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Digital Speech Processing—
Lectures 7-8

Time Domain Methods 
in Speech Processing
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General Synthesis Model

11( )R z zα −= −

unvoiced sound 
amplitude

T1 T2

Log Areas, Reflection 
Coefficients, Formants, Vocal 
Tract Polynomial, Articulatory 
Parameters, …

Pitch Detection, Voiced/Unvoiced/Silence Detection, Gain Estimation, Vocal Tract 
Parameter Estimation, Glottal Pulse Shape, Radiation Model

voiced sound 
amplitude



General Analysis Model
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Speech 
Analysis 
Model

Pitch Period, T[n]
Glottal Pulse Shape, g[n]
Voiced  Amplitude, AV[n]
V/U/S[n] Switch
Unvoiced Amplitude, AU[n]
Vocal Tract IR, v[n]
Radiation Characteristic, r[n]

s[n]

• All analysis parameters are time-varying at rates 
commensurate with information in the parameters;

• We need algorithms for estimating the analysis 
parameters and their variations over time
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Overview

Signal 
Processing

speech, x[n]
representation 
of speech

speech or music       
A(x,t)
formants            
reflection coefficients 
voiced-unvoiced-silence  
pitch                         
sounds of language      
speaker identification     
emotions

• time domain processing => direct operations on the speech waveform

• frequency domain processing => direct operations on a spectral 
representation of the signal

system
x[n]

zero crossing rate   
level crossing rate   
energy              
autocorrelation

• simple processing

• enables various types of feature estimation
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Basics
• 8 kHz sampled speech (bandwidth < 
4 kHz)

• properties of speech change with 
time

• excitation goes from voiced to 
unvoiced

• peak amplitude varies with the 
sound being produced

• pitch varies within and across 
voiced sounds

• periods of silence where 
background signals are seen

• the key issue is whether we can 
create simple time-domain processing 
methods that enable us to 
measure/estimate speech 
representations reliably and accurately

P1 P2

V

U/S
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Fundamental Assumptions
• properties of the speech signal change relatively 

slowly with time (5-10 sounds per second)
– over very short (5-20 msec) intervals => uncertainty

due to small amount of data, varying pitch, varying 
amplitude

– over medium length (20-100 msec) intervals => 
uncertainty due to changes in sound quality, 
transitions between sounds, rapid transients in 
speech

– over long (100-500 msec) intervals => uncertainty
due to large amount of sound changes

• there is always uncertainty in short time 
measurements and estimates from speech 
signals
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Compromise Solution
• “short-time” processing methods => short segments of 

the speech signal are “isolated” and “processed” as if 
they were short segments from a “sustained” sound with 
fixed (non-time-varying) properties
– this short-time processing is periodically repeated for the 

duration of the waveform
– these short analysis segments, or “analysis frames” almost 

always overlap one another
– the results of short-time processing can be a single number (e.g., 

an estimate of the pitch period within the frame), or a set of 
numbers (an estimate of the formant frequencies for the analysis 
frame)

– the end result of the processing is a new, time-varying sequence 
that serves as a new representation of the speech signal



Frame-by-Frame Processing 
in Successive Windows
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Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

75% frame overlap => frame length=L, frame shift=R=L/4
Frame1={x[0],x[1],…,x[L-1]}

Frame2={x[R],x[R+1],…,x[R+L-1]}
Frame3={x[2R],x[2R+1],…,x[2R+L-1]}

…



0,1,..., 1Frame 1: samples −L

, 1,..., 1Frame 2: samples + + −R R R L

2 ,2 1,..., 2 1Frame 3: samples + + −R R R L

3 ,3 1,...,3 1Frame 4: samples + + −R R R L
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• Speech is processed frame-by-frame in overlapping intervals until entire 
region of speech is covered by at least one such frame

• Results of analysis of individual frames used to derive model parameters in 
some manner

• Representation goes from time sample                                      to parameter 
vector                               where n is the time index and m is the frame index.

LL ,2,1,0,],[ =nnx
L,2,1,0],[ =mmf

Frame-by-Frame Processing in 
Successive Windows

Frame 1

Frame 2

Frame 3
Frame 4

50% frame overlap



Frames and Windows
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16,000
641
240

 samples/second
 samples (equivalent to 40 msec frame (window) length)
 samples (equivalent to 15 msec frame (window) shift)

Frame rate of 66.7 frames/second

SF
L
R

=
=
=
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Short-Time Processing

short-time 
processing

speech 
waveform, x[n]

speech representation, 
f[m]

{ }21

0 16000

1 200

[ ] samples at 8000/sec rate; (e.g. 2 seconds of 4 kHz bandlimited
speech, [ ], )

[ ] [ ], [ ],..., [ ] vectors at 100/sec rate, ,

 is the size of the analysis vector (e.g., 1 

=
≤ ≤

= = ≤ ≤

�

r
� L

x n
x n n

f m f m f m f m m

L for pitch period estimate, 12 for
autocorrelation estimates, etc)
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• is a sequence of local weighted average 
values of the sequence T(x[n]) at time 

Generic Short-Time Processing

n̂Q

n̂Q

T(   ) w[n]x[n] T(x[n])

linear or non-linear 
transformation

window sequence 
(usually finite length)

ˆ
ˆ

( [ ]) [ ]n
m n n

Q T x m w n m
∞

=−∞ =

⎛ ⎞
= −⎜ ⎟
⎝ ⎠
∑ %

ˆn n=

~
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Short-Time Energy
2

2
ˆ

                      [ ]  

--  this is the long term definition of signal energy
--  there is little or no utility of this definition for time-varying signals

                     [ ] 

m

n
m

E x m

E x m

∞

=−∞

=

=

=

∑

2 2

1

2

1

1 0 1
0

ˆ

ˆ

ˆ ˆ[ ] ... [ ]

ˆ--  short-time energy in vicinity of time 
                           ( )
                           [ ]       
                                        ot

n

n L
x n L x n

n
T x x
w n n L

− +

= − + + +

=
= ≤ ≤ −
=

∑

%

herwise
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• window jumps/slides across sequence of squared values, selecting interval 
for processing

• what happens to      as sequence jumps by 2,4,8,...,L samples (       is a lowpass
function—so it can be decimated without lost of information; why is lowpass?)

• effects of decimation depend on L; if L is small, then       is a lot more variable 
than if L is large (window bandwidth changes with L!)

Computation of Short-Time Energy

n̂E

n̂En̂E
n̂E

[ ]w n m−%

1n L− + n
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Effects of Window
ˆ ˆ

ˆ

( [ ]) [ ]

      [ ] [ ]
=

=

= ∗

′= ∗

%

%

n n n

n n

Q T x n w n

x n w n

• serves as a lowpass filter on which often has a lot of 
high frequencies (most non-linearities introduce significant high 
frequency energy—think of what (                ) does in frequency)

• often we extend the definition of to include a pre-filtering term 
so that itself is filtered to a region of interest

Linear 
Filter

ˆ[ ]x n ˆ ˆn n n n
Q Q

=
=[ ]x n ( [ ])T x n

( )T [ ]w n%

[ ]w n% ( [ ])T x n

n̂Q
[ ]x n

[ ] [ ]x n x n⋅
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Short-Time Energy
• serves to differentiate voiced and unvoiced sounds in speech 

from silence (background signal)
• natural definition of energy of weighted signal is:

2

2 2 2

ˆ

ˆ

ˆ                    [ ] [ ] (sum or squares of portion of signal)

ˆ ˆ-- concentrates measurement at sample , using weighting [ ]

ˆ ˆ                   [ ] [ ] [ ] [ ]

n
m

n

E x m w n m

n w n - m

E x m w n m x m h n m

∞

=−∞

= −⎡ ⎤⎣ ⎦

= − = −

∑ %

%

%

2                   [ ] [ ]
m m

h n w n

∞ ∞

=−∞ =−∞

=

∑ ∑
%

(    )2 h[n]
x[n] x2[n]

short time energy

ˆ ˆn n n n
E E

=
=

SF SF /SF R
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Short-Time Energy Properties
• depends on choice of h[n], or equivalently, 

window w[n]
– if w[n] duration very long and constant amplitude 

(w[n]=1, n=0,1,...,L-1), En would not change much over 
time, and would not reflect the short-time amplitudes of 
the sounds of the speech

– very long duration windows correspond to narrowband 
lowpass filters

– want En to change at a rate comparable to the changing 
sounds of the speech => this is the essential conflict in 
all speech processing, namely we need short duration 
window to be responsive to rapid sound changes, but 
short windows will not provide sufficient averaging to 
give smooth and reliable energy function

~

~



19

Windows
• consider two windows, w[n]

– rectangular window:  
• h[n]=1, 0≤n≤L-1 and 0 otherwise

– Hamming window (raised cosine window):
• h[n]=0.54-0.46 cos(2πn/(L-1)), 0≤n≤L-1 and 0 otherwise

– rectangular window gives equal weight to all L
samples in the window (n,...,n-L+1)

– Hamming window gives most weight to middle 
samples and tapers off strongly at the beginning and 
the end of the window

~
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Rectangular and Hamming Windows

21 samplesL =
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Window Frequency Responses

• rectangular window

• first  zero occurs at f=Fs/L=1/(LT) (or Ω=(2π)/(LT)) => 
nominal cutoff frequency of the equivalent “lowpass” filter

• Hamming window

• can decompose Hamming Window FR into combination 
of three terms

1 22
2

( )/sin( / )( )
sin( / )

j T j T LLTH e e
T

Ω − Ω −Ω
=

Ω

[ ] 0.54 [ ] 0.46*cos(2 / ( 1)) [ ]π= − −% % %H R Rw n w n n L w n
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RW and HW Frequency Responses

• log magnitude response of RW and HW

• bandwidth of HW is approximately twice 
the bandwidth of RW

• attenuation of more than 40 dB for HW 
outside passband, versus 14 dB for RW

• stopband attenuation is essentially 
independent of L, the window duration => 
increasing L simply decreases window 
bandwidth

• L needs to be larger than a pitch period 
(or severe fluctuations will occur in En), but 
smaller than a sound duration (or En will 
not adequately reflect the changes in the 
speech signal)

There is no perfect value of L, since a pitch period can be as short as 20 samples (500 Hz at a 10 kHz 
sampling rate) for a high pitch child or female, and up to 250 samples (40 Hz pitch at a 10 kHz sampling 
rate) for a low pitch male; a compromise value of L on the order of 100-200 samples for a 10 kHz sampling 
rate is often used in practice



Window Frequency Responses
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Rectangular Windows, 

L=21,41,61,81,101
Hamming Windows, 
L=21,41,61,81,101



Short-Time Energy
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2
ˆ

2

ˆ
2

ˆ
ˆ 1

ˆ( [ ] [ ])

ˆ( [ ]) [ ]

[ ] 1, 0,1,..., 1

( [ ])

 Short-time energy computation:

 For -point rectangular window, 

 giving

n
m

m

n

n
m n L

E x m w n m

x m w n m

L
w m m L

E x m

∞

=−∞
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=−∞
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Short-Time Energy using RW/HW

• as L increases, the plots tend to converge (however you are smoothing sound energies)

• short-time energy provides the basis for distinguishing voiced from unvoiced speech 
regions, and for medium-to-high SNR recordings, can even be used to find regions of 
silence/background signal

L=51

L=101

L=201

L=401

L=51

L=101

L=201

L=401

n̂E n̂E
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Short-Time Energy for AGC

2 2

0

1 1

2 2 1

1 1
0 1

1 1

 time-dependent energy definition

[ ] [ ] [ ] / [ ]

 consider impulse response of filter of form
           [ ] [ ]

[ ] ( ) [ ] [ ]

σ

α α

σ α α

∞ ∞

=−∞ =

− −

∞
− −

=−∞

•

= −

•

= − = ≥
= <

= − − −

∑ ∑

∑

m m
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m
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n

n x m u n m

Can use an IIR filter to define short-time energy, e.g.,
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Recursive Short-Time Energy

1
2 2 1 2 2

2
2 2 2 2 2

1 1 0
1

1 1 1 2

1

1 1 1 2 3

[ ] implies the condition 
or  giving

[ ] ( ) [ ] ( )( [ ] [ ] ...)

 for the index  we have

[ ] ( ) [ ] ( )( [ ] [ ] ...)

σ α α α α

σ α α α α

−
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=−∞

−
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=−∞
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∑
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�
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n
n m

m

n
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m
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m n
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n
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2 2 2

0

1 1 1

 thus giving the relationship

[ ] [ ] [ ]( )

 and defines an Automatic Gain Control (AGC) of the form

[ ]
[ ]
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σ
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=

�

n n x n

GG n
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Recursive Short-Time Energy
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Recursive Short-Time Energy
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][nx ][2 nσ2)( ][2 nx +

α

)1( α−
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Recursive Short-Time Energy
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Use of Short-Time Energy for AGC



Use of Short-Time Energy for AGC

32

0.9α =

0.99α =
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Short-Time Magnitude
• short-time energy is very sensitive to large 

signal levels due to x2[n] terms
– consider a new definition of ‘pseudo-energy’ based 

on average signal magnitude (rather than energy)

– weighted sum of magnitudes, rather than weighted 
sum of squares

ˆ ˆ| [ ] | [ ]
∞

=−∞

= −∑ %n
m

M x m w n m

|     |
x[n] |x[n]|

• computation avoids multiplications of signal with itself (the squared term)

ˆ ˆn n n n
M M

=
=

SF SF /SF R
[ ]w n%
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Short-Time Magnitudes

• differences between En and Mn noticeable in unvoiced regions

• dynamic range of Mn ~ square root (dynamic range of En) => level differences between voiced and 
unvoiced segments are smaller

• En and Mn can be sampled at a rate of 100/sec for window durations of 20 msec or so => efficient 
representation of signal energy/magnitude

n̂M n̂M
L=51 L=51

L=101 L=101

L=201 L=201

L=401 L=401
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Short Time Energy and Magnitude—
Rectangular Window

L=51 L=51

L=101

L=201

L=401

L=101

L=201

L=401

n̂Mn̂E
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Short Time Energy and Magnitude—
Hamming Window

L=201

L=401

L=101

L=51L=51

L=101

L=201

L=401

n̂Mn̂E
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Other Lowpass Windows
• can replace RW or HW with any lowpass filer
• window should be positive since this guarantees En and Mn will be 

positive
• FIR windows are efficient computationally since they can slide by R

samples for efficiency with no loss of information (what should R
be?)

• can even use an infinite duration window if its z-transform is a 
rational function, i.e.,

1

0 0 1
0 0

1
1

[ ] , ,

( ) | | | |−

= ≥ < <
= <

= >
−

nh n a n a
n

H z z a
az
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Other Lowpass Windows
• this simple lowpass filter can be used to 

implement En and Mn recursively as:

• need to compute En or Mn every sample and then 
down-sample to 100/sec rate

• recursive computation has a non-linear phase, 
so delay cannot be compensated exactly

2
1

1

1
1

( ) [ ] short-time energy
( ) | [ ] | short-time magnitude

−

−

= + − −

= + − −
n n

n n

E aE a x n
M aM a x n
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Short-Time Average ZC Rate
zero crossing => successive samples 

have different algebraic signs

zero crossings

• zero crossing rate is a simple measure of the ‘frequency content’ of a 
signal—especially true for narrowband signals (e.g., sinusoids)

• sinusoid at frequency F0 with sampling rate FS has FS/F0 samples per 
cycle with two zero crossings per cycle, giving an average zero 
crossing rate of

z1=(2) crossings/cycle x (F0 / FS) cycles/sample

z1=2F0 / FS crossings/sample (i.e., z1 proportional to F0 )

zM=M (2F0 /FS) crossings/(M samples)
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Sinusoid Zero Crossing Rates

0 0

1 100

0

10 000
100 10 000 100 100

2 100 2 100 100
2

1000

Assume the sampling rate is ,  Hz
1.  Hz sinusoid has / , /  samples/cycle;
   or /  crossings/sample, or / *

 crossings/10 msec interval

2.  Hz sinuso

=

= = =

= = =

=

S

S

F
F F F

z z

F 0

1 100

0 0

1

10 000 1000 10
2 10 2 10 100

20

5000 10 000 5000 2
2 2

id has / , /  samples/cycle; 
   or /  crossings/sample, or / *

 crossings/10 msec interval

3.  Hz sinusoid has / , /  samples/cycle; 
    or /  cro

= =

= = =

= = =

=

S

S

F F
z z

F F F
z 100 2 2 100

100
ssings/sample, or / *

 crossings/10 msec interval
= =z
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Zero Crossing for Sinusoids

0 50 100 150 200
-1

-0.5

0

0.5

1
offset:0.75, 100 Hz sinewave, ZC:9, offset sinewave, ZC:8

0 50 100 150 200

0

0.5

1

1.5

100 Hz sinewave

100 Hz sinewave with dc offset

ZC=9

ZC=8

Offset=0.75



42

Zero Crossings for Noise

0 50 100 150 200

-2

-1

0

1

2

3

offseet:0.75, random noise, ZC:252, offset noise, ZC:122

0 50 100 150 200 250
-2

0

2

4

6

random gaussian noise

random gaussian noise with dc offset

ZC=252

ZC=122

Offset=0.75
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ZC Rate Definitions
1

1 1
2

1 0
1 0

1 0 1
0

ˆ

ˆ
ˆeff

eff

ˆ| sgn( [ ]) sgn( [ ]) | [ ]

      sgn( [ ]) [ ]
[ ]

  simple rectangular window: 
[ ]

otherwise

= − +

= − − −

= ≥
= − <

= ≤ ≤ −
=
=

∑ %

�

%

n

n
m n L

Z x m x m w n m
L
x n x n

x n

w n n L

L L

ˆ ˆ ˆSame form for  as for  or n n nZ E M
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ZC Normalization

1
1

1 1
2

ˆ

ˆ

ˆ
ˆ

 The formal definition of  is:

| sgn( [ ]) sgn( [ ]) |

  is interpreted as the number of zero crossings per sample.
 For most practical applications, we need the rate of zero cr

= − +

= = − −∑

�

�

n

n

n
m n L

Z

Z z x m x m
L

1

1

ossings
  per fixed interval of  samples, which is
         rate of zero crossings per  sample interval
  Thus, for an interval of  sec., corresponding to  samples we get
         ;

τ
τ

= ⋅ =

= ⋅ =

M

M

M
z z M M

M
z z M M F

10 000 100 10 100
8 000 125 10 80
16 000 62 5 10 160

/
, Hz; sec; = msec; samples

, Hz; sec; = msec; samples
, Hz; . sec; = msec; samples

τ
μ τ
μ τ
μ τ

=

= = =

= = =

= = =

�

�

�

S

S

S

S

T
F T M
F T M
F T M

Zero crossings/10 msec interval as a function of sampling rate
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ZC Normalization

1

8000 320 1 4 80 20
10000 400 1 5 100 20
16000 640 1 8 160 20

�

�

 For a 1000 Hz sinewave as input, using a 40 msec window length
  ( ), with various values of sampling rate ( ), we get the following:

/
/
/

 Thus we s

S

S M

L F

F L z M z

ee that the normalized (per interval) zero crossing rate,
  , is independent of the sampling rate and can be used as a measure
  of the dominant energy in a band.

Mz



ZC and Energy Computation
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Hamming window 
with duration 
L=201 samples 
(12.5 msec at 
Fs=16 kHz)

Hamming window 
with duration 
L=401 samples 
(25 msec at 
Fs=16 kHz)
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ZC Rate Distributions

• for voiced speech, energy is mainly below 1.5 kHz

• for unvoiced speech, energy is mainly above 1.5 kHz

• mean ZC rate for unvoiced speech is 49 per 10 msec interval

• mean ZC rate for voiced speech is 14 per 10 msec interval

Unvoiced Speech:  
the dominant energy 

component is at 
about 2.5 kHz

Voiced Speech: the 
dominant energy 
component is at 

about 700 Hz

1 KHz 2KHz 3KHz 4KHz
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ZC Rates for Speech

• 15 msec 
windows

• 100/sec 
sampling rate on 
ZC computation



Short-Time Energy, Magnitude, ZC

49
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Issues in ZC Rate Computation

• for zero crossing rate to be accurate, need zero 
DC in signal => need to remove offsets, hum, 
noise => use bandpass filter to eliminate DC and 
hum

• can quantize the signal to 1-bit for computation 
of ZC rate

• can apply the concept of ZC rate to bandpass 
filtered speech to give a ‘crude’ spectral estimate 
in narrow bands of speech (kind of gives an 
estimate of the strongest frequency in each 
narrow band of speech)
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Summary of Simple Time Domain Measures
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Short-Time Autocorrelation

1
2 1

-for a deterministic signal, the autocorrelation function is defined as:

[ ] [ ] [ ]

-for a random or periodic signal, the autocorrelation function is:

[ ] lim [ ] [ ]
( )

- if [

m
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L m L

Φ k x m x m k

Φ k x m x m k
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x

∞
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→∞
=−
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= +
+

∑

∑

1
2 0 0
3 0

] [ ], then [ ] [ ],   the autocorrelation function
preserves periodicity
-properties of [ ] :

. [ ] is even, [ ] [ ]
. [ ] is maximum at , | [ ] | [ ],
. [ ] is the signal energy or po

n x n P Φ k Φ k P

Φ k
Φ k Φ k Φ k
Φ k k Φ k Φ k
Φ

= + = + =>

= −
= ≤ ∀

wer (for random signals)
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Periodic Signals
• for a periodic signal we have (at least in 

theory) Φ[P]=Φ[0] so the period of a 
periodic signal can be estimated as the 
first non-zero maximum of Φ[k] 
– this means that the autocorrelation function is 

a good candidate for speech pitch detection 
algorithms

– it also means that we need a good way of 
measuring the short-time autocorrelation 
function for speech signals
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Short-Time Autocorrelation
ˆ

- a reasonable definition for the short-time autocorrelation is:

ˆ ˆ      [ ] [ ] [ ] [ ] [ ]

1. select a segment of speech by windowing
      2. compute deterministic autocorrelation 
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=−∞

= − + − −∑ % %
n

m
R k x m w n m x m k w n k m

ˆ ˆ

of the windowed speech
      [ ] [ ]               - symmetry

ˆ ˆ                [ ] [ ] [ ] [ ]

- define filter of the form
ˆ ˆ ˆ      [ ] [ ] [ ]

- this enables us to wr
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∑ % %
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ˆ
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ite the short-time autocorrelation in the form:

ˆ     [ ] [ ] [ ] [ ]

ˆ- the value of [ ] at time  for the  lag is obtained by filtering
ˆ ˆthe sequence [ ] [ ] with a filter wi
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= − −

−
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m
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n
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Short-Time Autocorrelation

0

ˆ

ˆ

ˆ

ˆ ˆ      [ ] [ ] [ ] [ ] [ ]

points used to compute [ ];
 points used to compute [ ];
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Examples of Autocorrelations

• autocorrelation peaks occur at k=72, 144, ... => 140 Hz pitch

• Φ(P)<Φ(0) since windowed speech is not perfectly periodic

• over a 401 sample window (40 msec of signal), pitch period 
changes occur, so P is not perfectly defined

• much less clear estimates of periodicity since 
HW tapers signal so strongly, making it look like 
a non-periodic signal

• no strong peak for unvoiced speech
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Voiced (female) L=401 (magnitude)
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Voiced (female) L=401 (log mag)
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Voiced (male) L=401
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Unvoiced L=401
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Unvoiced L=401
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Effects of Window Size
• choice of L, window duration

• small L so pitch period 
almost constant in window

• large L so clear periodicity 
seen in window

• as k increases, the number 
of window points decrease, 
reducing the accuracy and 
size of Rn(k) for large k => 
have a taper of the type 
R(k)=1-k/L, |k|<L shaping of 
autocorrelation (this is the 
autocorrelation of size L 
rectangular window)

• allow L to vary with detected 
pitch periods (so that at least 2 full 
periods are included)

L=401

L=251

L=125
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Modified Autocorrelation
• want to solve problem of differing number of samples for each 

different k term in         , so modify definition as follows:

1 2

1 2

ˆ
ˆ ˆ ˆ[ ] [ ] [ ] [ ] [ ]

- where  is standard -point window, and  is extended window
of duration  samples, where  is the largest lag of interest
- we can rewrite modified a
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Examples of Modified Autocorrelation

ˆ- [ ] is a cross-correlation, not an auto-correlation
ˆ ˆ- [ ] [ ]
ˆ- [ ] will have a strong peak at  for periodic signals 

and will not fall off for large

≠ −

=

n

n n

n

R k

R k R k

R k k P
 k

L-1
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Examples of Modified AC

L=401

L=251

L=125

L=401

L=401

L=401

Modified Autocorrelations –
fixed value of L=401

Modified Autocorrelations –
values of L=401,251,125
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Short-Time AMDF

0 2

- belief that for periodic signals of period , the difference function
      [ ] [ ] [ ]
- will be approximately zero for   For realistic speech
signals, [ ] will be small at --b
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ˆ

ut not zero.  Based on this reasoning.
the short-time Average Magnitude Difference Function (AMDF) is 

defined as:

ˆ ˆ      [ ] | [ ] [ ] [ ] [ ] |

- with [ ] and [ ] being recta

γ
∞

=−∞

= + − + − −∑ % %

% %

n
m

k x n m w m x n m k w m k

w m w m

2 1

ˆ

ˆ

ngular windows.  If both are the same 
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if [ ] is longer than [ ], then [ ] is similar to the modified short-time
autocor
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relation (or covariance) function.  In fact it can be shown that
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- where [ ] varies between 0.6 and 1.0 for different segments of speech.
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AMDF for Speech Segments
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Summary
• Short-time parameters in the time 

domain:
–short-time energy
–short-time average magnitude
–short-time zero crossing rate
–short-time autocorrelation
–modified short-time autocorrelation
–Short-time average magnitude 

difference function


