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Preface

This book is based on lectures in courses that I taught from 2000-2011 in the Department of
Physics at Carnegie Mellon University to undergraduates (mostly juniors and seniors) and
graduate students (mostly first and second year). Portions are also based on a course that
I taught to undergraduate engineers (mostly juniors) in the Department of Metallurgical
Engineering and Materials Science in the early 1970s. It began as class notes but started
to be organized as a book in 2004. As a work in progress, I made it available on my web
site as a pdf, password protected for use by my students and a few interested colleagues.

It is my version of what I learned from my own research and self-study of numerous
books and papers in preparation for my lectures. Prominent among these sources were
the books by Fermi [1], Callen [2], Gibbs [3, 4], Lupis [5], Kittel and Kroemer [6], Landau
and Lifshitz [7], and Pathria [8, 9] that are listed in the bibliography. Explicit references
to these and other sources are made throughout, but the source of much information is
beyond my memory.

Initially it was my intent to give an integrated mixture of thermodynamics and sta-
tistical mechanics, but it soon became clear that most students had only a cursory un-
derstanding of thermodynamics, having encountered only a brief exposure in introductory
physics courses. Moreover, I believe that thermodynamics can stand on its own as a dis-
cipline based on only a few postulates, or so-called laws, that have stood the test of time
experimentally. Although statistical concepts can be used to motivate thermodynamics,
it still takes a bold leap to appreciate that thermodynamics is valid, within its intended
scope, independent of any statistical mechanical model. As stated by Albert Einstein in
Autobiographical Notes (1946), [10]:

“A theory is the more impressive the greater the simplicity of its premises is,
the more different kinds of things it relates, and the more extended is its area of
applicability. Therefore the deep impression which classical thermodynamics
made on me. It is the only physical theory of universal content concerning
which I am convinced that within the framework of the applicability of its
basic concepts, it will never be overthrown.”

Of course thermodynamics only allows one to relate various measurable quantities to
one another and must appeal to experimental data to get actual values. In that respect,
models based on statistical mechanics can greatly enhance thermodynamics by providing
values that are independent of experimental measurements. But in the last analysis, any
model must be compatible with the laws of thermodynamics in the appropriate limit of
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sufficiently large systems. Statistical mechanics, however, has the potential to treat smaller
systems for which thermodynamics is not applicable.

Consequently, I finally decided to present thermodynamics first, with only a few con-
nections to statistical concepts, and then present statistical mechanics in that context.
That allowed me to better treat reversible and irreversible processes as well as to give
a thermodynamic treatment of such subjects as phase diagrams, chemical reactions and
anisotropic surfaces and interfaces that are especially valuable to materials scientists and
engineers.

The treatment of statistical mechanics begins with a mathematical measure of disor-
der, quantified by Shannon in the context of information theory. This measure is put
forward as a candidate for the entropy, which is formally developed in the context of the
microcanonical, canonical and grand canonical ensembles. Ensembles are first treated from
the viewpoint of quantum mechanics, which allows for explicit counting of states. Subse-
quently, classical versions of the microcanonical and canonical ensembles are presented in
which integration over phase space replaces counting of states, but with loss of information
unless one establishes the number of states to be associated with a phase space volume by
requiring agreement with quantum treatments in the limit of high temperatures. This is
counter to the historical development of the subject, which was in the context of classical
mechanics. Later in the book I discuss the foundation of the quantum mechanical treat-
ment by means of the density operator to represent pure and statistical (mixed) quantum
states.

Throughout the book, a number of example problems are presented, immediately fol-
lowed by their solutions. This serves to clarify and reinforce the presentation but also
allows students to develop problem-solving techniques. For several reasons I did not pro-
vide lists of problems for students to solve. Many such problems can be found in textbooks
now in print, and most of their solutions are on the internet. I leave it to teachers to assign
modifications of some of those problems or, even better, to devise new problems whose
solutions cannot yet be found on the internet.

The book also contains a number of appendices, mostly to make it self-contained but
also to cover technical items whose treatment in the chapters would tend to interrupt the
flow of the presentation.

I view this book as an intermediate contribution to the vast subjects of thermodynamics
and statistical mechanics. Its level of presentation is intentionally more rigorous and
demanding than in introductory books. Its coverage of statistical mechanics is much
less extensive than in books that specialize in statistical mechanics, such as the recent
third edition of Pathria’s book, now authored by Pathria and Beale [9], that contains
several new and advanced topics. I suspect the present book will be useful for scientists,
particularly physicists and chemists, as well as engineers, particularly materials, chemical,
and mechanical engineers. If used as a textbook, many advanced topics can be omitted
to suit a one- or two-semester undergraduate course. If used as a graduate text, it could
easily provide for a one- or two-semester course. The level of mathematics needed in most
parts of the book is advanced calculus, particularly a strong grasp of functions of several
variables, partial derivatives, and infinite series as well as an elementary knowledge of
differential equations and their solutions. For the treatment of anisotropic surfaces and
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interfaces, necessary relations of differential geometry are presented in an appendix. For
the statistical mechanics part, an appreciation of stationary quantum states, including
degenerate states, is essential, but the calculation of such states is not needed. In a few
places, I use the notation of the Dirac vector space, bras and kets, to represent quantum
states, but always with reference to other representations; the only exceptions are Chapter
26, Quantum Statistics, where the Dirac notation is used to treat the density operator,
and Appendix I, where creation and annihilation operators are treated.

I had originally planned to include some of my own research on the thermodynamics of
inhomogeneously stressed crystals and a few more chapters on the statistical mechanical
aspects of phase transformations. Treatment of the liquid state, foams, and very small
systems are other possibilities. I do not address many-body theory, which I leave to other
works. There is an introduction to Monte Carlo simulation at the end of Chapter 27,
which treats the Ising model. The renormalization group approach is described briefly
but not covered in detail. Perhaps I will address some of these topics in later writings,
but for now I would like to disseminate what is finished rather than add to the already
considerable bulk of the product.

Over the years that I shared versions of this book with students, I received some
valuable feedback that stimulated revision or augmentation of topics. I thank all those
students. A few faculty at other universities used versions for self-study in connection with
courses they taught, and also gave me some valuable feedback. I thank these colleagues as
well. Nevertheless, I alone am responsible for any misconceptions or outright errors that
remain and would be grateful to anyone who would bring them to my attention.

There are other people I could thank individually for contributing in some way to
the writing of this book but I will not attempt to present such a list. I would, however,
like to thank my wife Carolyn for her patience and encouragement and her meticulous
proofreading. She is an attorney, not a scientist, but the logic and intellect she brought
to the task resulted in my rewriting a number of obtuse sentences and even correcting a
number of embarrassing typos and inconsistent notation in the equations. Finally, I thank
Carnegie Mellon University for providing me with an intellectual home and the freedom
to undertake this work.

Robert F. Sekerka
Pittsburgh, PA
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Appendix J

Chapter and Appendix Abstracts

J.1 Chapter 1, Introduction

Thermal physics deals with macroscopic systems containing an enormous number of par-
ticles. Equilibrium states can be characterized by a small number of state variables such
as the number of particles, volume, pressure, and temperature. We seek to relate and
compute values of properties of such systems, for example heat capacity, compressibility,
and coefficient of thermal expansion. Thermodynamics can relate such properties based
on a few laws that govern changes of state variables of a system when work is done on
that system or energy is exchanged by heat transfer. An alternative is to use statisti-
cal mechanics to compute average properties of models of many-particle systems. The
concept of temperature is introduced empirically based on thermal expansion, especially
for an ideal gas thermometer. We classify state variables as extensive or intensive and
review quantitatively the concepts of kinetic and potential energy in classical mechanics.
Elementary kinetic theory is used to relate to temperature and pressure of an ideal gas.

J.1.1 Keywords for Chapter 1

thermodynamics, statistical mechanics, macroscopic state variables, extensive variable,
intensive variable, temperature, pressure, ideal gas, kinetic energy, potential energy

J.2 Chapter 2, First Law of Thermodynamics

The first law of thermodynamics is stated in terms of the existence of an extensive function
of state called the internal energy. For a chemically closed system, the internal energy
changes when energy is added by heat transfer or work is done by the system. Heat and
work are not state variables because they depend on a process. Reversible quasistatic work
can be done by a system by using pressure to change its volume very slowly. Heat capacities
are defined as the amount of energy needed to cause temperature change at constant
volume or pressure. Processes are illustrated for an ideal gas whose energy depends only
on temperature. Sudden volume changes can result in irreversible work during which
pressure is undefined. We define an auxiliary state function known as enthalpy to relate
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to processes at constant pressure. Phase transformations such as melting involve enthalpy
changes that liberate latent heat.

J.2.1 Keywords for Chapter 2

internal energy, state function, heat transfer, quasistatic work, heat capacity, reversible
isothermal expansion, irreversible expansion, enthalpy, latent heat

J.3 Chapter 3, Second Law of Thermodynamics

The second law of thermodynamics is stated as the existence of an extensive function
of state called the entropy that can only increase for an isolated system. Equilibrium
is reached at maximum entropy. Reciprocal absolute temperature is defined as entropy
change with energy. Entropy is additive for a composite system. Heat added to a chem-
ically closed system increases entropy by an amount greater than the ratio of the heat
to the absolute temperature for an irreversible process; entropy equals that ratio for a
reversible process. We relate entropy to its historical roots including other postulates and
the Carnot cycle for an ideal gas. The second law plus the first law establish a fundamental
equation to calculate entropy changes as a function of state. Reversible and irreversible
expansion of an ideal gas are illustrated. Enthalpy and entropy changes are calculated
for an isobaric melting of ice. Entropy is related to quantum microstates of a system via
probability of a macrostate.

J.3.1 Keywords for Chapter 3

entropy, absolute temperature defined, composite system, irreversible change, equilibrium
criterion, Carnot cycle, fundamental equation, calculated entropy, quantum microstates,
probability, Boltzmann constant

J.4 Chapter 4, Third Law of Thermodynamics

According to the third law of thermodynamics, the entropy of a system in internal equi-
librium approaches a constant independent of phase as the absolute temperature tends to
zero. This constant value is taken to be zero for a non-degenerate ground state, in accord
with statistical mechanics. Independence of phase is illustrated by extrapolation due to
Fermi of the entropy of gray and white tin as the temperature is reduced to absolute zero.
The third law is based on the postulate of Nernst to explain empirical rules for equilib-
rium of chemical reactions as absolute zero is approached. As a consequence of the third
law, the following quantities vanish at absolute zero: heat capacity, coefficient of thermal
expansion, and ratio of thermal expansion to isothermal compressibility.
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J.4.1 Keywords for Chapter 4

zero of entropy, absolute zero temperature, phase independence, vanishing heat capacities,
vanishing expansion coefficient, Nernst chemical reaction postulate

J.5 Chapter 5, Open Systems

Open systems exchange particles with their environment in addition to work and heat.
This exchange entails energy transfer. Internal energy becomes a function of entropy,
volume and moles of particles; its partial derivative with particle mole number is called
chemical potential. This is extended to muticomponent systems. The chemical poten-
tial of an ideal gas depends on temperature and the logarithm of pressure, with fugac-
ity replacing pressure for real gases. Maxwell relations result by equating mixed partial
derivatives and relate measurable physical quantities. Euler’s theorem of homogeneous
functions formalizes relationships of extensive and intensive variables, allows integration
of fundamental differentials (Euler equation), and connects differentials of intensive vari-
ables (Gibbs-Duhem equation). Mole fractions define composition of multicomponent sys-
tems. Legendre transformations are developed and used to define new potentials such as
Helmholtz and Gibbs free energies. Partial molar quantities are calculated by the method
of intercepts. Entropy of a chemical reaction is introduced.

J.5.1 Keywords for Chapter 5

chemical potential, ideal gas, fugacity, Euler equation, Gibbs-Duhem equation, Legendre
transformations, mole fractions, partial molar quantities, method of intercepts

J.6 Chapter 6, Equilibrium and Thermodynamic Po-

tentials

The equilibrium criterion of maximum entropy for an isolated system is used to derive
the equivalent criterion of minimum internal energy at constant entropy. Alternative
equilibrium criteria for chemically closed systems are derived for other conditions and
thermodynamic potentials: minimum Helmholtz free energy for constant temperature and
no external work; minimum enthalpy for constant pressure or minimum Gibbs free energy
for constant temperature and pressure, both with no external work in excess of that against
the external pressure. For an open system at constant temperature, constant chemical
potentials, and no external work, the Kramers potential is a minimum at equilibrium.
According to any of these criteria, the conditions for mutual equilibrium of heterogenous
systems are uniformity of temperature, pressure, and chemical potentials of each chemical
component. We also derive the Gibbs phase rule that bounds the number of macroscopic
degrees of freedom, depending on the number of phases in mutual equilibrium.
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J.6.1 Keywords for Chapter 6

equilibrium criteria, entropy equivalent, internal energy, Helmholtz free energy, enthalpy,
Gibbs free energy, Kramers potential, mutual heterogeneous equilibrium, uniform poten-
tials, Gibbs phase rule

J.7 Chapter 7, Requirements for Stability

We investigate whether a homogeneous system is stable with respect to breakup into a
composite system of two or more homogeneous subsystems. Criteria to avoid breakup
lead to requirements for the dependence of the entropy and thermodynamic potentials on
their natural variables. For stability, the entropy must be a concave function of its natural
variables (all extensive) and the internal energy must be a convex function of its natural
variables (all extensive). The thermodynamic potentials (Helmholtz, enthalpy, Gibbs,
Kramers) must be convex functions of their extensive variables and concave functions of
their intensive variables. Properties of Legendre transformations are used to derive the
stability requirements for intensive variables. Local stability criteria depend on the signs
of second order partial derivatives. When these stability criteria are violated, there can
be locally unstable regions and metastable regions that are locally stable but globally
unstable. Then transformations can occur. Principles of Le Chatlier and Le Chatlier-
Braun elucidate the approach to equilibrium.

J.7.1 Keywords for Chapter 7

concave functions, convex functions, required functional dependence, globally stable, lo-
cally stable, metastable

J.8 Chapter 8, Monocomponent Phase Equilibria

Phase equilibria for a monocomponent system require uniformity of temperature, pres-
sure and chemical potential. In the temperature-pressure plane, single-phase regions are
separated from one another by two-phase coexistence curves that meet at the triple point
where all three phases, crystalline solid, liquid, and vapor, are in mutual equilibrium. The
Clapeyron differential equation depends on the ratio of enthalpy change to volume change
and describes the coexistence curves that can be approximated by the Clausius-Clapeyon
equation for ideal vapors. The solid-vapor coexistence curve ends at a critical point; at
larger pressures or temperatures there is no distinction between these phases. The chem-
ical potential is continuous at the coexistence curves but its slope versus temperature or
pressure is discontinuous. We develop equations for the thermodynamic functions and
sketch them versus temperature and pressure. Finally we discuss phase equilibria in the
volume-pressure plane where two phases in equilibrium are separated by a miscibility gap
in volume.
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J.8.1 Keywords for Chapter 8

single-phase region, two-phase coexistent curves, triple point, Clapeyron equation, Clausius-
Clapeyron equation, vapor pressure, Arrhenius form, critical point, miscibility gap

J.9 Chapter 9, Two-Phase Equilibrium for a van der

Waals Fluid

The van der Waals model of a fluid exhibits a liquid-vapor phase transition. Isotherms in
the volume-pressure plane depend on a parameter accounting for the finite size of molecules
and another for molecular interactions. Below a critical temperature, the pressure of an
isotherm is not monotonic. The locus of its maximum and minimum has an inverted
U-shape and is called the spinodal curve. Volumes inside the spinodal curve represent
unstable fluid. For volumes just outside the spinodal the fluid becomes metastable. For
volumes beyond another inverted U-shaped curve there are two stable phases, a liquid and
a vapor, separated by a miscibility gap. The Helmholtz free energy as a function of volume
is investigated by the chord and common tangent constructions to calculate the miscibility
gap. Isotherms of the Gibbs free energy as a function of pressure can be multiple-valued
and display cusps. The miscibility gap obeys an equal-area construction due to Maxwell.

J.9.1 Keywords for Chapter 9

liquid-vapor phase transition, non-monotonic isotherms, spinodal curve, miscibility gap,
non-convex Helmholtz energy, chord construction, common tangent construction, Maxwell
construction

J.10 Chapter 10, Binary Solutions

A binary solution constitutes two chemical components mutually dissolved on an atomic
scale. We study its molar Gibbs free energy as a function of mole fraction at various
temperatures and fixed pressure. Chemical potentials are calculated by the method of
intercepts. Below a critical temperature, the common tangent construction demonstrates
equilibrium between two phases having different mole fractions that lie on a curve that
bounds a miscibility gap. Ideal solutions are those whose components do not interact
energetically and whose entropy compared to unmixed components is due only to random
configuration of the components; they have no miscibility gap. An ideal solid solution
and an ideal liquid solution, however, are separated by a lens-shaped miscibility gap for
temperatures between melting points of the pure components. A regular solution based
on a mean-field model allows components to have energetic interactions; repulsive interac-
tions result in a miscibility gap and a spinodal curve below a critical temperature in the
composition-temperature plane.
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J.10.1 Keywords for Chapter 10

mutual solubility, ideal solution, spinodal curve, chemical potentials, method of intercepts,
common tangent construction, miscibility gap, phase diagram, lens-shaped gap, regular
solution

J.11 Chapter 11, External Forces and Rotating Co-

ordinate Systems

We derive equilibrium criteria in the presence of conservative external forces. For a chem-
ically closed isothermal system with constant volume, equilibrium requires virtual varia-
tions of the Helmholtz free energy plus the external potential to be positive. For a uniform
gravitational field, use of the calculus of variations shows that the gravitational chemical
potential, which is the chemical potential per unit mass plus the product of the gravita-
tional acceleration and height, is constant for each component. Pressure increases with
height and the composition changes with height, so such systems are not homogeneous. For
a mixture of ideal gases and binary liquids, the segregation of chemical components with
height is small for samples of laboratory size. For the non-uniform gravitational field in
the atmosphere of the Earth, there can be larger segregation. Rotating systems are treated
by equivalence to gravitational forces; a fast centrifuge causes significant segregation. For
applied electric fields, the electrochemical potential of ions is constant.

J.11.1 Keywords for Chapter 11

conservative external forces, gravitational chemical potential, inhomogeneous pressure,
gravitational segregation, centrifuge, electrochemical potential

J.12 Chapter 12, Chemical Reactions

Chemical reactions entail making or breaking of bonds, so energy is conserved for an iso-
lated system. Reactions at constant volume or pressure exchange heat with the environ-
ment by change of internal energy or enthalpy, respectively. Reaction extent is measured
by a progress variable; reactions progress until equilibrium is reached or some component
is depleted. We define standard states of components and heats of formation of com-
pounds. Affinity is defined as the decrease of Gibbs free energy per unit progress variable;
its sign determines the direction of the reaction such that entropy is produced. Change
of enthalpy per unit progress variable determines whether the reaction is endothermic or
exothermic. At equilibrium the affinity is zero. Equilibrium conditions are expressed by
equating a function of temperature and pressure called the ‘equilibrium constant’ to a re-
action product that depends on activities and fugacities of chemical components. Special
cases include reaction products that can be approximated in terms of partial pressures of
ideal gases.
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J.12.1 Keywords for Chapter 12

progress variable, affinity, entropy production, endothermic, exothermic, standard states,
equilibrium constant, activity, fugacity, reaction product

J.13 Chapter 13, Thermodynamics of Fluid-Fluid In-

terfaces

Surfaces or interfaces of discontinuity where phases meet are modeled by a Gibbs dividing
surface of zero thickness. The differences between extensive variables of an actual system
and one in which phases are uniform up to the dividing surface are defined to be surface
excess quantities that depend on location of the dividing surface. The excess Kramers
potential divided by surface area is independent of location and called the surface free
energy or surface tension. The Gibbs adsorption equation governs segregation of surface
components. The Cahn layer model is used to represent physically meaningful surface
excess quantities by determinants. Curved interfaces can exert forces that cause pressure
jumps between adjacent phases. We derive conditions for equilibrium at contact lines
where three interfaces meet. Shapes of liquid surfaces under forces due to gravity and
surface tension, including sessile drops and bubbles, are computed by solving differential
equations.

J.13.1 Keywords for Chapter 13

Gibbs dividing surface, surface excess quantities, surface free energy, interfacial free energy,
surface tension, Cahn layer model, Gibbs adsorption equation, contact lines, sessile drops,
sessile bubbles

J.14 Chapter 14, Thermodynamics of Solid-Fluid In-

terfaces

Solid-fluid interfaces differ from fluid-fluid interfaces because a solid can be strained elas-
tically. Surface area can change by stretching and by addition of new surface, each process
giving rise to surface stress. Interfacial energy and adsorption can be referenced to the
area of either the unstrained crystal surface or its actual strained surface. Interfacial free
energy of crystal-fluid interfaces is anisotropic, consistent with crystal symmetry, and can
be described by a vector field known as the xi-vector; its normal component is the sur-
face free energy and its tangential component measures the change of energy with surface
orientation. A small crystal can acquire an equilibrium shape that has facets and miss-
ing orientations and minimizes its surface energy. This shape can be computed from the
Wulff construction or the xi-vector. A large crystal surface can develop facets to minimize
its energy. We derive Herring’s formula for the equilibrium potential on a curved crystal
surface.
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J.14.1 Keywords for Chapter 14

surface strain, surface stress, anisotropic interfacial energy, xi-vector, equilibrium shape,
Wulff construction, surface faceting, Herring formula

J.15 Chapter 15, Entropy and Information

Since the 1800s and the work of Clausius and Boltzmann, it was believed that the entropy
function, which can only increase for an isolated system, was a measure of a state of
greater probability, a more disordered state in which information is lacking. In 1948,
Shannon developed a quantitative measure of information in the context of communication
theory. Shannon’s measure is a function of an abstract set of probabilities and provides a
quantitative measure of disorder. It is maximum when all probabilities are the same, in
which case it becomes equal to Boltzmann’s formula for the entropy within a multiplicative
constant. This provides us with a modern basis for the microcanonical ensemble in the
next chapter. We give a demonstration of Boltzmann’s eta theorem for an ideal gas based
on a statistical analysis of elastic collisions of hard spheres. Boltzmann’s eta function
decreases as time increases. Its negative is the dynamical equivalent of Shannon’s measure
of disorder.

J.15.1 Keywords for Chapter 15

entropy, communication theory, Shannon information function, maximum disorder, Boltz-
mann eta theorem

J.16 Chapter 16, Microcanonical Ensemble

An ensemble is a collection of microstates that are compatible with a specified macrostate
of a thermodynamic system. The microcanonical ensemble represents an isolated sys-
tem having fixed energy. For that ensemble, the fundamental assumption of statistical
mechanics is that every compatible stationary quantum microstate is equally probable.
Properties of a system in a macrostate are calculated by averaging its values over the
ensemble microstates. The entropy is assumed to be proportional to the logarithm of
the number of compatible microstates as proposed by Boltzmann and in agreement with
the disorder function of information theory. The proportionality constant is known as
Boltzmann’s constant. Temperature, pressure and chemical potential are calculated from
partial derivatives of the entropy. The ensemble is illustrated for two-state subsystems,
harmonic oscillators, an ideal gas with Gibbs correction factor, and a multicomponent
ideal gas. The entropy of mixing of ideal gases is calculated.

J.16.1 Keywords for Chapter 16

ensemble, stationary quantum microstate, Boltzmann entropy, Boltzmann constant, two-
state subsystem, harmonic oscillator, ideal gas, Gibbs correction factor, multicomponent



J.17. CHAPTER 17, CLASSICAL MICROCANONICAL ENSEMBLE 599

ideal gas, entropy of mixing

J.17 Chapter 17, Classical Microcanonical Ensemble

Classical many-particle systems are governed by continuous variables, the positions and
momenta of all particles in multi-dimensional phase space. Total energy depends on these
variables and is called the Hamiltonian. Hamilton’s equations govern dynamics. According
to Liouville’s theorem, the time rate of change of the density of a given set of particles
in phase space is independent of time. For a system in equilibrium, this will be true if
the density depends only on the Hamiltonian. The classical microcanonical ensemble is
obtained by assuming that this density is uniform in the volume of phase space available
to the system for a narrow band of energies; it plays the same role as the assumption
of equal probability of microstates for the quantum ensemble. The entropy is calculated
within an additive constant by assuming it to be proportional to the logarithm of available
phase space. We illustrate this ensemble for an ideal gas and three-dimensional harmonic
oscillators.

J.17.1 Keywords for Chapter 17

phase space, Hamiltonian, Hamilton’s equations, Liouville’s theorem, phase space density,
available phase space, uniform probability density

J.18 Chapter 18, Distinguishable Particles with Neg-

ligible Interaction Energies

We derive a simplified version of the canonical ensemble developed in the next chapter.
We treat a system of identical particles that can be distinguished, perhaps by position
in a solid. We derive a statistical distribution of particles, each in a quantum state, by
maximizing the number of ways they can be distributed among quantum states, subject
to the constraint of constant total energy. This results in a most probable distribution.
The probability of occupation of a given quantum state is proportional to its Boltzmann
factor, the exponential of the negative of the energy of that state divided by a thermal
energy. The thermal energy is the product of temperature and Boltzmann’s constant.
The sum of all Boltzmann factors is called the partition function and is used to determine
thermodynamic functions. Examples include two-state subsystems, harmonic oscillators,
and rotations of a rigid diatomic molecule. Results are used to model heat capacities of
solids and blackbody (cavity) radiation.

J.18.1 Keywords for Chapter 18

distinguishable particles, most probable distribution, Boltzmann factor, partition function,
rigid rotator, heat capacity, blackbody radiation, Stefan-Botzmann constant
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J.19 Chapter 19, Canonical Ensemble

The canonical ensemble applies to a system held at constant temperature. Two derivations
are based on the microcanonical ensemble by putting a system of interest in contact with
a heat reservoir to form an isolated system. A third derivation employs the most probable
distribution of ensemble members. The probability of a system being in a given stationary
quantum state is proportional to its Boltzmann factor. We calculate dispersion of energy
relative to its average. The sum of Boltzmann factors gives a system partition function
that relates to Helmholtz free energy. For a system composed of independent but distin-
guishable subsystems with negligible interaction energies, the system partition function
factors. For such subsystems of identical particles, we recover the simplified ensemble of
the preceding chapter. We treat an ideal gas and explore its Maxwell-Boltzmann distri-
bution of velocities. Paramagnetism is treated both classically and quantum mechanically
and compared. The partition function is related to the density of states by a Laplace
transform.

J.19.1 Keywords for Chapter 19

heat reservoir, system Boltzmann factor, system partition function, Helmholtz free en-
ergy, factorization theorem, energy dispersion, Maxwell-Boltzmann distribution, param-
agnetism, adiabatic demagnetization, density of states

J.20 Chapter 20, Classical Canonical Ensemble

The classical canonical ensemble employs a probability density function in phase space in
which the energy in the Boltzmann factor for a quantum system is replaced by the classical
Hamiltonian. The classical partition function is the integral of that Boltzmann factor over
phase space. One can artificially divide the classical partition function by a factor contain-
ing powers of Planck’s constant to get results that agree with quantum mechanics at high
temperatures. We illustrate this for an ideal gas and compute effusion from a small hole.
The law of Dulong and Petit is derived for a harmonic potential. We compute classical
averages of canonical coordinates and momenta. We derive the virial theorem for time
averages and use it to treat a non-ideal gas with particle interactions calculated by using a
pair distribution function. We discuss the use of canonical transformations in calculating
partition functions and calculate the partition function for a rotating polyatomic molecule
by using Jacobians.

J.20.1 Keywords for Chapter 20

probability density function, phase space integral, classical partition function, ideal gas
effusion, law of Dulong and Petit, classical averages, virial theorem, pair distribution
function, canonical transformation, rotating polyatomic molecule
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J.21 Chapter 21, Grand Canonical Ensemble

The grand canonical ensemble applies to a system at constant temperature and chemical
potential; its number of particles is not fixed. We derive it from the microcanoical ensemble
by contact with heat and particle reservoirs to form an isolated system. The probability of
a system having a specified number of particles and being in a given stationary quantum
state is proportional to its Gibbs factor, the product of a Boltzmann factor and a factor
exponential in the number of particles. Summing all Gibbs factors gives the grand partition
function that relates to the Kramers potential. We calculate dispersion of particle number
and energy. The grand partition function factors for independent subsystems, dilute sites,
and ideal Fermi and Bose gases whose distribution functions are derived. We treat a
classical ideal gas with internal nuclear and electronic structure and molecules that can
rotate and vibrate. A pressure ensemble is derived and used to treat point defects in
crystals.

J.21.1 Keywords for Chapter 21

grand partition function, Gibbs factor, particle number dispersion, Kramers potential,
dilute systems, Fermi-Dirac distribution, Bose-Einstein distribution, ideal gas internal
structure, pressure ensemble, crystal point defects

J.22 Chapter 22, Entropy for a General Ensemble

We use the method of the most probable distribution to show that the entropy for a general
ensemble can be expressed by the maximum value of the disorder function of information
theory, derived in Chapter 15, subject to the set of constraints appropriate to the ensemble.
We illustrate this in detail for a grand canonical ensemble with two kinds of particles. We
treat a number of other ensembles practically by inspection, including an ensemble that
relates to a Massieu function that is the Legendre transform of the entropy. By using a
degeneracy factor to sum over energy levels, particle numbers, and volumes, we show that
all ensembles can be related in a similar way to their associated thermodynamic functions,
as observed by Hill.

J.22.1 Keywords for Chapter 22

most probable distribution, maximum disorder, ensemble constraints, degeneracy factor,
density of distribution functions

J.23 Chapter 23, Unified Treatment of Ideal Fermi,

Bose and Classical Gases

We give a unified treatment of ideal Fermi, Bose and classical gases for temperatures
sufficiently large that energy levels can be treated as a quasi-continuous. Sums can be
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converted to integrals over a density of quantum states to evaluate thermodynamic func-
tions. Pressure is equal to two-thirds of the energy density for all three gases. Relevant
integrals can be represented by series expansions if the absolute activity is less than unity,
which is always the case for bosons. For fermions, larger values of the absolute activity
can be handled by an asymptotic expansion. Virial expansions for the pressure of these
ideal gases are power series in the ratio of the actual concentration to the quantum con-
centration. For absolute activity less than unity, the deviation from ideal gas behavior is
practically linear in that ratio, less pressure for bosons and more for fermions. Formulae
for the heat capacity of these gases at constant volume are calculated in terms of several
integrals.

J.23.1 Keywords for Chapter 23

quasi-continuous energies, density of states, series expansions, asymptotic expansions, ab-
solute activity, virial expansions, heat capacity

J.24 Chapter 24, Bose Condensation

Below a critical temperature, occupation of the ground state of a Bose gas becomes compa-
rable to occupation of all excited states. This Bose condensation increases with decreasing
of temperature and affects thermodynamic functions. Only particles in excited states con-
tribute to the pressure, internal energy and entropy. Pressure remains equal to two-thirds
of the energy density and becomes independent of molar volume. Heat capacity per parti-
cle is zero at zero temperature and rises to a sharp maximum at the critical temperature;
with further increase of temperature it decreases to the constant value of a classical ideal
gas. Its graph somewhat resembles the Greek letter lambda. A similar behavior occurs
in helium with mass number four at its so-called lambda-point, although helium is not
ideal because its atoms attract. We explore condensate regions that are bounded by an
isentrope in the volume-temperature and volume-pressure planes.

J.24.1 Keywords for Chapter 24

critical temperature, ground state condensation, excited states, lambda-point, condensate
region, isentropic boundary

J.25 Chapter 25, Degenerate Fermi Gas

Even at absolute zero, the Pauli exclusion principle forces fermions into high energy states,
a degenerate gas. States fill to the Fermi energy, equivalent to about 50,000 Kelvin for a
free electron gas. At laboratory temperatures, small excitation into higher energy states
is calculated by using an asymptotic Sommerfeld expansion. Heat capacity is linear in
temperature and typically 100 times smaller than for a classical gas. A magnetic field can
split spin states, resulting in weak Pauli paramagnetism; its effect on orbits causes Landau
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diamagnetism. Heating enables electron escape by thermionic emission, also affected by
electric fields and radiation. Semiconductiors have densities of states with a forbidden en-
ergy band. Electrons in intrinsic semiconductors can be thermally excited to a conduction
band above a band gap leaving empty states called holes in the valence band. This results
in electrical conductivity that can be enhanced by dopants called donors and acceptors
that provide states that are easier to excite.

J.25.1 Keywords for Chapter 25

Pauli exclusion principle, Fermi energy, Sommerfeld expansion, Pauli paramagnetism, Lan-
dau diamagnetism, thermionic emission, band gap, intrinsic semiconductor, donor, accep-
tor

J.26 Chapter 26, Quantum Statistics

Two types of averaging occur in quantum statistical mechanics, the first for pure quantum
mechanical states and the second for a statistical ensemble of pure states. We define
and exhibit the properties of density operators and their density matrix representation
for both pure and statistical states. For equilibrium states, a statistical density operator
depends only on stationary quantum states. We exhibit it in the energy representation
for the microcanonical, canonical and grand canonical ensembles; its use is illustrated for
an ideal gas and the harmonic oscillator. Density matrices for spin 1/2 are expressed in
terms of a polarization vector and Pauli spin matrices and related to vectors called spinors.
Symmetric wave functions for bosons and antisymmetric wave functions for fermions are
constructed from single-particle quantum states in terms of occupation numbers by using
permutation operators, or Slater determinants for fermions. Weighting factors for states
are contrasted for bosons, fermions and distinguishable classical particles.

J.26.1 Keywords for Chapter 26

pure state, statistical state, density operator, density matrix, Pauli spin matrices, polariza-
tion vector, occupation numbers, symmetric boson states, antisymmetric fermion states,
weighting factors

J.27 Chapter 27, Ising Model

Cooperative phenomena are introduced via the simple Ising model in which spins having
two states occupy a lattice and interact with nearest neighbors and an applied magnetic
field. We study this model in the mean field approximation. Correlations among spin states
are neglected, so each spin interacts with a self-consistent mean field. With no applied
magnetic field, the model predicts ordering of spins below some critical temperature for
lattices of all dimensionalities, 1,2,3..., and enables properties such as heat capacity and
magnetic susceptibility to be calculated. Exact solutions for a one-dimensional lattice show
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no ordering transition; the mean field model fails badly in that case but otherwise shows
reasonable trends. Exact solutions exist in two dimensions and show ordering. Better
approximate solutions (Boethe cluster model) or numerical solutions can be obtained for
lattices of all dimensionalities. We introduce Monte Carlo simulation for numerical solution
of the Ising model as well as for models involving interacting classical particles.

J.27.1 Keywords for Chapter 27

spin interactions, correlations, mean field model, ordering, critical temperature, heat ca-
pacity, magnetic susceptibility, exact solutions, Monte Carlo simulation, interacting clas-
sical particles

J.28 Appendix A, Stirling’s Approximation

We state Stirling’s approximation for the logarithms of factorials of large numbers and
for the factorials themselves. We present some numerical examples and an elementary
motivation by using a staircase to approximate the graph of a logarithm. Then we discuss
Stirling’s asymptotic series for the gamma function. We contrast asymptotic series and
convergent series.

J.28.1 Keywords for Appendix A

approximation of factorials, gamma function, asymptotic series, convergent series

J.29 Appendix B, Use of Jacobians to Convert Par-

tial Derivatives

Most thermodynamic properties can be expressed in terms of partial derivatives. Jaco-
bians are determinants that provide a systematic and powerful way to convert partial
derivatives for a certain variable set to partial derivatives with respect to a different vari-
able set, and hence to other physical properties. Useful properties of determinants are
reviewed, especially the fact that they multiply formally like fractions. Examples related
to thermodynamics include: relationship of heat capacity at constant volume to that at
constant pressure; ratio of those heat capacities to the ratio of compressibility at constant
entropy to that at constant temperature; and relationship of isentropic thermal expansion
to isothermal thermal expansion.

J.29.1 Keywords for Appendix B

Jacobian determinants, Jacobian multiplication, isentropic compressibility, isentropic ther-
mal expansion, compressibility ratio
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J.30 Appendix C, Differential Geometry of Surfaces

We introduce methods for calculation of the xi-vector used to measure anisotropy of crys-
tal surface free energy. A vector formulation of differential geometry is presented for a
parametric representation of a surface. Normal and tangential vectors and their reciprocal
vectors are used to derive general formulae for mean and Gaussian surface curvatures.
Differential operators such as surface gradient, divergence and curl are defined. We derive
a general formulation for the variation of a surface normal for small changes in the surface.
The surface divergence theorem is presented. Divergence of the xi-vector is calculated for
a general surface and in a Monge representation. This methodology is used to derive a
generalization of Herring’s formula for surface chemical potential and for a variational
approach to surface equilibrium shape.

J.30.1 Keywords for Appendix C

xi-vector, anisotropy, mean curvature, Gaussian curvature, surface differential operators,
surface divergence theorem, divergence of xi-vector, generalized Herring formula, varia-
tional formulation

J.31 Appendix D, Equilibrium of Two-State Systems

We use the microcanonical ensemble to make a detailed study of the equilibrium of a
composite system consisting of two-state subsystems, each having a number of spin 1/2
particles. The multiplicity function of the combined system is a sum over products of the
multiplicity functions of the subsystems that conserve total energy. That sum is dominated
by its largest terms; we evaluate it approximately by converting to two Gaussian integrals
whose integrands are sharp peaks having a narrow region of overlap. We demonstrate
explicitly how the logarithm of the product of subsystem multiplicity functions, evaluated
at their peaks, is equal to that for the combined system, provided that sub-extensive
terms are negligible. This demonstrates the degree to which entropy of the subsystems is
additive.

J.31.1 Keywords for Appendix D

composite system, spin one-half, multiplicity functions, dominant terms, Gaussian inte-
grals, overlap integral, entropy additivity

J.32 Appendix E, Aspects of Canonical Transforma-

tions

We use a variational method due to Courant to derive the necessary and sufficient condi-
tions for a general canonical transformation that can depend on time in terms of Lagrange
brackets. These transformation conditions can be described by a matrix that is a member
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of the symplectic group and has a Jacobian of magnitude unity. This knowledge enables
the conversion of integral expressions for the classical canonical partition function to be
evaluated by making any convenient canonical transformation. For restricted canonical
transformations that are independent of time, we derive a simplified set of conditions and
show that they are compatible with the general necessary and sufficient conditions.

J.32.1 Keywords for Appendix E

general canonical transformation, conditions, Lagrange brackets, symplectic matrix, unit
Jacobian, restricted canonical transformation

J.33 Appendix F, Rotation of Rigid Bodies

We express the moment of inertia of a rigid body by a moment of inertia tensor. Angular
momentum and kinetic energy of a body that rotates about an axis through its center of
mass is related to moment of inertia and an axial rotation vector. Time derivatives are
evaluated in a fixed reference frame. In a rotating coordinate system, the inertia tensor can
be expressed by three constant principal values. Fixed and rotating coordinates are related
by a matrix that depends on three Euler angles that can be related to an axial rotation
vector. The Hamiltonian of a rotating body, expressed in Euler angles and principal
moments of inertia, can be used to calculate canonical momenta of a polyatomic molecule.
We derive the quantum states for a diatomic molecule having three principal moments of
inertia.

J.33.1 Keywords for Appendix F

rigid body, moment of inertia, inertia tensor, angular momentum, rotating coordinates,
Euler angles, canonical momenta, polyatomic molecule, diatomic molecule quantum states

J.34 Appendix G, Thermodynamic Perturbation The-

ory

We develop approximate methods for calculation of canonical partition functions when
the Hamiltonian is the sum of an unperturbed Hamiltonian plus a small perturbation.
For the classical case, the Boltzmann factor for the perturbation is expanded to second
order and evaluated by averaging with respect to the probabilities associated with the
unperturbed Hamiltonian. The Helmholtz free energy has a first order correction equal to
the average of the perturbation and a negative second order correction proportional to its
variance. For the quantum case, one approximates the energy eigenstates by using second
order quantum perturbation theory and sums the resulting Boltzmann factors. The second
order correction to the Helmholtz free energy is again negative and proportional to the
variance of the perturbation if the splittings of unperturbed energies are small compared
to the thermal energy.
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J.34.1 Keywords for Appendix G

perturbed Hamiltonian, expanded Boltzmann factor, averaged perturbation, perturbation
variance

J.35 Appendix H, Selected Mathematical Relations

Alternative definitions of Bernoulli numbers and polynomials are presented. The Euler-
Maclaurin sum formula that relates sums to integrals is presented in general form with a
remainder term. Specialization leads to an approximation for an infinite sum of terms by
an integral plus a series whose coefficients are Bernoulli numbers. Use of that sum formula
is illustrated for approximate evaluation of the partition function for a rigid linear rotator
and calculation of its heat capacity at high temperatures. We also derive a sum formula
for an infinite sum of terms that depend on half integers and test its use to obtain an
approximate partition function for a harmonic oscillator for which an exact evaluation is
possible.

J.35.1 Keywords for Appendix H

Bernoulli numbers, Bernoulli polynomials, Euler-Maclaurin sum formula, rigid linear ro-
tator

J.36 Appendix I, Creation and Annihilation Opera-

tors

We express the Hamiltonian for a one-dimensional harmonic oscillator in terms of creation
and annihilation operators. The commutation relation for such operators is the same as
for boson operators and is used to find eigenvalues for their product, which is a Hermitian
number operator. We show by purely algebraic manipulations that the eigenvalues of these
number operators are integers. Eigenvectors for larger integers can be created by successive
operations of creation operators on an eigenvector with eigenvalue zero. We discuss fermion
operators that obey anti-commutation relations and explore the states of their number
operators, whose only eigenvalues are zero and one. Number operators for both boson
and fermion operators are extended to many-particle systems whose eigenvectors can be
created by successive operation on a vacuum state having eigenvalue zero.

J.36.1 Keywords for Appendix I

creation operator, annihilation operator, number operator, bosons, fermions, eigenstates,
vacuum state



608 APPENDIX J. CHAPTER AND APPENDIX ABSTRACTS



Bibliography

[1] Enrico Fermi, Thermodynamics , Dover, New York 1956.

[2] Herbert B. Callen, Thermodynamics , second ed., John Wiley, New York 1985.

[3] J. Willard Gibbs, The Scientific Papers of J. Willard Gibbs , vol. 1, Peter Smith ed.,
Dover, New York 1961.

[4] J. W. Gibbs, Elementary Principles in Statistical Mechanics , Ox Bow Press, Wood-
bridge, CT 1891.

[5] Claude H.P. Lupis, Thermodynamics of Materials , North Holland, New York 1983.

[6] Charles Kittel, Herbert Kroemer, Thermal Physics , W.H. Freeman, New York 1980.

[7] L. D. Landau, E. M. Lifshitz, Statistical Physics , Addison-Wesley, Reading, MA 1958.

[8] R. K. Pathria, Statistical Mechanics , second ed., Pergamon Press, New York 1996.

[9] R. K. Pathria, Paul D. Beale, Statistical Mechanics , third ed., Elsevier, New York
2011.

[10] Gerald Holton, Yehuda Elkana, Albert Einstein: Historical and Cultural Perspectives ,
Dover, Mineola, NY 1997.

[11] David Chandler, Introduction to Modern Statistical Mechanics , Oxford University
Press, New York 1987.

[12] Hugh D. Young, Roger A. Freedman, University Physics , ninth ed., Addison-Wesley,
New York 1996.

[13] Walter Greiner, Ludwig Neise, Horst Stöcker, Thermodynamics and Statistical Me-
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