k pricing search from the equity’s

historical stock exchange data streams. In this case, the popular New York Stock

Exchange (NYSE) data has been considered.

2.1 Definition

On analyzing the stock exchange site, Top-k pricing search on equity market is not

around. Though, other external sites tried to produce Top-k in terms of activity not by

pricing [10]. In this scenario, the paper discussed how to retrieve Top-k pricing result

set based on user driven date.

2.2 Data Layout

Daily data feed is shipped in the various data formats; and the target is CSV file. CSV

(for historical stock data) file layout is as follows:

Table 1. Sample NYSE Equity

Ticker Date Open High Low Close Volume

IBM 2015

0728

159.91 160.19 158.50 160.05 272100

2.3 Equity

In general, the definition of equity can be represented with the accounting equation:

Equity = Assets - Liabilities

An equity investment generally refers to the buying and holding of shares of stock on

a stock market by individuals and firms in anticipation of income from dividends and

capital gains, as the value of the stock rises. Typically, equity holders receive voting

rights for the board of directors’ selection.

Top-k Equities Pricing Search in the Large Historical data set of NYSE 163

3. PROPOSSED WORK

In this paper, two areas are addressed (1) Top-k equity pricing search @ business

domain (2) disk based versus memory based @ technology domain. On analyzing the

stock exchange site(s), Top-k pricing search on equity market is not around and so it

is kind of new entry. In terms disk vs memory based Hadoop frameworks (hive vs

impala), there are few industry white papers available to consume.

4. HADOOP FRAMEWORK

In the fundamentals of the computing, two key factors drive the system, namely (1)

storage and (2) process. In Hadoop eco system, HDFS represents storage and

MapReduce for process. Hadoop is a framework written in Java for running

applications on large clusters of commodity hardware and incorporates features

similar to those of the Google File System (GFS) and of the Map Reduce computing

paradigm [1].

Hadoop’s HDFS [1] is a highly fault-tolerant distributed file system and, like Hadoop

in general, designed to be deployed on low-cost hardware. It provides high throughput

access to application data. Also, it is suitable for applications that have large data

sets. HDFS architecture is represented in the Figure 1.

In the HDFS architecture, NameNode resides one per cluster. Meta data's centralized

server to provide a global picture of the file system’s state. NameNode stores its file

system metadata on local file system disks in a few different files, but the two most

important of which are fsimage and edits [1]. DataNode is designed to be multiple per

cluster, which stores block data (contents of files). Data nodes regularly report their

status to the NameNode in a heartbeat mode with the default setting of 3 minutes. It

sends Block Report to NameNode periodically with the default of 60 minutes. Block

report is the list of all usable blocks of DataNode disks [1].

Figure 1: Hadoop Distributed File Structure Architecture

164 Ganesan Senthilvel and A. Murugan

On submission of the job by the User, Hadoop initiates the Job Tracker process at

Master Node. Internally, the execution undergoes three major tasks. They are Map,

Shuffle Sort and Reduce as depicted in the sample.

Figure 2: Map Reduce Processing Logic

Map task takes the input data to create the logical mapping. Next the mapped data is

shuffled to sort it appropriately. Reduce task groups the result set based on the

requirement.

5. APPROACH

Top-k query processing plays an important role in data retrieval to give an answer to a

user quickly. As the size of a database is lager, the database is stored in a distributed

network, and it requires the parallel processing. We address a parallel top-k query

processing using Google’s Map Reduce programming model.

Our experiment with the synthetic dataset is derived from the authentic historic data

from NYSE [4]. So, the financial instrument-equity and its related data are

meaningful.

Key advantage on leveraging Map Reduce framework is processing the large datasets

in the parallel mode across the cluster of processing nodes [3]. Elastic computing is

achieved using scaling out architecture.

5.1 Strategy

The strategy is to go through the list once, keep a list of the top k elements that you

found so far. To do this efficiently, the system have to always know the smallest

element in this top-k, so you can possibly replace it with one that is larger. The heap

structure makes it easy to maintain this list without wasting any effort. It is like a lazy

family member who always does the absolute minimum amount of work. It only does

enough of the sort to find the smallest element, and that is why it is fast.

Top-k Equities Pricing Search in the Large Historical data set of NYSE 165

5.2 Parallel Algorithm

5.2.1 Top-k Query Processing

A top-k query finds the top-k answers with the highest grades on the given query. In

the recent years, many assorted algorithms have been proposed to support these top k

queries [9]. In this paper, we evaluate the existing algorithms for top-k queries using

disk based hive and in memory Impala search methodologies.

5.2.2 Role of MapReduce Algorithm

Our approach adopts Google’s MapReduce as the parallel programming framework

for the top-k query processing [9]. MapReduce gives a programmer simple interface

for parallel programming, that is, the programmer does not need to consider the

parallel issues. Top-k query processing algorithm aims to minimize the number of

probing predicates. The main contribution of this work is to design a parallel top-k

query processing model using MapReduce [1]. In this process, we evaluate the

algorithms through experiments and propose a new approach to improve its

performance. The signatures of map and reduce [3] are as follows:

map (k1, v1) → list (k2, v2)

reduce (k2, list (v2)) → list (v3)

Based on Vector mode, map task with k1 keys and v1 values are shuffled into k2 keys

and v2 values. Reduce task consolidates the intermediate result into v3 values as the

result.

5.2.3 Parallel Top-k Processing

This section explains, the idea to parallelize top-k query processing using MapReduce.

We propose an approximation algorithm which estimates the number of top objects to

be drawn in each node. The idea is same with the above ideal case; we want to find

only necessary top objects. In order to do that, we can estimate the number of top

objects from the result set. We compress a large database to a small database using

wavelet and conduct data parallel query processing with the small database. From the

result, we identify the ratio of top-k objects in each node and conduct the query

processing with the large database and the ratio. That is, we retrieve the different

number of necessary top objects in each node according to the ratio.

5.2.4 Algorithm

As the query technology Hive and Impala doesn’t have the built in Top N feature, it is

166 Ganesan Senthilvel and A. Murugan

essential to write a customized [9] Top N query with the following approach,

Step 1: Divide the data by the ranking key

Step 2: Sort each group by user and value

Step 3: Within each group, assign rank order to each record. This is achieved by

custom rank function. The rank function keeps track of last user key and simply

increments the counter. As soon as it sees a new user, it reset counter to zero. Since

the data is already sorted by user and is in descending order of value, we know for

sure that all records related to a single user will be sent to the same node and they will

be grouped together and also sorted by value.

Step 4: Pick Top N categories. Note since our index starts with 0, we only need to

categories from 0 to N-1.

5.2.5 User Defined Function in Java

As SELECT query uses rank() method, we need to write the custom rank function

using Java routine as below:

public final class Rank extends UDF{ …… }

As the next step, compile Rank class to generate Rank.jar library. On starting the

query tool Hive, add jar command is executed inclusive of this custom library. It will

expose as User Defined Function (UDF) to write within the query statement.

6. EXECUTION

6.1 Cluster Setup

The experiments run on a 4-node cluster with 4 cores, 4GB of RAM running Ubuntu

14.04 operating systems. All algorithms were implemented using Java Compiler of

version 1.7.x. In terms of Hadoop eco system, Cloudera Distributed version 5.2 has

been setup. The relevant version of Hive-0.13 and Impala-2.0 are leveraged in this

effort. We measure the performance in term of execution time as well as speedup and

scale up between disk-based Hive and in memory based Impala.

6.2 Disk based Hive

Apache Hive is a data warehouse infrastructure built on top of Hadoop for providing

data summarization, query, and analysis. HiveQL, which is an SQL-like language

provided by Hive, provides a mechanism to project structure onto the data and query

the data. Also this language allows traditional map/reduce programmers to plug in

their custom mappers and reducers when it is inconvenient or inefficient to express

Top-k Equities Pricing Search in the Large Historical data set of NYSE 167

this logic in HiveQL. Its execution is depicted in the following Figure 3.

Figure 3: Hive Query Execution over Hadoop Eco System

As shown in Figure 3, the data storing in Hive databases is in fact a part of Hadoop

data directory only. HDFS is a super set where all data including Hive databases is

stored.

6.3 Memory based Impala

6.3.1 Motivation

Impala doesn't even use Hadoop at all. It simply has daemons running on all your

nodes which cache some of the data that is in HDFS, so that these daemons can return

data quickly without having to go through a whole Map/Reduce job.

The reason for this is that there is certain overhead involved in running a Map/Reduce

job, so by short-circuiting Map/Reduce altogether to get some pretty big gain in

runtime

6.3.2 Design

Impala is designed to scale with three key daemons.

1. Impala – collocate the data nodes

2. State Store – confirm the healthy node to accept the new work

3. Catalog – broadcast meta data changes to all Impala daemons.

168 Ganesan Senthilvel and A. Murugan

It is represented in the following Figure 4.

Figure 4: Key domains of Impala design

6.4 How Impala is faster

To avoid latency, Impala circumvents MapReduce to directly access the data through

a specialized distributed query engine that is very similar to those found in

commercial parallel RDBMS.

In the industry experiments, it is clear that Impala has outperformed Hive by ‘6x’ to

‘10x’ times, which is depicted in Table 2.

Table 2. Impala performance over Hive

Query Category X times faster

1 Interactive 6x

2 Reports 8x

3 Deep Analytics 10x

The result is order-of-magnitude faster performance than Hive by the architecture

itself.

Top-k Equities Pricing Search in the Large Historical data set of NYSE 169

Figure 5: Impala and Hive design on common framework

That is the reason Impala is heavily used Cloudera, MapR, Amazon Web Services,

Oracle, etc. The common framework for Impala and Hive is given the Figure 5.

6.5 Ranking Function

User-defined functions are written for processing column values during the

Hive/Impala query.

Depending on the use case, one can write all-new functions, reuse Java UDFs that

have already written for Hive, or port Hive Java UDF code to get higher-performance

native Impala UDFs.

It is possible to code either scalar functions for producing results one row at a time, or

more complex aggregate functions for doing analysis across. In this paper, ranking

algorithms is developed not only weight based but also importance of the data set.

6.6 Sample Output

On executing Top-3 query on the particular date, the sample output is shown below:

Top Listed-Stock Volume Price Chg

1 Bank of America (BAC) 68,867,607 15.97 0.19

170 Ganesan Senthilvel and A. Murugan

2 Ambev ADR (ABEV) 23,578,088 5.90 0.04

3 Whiting Petroleum (WLL) 11,441,585 7.74 0.05

7. RESULTS

This section reports the evaluation of the proposed system, top-k equity pricing query

processing using MapReduce algorithm. Evaluation process involves two

methodologies (1) disk based Hive (2) memory based Impala.

7.1 Performance Evaluation

We test few months of multi-dimensional datasets with varied dataset size in our

experiments. Specially, we retrieve several synthetic with varying the number of data

records from 10,000 to 200,000 from NYSE historical download site.

In our experiments, we evaluate the effects of the dataset size ‘n’, the result number

‘k’, and the number of machines ‘s’ using Hive and Impala. Our use case has the

variation of ‘s’ from 2 to 4. ‘n’ is based on the pre-loaded historical date wise records.

7.2 Observation

As the source data file is downloaded from NYSE historical data site, it is loaded into

Hadoop storage. Top-k Query is executed based on the input criteria (usually date

wise) given by the end user. It is executed in two shells (1) Hive (2) Impala.

On experimenting, the results of Hive execution time are observed in the below Table

3.

Table 3. Hive Execution in sec

Node(s) 100 million 200 million 300 million

1 6.31 11.17 16.30

2 6.10 10.81 15.43

3 5.82 9.87 15.01

4 4.80 9.12 14.69

The same data set D is executed using Impala for Top-k equity pricing query Q.

Impala execution results are observed in Table 4

Top-k Equities Pricing Search in the Large Historical data set of NYSE 171

Table 4. Impala Execution in sec

Node(s) 100 million 200 million 300 million

1 0.84 1.21 1.81

2 0.75 1.10 1.49

3 0.61 1.03 1.15

4 0.54 0.91 1.02

Key observation is the parallel execution and linearly scalable against data set volume

and number of nodes.

It is completely depicted in the observed result table and graph as attached in Figure 6.

Figure 6: Performance metric using Hive

In the performance metric chart, number of Hadoop nodes (1, 2, 3, 4) is recorded in X

axis, whereas the execution time is placed in Y axis. In similar way, Impala’s

execution time is represented in Figure 7.

172 Ganesan Senthilvel and A. Murugan

Figure 7: Performance metric using Impala

Based on the above analysis, it is inferred that disk based Hive processing is taking 8

times fasther than of memory based Impala.

A linearly scalable application can scale just by adding more machines and/or CPUs,

without changing the application code. In our observation, adding nodes is linearly

scalable against the performance of the execution process.

The above listed metric clearly indicates the performance trends between disk based

Hive tools against in-memory based Impala of Big Data platform.

8. CONCLUSION AND FUTURE WORK

This work studies parallel top-k equity queries over large multidimensional data using

disk based and memory based Hadoop framework. Key step in this proposal is to

write the custom rank function for Big Data Query tools like Hive, etc.

By experiment results, this study shows the better effectiveness and scalability of in-

memory based Impala than disk based Hive framework.

In future, the existing analysis pattern can be extended to the rest of commonly

available financial stock exchange data.

REFERENCES

[1] Tom White, “Hadoop: The Definitive Guide”, O'Reilly Media, Inc., 3rd

Edition, May 2012.

[2] Jimmy Lin and Chris Dyer, “Data-Intensive Text Processing with

Top-k Equities Pricing Search in the Large Historical data set of NYSE 173

MapReduce”, Morgan & Claypool Publishers, 2010.

[3] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein and

Khaled Elmeleegy, Russell Sears, “Paper on MapReduce Online”, UC

Berkeley Paper.

[4] New York Stack Exchange End of Day data downloader site:

http://eoddata.com/download.aspx

[5] Dehua Chen, Changgan Shen, Jieying Feng and Jiajin Le, “An Efficient

Parallel Top-k Similarity Join for Massive Multidimensional Data using

Spark”, International Journal of Database Theory and Application, Vol 8(3),

pp 57-68, China, 2015.

[6] Thusoo A, Sarma J, Jain S, Shao N, Chakka Z, Anthony P, Liu S and

Wyckoff H, “A warehousing solution over a Map-Reduce framework in

VLDB”, 2009.

[7] David Kotz and Nils Nieuwejaar, “Dynamic file-access characteristics of a

production parallel scientific workload”, The Pennsylvania State University.

[8] Ritesh Agarwal, “Extract Top N records in each group in Hadoop/Hive”,

wordpress blog, 18 Nov 2011.

[9] Y. Kim and K.Shim, “Parallel top-k similarity join algorithms using

MapReduce”, Data Engineering (ICDE), 2012 IEEE 28th International

Conference on. IEEE, (2012)

[10] The Wall Street Journal on most active stocks in NYSE

http://www.wsj.com/mdc/public/page/2_3021-activnyse-actives.html

.

http://eoddata.com/download.aspx
http://www.wsj.com/mdc/public/page/2_3021-activnyse-actives.html

174 Ganesan Senthilvel and A. Murugan

