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Preface

Students of computer science in IIT Delhi usually take a course on Theory of Computation
as an elective some time after they have finished courses on programming, data structures,
discrete mathematical structures (whatever that means), computer architecture, programming
languages and sometimes operating systems as well.

Theory of computation is of course a very broad and deep area, and it is anyone’s guess what
really should be taught in such course. For example, Dexter Kozen’s text with the same
name suggests that the course should dwell primarily on complexity classes. Most courses
on Theory of Computation in India follow the classic text by Hopcroft and Ullman [1] on
formal languages and automata which was written at a time when parsing, compiling, code
optimization and complexity theory were pursued as frontier areas of research. As a result, the
exposure to automata theory and formal languages was considered the most important aspect
of the theory, later followed by some exposure to NP-completeness. Moreover the book was
written for graduate students 1.

More recently (apparently on the strength of having course web pages on Programming, Logic,
Programming Languages and Complier Design), I have been bombarded by questions from
students and outsiders (some of them managers with computer science degrees who are willing
to pay thousands of dollars if I agreed to sit in on such a project) regarding the feasibility of
designing tools which would take the programs of their (novice?) programmers and transform
them automatically into the most efficient program possible or the shortest program possible
in some language. I have even been asked why these programs cannot be proved automatically
thus saving the company a small fortune in testing time and being able to meet stiff deadlines.

Anyway that’s my story and I am sticking to it.

It is my feeling that at a time when courses on compilers, formal languages, complexity theory
and automatic verification are usually electives which students tend to avoid, this has led to
a disconnect between a course primarily devoted to formal languages and automata theory
and the bouquet of courses that students otherwise need to do in a typical computer science
curriculum.

Anyway that’s my story and I am sticking to it.

It is also my feeling that IIT students (who are numerically quite literate) feel most comfortable
when numbers and computations on numbers form the basis for a theory of computation. On
the other hand courses on theory of computation which primarily teach automata and formal
languages usually completely ignore the connections between programming and computability
theory and scant attention is paid to the theory of primitive recursive functions and the design
of data structures or programming language features. As a result students who sit through
a course on automata and formal languages and who have no intention of pursuing either

1It is a mystery to me how it has come to be taught as a textbook for an undergraduate course. I would assume
that the same natural processes which brought Euclid, Descartes and Newton down to school mathematics are
responsible for it. But nevertheless the transition in the case of formal languages and automata has taken place
in less than 15 years while Newton took about 200 years before being prescribed for high school.
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compilers or formal verification or complexity theory, emerge from the course feeling that the
whole course was useless and unconnected to anything they have learned and anything else
they might learn and of no use whatsoever in their professional life in industry.

Anyway that’s my story and I am sticking to it.

I decided therefore to make computability theory the primary focus of these lecture notes
and gradually introduce Turing machines, finite automata and formal languages. I have used
the books of Cutland [4] and Martin Davis ([2], [3]) as my primary sources for these lecture
notes. I have tried to introduce the connections between the theory of computability with other
courses such as programming, functional programming, data structures, discrete mathematical
strucutres and operating systems in as elementary a fashion as possible. It has been a source of
wonder to me that this beautiful material seems to be taught mostly only to students of pure or
applied mathematics or logic rather than to computer science students. I am sure students of
engineering can absorb this material and appreciate it equally well, especially since it requires
little more than high school mathematics to understand it (though it might require a more
maturity to appreciate it).

Anyway that’s my story and I am sticking to it.

I have of course borrowed freely from various sources, but in many cases I have made significant
departures fromt he original material especially as concerns notation. Not to put too fine a
point on it, I believe that my notation though strange to look at, is an attempt to clean up
(mostly for my own understanding) misleading notation used in various sources.
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5.4 Gödel Numbering of Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 The Hierarchy of Primitive Recursive Functions 53

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 URM–: A Restricted Machine for Primitive Recursion . . . . . . . . . . . . . . . 54

6.3 A Non-Primitive Recursive Total Partial Recursive function . . . . . . . . . . . 56

6.3.1 A Variant of the Ackermann function . . . . . . . . . . . . . . . . . . . . 56

6.3.2 The Growth of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7 Universality and Parametrisation 65

7.1 The Parametrisation theorem (Simplified form) . . . . . . . . . . . . . . . . . . 66

7.2 Universal functions and Programs . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8 The type-free λ-calculus 77



Chapter 1

Basics: Prerequisites and Notation

1.1 Sets and Operations on Sets

We assume the usual notions and notations of set theory including those of relations.

We will generally use the following notation for sets.

N The set of Natural numbers (including 0)
P The set of Positive integers
R The set of Real numbers
Z The set of Integers
∅ The empty set
⊆ The (infix) subset relation between sets
⊂ The (infix) proper subset relation between sets
∪ The infix union operation on sets
∩ The infix intersection operation on sets
∼ The prefix complementation operation on sets
− The infix set difference operation on sets
× The infix cartesian product of sets
An The postfix n-fold cartesian product of A, i.e.A× · · · ×A

︸ ︷︷ ︸

n-times
2A The powerset of A

The usual notations will be used for arithmetic operations on numbers. This includes the
operation of subtraction (denoted by the infix operator −) which is also the set difference
operation. Similarly we may use the symbol × for both cartesian product and multiplication of
numbers. Usually the context will determine which operation is intended. Some operations such
as multiplication may be denoted by ., or no symbol at all as is usual in mathematics. Further
the usual prefix operations for sum (

∑
) and product (

∏
) of sets or sequences of numbers will

be used.
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Convention 1.1.1

• A0 will be identified with the empty set ∅.

• A1 will be identiifed with the set A

• A 1-tuple (a) will be identified with a.

1.2 Relations, Functions and Predicates

Definition 1.1 A n-ary relation for n > 0 on sets A1, . . . , An is any subset of A1×· · ·×An.

Definition 1.2 Given two sets A and B and a binary relation f ⊆ A× B,

• Then f−1 ⊆ B × A the converse of f is the relation defined by (b, a) ∈ f−1 if and only
if (a, b) ∈ f .

• f is called a partial function of type A−7→ B, if f satisfies the image uniqueness
property viz. that for each element a ∈ A there is at most one element b ∈ B such that
(a, b) ∈ f . b is called the image of a under f .

• f is said to be defined at a ∈ A if a has an image under f .

• f is said to be undefined at a if it has no image under f .

• f is called a total function of type A→ B if f is a partial function of type A−7→ B and
every element of A has an image under f .

r ⊆ A1 × · · · × An A n-ary (for n > 0) relation on sets A1, . . . , An

f : A+→ B A partial function from set A to set B
f : A→ B A total function from set A to set B
f(a) = b b is the image of a under f
f(a) =⊥ f is undefined at a
Dom(f) The subset of values for which f is defined
Ran(f) The subset of values which are images of elements in Dom(f)

Notes.
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1. A constant (e.g. a natural number) will be regarded as a total function from the empty
set to the set that constant belongs to (e.g. N). This is to be regarded as being different
from a constant function such as f : R → N defined as f(x) = 5 which is a unary
total function defined on the reals and which yields the natural number 5 for every real
argument.

2. The notation we use for functions may also be used for relations. In fact every relation
r ⊆ A1 × · · · × An may be thought of as a total function of type r : A1 × · · · × Ak →
2Ak+1×···×An, for each k with 1 ≤ k < n. Hence for any (a1, . . . , ak) ∈ A1×· · ·×Ak, where
1 ≤ k < n, then

r(a1, . . . , ak) = {(ak+1, . . . , an) | (a1, . . . , ak, ak+1, . . . , an) ∈ r} (1.1)

3. When r(a1, . . . , ak) is a singleton set we omit the set braces. Further, each such relation
may also be thought of as a partial function of type

r : A1 × · · · ×Ak+→ Ak+1 × · · · × An (1.2)

where (a1, . . . , ak) ∈ Dom(r) if and only if r(a1, . . . , ak) 6= ∅ in 1.1

Facts 1.1

1. Every total function is also a partial function.

2. f : A→ B implies Dom(f) = A.

Definition 1.3 Two partial functions f, g : A+→ B are equal if and only if Dom(f) = Dom(g)
and for each a ∈ Dom(f), f(a) = g(a).

Definition 1.4 Let f : A+→ B be a partial function.

• f is injective if for each a, a′ ∈ Dom(f), a 6= a′ implies f(a) 6= f(a′). f is also said to
be an injection.

• If f is injective then f−1 : B−7→ A the inverse of f , with Dom(f−1) = Ran(f) ⊆ B and
for every b ∈ Dom(f−1), f−1(b) = a iff f(a) = b.

• f is surjective if Ran(f) = B. f is also said to be a surjection.

• f is bijective (or is a bijection) if it is both injective and surjective.
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Facts 1.2

1. If f : A−7→ B is injective then for every a ∈ Dom(f), f−1(f(a)) = a.

2. If f : A−7→ B is bijective then f−1 is total (of type B → A) and for every b ∈ B,
f(f−1(b)) = b.

Definition 1.5 Let g : A−7→ B and f : B−7→ C be partial functions. The composition of g
and f (denoted [g; f ] or [f ◦ g]) is the partial function h : A−7→ C such that

• Dom(h) = {a ∈ Dom(g) | g(a) ∈ Dom(f)} and

• for each a ∈ Dom(h), h(a) = [g; f ](a) = [f ◦ g](a) = f(g(a)).

Notation. The notation f ◦ g is preferred by mathematicians generally, though the notation
g; f more closely represents the sequential composition of functions in programming. We will
use either of them.

Note that composition is strict in the sense that for any a, a 6∈ Dom(g) or a ∈ Dom(g) but
g(a) 6∈ Dom(f) implies a 6∈ Dom(h) and hence h(a) =⊥.

If we were to regard f and g as transducers which take an input from its domain and transform
it into an output in its co-domain, then h is a composite transducer which transforms an input
from a ∈ A into an output c ∈ C in a two step process by first transforming a to b = g(a) and
then transforming b to c = f(b) = f(g(a)). The two step transformation may be pictured as
follows.
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g

g(a)
f

f(g(a))

Figure 1.1: Composition of unary functions

Notation. We usually abbreviate sequences of values such as a1, . . . , ak (which are the arguments

of a function) by
⇀
a , where the length of the sequence is either understood or immaterial. Where

the length of the sequence is important we may write it as
⇀k
a .

We will be interested in a generalised composition as defined below.

Definition 1.6 Assume f : Bm−7→ C is an m-ary function and g1, · · · , gm are k-ary functions
of the type g1, · · · , gm : Ak−7→ B. Then the k-ary function h : Ak−7→ C obtained by composing
the m functions g1, . . . , gm with f (as shown in the figure below) is such that
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• Dom(h) = {
⇀k
a ∈ Ak | (∀i : 1 ≤ i ≤ m :

⇀k
a ∈ Dom(gi)) ∧ (g1(

⇀k
a ), · · · , gm(

⇀k
a )) ∈ Dom(f)}

and

• h(
⇀k
a ) = f(g1(

⇀k
a ), · · · , gm(

⇀k
a )).

Notation. The same notation for sequences of values may be extended to sequences of functions
which are themselves arguments of a higher-order function. For example, the tuple of functions

g1, · · · , gm (which are arguments of the generalised composition operator) may be denoted
⇀
g .

Extending the notation for the composition of unary functions to generalised composition we

have h =
⇀
g ; f = f◦

⇀
g . Where the length of the tuple is important we may write the above

tuples as
⇀k
a and

⇀m
g respectively. Then h =

⇀m
g ; f = f◦

⇀m
g .
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Figure 1.2: Generalised Composition of functions

Definition 1.7 Given an n-ary relation r ⊆ A1 × · · · × An, its characteristic function

denoted χr, is the total function χr : A1×· · ·×An → {0, 1} such that for each
⇀
a ∈ A1×· · ·×An,

χr(
⇀
a ) =

{

1 if
⇀
a ∈ r

0 if
⇀
a 6∈ r
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Definition 1.8 An atomic predicate is a relation1. The class of (first-order) predicates
is the smallest class containing the atomic predicates and closed under the following logical
operations.

1. the unary (prefix) negation operation (denoted ¬)

2. the binary (infix) operation and (denoted ∧)

3. the binary (infix) operation or (denoted ∨)

4. the unary (prefix) universal quantifier (denoted ∀)

5. the unary (prefix) existential quantifier (denoted ∃)

The usual notions of free and bound variables apply to the predicates and quantified formulae.
Further the usual meaning of these predicates is as defined in any text on first order logic.
Further the usual rules of scope of variables apply here. To denote the scope of variables in
quantified predicates we write the body of the quantified formula within brackets.

Example 1.2.1 Consider the first order predicate q(
⇀
y ) defined as q(

⇀
y ) = ∀

⇀
x [p(

⇀
x ,
⇀
y )]

where p(
⇀
x ,
⇀
y ) is a first order predicate in which the variables in

⇀
x and

⇀
y may occur free.

p(
⇀
x ,
⇀
y ) may itself be a compound predicate defined in terms of other predicates. The quantifier

“∀
⇀
x ” in q(

⇀
y ) however, binds all occurrences of variables in

⇀
x that occur free in p(

⇀
x ,
⇀
y ).

The scope of the binding is indicated by the matching brackets “ [” and “ ]” in the definition of

q(
⇀
y ). The variables that are free in q are precisely those from

⇀
y whixh occur free in p(

⇀
x ,
⇀
y )

and this fact is indicated by the notation “q(
⇀
y )”.

Definition 1.9 Let p and q be predicates with free variables drawn from
⇀
x and let

⇀
x= y,

⇀
z .

The characteristic functions of compound predicates is defined in terms of the characteristic
functions of their components as follows.

• χ¬p(
⇀
x ) = 1− χp(

⇀
x )

• χp∧q(
⇀
x ) = χp(

⇀
x ).χq(

⇀
x )

• χp∨q(
⇀
x ) = 1− (χ¬p(

⇀
x ).χ¬q(

⇀
x ))

• χ∀y[p](
⇀
z ) =

{

0 if χp(a,
⇀
z ) = 0 for some a

1 otherwise

1Hence we use the same notation for atomic predicates as we use for relations
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• χ∀y[p](
⇀
z ) =

{

1 if χp(a,
⇀
z ) = 1 for some a

0 otherwise

We use some derived operators such as ⇒ and ⇔ defined as follows:

(p⇒ q) = (¬p) ∨ q
(p⇔ q) = (p⇒ q) ∧ (q ⇒ p)

The usual equational laws of First-order logic hold. We will also have occasion to use bounded
quantification – operations derived from the quantifiers and used in the context of the natu-
rals. They are defined as follows.

∀y < z[p(
⇀
x , y)] = ∀y[(0 ≤ y < z)⇒ p(

⇀
x , y)]

∃y < z[p(
⇀
x , y)] = ∃y[(0 ≤ y < z) ∧ p(

⇀
x , y)]

Note that bounded quantification obeys the De Morgan laws making each bounded quantifier
the dual of the other. That is

∀y < z[p(
⇀
x , y)] = ¬(∃y < z[¬p(

⇀
x , y)])

∃y < z[p(
⇀
x , y)] = ¬(∀y < z[¬p(

⇀
x , y)])

1.3 Equality

In the course of these notes we shall use various kinds of equality. Most of these notions of
equality share the property of being congruences i.e. they are equivalence (reflexive, symmetric
and transitive) relations and the two sides of the equality are mutually replaceable under all
contexts. However, it is necessary to emphasize that there are differences between the various
kinds of equality. Most mathematics texts often ignore these differences, (and we may have
been guilty too in the course of writing these notes!) but we feel that they are important for
various logical reasons and the reader should be aware of the differences. We briefly describe
them below and we hope the differences that we have made explicit will be useful for the reader
in understanding not just these notes but mathematics texts in general.

Definitional Equality. This is an equality by definition, and we use the symbol , to denote
this. This is most often used in the following situations.

1. to abbreviate a complex expression by giving it a name,

2. to name a complex expression because it or its form is somehow considered impor-
tant.
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Hence when we write p(x) , x2−9 or q(x) , x3 +3x2 +3x+1, we are either abbreviating
or naming the expression on the right hand side by the expression on the left hand side
of ,. Given another definition r(x) , (x + 1)3, even in the context of polynomials over
the reals or integers it is incorrect to write “q(x) , r(x)” because the two expressions
q(x) and r(x) define syntactically distinct expressions.

Instantiated Equality. Continuing with the previous examples we would often write expres-
sions like p(4) = 42 − 9 = 7. Note here that p(4) is an instance of p(x) defined above.
The equality symbol “=” (between “p(4)” and the expression “42−9”) here is overloaded
to imply that p(4) is a particluar instance of the definition p(x) , x2 − 92 Note that
“p(y) = y2 − 9” is also a form of instantiated equality and so is p(x+ 1) = (x+ 1)2 − 9.

Syntactic Identity This is a peculiar notion of equality we will use more in the context of
languages or programs rather than in the case of mathematical expressions. Consider
the two expressions r(x) , (x + 1)3 and s(y) , y3. It is clear that by appropriate
instantiations, we get r(z) = (z + 1)3 and s(z + 1) = (z + 1)3. Therefore r(z) = s(z + 1).
However, this equality between r(z) and s(z + 1) is stronger than just provable equality
— they are in fact, syntactically identical as expressions. This syntactic identity depends
only on the form of the original definitions and is independent of the context or the
interpretation of these expressions in any mathematical domain. We emphasize this aspect
by writing r(z) ≡ s(z + 1). As in the case of definitional equality, syntactic identity also
implies provably equality. Also definitional equality implies syntactic identity.

α-Equality. Consider the two definitions p(x) , x2−9 and p′(y) , y2−9. It is clear that p(y)
may be regarded as an instance of the definition p(x) , x2 − 9 and p(y) ≡ p′(y). Equally
well may p′(x) be regarded as an instance of the definition p′(y) , y2− 9 yielding p(x) ≡
p′(x). However the two definitions themselves are not syntactically identical because
of the use of different3 names x and y to express each definition. Hence p(x) 6≡ p′(y).
However there is a sense in which both the definitions p′(y) , y2−9 and p(x) , x2−9 may
be regarded as being the same (or equal) in that the variables x and y used to give the
definition its form are only “place-holders” whose name is of no consequence whatsover
except when replacement of one name by the other causes a name clash. In the absence
of such name clashes the uniform replacement of one name by the other causes neither
any confusion nor any change in the intended meaning of the definition. We call this
α-equality and we denote this fact by writing p(x) =α p′(y). As with other equalities,
since α-equality is also a reflexive relation, it follows that any two syntactically identical
expressions are also α-equal. We will come across this later in the λ-calculus.

Provable Equality. This is the most commonly used (and abused) equality and is denoted
by the usual “=” symbol. In the foregoing examples even though it is incorrect to write
q(x) , r(x), in the context of polynomials over real numbers it is perfectly correct to write
(x + 1)3 = x3 + 3x2 + 3x + 1, because the equality of the expressions x3 + 3x2 + 3x + 1
and (x+1)3 can be proven using the laws of real number arithmetic. Any two expressions
that are equal by definition are also provably equal (by invoking the definition). Hence

2However the equality symbol “=” between the expressions “42 − 9” and “7” is provable equality.
3The fact that we have used two different names “p” and “p′” does not count!
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p(x) = x2−9 and we could replace all occurrences of the expression p(x) by the expression
x2−9 and vice-versa. It is also perfectly correct to write “p(x) = x2−9” or “x2−9 = p(x)”.
To continue with our examples in the context of polynomials, it follows therefore that
q(x) = r(x) since the expressions they denote are provably equal. But note that even in
the context of polynomials over reals, q(x) 6=α r(x) and q(x) 6≡ r(x).

To summarize, we have that for any two (mathematical or formal) expressions E and F

1. E , F implies E ≡ F and

2. E ≡ F implies E =α F which in turn implies E = F . Hence E , F also implies E =α F
and E = F .

3. None of the above implications may however, be reversed in general i.e., it is not true in
general that if E = F then E =α F or E ≡ F would hold, nor does E ≡ F imply E , F
or F , E holds.

4. Further while all forms of equality may be instantiated, no form of instantiated equality
may imply any other form of equality unless it can be proven.

1.4 Other Notational Devices

We generally follow the practice of splitting long proofs of theorems into claims and using these
claims. In most cases the proofs of claims are distinguished from the main proof by the use of
the bracketing symbols “⊢” and “⊣” to enclose the proof of the claim and separate it from the
proof of the main theorem.
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Chapter 2

The RAM Model

2.1 The Unlimited Register Machine (URM)

Assume the following about the machine.

• A countably infinite number of discrete storage elements called registers each of which
can store an arbitrarily large natural number. The registers R1, R2, R3, · · · are indexed
by the set P of positive integers. These registers form the memory.

• The contents of Ri, i ∈ P are denoted respectively by !Ri ∈ N. Equivalently M : P→ N
the memory map may be regarded as a total function from the positive integers to the
natural numbers so that M(i) =!Ri for each i ∈ P.

• We will usually ensure that only finitely many registers contain non-zero values i.e. M is
0 almost everywhere.

• A URM program P is a sequence I1, I2, . . . , Ip of instructions.

• The instruction set has opcodes 0, 1, 2, 3 respectively, and each instruction Ij, 1 ≤ j ≤ p,
is typically of one of the following forms where i,m, n ∈ P.

opcode instruction semantics Verbal description

0 Z(n) Rn := 0 Clear register Rn

1 S(n) Rn :=!Rn + 1 Increment the contents of register Rn

2 C(m,n) Rn :=!Rm Copy the contents of register Rm into Rn

Jump to instruction i if the contents of the
3 J(m,n, i) !Rm =!Rn ? i : j + 1 registers Rm and Rn are the same.

Otherwise execute the next instruction

17
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We have used the syntax of the imperative fragment of SML to describe the effect of each
instruction on the appropriate register. The semantics of the jump instruction mixes
pidgin SML with the notation for conditional expressions used in languages like C and
Perl. The verbal description describes the semantics informally in English.

• Given a URM program P = I1, I2, . . . , Ip, register contents r1, r2, . . . respectively and a
program counter PC ∈ P denoting the next instruction to be executed, a configuration
of the URM is a 3-tuple 〈P,M, PC〉 where M(n) = rn.

• Given an initial memory M0 and a program P = I1, I2, · · · , Ip, with p ≥ 1, the initial
configuration of the URM is

γ0 = 〈P,M0, 1〉

• Let γ = 〈P,M, j〉 be any configuration of the URM. The URM is said to halt if j > p.
Such a configuration is also called the halting configuration and the result of the
computation is M(1) the contents of the register R1. If 0 < j ≤ p, then a step of the
computation from γ is given by γ 7→ γ′ where γ′ = 〈P,M ′, j′〉 and M ′ and j′ are as given
by the following table:

Ij = M ′ = j′ =

Z(n) {0/n}M j + 1
S(n) {M(n) + 1/n}M j + 1
C(m,n) {M(m)/n} j + 1
J(m,n, i) M i if M(m) = M(n)

M j + 1 if M(m) 6= M(n)

where M ′ = {a/n}M denotes that M ′ is identical to M for all values other than n and
M ′(n) = a regardless of whatever M(n) might be.

• Unconditional jumps are described by instructions such as J(n, n, j) since M(n) =
M(n) always. Similarly skip instructions (or no-op as they are referred to in hardware)
may be implemented using instructions such as C(n, n) or by jumping unconditionally to
the next instruction.

• The URM executes instructions in sequence (unless it executes a jump instruction, when
the sequence is altered) till the instruction referred to by PC does not exist. Then the
URM is said to halt.

Definition 2.1 A memory map M of the URM is said to be finite if there are only a finite
number of registers containing non-zero values i.e. the set {M(n) | M(n) > 0} is finite.

If the (initial) memory M0 in the initial configuration is such that {M0(n) | M0(n) > 0} is
finite, then the result of executing each instruction results in a new memory state M ′ such that
{M ′(n) | M ′(n) > 0} is also finite. In other words, at no stage of the execution of the program
does the URM require more than a finite number of registers to be used.



2.1. THE UNLIMITED REGISTER MACHINE (URM) 19

Lemma 2.1

1. Each URM instruction preserves finite memory maps.

2. The only registers whose contents may modified by a URM program are those that are
explicitly named in the program.

Every instruction has a deterministic effect on the URM machine. In other words, given a
memory map M each of the instructions Z(n), S(n) and C(m,n) when executed, would yield a
unique memory state M ′ in all programs and under all execution conditions. The instruction
J(m,n, i) too has the effect of uniquely determining the next instruction (if any) to be executed.

Lemma 2.2 .

1. Every non-halting configuration of the URM has a unique successor. That is, γ 7→ γ′ and
γ 7→ γ′′ implies γ′ = γ′′.

2. If Γ is the set of all URM configurations with finite memory maps then 7→ is a partial
function from Γ to Γ.

7→ is a partial function on the configurations of the URM because it is undefined for halt-
ing configurations. It suffices for us to consider only configurations with finite memory maps,
since we are interested in the notion of computability which requires for each task only a finite
amount of resources such as storage and program length. However, we do need to consider the
availability of unlimited storage. If we did fix storage limits to some fixed number then our
theoretical development suffers when technology improves to provide more storage than our
limit. A theory such as ours would have long term applicability only if it does not artificially
constrain the solutions to problems. Similarly while we consider the executions of URM pro-
grams of arbitrary length our fniteness constraints are limited to specifying that the program
may not be of infinite length.

The reader could ask whether the limitation to just four kinds of instructions is not an artificial
constraint. Our answer to that would be two-fold viz.

1. that only the kinds of operations are being fixed and that any reasonable mechanical
device (going by the history of mechanical devices) would be capable of performing only
a fixed finite set of different kinds of operations, and

2. the actual parameters that these operations may take is actually infinite.

Definition 2.2 Let γ0 be an initial configuration of the URM. A (finite or infinite) sequence
of the form γ0 7→ γ1 7→ · · · is called an execution sequence from γ0. A computation of the
URM is a maximal execution sequence from an initial configuration.
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Lemma 2.3 Let γ0 7→ γ1 7→ γ2 7→ · · · be an execution of the URM with the corresponding
memory maps M0,M1,M2, . . .. If M0 is a finite memory map, then so are each of the succeeding
memory maps M1, M2, etc.

Definition 2.3

1. A URM program P converges on input (a1, a2, ..., ak) if it begins execution from the initial
memory state M0 = a1, a2, ..., ak, 0, 0, ... and PC = 1 and halts after a finite number of
steps of computation.
Notation. P (a1, a2, ..., ak) ↓ denotes that P converges on input (a1, a2, ..., ak)

2. Otherwise P is said to diverge on the input. Notation. P (a1, a2, ..., ak) ↑.

3. P is said to converge to b ∈ N on the input (a1, a2, ..., ak) if it converges on the input
and reaches a configuration in which M(1) = b.
Notation. P (a1, a2, ..., ak) ↓ b denotes that P converges on input (a1, a2, ..., ak) to b.

Definition 2.4 A URM program P URM-computes a partial function f : Nk−7→N, if and
only if

• for each (a1, ..., ak) ∈ Dom(f), P (a1, ..., ak) ↓ f(a1, ..., ak) and

• P (a1, ..., ak) ↑ for all (a1, ..., ak) 6∈ Dom(f)

Definition 2.5 A partial function f is URM-computable if and only if there is a URM
program P which computes f . A predicate p is URM-decidable if and only if there is a URM
program which computes its characteristic function χp.

For each k ≥ 0, every URM program P computes a partial function φ
(k)
P : Nk+→ N. Given an in-

put (a1, a2, ..., ak) it begins execution from the initial memory state M0 = a1, a2, . . . , ak, 0, 0, . . .

and PC = 1 and if and when it halts φ
(k)
P (a1, ..., an) =!R1, i.e. the final result is the value

in register R1. If it does not halt for the given input then φ
(k)
P (a1, ..., an) =⊥. In the case

decidability however, if p is an m-ary relation for some m > 0, note that the characteristic
function is always total and hence a URM program that implements it should halt for every
m-tuple input. But it is quite possible that the program does not halt on some (m + 1)-tuple
input.
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2.2 Examples

In the following examples we illustrate programming the URM. Since the actual programs can
be quite tedious and confusing to read and understand, we also provide flow-charts to explain
the working of the programs. The language of flow charts consists of boxes, circles, diamonds
and arrows connecting them to form a flow-chart program. We follow the usual convention that
boxes denote actions that could change the memory state.

Boxes enclose actions which may change the state of the memory. We use a notation drawn
from pidgin SML for this purpose. The same notation has been used earlier in the
tables defining the semantics of the instruction set. Each box may enclose a sequence of
instructions.

Diamonds indicate decisions to be taken depending on the evaluation of the condition in the

diamond. Each diamond encloses a condition of the form !Rm
?
=!Rn whose truth in the

memory state requires a different flow of control. The letters “Y” and “N” on the arrows
emanating from a diamond indicate the flow of control when the condition is true or false
respectively.

Circles usually enclose the single word “STOP” and indicate that a halting configuration has
been reached and no further execution is possible or necessary.

In each case the initial memory map is also indicated

Example 2.2.1 The addition function x+ y.

��
��������

b
b

b
bb!!!!!!

HHHHHH?

?

--

N

Y

P1

R1 R2 R3

y . . . .x 0

1. J ( 2, 3, 5 )
2. S ( 3 )
3. S ( 1 )
4. J ( 1, 1, 1)

R3 :=!R3 + 1
R1 :=!R1 + 1

STOP!R2
?
=!R3

Example 2.2.2 f(x) =

{
1
2
x if x is even

⊥ otherwise
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b

b
b

bb!!!!!!
HHHHHH

?

-

?

?

?

N

Y
P2

R3 :=!R3 + 1
R2 :=!R2 + 1
R2 :=!R2 + 1

R1 R2 R3

x k 0 . . .2k

R1 :=!R3

1. J( 2,1,6 )

3. S ( 2 )
4. S( 2 )
5. J ( 1, 1, 1)
6. C ( 3, 1 )

2. S ( 3 )

STOP

!R2
?
=!R1

Further notes, notations and terminology

• Every instruction of the URM is deterministic (in the sense that the effect of the instruc-
tion on the state of the program is unique). Therefore every URM-program is computes
partial of the initial state to the final state

• Since we are interested only in the contents of R1 when a program P halts, every program
is a partial function whose range is contained in N.

Notation. Given a program P and a tuple of inputs
⇀
a = (a1, . . . , ak), P (a1, . . . , ak)

denotes the result of executing P with the input
⇀
a

• The type of the function determined by a program P depends entirely on the vector of
inputs that we consider.

1. The addition program P1 in the example does not necessarily represent only the
binary operation ofaddition.

2. If there are no inputs it implements the constant function 0.

3. If the initial configuration has only a single input, x then P1 implements the identity
function f(x) = x.

4. If the initial cofiguration consists of 3 values then P1 implements the partial function

f(x, y, z) =

{

x+ y − z if x ≥ 0

⊥ otherwise

Hence for any URM program P and for any k ≥ 0, P implments a unique partial function
φk

P : Nk+→ N i.e the arity of the function implemented by a program is not pre-determined
and is dependent entirely on the length of the input vector.

Definition 2.6 A URM-program P implements a function g : Nk+→ N iff φk
P = g.



2.2. EXAMPLES 23

Example 2.2.3 Consider program P2. The following are the functions it implements for for
the arities 1,2 and 3 respectively.

φ
(1)
P2

(x) =

{
1
2
x if x is even

⊥ otherwise

φ
(2)
P2

(x, y) =

{
1
2
(x− y) if x is even(x-y)

⊥ otherwise

φ
(3)
P2

(x, y, z) =

{

z + 1
2
(x− y) if x is even

⊥ otherwise

Notes.

1. Each program P implements an infinite number of distinct functions and exactly one
function of each arity.

2. For each function f : Nk+→ N that has an implementation P , there are an infinite number
of distinct programs that implement the same function.

Example 2.2.4 Add to program P2 the following instruction

J(1, 1, 8)

This produces a new program P2
′, which implements exactly the same function as P . We

could similarly add more instructions and keep getting syntactically distinct programs which all
implement the same function.

URM -Decidability

Definition 2.7 A predicate (or a relation) p ⊆ Nm is URM-decidable if its characteristic
(total) function χp : Nm → {0, 1} is URM-computable.

Example 2.2.5 The following predicates are URM-decidable.

1. x = y is implemented by
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&%
'$

cmrmn.

?

-

?

�

������HHHHHH������
aaaaaa

?

N

R1 := 0

1

2

1. J ( 1, 2, 4)
2. Z ( 1 )
3. J ( 1, 1, 6 )
4. Z ( 1 )
5. S ( 1 )

STOP

! R1
?
=!R2

Y

R1 := 0

R1 :=!R1 + 1

2. odd(x) is implemented by incrementing R2 and toggling R3 to reflect the evenness or
oddness of R2. Let T (3) denote toggle R3. Initially !R2 = 0 and !R3 = 0. The final flow
chart including T (3) looks as follows.

"!
# 

cmrmn.

?

?

cmrmn.

?

-

!!!!!!aaaaaa�����H
HHHH

?

STOP

Y

R1 :=!R3

N

!R1
?
=!R2

S(2)
T(3)

The final program is then as follows.
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&%
'$

!!!!!!!
b

b
b

b
b

b
bb!!!!!!!!

HHHHHHHH

?

?

?

?
- STOP

S(3)

Z(3)

Y!R3
?
=!R4

N

Figure 2.1: Implementing T(3)

1. J (1,2,8)
2. S (2)
3. J (3,4,6)
4. Z (3)
5. J (1,1,1)
6. S (3)
7. J (1,1,1)
8. C (3,1)

Composing URM-Programs

Function composition in URM is simply the catenation of the component programs. However
we cannot catenate two programs to produce a composition unless the termination or halting
of the first is tackled in a meaningful fashion – clearly then jump instructions have to be
standardized.

Definition 2.8 A program P = I1, ..., Ir is in standard form provided every jump instruction
J(m,n, p) is such that 1 ≤ p ≤ r + 1.

Lemma 2.4 For any program P there is a program P ⋆ in standard form such that for all input

vectors
⇀
a , P (

⇀
a ) ↓ b iff P ∗(

⇀
a ) ↓ b.
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Proof: If P consists of p instructions then P ∗ is the program obtained from P by replacing all
jump instructions that go outside the program to jump to p+ 1. 2

Definition 2.9 For any two programs P,Q in standard form with P = I1, . . . , Ip and Q =
I ′1, . . . , I

′
q, the join of P and Q is the program PQ = I1, ..., Ip, Ip+1, ..., Ip+q where any jump

instruction I ′j = J(m,n, r) is replaced by Ip+j = J(m,n, r + p) and for all other instructions
I ′j = Ip+j.

Macros: The operation [l1, . . . , lk → l]

Our convention of reserving the first few registers for input and the first register for output
has the disadvantage that it is inconvenient when joining several smaller programs together to
obtain a larger program. While composing programs P and Q together it often happens that
the inputs to some later program in the join may lie scattered in different registers. Similarly
the output of some component program may have to be stored in some register other than R1

in order that the contents of these registers do not affect or interfere with the computations of
the main program.

Let P be a URM program in standard form and k such that φ
(k)
P : Nk+→ N is computed

by P . Since P is a finite sequence of instructions there exists a highest index of register
that P uses. Let ρ(P ) denote the index of this register. Further let l1, l2, ..., ln, l be distinct
registers with each index exceeding ρ(P ). Then the program P ′ = P [l1, ..., lk → l] denotes a
new program whose inputs are in registers Rl1 , ..., Rlk and output (if any) in register Rl. Let
m = max(ρ(P ), l1, . . . , lk, l). This new program P ′ is depicted in the figure below

-

-

P [l1, ...lk → l] ::
.
.
.

.

..

F

P

Transfer input

values to R1, ..., Rk

Clear all registers

Join P to I.

Join F to P .

Rk+1, ..., Rm

Z(m)

C(l1, 1)

C(1, l)

C(lk, k)

Z(k + 1)
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URM-Computability on other Domains

Definition 2.10 A coding of a domain D is an explicit and effective injection α : D → N.
A function f : D+→ D is said to be URM-computable under the coding α if there exists a
URM-computable function f ∗ : N+→ N such that the following diagram holds. i.e

-

?

6

-

D D

α−1

f

α

f ⋆N N

For any d ∈ D, f(d) = α−1(f ⋆(α(d))) In other words f = α ◦ f ⋆ ◦ α−1

Note:

1. α needs to be injective and total.

2. α may not be surjective, so α−1 is partial in general.
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Chapter 3

The Primitive Recursive Functions

3.1 Introduction

Partial recursive functions are a different approach to computability. In this and the next
chapter we will see the relation between partial recursive functions and URM-computability.
However we need to first define the class of primitive recursive functions and then gradually
build up to the partial recursive functions.

Definition 3.1 The initial functions are

1. the constant 0,

2. the unary successor function s

3. the family {πn
i | n ∈ P, 1 ≤ i ≤ n} of projection functions, where for each n-tuple

(x1, . . . , xn), and each i, 1 ≤ i ≤ n, πn
i (x1, . . . , xn) = xi

URM and µ-recursive functions

Lemma 3.1 The initial functions are all URM-computable.

Proof:

• the constant 0 is computed by the program Z(1)

• the unary successor function s is computed by the program S(1)

• For each n ∈ P and i, 1 ≤ i ≤ n, πn
i is computed by the program C(i, 1).

29
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2

Lemma 3.2 Composition is URM-computable. Let f : Nk+→ N, g1, · · · , gk : Nm+→ N

Then the composition of f and
⇀
g denoted by f◦

⇀
g is also URM-computable.

Proof: Let f and g1, · · · , gk be computed by programs F,G1, ..., Gk respectively and let n =

max(m, k, ρ(F ), ρ(G1), ..., ρ(Gk)). The following program computes f◦
⇀
g

C(1, m+ 1)
...
C(n,m+ n)
G1[m+ 1, m+ 2, ..., m+ n→ m+ n+ 1]
...
Gk[m+ 1, m+ 2, ..., m+ n→ m+ n+ k]
F [m+ n + 1, ..., m+ n+ k → 1]

2

Often we may require to obtain new functions from existing functions by permuting the ar-
guments, or by identifying some arguments or by the addition of dummy arguments. Typical
examples of such functions are as follows:

Permuting arguments Consider the “divisor of” relation on numbers expressed in terms of
its characteristic function divisorof : N× N → {0, 1}. We may define the “multiple of”
relation multipleof : N × N → {0, 1} in terms of the divisorof function by permuting
the two arguments, i.e. multipleof(x, y) = divisorof(y, x).

Identification of arguments Consider the function double : N → N which is obtained from
addition function by identifying the two operands of addition.

Addition of dummy arguments Any constant k ∈ N may be elevated to the status of a
function such as k(1) : N → N defined as k(1)(x) = k and further to k(2) : N × N → N
defined as k(2)(x, y) = k.

The following theorem shows that these operations are also URM-computable and expressed
using only composition and the initial functions.

Theorem 3.3 Let f : Nk+→ N be a URM-computable function defined in terms of the variables
x1, . . . , xk. Let xi1 , . . . , xin be a sequence of n-variables drawn from the set {x1, x2, ..., xm} ⊇
{x1, . . . xk}. Then the function h : Nn+→ N defined by
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h(xi1 , . . . , xin) = f(xj1, . . . , xjk
)

where {xj1 , . . . , xjk
} ⊆ {x1, x2, ..., xm}, is also URM- computable.

Proof: Writing
⇀n
x for (xi1 , ..., xin) and

⇀k
πm for (πm

j1
, · · · , πm

jk
) and using composition we have

h(
⇀n
x ) = [f◦

⇀k

πm ](x1, . . . , xm)

Since composition and projection are both URM-computable it follows that h is also URM-
computable. 2

Notes.

1. The case of the empty sequence () is taken care of by lemma 3.7 which shows that the
naturals are all computable.

2. Since xi1 , . . . , xin are all drawn from the set {x1, x2, ..., xm} ⊇ {x1, . . . xk}, some of the
arguments of h may be identifications of variables in {x1, . . . xk}, some may be reorderings
(permutations) of the variables in {x1, . . . xk} and some of them may be drawn from
{x1, x2, ..., xm} − {x1, . . . xk} (these are the dummy arguments of h). Notice that the
arguments (xj1, . . . , xjk

) f in the definition of h are entirely drwan from {x1, x2, ..., xm}.

3.2 Primitive Recursion

Given total functions f : Nn → N and g : Nn → N, consider the following relation h ⊆ Nn+2

where h =
⋃

i≥0

hi and the individual hi , i ≥ 0 are defined by induction as follows.

h0 = {(
⇀
x , 0, f(

⇀
x )) |

⇀
x ∈ Nn}

hi+1 = {(
⇀
x , i+ 1, zi+1) |

⇀
x ∈ Nn, zi+1 = g(

⇀
x , y, zi), (

⇀
x , y, zi) ∈ hi} for i ≥ 0

In fact as the following theorem shows we may express the relation h by a pair of so called
recursion equations which uniquely define h in terms of the functions f and g.

h(
⇀
x , 0) = f(

⇀
x ) (3.1)

h(
⇀
x , y + 1) = g(

⇀
x , y, h(

⇀
x , y)) (3.2)

Theorem 3.4 Given total functions f : Nn → N and g : Nn+2 → N, there exists a unique total
function h : Nn+1 → N satisfying the recursion equations (3.1) and (3.2).
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Proof:

Existence. Consider sets of (n+2)-tuples of numbers. A set S ⊆ Nn+2 is called satisfactory

with respect to the recursion equations (3.1) and (3.2) if for every choice of
⇀
a ∈ Nn,

Basis. (
⇀
a , 0, f(

⇀
a )) ∈ S and

Induction. if (
⇀
a , b, c) ∈ S, then (

⇀
a , b+ 1, g(

⇀
a , b, c)) ∈ S.

Let S be the set of all satisfactory sets. Clearly S 6= ∅ since Nn+2 is satisfactory. Con-
sider S0 =

⋂
S. S0 is also non-empty since it contains at least every tuple of the form

(
⇀
a , 0, f(

⇀
a )). Further

Claim 1. S0 is satisfactory and is contained in every satisfactory set.

Claim 2.

For each choice of
⇀
a and b, there is a unique c such that (

⇀
a , b, c) ∈ S0.

⊢ Suppose there is a tuple (
⇀
a , 0, c) ∈ S0. If c 6= f(

⇀
a ) then S ′

0 = S0 − {(
⇀
a , 0, c)} would be

satisfactory since (
⇀
a , 0, f(

⇀
a )) ∈ S ′

0 but S0 6⊆ S ′
0. Hence c = f(

⇀
a ). Assume the claim is

true for all 0 ≤ b′ ≤ b. Then for each choice of
⇀
a there exists a unique c ∈ N such that (

⇀
a

, b, c) ∈ S. Since S0 is satisfactory it follows that (
⇀
a , b+1, g(

⇀
a , b, c)) ∈ S0. Suppose there

exists (
⇀
a , b + 1, d) ∈ S0 such that d 6= g(

⇀
a , b, c). Then again S ′

0 = S0 − {(
⇀
a , b+ 1, d)}

is a satisfactory set and S0 6⊆ S ′
0 which is impossible. ⊣

Uniqueness. Suppose there exist two functions h and h′ both of which satisfy the recursion
equations (3.1) and (3.2). Then from the fact that f and g are (total) functions we have

∀
⇀
a [h(

⇀
x , 0) = f(

⇀
x ) = h′(

⇀
x , 0)]

and assuming that for all
⇀
a and some b ≥ 0,

h(
⇀
a , b) = h′(

⇀
a , b)

we have
h(
⇀
a , b+ 1) = g(

⇀
a , b, h(

⇀
a , b))

= g(
⇀
a , b, h′(

⇀
a , b))

= h′(
⇀
a , b+ 1)

2

We may extend the above result to partial functions by insisting that functions be strict with
respect to the undefined.

Theorem 3.5 Given partial functions f : Nn+→ N and g : Nn+2+→ N, there exists a unique
partial function h : Nn+1+→ N satisfying the recursion equations (3.1) and (3.2).
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Proof: We leave the details of the proof of the above theorem to the reader, while simply
noting that if f is the everywhere undefined function then so is h (prove it!). Further in the
inductive definitions of the relations hi, if for any i ≥ 0, hi = ∅ then hj = ∅ for all j > i. 2

We may regard both function composition and primitive recursion as (higher order) operators
which take functions of appropriate arities as arguments and yield new functions as results. Both
composition and primitive recursion are polymorphic functions. More precisely, our notation
for functions f of type Nk+→ N simply specifies that f is simply a member of the set Nk+→ N,
which is exactly the space of all partial functions of the specified type. That is f is simply
a point in the space Nk+→ N of functions of arity k which yield natural numbers as values.
Function composition and primitive recursion are therfore merely functions or operators on
such spaces.

In the particular case when a function f of arity k > 0 is composed with k functions
⇀
g , where

each of the components of
⇀
g is of arity m > 0, we get a new function h of arity m. In such a

case, the type of composition may be described as follows.

◦ : (Nk+→ N)× (Nm+→ N)k → (Nm+→ N)

Similarly primitive recursion may be regarded as a polymorphic operator of type

pr : (Nn+→ N)× (Nn+2+→ N)+→ (Nn+1+→ N)

Notation

• The composition of f with
⇀
g is denoted [

⇀
g ; f ] or [f◦

⇀
g ].

• The function defined by primitive recursion on f and g is denoted [f pr g].

Primitive recursion is URM-computable

Definition 3.2 A function h : Nn+1+→ N is said to be defined by primitive-recursion on
functions f : Nn+→ N and g : Nn+2+→ N if it satisfies the equations

h(
⇀
x , 0) = f(

⇀
x )

h(
⇀
x , y + 1) = g(

⇀
x , y, h(

⇀
x , y))

Theorem 3.6 If f : Nn+→ N and g : Nn+2+→ N are URM-computable then so is h : Nn+1+→
N with

h(
⇀
x , 0) = f(

⇀
x )

h(
⇀
x , y + 1) = g(

⇀
x , y, h(

⇀
x , y))
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Proof: Let F and G compute f and g resp and let m = max(n+ 2, ρ(F ), ρ(G)) and t = m+n

Then the following program computes h(
⇀
x , y).

Rt+1 Rt+3

Rt+2RtRm Rm+1R1

y k
. . . ⇀

x h(
⇀
x , k)

C(1, m+ n)

C(n+ 1, t+ 1)

F [1, 2, ..., n→ t+ 3]

p. J(t+ 2, t+ 1, q)

G[m+ 1, ..., m+ n, t+ 2, t+ 3→ t+ 3]

S(t+ 2)

J(1, 1, p)

q. C(t+ 3, 1).

2

Lemma 3.7 Every natural number is URM-computable

Proof: Each natural number n : ∅ → N is a total function from the empty set to the naturals.

J(1, 1, 2) computes the number 0.

For any n > 0 the following program computes it

1. S(1)
. .
. .
. .
n. S(1)

2

Definition 3.3 The class PRIMREC of primitive recursive functions is the smallest class
of functions containing the initial functions and which is closed under the operations of function
composition and primitive recursion

That is, the class PRIMREC may be defined by induction as follows

PRIMREC0 = {0} ∪ {s} ∪ {πn
i | n > 0, 1 ≤ i ≤ n}

PRIMRECj+1 = PRIMRECj ∪ {[f◦
⇀
g ] | f,

⇀
g ∈ PRIMRECj}

∪{[f pr g] | f, g ∈ PRIMRECj}

PRIMREC =
⋃

k≥0

PRIMRECk
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In the above definition, we have not explicitly mentioned the type restrictions on composition
and primitive recursion, for the sake of conciseness. However, these restrictions are required.

Hence in order to show that a certain function belongs to the class PRIMREC, we require to
show the construction of the function as belonging to a certain PRIMRECk, for some k ≥ 0.
This implies that we need to show an explicit construction of the function using only the initial
functions and the operations of composition and primitive recursion, while still respecting the
type restrictions on composition and primitive recursion.

Lemma 3.8 Every function in PRIMREC is total.

Proof outline: By induction on the induction variable j in definition 3.3. It follows easily since
the initial functions are total and each application of composition or primitive recursion is on
total functions belonging to a class with a smaller index. 2

Lemma 3.9 Every function defined by composition or by primitive recursion on functions in
PRIMREC is also primitive recursive.

Notice that the proof of theorem 3.3 may be reproduced as the proof of lemma 3.10.

Lemma 3.10 Let f : Nk → N be a primitive recursive function defined in terms of the variables
x1, . . . , xk. Let xi1 , . . . , xin be a sequence of n-variables drawn from the set {x1, x2, ..., xm} ⊇
{x1, . . . xk}. Then the function h : Nn → N defined by

h(xi1 , . . . , xin) = f(xj1, . . . , xjk
)

where {xj1 , . . . , xjk
} ⊆ {x1, x2, ..., xm}, is also primitive recursive.

Theorem 3.11 The following underlined functions are primitive recursive (and hence URM-
computable).

Proof outline: In each case we express the function as being obtained by a finite number of
applications of composition and primitive recursion on the initial functions. Often we simply
express a function in terms of composition or primitive recursion on functions shown earlier
to be in the class PRIMREC. These formulations not only prove that they are primitive
recursive, they show that these functions are URM-computable as well (since we have shown
that both composition and primitive recursion are URM computable operations. In each case,
the proof is written between the brackets ⊢ · · · ⊣.
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1. k ∈ N.

⊢ 0 is initial. For k > 0 we have k = [s ◦ · · · ◦ s]
︸ ︷︷ ︸

k-times

(0) .

⊣

2. id(x) = x.

⊢ Clearly id = π1
1 . ⊣

.

3. add(x, y) = x+ y.

⊢ Using the induction on y we get x + 0 = x = id(x) and x + (y + 1) = (x + y) + 1 =

s(x+ y) = s(add(x, y)) = [s ◦ add]. We then have add = [id pr [s ◦ π3
3]] . ⊣

4. mult(x, y) = xy.

⊢ Again by induction on y we have x.0 = 0 and x.(y + 1) = xy + x = x + xy =
x +mult(x, y) = add(x,mult(x, y)). By lemma 3.10 we may express the constant 0 also
as a constant function (of any number of arguments). We write it as 0(x) and it is clearly
primitive recursive. The function g(x, y, z) = add(x, z) = add ◦ (π3

1 , π
3
3) then yields the

definition mult = [0 pr [add ◦ (π3
1, π

3
3)]] .

⊣

5. texp(x, y) = xy (assuming 00 = 1).

⊢Using the definitions texp(x, 0) = 1 = s(0) = s(0(x)) and texp(x, y+1) = mult(x, texp(x, y))

we use a reasoning similar to that for multiplication to get texp = [[s ◦ 0] pr [mult ◦ (π3
1, π

3
3)]] .

⊣

6. tpred(x) = x− 1 (assuming tpred(0, 1) = 0).

⊢ Here x is the induction variable. So we get tpred = [0 pr π2
1] ⊣

7. monus(x, y) = x
.
− y.

⊢We have x
.
− 0 = x = id(x) and x

.
− (y+1) = tpred(x

.
− y) Hence monus = [id pr [tpred ◦ π3

3]]

⊣

8. sg(x) defined as sg(x) =

{

0 if x=0

1 if x > 0
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⊢ Clearly sg(0) = 0 and sg(x + 1) = 1. It is easy to see that sg(x) = 1
.
− (1

.
− x) =

monus(1, monus(1, x)). Using 1 as unary constant function we have

sg = [monus ◦ (1, [monus ◦ (1, id)])] ⊣

9. sg(x) defined as sg(x) =

{

1 if x = 0

0 if x > 0

⊢ sg(x) = 1
.
− sg(x) ⊣

10. sdiff(x, y) = |x− y|.

⊢ |x− y| = (x
.
− y) + (y

.
− x) = add(monus(x, y), monus(y, x)). Hence

sdiff = [add ◦ ([monus ◦ (π2
1 , π

2
2)], [monus ◦ (π2

2, π
2
1)])] . ⊣

11. fact(x) = x!.

⊢ We have 0! = 1 and (x + 1)! = x! × (x + 1) = mult(s(x), fact(x)), which yields

fact = [1 pr [mult ◦ ([s ◦ π2
1], π

2
2)]] ⊣

12. min(x, y).

⊢ min(x, y) = x
.
− (x

.
− y) Hence min = [monus ◦ (π2

1, [monus ◦ (π2
1, π

2
2)])] ⊣

13. max(x, y).

⊢ max(x, y) = y + (x
.
− y). Hence max = [add ◦ (π2

1, [monus ◦ (π2
1, π

2
2)])] ⊣

14. trem(x, y) =

{

y if x = 0

y mod x otherwise

⊢ We have

trem(x, y + 1) =

{
0 if trem(x, y) + 1 = x
trem(x, y) + 1 if trem(x, y) + 1 6= x

which gives the following recursion equations:

trem(x, 0) = 0
trem(x, y + 1) = mult(trem(x, y) + 1, sg(|x− (trem(x, y) + 1)|))

from which we get trem = [0 pr [mult ◦ (s ◦ π3
3, [sg ◦ [sdiff ◦ (π3

1, [s ◦ π
3
3])]])]] ⊣
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15. tquot(x, y) =

{

0 if x = 0

y div x otherwise

⊢ We have

tquot(x, y + 1) =

{
tquot(x, y) + 1 if trem(x, y) + 1 = x
tquot(x, y) if trem(x, y) + 1 6= x

from which we get the following recursion equations.

tquot(x, 0) = 0
tquot(x, y + 1) = add(tquot(x, y), sg(|x− (trem(x, y) + 1)|))

Hence tquot = [0 pr [add ◦ (π3
3, [sg ◦ [sdiff ◦ (π3

1, [s ◦ π
3
3])]])]] ⊣

2

The definitions of trem and tquot are total and have been chosen so that for any two numbers
a, b, a = b× tquot(b, a) + trem(b, a) with trem(b, a) ≤ a.

We may use part 1 of theorem 3.11 to obtain the following corollary, which extends the use of
lemma 3.10 to instances of functions. For example the doubling function double(x) (which was
previously considered an example of identification of arguments of the addition operation) could
be regarded as an instance of the binary multiplication operation in which one argument is
the constant 2. Similarly the function f(n) = 2n may be considered an instance of the function
texp in which the first argument is the constant 2.

Corollary 3.12 If f : Nk+1 → N is primitive recursive then so is any instance of it.

Proof: By lemma 3.10 we may reorder the arguments of f so that the argument instantiated
is the first one. Hence without loss of generality we assume that the first argument of f is

instantiated to obtain the k-ary function g(
⇀k
y ) = f(m,

⇀k
y ) where m is some fixed natural

number m. Then by lemma 3.10 we may treat m as a unary function defined as m(1)(x) = m.
Then clearly g = [f ◦ (m(1), πk+1

2 , · · · , πk+1
k+1)]. 2

Claim 1. Let f : N→ N be primitive recursive, then fn(x), the n-fold application of f is also
primitive recursive.

⊢ Define the n-fold application of f to be the function h by the recursion equations.

h(x, 0) = x
h(x, t+ 1) = f(h(x, t)) = [f ◦ π3

3](x, t, h(x, t)))

Hence h = [id pr [f ◦ π3
3 ]] is a primitive recursive function.

⊣
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3.3 Primitive Recursive Predicates

We have seen several functions that are primitive recursive. We now turn to the question of
designing some primitive recursive predicates on numbers. Note that every predicate yields
a value of 0 or 1 depending upon whether it is true or false respectively. In this sense we
have already defined two such functions sg(x) and sg(x) in theorem 3.11, both of which could
be interpreted as predicates standing for the properties “is-non-zero(x)” and “is-zero(x)”
respectively.

Theorem 3.13 The following underlined predicates are primitive recursive and hence are also
URM-computable.

Proof outline: Unlike the case of theorem 3.11 we do not give complete expressions and leave
the formulation of the actual definition to the reader. We explain only the key ideas that may
be used in formulating the primitive recursive definition.

1. the equality relation.

⊢ χ=(x, y) = sg(sdiff(x, y)) ⊣

2. the less-than relation

⊢ χ<(x, y) = sg(monus(x, y))

⊣

3. the greater-than relation.

⊢ χ>(x, y) = χ<(y, x)

⊣

4. the “divisor-of” relation.

⊢ Adopting the convention that 0 is a divisor of 0, but 0 is not a divisor of any positive
integer, we get χ|(x, y) = sg(trem(x, y)) ⊣

2

Often in the interest of readability we will use the relational symbols, “=”, “<”, “>” and “|”
for the obvious relations they denote, instead of their characteristic functions.
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3.4 Some Forms of Primitive Recursion

Corollary 3.14 (Definition by cases). Let f1, f2, . . . , fm : Nk+→ N be URM-computable
functions and p1, p2, . . . , pm : Nk → {0, 1} be URM-decidable predicates such that for any
⇀
x ∈ Nk exactly one of p1(

⇀
x ), · · · , pm(

⇀
x ) is true. Then the function g : Nk+→ N

g(
⇀
x ) =







f1(
⇀
x ) if p1(

⇀
x )

...

fm(
⇀
x ) if pm(

⇀
x )

is URM-computable. Further if f1, f2, ..., fm, p1, p2, ..., pm are each primitive recursive then so
is g.

Proof: g(
⇀
x ) = χp1(

⇀
x ).f1(

⇀
x ) + · · ·+ χpm

(
⇀
x ).fm(

⇀
x ). 2

Corollary 3.15 (Algebra of Decidability). If p, q : Nk → {0, 1} are URM-decidable pred-
icates then so are the following
(i) ¬p (ii) p ∧ q (ii) p ∨ q
Further if p and q are primitive recursive then so are ¬p, p ∧ q and p ∨ q.

Proof:

(i) χ¬p(
⇀
x ) = monus(1, χp(

⇀
x ))

(ii) χp∧q(
⇀
x ) = χp(

⇀
x ).χq(

⇀
x )

(iii) χp∨q(
⇀
x ) = max(χp(

⇀
x ), χq(

⇀
x )) 2

Bounded sums and Products

Theorem 3.16 Let f, g, h : Nk+1+→ N such that

g(
⇀
x , y) =

∑

z<y

f(
⇀
x , z) =







0 if y = 0
∑

z<w

f(
⇀
x , z) + f(

⇀
x ,w) if y = w + 1

h(
⇀
x , y) =

∏

z<y

f(
⇀
x , z) =







1 if y = 0
∏

z<w

f(
⇀
x , z).f(

⇀
x ,w) if y = w + 1

Then g and h are URM-computable if f is total and URM-computable and g and h are primitive
recursive if f is primitive recursive.
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Proof: Since the above are definitions by primitive recursion it follows that g and h are
computable (respectively primitive recursive). More rigorously we have

g = [0 pr [add ◦ (πk+2
k+2, [f ◦ (πk+2

1 , · · · , πk+1
k+1)])]]

h = [1 pr [mult ◦ (πk+2
k+2, [f ◦ (πk+2

1 , · · · , πk+1
k+1)])]]

2

Corollary 3.17 If f, i : Nk+1 → N are total computable functions then so are g(
⇀
x , y) =

∑

z<i(
⇀
x ,y)

f(
⇀
x , z) and h(

⇀
x , y) =

∏

z<i(
⇀
x ,y)

f(
⇀
x , y) Further if f and i are primitive recursive then

so are g and h.

Bounded Quantification

Theorem 3.18 Let p(
⇀
x , y) be any predicate and let q(

⇀
x , y) = ∀z < y[p(

⇀
x , z)] and r(

⇀
x , y) =

∃z < y[p(
⇀
x , z)].

1. If p is URM-computable then so are q and r.

2. If p is primitive recursive then so are q and r.

Proof: We have χq(
⇀
x , y) =

∏

0≤z<y

χp(
⇀
x , z) and r(

⇀
x , y) = ¬(∀z < y[¬p(

⇀
x , z)]) from which the

relevant results follow. 2

Bounded Minimalization

Let p : Nk+1 → {0, 1} be a

decidable
︷ ︸︸ ︷

(total) computable predicate. Then the function

g(
⇀
x , y) = µz < y[p(

⇀
x , z)] =

{

least z < y : p(
⇀
x , z) if z exists

y otherwise
(3.3)

That is, g(
⇀
x , y) = z0 ⇔ ∀z[0 ≤ z < z◦ ≤ y ⇒ ¬p(

⇀
x , z)]

Theorem 3.19 g in (3.3) above is computable if p is URM-computable. Further if p is primi-
tive recursive then so is g.
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Proof: Consider all the predicates ¬p(
⇀
x , z) for each value of z. For each 0 < v < y we have

f(
⇀
x , v) =

∏

u≤v

¬p(
⇀
x , u) =

{

1 if ∀u : 0 ≤ u ≤ v : ¬p(
⇀
x , u) = 1

0 otherwise

For each 0 ≤ w < y we have

∑

0≤w<y

f(
⇀
x ,w) =

{
w if w < z0
z0 if w > z0

Hence g(
⇀
x , y) =

∑

w<y

(∏

v≤w

¬p(
⇀
x , v)

)

which is a primitive recursive function of p. 2

Corollary 3.20 If p : Nk+1 → {0, 1} is decidable and f : Nk+m → N is a total computable

function then g(
⇀
x , y) = µz < f(

⇀
x ,
⇀
w )[p(

⇀
x , z)] is a total computable function.

Theorem 3.21 The following functions are primitive recursive.

1. #div(x) = the number of divisors of x (assuming #div(0) = 1)

2. prime(x) = “whether x is a prime”

3. px = the x-th prime number (assuming p0 = 0)

4. (x)y = the exponent of py in the prime factorization of x.

Proof:

1. #div(x) =
∑

y≤x

y | x

2. prime(x) = eq(#div(x), 2)

3. p0 = 0 and py+1 = µz ≤ (py! + 1)[(py < z) ∧ prime(z)]

4. (x)y = µz < x[pz+1
y ∤ x]

2

Theorem 3.22 The set PRIMREC of primitive recursive functions is countably infinite.
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Proof: It suffices to prove the following two claims.

Claim 1. The set PRIMREC is not finite.

⊢ By contradication . Assume there are only finitely many primtive recursive functions of
arity n for some n ≥ 0, say f

(n)
1 , · · · , fm :(n). Since they are all total we may, construct a

new total function g(n) : Nn → N such that g(n)(
⇀
x ) = max(f

(n)
1 (

⇀
x ), · · · , f

(n)
m (

⇀
x ) + 1. g(n) is

different from every one of f
(n),...,f

(n)
m

1 and since max is primitive recursive and + is primitive
recursive it follows that g(n) is primitive recursive contradicting the initial assumption. Hence
PRIMREC(n) is infinite. ⊣

Claim 2. The set PRIMREC is countably infinite

⊢ From definition 3.3 it is clear that every primitive recursive function belongs PRIMRECj

for some j ≥ 0. We may define the depth of a primitive recursive function f to be the smallest
index j, such that f ∈ PRIMRECj . For each j ≥ 0, let PRj denote the set of primitive

recursive functions of depth j. Clearly then, we have
⋃

j≥0

PRj = PRIMREC and for each

i 6= j, PRi ∩ PRj = ∅. In particular, we have PR0 = PRIMREC0 which is countably
infinite and by induction we may show that each PRj is also at most countably infinite. Since
PRIMREC is the countable union of at most countable sets, PRIMREC is countably infinite.
⊣

2
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Chapter 4

The Partial Recursive Functions

Unbounded Minimization

Let p : Nk+1 → {0, 1} be a decidable predicate. Then g : Nk−7→N defined by

g(
⇀
x ) , µ[p(

⇀
x .y)] is computable where

=

{

least y : p(
⇀
x , y) i.e (∀z < z◦[¬p(

⇀
x , z)]) ∧ p(

⇀
x , z◦)

⊥ otherwise ⇔ g(
⇀
x ) = z◦

Theorem 4.1 Unbounded Minimizationis URM-computable.

Proof: Let g and p be as defined above and let P be a URM program that computes p.
Let m = max(k + 1, ρ(p))). Then

R1 Rm Rm+1 Rm+k Rm+k+2

Rm+k+1

. . . . . 1y
⇀
x

2

45
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-

-

-

-

-

-

k. C(k, m + k)

k + 1. Z(m, k + k)

k + 2. S(m, k + 2)

k + 3. P (m + 1, ..., m + k + 2→ 1)

k + 4. J(1, m + k + 2, k + 7)

k + 5. S(m + k + 1)

k + 6. J(1, 1, k + 3)

k + 7. C(m + k + 1, 1)

1. C(1, m + 1)
.
.
. Copy

⇀
x to Rm+1 to Rm+k

Initialize Rm+k+1 to 0.

Initialize Rm+k+2 to 1 for comparision

run P and have output in R1

compare R1 and Rm+k+2 and jump

otherwise increment Rm+k+1

����

!!!!
@

@
@����c

c
cc

?

?

?

S(m + k + 2)

P [m + 1, ..., m + k + 1 → 1]

S(m + k + 1)

C(m + k + 1, 1)

!R1
?
= 1

Stop

C[1, ..., k → m + 1, ..., m + k]

Z(m + k + 1)

Run P

Set to 1 for comparing truth values

Copy parameters

y : =0

Copy y into R1

Partial Recursive Function

Definition 4.1 The class PRIMREC of primitive recursive functions is the smallest class

(i) Containing the basic functions —————— (o, s, idk
i )

(ii) Closed under composition and —————— ◦[f ; g1, ..., gk]

(iii) Closed under primitive recursion ————– Pr[f, g]

Definition 4.2 The class PARTREC of partial recursive functions is the smallest class

(i) Containing the basic functions —————— (o, s, idk
i )

(ii) Closed under composition and —————— ◦[f ; g1, ..., gk]
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(iii) Closed under primitive recursion ————– Pr[f, g]

(iv) Closed under (unbounded) minimalization. µy[ρ]

Theorem 4.2 PRIMREC ⊆ PARTREC ⊆ URM

Proof: The foregoing results have shown this. 2

Theorem 4.3 Every URM-computable function is partial recursive.

Proof: Let f : Nk+→ N be a URM-computable function implemented by a program P =
I1, . . . , Is. A step of the execution of P is the execution of a single instruction.

Now consider the following functions

c1(
⇀
x , t) ,

{

!R1 if P has stopped executing in less than t steps

!R1 after t-steps of execution of P otherwise

j(
⇀
x , t) ,

{

0 if P has stopped execution in less than t- steps

the number of the next instruction to be executed after t-steps otherwise

Claim 1. c1,  : Nk+1 → N are total fuctions.

Claim 2. c!,  are both URM-computable. In fact c1 and  are both primitive recursive.

Claim 3. f is a partial recursive function

If for any
⇀
x ,Nk, f(

⇀
x ) ∈ N then P converges after some t0 steps. where t0 = µt[(

⇀
x , t) = 0]

and R1 contains the value f(
⇀
x ) . Hence f(

⇀
x ) = c1(

⇀
x , t0) = c1(

⇀
x , µt[j(

⇀
x , t) = 0]) 2

Corollary 4.4 A function is URM-computable if and only if it is partial recursive. That is,

PARTREC ⊆ URM .
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Chapter 5

Coding and Gödelization

5.1 Introduction

We have discussed the notion of

5.2 Numbering and Coding

Definition 5.1 A set A is denumerable (or countably infinite) if there exists a bijection
f : A→ N.

Definition 5.2 An enumeration with possible repetitions of a set A is a surjective func-
tion g : N → A, and if g is injective too (i.e. g is a bijection) then g is an enumeration
without repetitions. Clearly g−1 shows that the set is denumerable.

Definition 5.3 A set A is effectively denumerable if there is a bijection f : X
1−1
−−→
onto

N such

that both f and f−1 are effectively computable functions.

Theorem 5.1 The following sets are effectively denumerable

1. N× N.

2. Nk for all k > 2.

3. N∗.
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Proof:

1. pair : N × N → N with pair(m,n) , 2m(2n + 1)− 1) . pair is primitive recursive and

hence effective. The inverse functions fst2, snd2 : N→ N which satisfy the equations

pair(fst2(z), snd2(z)) = z (5.1)

fst2(pair(x, y)) = x (5.2)

snd2(pair(x, y)) = y (5.3)

are defined as follows. fst2(z) for any natural z is the exponent of the largest power
of 2 that divides z + 1, which may be equivalently expressed as 1 less than the smallest
power of 2 that does not divide z + 1. Hence fst2(z) = µx < (z + 2)[2x ∤ (z + 1)] − 1
which is clearly primitive recursive. snd2(z) is simply the largest odd divisor of z + 1.
Equivalently, snd2(z) = tquot(fst2(z), z + 1) which again is primitive recursive.

2. We prove this only for k = 3. triple(x, y, z) = pair(x, pair(y, z)) and its inverses
fst3(u) = fst2(u), snd3(u) = fst2(snd2(u)) and thd3(u) = snd2(snd2(u)). It is clear
that all these functions are primitive recursive and they satisfy the following defining
equations.

triple(fst3(u), snd3(u), thd3(u)) = u (5.4)

fst3(triple(x, y, z)) = x (5.5)

snd3(triple(x, y, z)) = y (5.6)

thd3(triple(x, y, z)) = z (5.7)

3. Consider the function seq : N∗ → N, defined as

seq([a1, . . . , ak]) , 2a1 + 2a1+a2+1 + · · ·+ 2a1+a2+ak+(k−1)

= 2a1(1 + 2a2+1(1 + 2a3+1(...+ 2ak+1)...)))

For the empty sequence ε, we have seq(ε) = 0, whereas for all other sequences s ∈ N,
seq(s) > 0. For instance, the sequence seq([0]) = 1, seq([1]) = 2, and seq([0, 0]) =
20(1 + 2(0+1)) = 3. We define the function hd(z) as the largest power of 2 that divides
z i.e. hd(z) = µx < (z + 1)[2x ∤ (z + 1)] − 1 and tl(z) = tquot(2, tquot(hd(z), z) − 1) to
ensure that if z = seq([a1, a2, . . . , ak]) then tl(z) = seq([a2, . . . , ak]). We also define the
function cons(a, z) = 2a(2z+1). It is then clear that the functions seq, hd, and tl satisfy
the following equations.

seq(s) = 0 iff s = ε (5.8)

and whenever s = [a1, . . . , ak] for k > 0, we have

hd(cons(a, z)) = a (5.9)

tl(cons(a, z)) = z (5.10)

seq([a1, . . . , ak]) = cons(a1, seq([a2, . . . , ak])) (5.11)

2
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5.3 Gödel Numbers of URM Instructions

Theorem 5.2 The set of instructions of the URM is effectively denumerable.

Proof:

We use the opcodes of the instructions to code them up modulo 4. Consider the function β
such that

β(Z(n)) = 4(n− 1) + 0
β(S(n)) = 4(n− 1) + 1
β(C(m,n)) = 4.pair(m− 1, n− 1) + 2
β(J(m,n, p)) = 4.triple(m− 1, n− 1, p− 1) + 3

Hence every instruction I has a unique code given by β(I). Conversely, for any x ∈ N, it
is possible to decode the instruction I primitive recursively by first determining the opcode
(x mod 4) and then depending upon the opcode it is possible to determine the parameters.
These operations are all primitive recursive. 2

5.4 Gödel Numbering of Programs

Theorem 5.3 P=collection of all URM programs is effectively denumerable.

Proof: Any program P = I1, ..., Ik has a Gödel number given by seq[β(I1), . . . , β(Ik)] , where
all the functions used are bijective and primitive recursive, includeing |P | = k which can be
determined as follows.

Let i = µx[2x+1 ∤ P + 1] then

i = a1 + a2 + ...ak + k.

Compute each of the indices and then effectively compute k. 2

Notation. Let PARTREC be partitioned by arity

PARTREC =
⋃

n>0

PARTREC(n)

where each f (n) ∈ PARTREC(n) : Nn−7→N.

We use the superscript (n) denote arity.

Since γ is obtained only through the composition of bijective functions(which have inverses)
we have γ−1 also exists and is primitive recursive
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Theorem 5.4 The set PARTREC(n)1

Proof: Consider the enumeration

Q
(n)
0 , Q

(n)
1 , Q

(n)
2 , ....

with repetitions. We now construct an enumeration without repetitions as follows.

f(0) = 0

f(m+ 1) = µz[Q
(n)
z 6= Q

(n)
f(0) ∧

Q
(n)
z 6= Q

(n)
f(1) ∧

...

Q
(n)
z 6= Q

(n)
f(m)

]

which clearly exists as a function and provides an enumeration since

f(m+ 1) is a function(different from each of f(0), ...f(m))

2

1PARTREC(n) is clearly infinite since PRIMREC(n) ⊆ PARTREC(n) is infinite



Chapter 6

The Hierarchy of Primitive Recursive
Functions

6.1 Introduction

So far we have seen that the URM has the power of partial recursive functions. We have already
seen that the primitive recursive functions are total. In many cases such as subtraction and
division we have made them total by adopting conventions which at best may be considered
unconventional. We leave it to the reader as an exercise to define partial recursive versions
of functions like subtraction and division which conform to normal mathematical convention
(e.g. division by 0 should be undefined, subtraction of a larger number from a smaller number
should be undefined etc.).

This might give the reader the feeling that the difference between the primitive recursive func-
tions and the URM might only be in the question of being able to program undefinedness by
non-terminating programs.

Two questions naturally arise from the material presented so far.

1. Does unbounded minimalization yield genuine computational power that goes beyond
primitive recursion. Put differently,

Are there partial recursive functions that are total but not primitive recursive?

If so, then unbounded minimalization does yield genuine computational power.

2. If the answer to the above question is negative, then we might ask whether it is possible to
get rid of undefinedness completely by eliminating non-termination from URM programs.
In other words,

Is there a machine that exactly characterises the primitive recursive functions?
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The answer to this question has a direct bearing on the relative power of machines and
it might enable us to construct and program machines which yield only total functions.

In the following sections we answer both these questions.

6.2 URM–: A Restricted Machine for Primitive Recur-

sion

While we have shown that primitive recursion is URM-computable, we have not explored the
possibility of restricting the instruction set of the URM so as to characterize the primitive
recursive functions.

One of the instructions of the URM machine which makes it powerful in many ways including
that of leading to non-termination is the jump instruction J(m,n, p). In fact, in the 1970s,
it was recognized that such arbitrary transfers of control in any programming language led
to serious difficulty in “debugging” faulty programs, made all programs (except the trivial
ones) completely incomprehensible even to the authors of the programs and more importantly
made reasoning about the behaviours of programs an almost impossible task. In fact, short of
actually manually executing the programs it was impossible to make any except the most trite
statements about what such programs do.

In this section we introduce a more structured construct for URM programs that directly reflects
the the nature of primitive recursion. Let the new machine be called URM–. The instruction
set of this machine is summarised in the table below.

opcode instruction semantics Verbal description

0 Z(n) Rn := 0 Clear register Rn

1 S(n) Rn :=!Rn + 1 Increment the contents of register Rn

2 C(m,n) Rn :=!Rm Copy the contents of register Rm into Rn

3 L(m) Execute !Rm times the following instructions upto
the matching E.

4 E End of the code to be repeated

The two instructions L(m) and E (which stand for “Loop” and “End”) satisfy the following
conditions

1. Each occurrence of the L(. . .) instruction in a program is followed by a matching occur-
rence of E.

2. The sequence of instructions between L(m) and E (called the loop body) is executed
!Rm times. The sequence is entirely skipped if Rm = 0.
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3. The two instructions L(m) and E along with the loop body form the loop, Rm the loop
counter and the contents of Rm is the loop bound.

4. There can be no instruction in the loop body which modifes the loop bound.

5. Loops may be nested one within the other i.e. the loop body of one loop may itself contain
a loop. But in the case of nested loops, all the loop counters must be distinct.

6. For any two loops, either the two loops are entirely disjoint or one is entirely contained
in the other.

Notes.

1. Notice that condition 1. clearly prohibits the E instruction preceding any L(. . .) instruc-
tion.

2. The reader is encouraged to ponder over why we have put in the condition 4. On the
other hand,

3. condition 6. is redundant if we follow the convention that each E instruction matches the
closest L(. . .) instruction that precedes it.

4. Unlike the case of the URM, instruction numbers are needed only for the purpose of
maintaing the program counter in the execution of the machine. Since there are no jump
instructions, instruction numbers are unnecessary for the purpose of understanding and
reasoning about the program.

Definition 6.1 The class of loop-free URM– programs is LOOP0. LOOP1 is the class of
programs containing LOOP0 and all programs with loops such that there are no loops in any of
the loop bodies i.e. LOOP1 is the class of URM– programs with loops nested at most 1 deep.
For any n > 0, the class LOOPn consists of LOOPn−1 and all those programs which contain

loops nested at most n-deep. LOOP =
⋃

n≥0

LOOPn is the class of all URM– programs.

Theorem 6.1 Every primitive recursive function can be implemented as a URM– program.

Proof: It is clear that the initial functions are all in LOOP0. Hence it suffices to show that
generalized composition and primitive recursion may be programmed in URM–. The case of
generalized composition also follows the proof given for the URM. That leaves only primitive
recursion. Assume h = [f pr g]. Assuming that F and G are respectively programs that
implement f and g respectively, we proceed almost exactly as we did in the URM machine
except that the two jump instructions are replaced by L(t+ 2) and E respectively. 2
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Theorem 6.2 Every program of URM– implements a primitive recursive function.

Proof outline: First of all notice that each of the following claims is easy to prove and taken
together they prove the theorem.

Claim 1. Every URM– program terminates.

Claim 2. If P and Q are URM– programs that implement primitive recursive functions, their
join PQ also implements a primitive recursive function.

Claim 3. If F implements a primitive recursive function f and Rm is a register whose contents
are not modified by F , then L(m), F,E is a program that implements f r where !Rm = r, i.e.
the loop construct implements the r-fold application of the body of the loop. 2

So we have shown that the primitive recursive functions are exactly characterised by the class
of functions that may be implemented in the URM–.

In the next section we show that not all total computable functions are primitive recursive.

6.3 A Non-Primitive Recursive Total Partial Recursive

function

An example of a function that is partial recursive and total is the Ackermann function which
is defined as follows.

Ack(0, y) = y + 1
Ack(x+ 1, 0) = Ack(x, 1)
Ack(x+ 1, y + 1) = Ack(x,Ack(x+ 1, y))

6.3.1 A Variant of the Ackermann function

We consider a variation of the Ackermann function (in the sense that recursion is of the same
kind, though the individual cases are different).

A(x, 0) = 1 (6.1)

A(0, y) =

{
y + 1 if y ≤ 1
y + 2 if y > 1

(6.2)

A(x+ 1, y + 1) = A(x,A(x+ 1, y)) (6.3)

It is easy to show that the above equations do define a total function and that is partial
recursive.
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Lemma 6.3 The equations 6.1-6.3 define a unique total function.

Proof outline: Define a finite relation S ⊆ N×N×N to be suitable if it satisfies the following
conditions.

1. (x, 0, z) ∈ S implies z = 1,

2. (0, y, z) ∈ S implies z = y + 1 if y ≤ 1 and z = y + 2 otherwise.

3. (x, y, z) ∈ S for x > 0 and y > 0 implies there exists u such that (x, y − 1, u) ∈ S and
(x− 1, u, z) ∈ S.

For each (x, y) let S(x,y) denote the smallest suitable set such that there exists a triple of the
form (x, y, z) ∈ S(x,y),

Claim 1. For each (x, y), S(x,y) is nonempty and contains a unique triple (x, y, z) ∈ S(x,y).

⊢ Consider the lexicographic ordering <lex on ordered pairs (x, y). It is clear from the definition
of suitable sets that for each ordered pair of the form (x, 0), S(x,0) = {(x, 0, 1)} and for each
ordered pair of the form (0, y), S(0,y) = {(0, y, z) | z = y + 1 if y ≤ 1, z = y + 2 otherwise}.
Consider any ordered pair (x, y) with x > 0 and y > 0. Assume that for each (x′, y′) <lex (x, y)
there exists S(x′,y′) 6= ∅ and such that there is a unique triple (x′, y′, z′) ∈ S(x′,y′). Then
S(x,y) = S(x,y−1) ∪ S(x−1,u) ∪ {(x, y, z)} where u = S(x,y−1)(x, y − 1) and z = S(x−1,u)(x − 1, u).
Clearly then S(x,y)(x, y) = z uniquely defines S(x,y) as the smallest suitable set containing a
unique triple (x, y, z). ⊣

2

Lemma 6.4 A is a partial recursive function.

Proof: Consider the triples (x, y, z) ∈ A. We may code the triples using some coding mechanism
such as triple1(x, y, z) = pair1(x, pair1(y, z)), where pair1(x, y) = 2x(2y + 1).

Claim 1.

1. triple1 is a primitive recursive function.

2. triple1 is a bijective function from N3 to N.

3. The decoding functions fst, snd, thd which yield respectively, the first, second and third
components of a triple are also primitive recursive.

4. For any a, b, c, d ∈ N, the following holds

triple1(a, b, c) = d iff a = fst(d), b = snd(d) and c = thd(d)
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We may also code finite sets of numbers T = {a1, . . . , am} by the function

fs(T ) =
∏

ai∈T

pai+1 where pk denotes the k-th prime number (with p1 = 2, p2 = 3, p3 = 5 etc.)

for any positive integer k.

Claim 2. fs is a primitive recursive function

⊢ Since multiplication and determining the k-th prime are both primitive recursive (the k-th
prime can be found by bounded minimalization, since pk < 22k

which may be proven from
Euclid’s proof 1), it follows that fs is also primitive recursive. ⊣

Claim 3. Given any positive integer, the predicate isfs : N→ {0, 1} which determines whether
a given number is the code of a finite set, is primitive recursive.

⊢ Just check that the number is square-free. ⊣

Claim 4. Any finite set T = {(ai, bi, ci) | 1 ≤ i ≤ n} of triples of numbers may be encoded as
fs({triple1(ai, bi, ci) | 1 ≤ i ≤ n}).

Claim 5. For any (x, y, z) ∈ N3 and a finite set T ⊆ N we have

(x, y, z) ∈ T iff divisorof(ptriple1(x,y,z), fs(T )) .

Claim 6. For any v ∈ N, the predicate isSuitable(v) (which determines whether v is the code
of a suitable set) is primitive recursive.

⊢ We outline a method of checking that is intuitively primitive recursive, because every search
is bounded by the number v. For each prime divisor of v, obtain the triple and check for
membership of the “earlier” triples that may be needed to compute it. Given any triple (x, y, z)
in the set, if x = 0 then it is only necessary to verify that z = y + 1 or z = y + 2 according as
whether y ≤ 1 or y > 1. Similarly, if y = 0, then it is only necessary to verify that z = 1. If on
the other hand both x > 0 and y > 0 then it is clearly necessary to check for the presence of
“earlier” triples. An earlier triple in this case is one of the form (x, y−1, u) where u is unknown
and needs to be determined. But having determined u (since u is unique!), it is only necessary
to verify that the triple (x−1, u, z) belongs to the set (which merely involves checking whether
ptriple1(x−1,u,z) is a divisor of v. However, if y > 1 then this process needs to be pursued with
(x, y−1, u). Similarly if x > 1, then a similar process needs to be pursued with (x−1, u, z). But

1By Euclid’s proof of the infinitude of primes, it follows that pk ≤ 1 +

k−1∏

i=1

pi. Using this very fact and

starting from 2 < 221

we may prove by induction that pi < 22i

for each i < k and then conclude that

pk < 1 +

k−1∏

i=1

22i

= 1 + 221+···+2k−1

≤ 22k

.
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each of these processes is bounded by the value v and the checking involves merely decoding
and checking for prime divisors. Hence these processes are all bounded and intuitively primitive
recursive. ⊣

Claim 7. The predicate R(x, y, v) defined as isSuitable(v)∧ ∃z < v[(x, y, z) ∈ Sv] is primitive
recursive.

Claim 8. A(x, y) = µz[(x, y, z) ∈ Sf(x,y)] where f(x, y) = µv[R(x, y, v)].

⊢ Firstly of all the suitable sets that contain a triple (x, y, z), S(x,y) is the smallest and is con-
tained in every other suitable set which contains the triple. This follows from the construction
of the smallest suitable sets required for each pair (x, y). Further our coding mechanisms for
sets ensures that S ⊂ T implies fs(S) < fs(T ) and fs(S)|fs(T ). Hence f(x, y) yields the code
of the set S(x,y) in which there is a unique triple (x, y, z) which satisfies the equations 6.3. ⊣

2

We have shown that A(x, y) is total and partial recursive. In order to prove that it is not
primitive recursive it does not suffice to simply show that it is partial recursive. Many primitive
recursive functions may be shown to be partial recursive. For example in each case of bounded
minimalization, if the bound is removed we get an equivalent function that “looks” partial
recursive, even though it is not. Hence our question of whether there are total partial recursive
functions that are not primitive recursive has to be answered in some more convincing manner
by showing that the function cannot exist in the class PRIMREC under any circumstances or
by showing that the operations that yield primitive recursive functions are inadequate in some
convincing way to be used to define the function A.

6.3.2 The Growth of functions

We first define a family F of (inter-related) functions and then show that the function A may
be expressed in terms of this family. The growth properties of A are related to the growth
properties of this family of functions and eventually we will show that it is impossible for any
primitive recursive function to match the growth of the function A.

Definition 6.2 Let F = {fx | x ∈ N, fx : N → N} be a family of functions defined by the
equations

f0(y) =

{
y + 1 if y ≤ 1
y + 2 if y > 1

fx+1(y) = f y
x (1)

Lemma 6.5 A(x, y) = fx(y)
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Proof outline: By double induction on x and y. 2

Since we are primarily interested in asymptotic growth of functions we define the notion of
functions being “nearly” equal, a concept that suffices for our purposes.

Definition 6.3 Let f, g : N → N be total unary functions. g majorizes f denoted by f ≺ g
or g ≻ f , if f(x) < g(x) almost everywhere, i.e. there exists x0 such that for all x > x0,
f(x) < g(x). f asymptotically approximates g, denoted f ≍ g, if f(x) = g(x) almost
everywhere. Given a class of functions F , f ∈≍ F if there exists a function g ∈ F such that
f ≍ g.

Theorem 6.6 The following claims on the properties of fx hold.

Proof outline:

Claim 1. The first few functions in F are as follows.

1. f1(y) = 2y for all y > 0.

2. f2(y) = 2y for all y > 0.

3. f3(y) = 22..
.2

}

y-times for all y > 0.

Claim 2. For all n > 0, fn ∈≍ LOOPn, where LOOPn is the class of URM– programs with
depth of nesting at most n.

⊢ By induction on n. Starting with n = 1 we have f1(y) ≍ 2y which is in turn implemented
by the following sequence of instructions C(1, 3),C(1, 2), L(2), S(3),E,C(3, 1). Assume for some
k ≥ 1, fk ∈≍ LOOPk. That is there exists program Fk ∈ LOOPk such that fk ≍ φFk

.
Let ρ(Fk) = mk and let F ′

k = Fk[l1, . . . , lmk
→ l1], where l1, . . . , lmk

are chosen so as not
to interfere with any of the parameters or intermediate registers that may be required. We
have fk+1(y) = f y

k (1). Now consider the program Fk+1 defined by the sequence of instructions
C(1, mk + 1), S(1), L(mk + 1), F ′

k,E. Clearly since Fk ∈ LOOPk, Fk has a nested loop depth
of at most k, Fk+1 has a depth of at most k + 1. Further since fk ≍ Fk, we may show that
fk+1 ≍ Fk+1. Hence fk+1 ∈≍ LOOPk+1. ⊣

Claim 3. fx+1(y + 1) = f y+1
x (1) = fx(f

y
x (1)) = fx(fx+1(y)).

Claim 4. f0 is a monotonic function i.e. y ≤ z implies f0(y) ≤ f0(z).

Claim 5. fk
0 (y) ≥ k
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⊢ By induction on k. f 0
0 (y) = y ≥ 0 and fk+1

0 (y) = f0(f
k
0 (y)) ≥ fk

0 (y) + 1 ≥ k + 1. ⊣

Claim 6. fn(y) > y i.e. fn is an increasing function of y.

⊢ By induction on n. For n = 0 it is obvious since f0(y) ≥ y + 1 always. Assume fk(y) > y
for some k ≥ 0. Then fk+1(y) > y is proven by induction on y. For y = 0 we have fk+1(0) =
f 0

k (1) = 1 > 0 = y. Assuming fk+1(m) > m i.e fk+1(m) ≥ m + 1 for some m ≥ 0 we have
fk+1(m+ 1) = fk(fk+1(m)) > fk+1(m) ≥ m+ 1. ⊣

Claim 7. fn(y + 1) > fn(y) for each n.

⊢ It is easily verified for n = 0. Assuming the result is true for some k ≥ 0, we have fk+1(y+1) =
fk(fk+1(y)) > fk+1(y) ⊣

Claim 8. fn+1(y) ≥ fn(y) for all n and x.

⊢ The proof is not by induction. However, for y = 0 the claim holds, since both sides of the
inequality yield 1. For y > 0 we have for any n, fn+1(y+1) = fn(fn+1(y)). Since fn+1(y) > y we
have fn+1(y) ≥ y + 1 and further since fn(y + 1) > fn(y) we have fn+1(y + 1) = fn(fn+1(y)) ≥
fn(y + 1). ⊣

Claim 9. fk+1
n (y) > fk

n(y)

⊢ fk+1
n (y) = fn(fk

n(y)) > fk
n(y). ⊣

Claim 10. fk+1
n (y) ≥ 2fk

n(y)

⊢ By induction on k. For k = 0 it is clear. For k > 0 we have 2fk+1
n (y) = 2fn(fk

n(y)) ≤
fk+1

n (fn(y)) = fk+2
n (y). ⊣

Claim 11. fk+1
n (y) ≥ fk

n(y) + x

⊢ By induction on k. f 1
n(y) ≥ 2f 0

n(y) = 2y = f 0
n(y) + y. Similarly fk+1

n (y) ≥ 2fk
n(y) =

fk
n(y) + fk

n(y) ≥ fk
n(y) + y. ⊣

Claim 12. fk
1 (y) ≥ 2ky.

⊢ For k = 0, f 0
1 (y) = y ≥ 20.y and for k + 1 we have fk+1

1 (y) = f1(f
k
1 (y)) = 2fk

1 (y) ≥ 2.2kx =
2k+1x. ⊣

2
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Theorem 6.7 For all n, k, fn+1 ≻ fk
n .

Proof outline: By double induction on n, k. For n = 0, we have fk
0 (y) = y + 2k, for all y ≥ 2

and f1(y) = 2y. Clearly for all y > 2k, we have 2y > y + 2k. Hence f1 ≻ fk
0 . Assume that for

some n > 0 and all k, fn ≻ fn−1. For k = 0, we know fn+1(y) > y = f 0
n(y) for all y. Hence

fn+1 ≻ f 0
n. Assume 2

Corollary 6.8 For any constant c and all n, k, fn+1 ≻ c.fk
n .

Since all URM– programs are terminating, we define a concept of running time of programs.

Definition 6.4 For any program URM– program P , its running time on any input
⇀
x is

defined as the total number of executions of atomic instructions2 in P .

We would like to observe that the running time of any program P may be easily calculated by
a URM– program TP by the following procedure.

• Choose a register Rm with m > max(k, ρ(P )), where k si the length of the input.

• To every atomic instruction, add a new instruction S(m).

• At the end of the program append a new instruction C(m, 1)

Clearly the program TP for any input
⇀
x computes the running time of P . Also TP has the

same depth of nesting as P . We then have the following important theorem.

Theorem 6.9 (The Bounding theorem) For all n ≥ 0 and P ∈ LOOPn, there exists k ≥ 0

such that TP (
⇀
x ) ≤ fk

n(max(
⇀
x )) for every

⇀
x .

Proof: By induction on n. For n = 0, there are no loops in P and hence P consists of only

a constant number c of atomic instructions. Hence for any input
⇀
x , we have φTP

(
⇀
x ) ≤ c ≤

f c
0(max(

⇀
x )).

Assume for some n > 0, for each Q ∈ LOOPn−1 there exists a constant kn−1 such that for all
⇀
x , TQ(

⇀
x ) ≤ f

kn−1

n−1 (max(
⇀
x )). Suppose P ∈ LOOPn and let max(

⇀
x ) = u. We then have the

following cases.

2We could equally well have defined the running time as the number of changes in configuration, but as we
shall see it is easier to compute running time in terms of the atomic statements executed. Moreover our theory
of asymptotic growth of functions does not get seriously affected by either definition.
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Case P ∈ LOOPn−1. Then by the induction hypothesis and the previous theorem we have

φTP
(
⇀
x ) ≤ f

kn−1

n−1 (u) ≤ fkn−1
n (u).

Case P 6∈ LOOPn−1. We proceed by induction on the structure of P . Since n > 0 there exists
at least one looping construct in P which is of the form L(m), R,E, where R ∈ LOOPn−1 and

hence φTR
(
⇀
x ) ≤ fkR

n−1(u) for some constant kR. For simplicity assume P is made up by joining
the programs Q, L(m), R,E and S, where Q and S are in LOOPn−1. Assume !Rm = v and
since Q and S are in LOOPn−1, by the induction hypothesis, there exist constants kQ and kS

such that φTQ
(
⇀
x ) ≤ f

kQ

n−1(u). Further

Claim 1. The value in any register after Q has been executed is bounded above by u+f
kQ

n−1(u).

⊢ Since each atomic statement increases the maximum of the values contained in all registers

by at most 1, it follows after the execution of Q whose running time is bounded by f
kQ

n−1(u), no
register can possibly contain a value greater than the sum of its initial value and the running
time of Q. ⊣
We may argue similarly with the rest of the code in P to conclude that every register has a

value bounded above. This gives us the result that

φTP
(
⇀
x ) ≤ u+ f

kQ

n−1(u) + v.fkR

n−1(u) + fkS

n−1(u)

≤ f
kQ+1
n−1 (u) + v.fkR

n−1(u) + fkS

n−1(u)

≤ u+ (v + 2).f
kn−1

n−1 (u)
≺ fkn

n (u)

where kn−1 > max(kQ + 1, kR, kS). 2

Hence the value in register R1 in any URM– program can be a priori bound by the sum of
the initial value in the register and the running time of the program. This implies that values
produced by primitive recursive functions cannot grow faster than the bounds imposed on them
by the bounding theorem. However the function A(x, y) grows faster than fk

n(1) for any fixed
n and k. While each of the function fn is primitive recursive, since fn ∈ LOOPn, the function
A outstrips them all and hence is not primitive recursive.
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Chapter 7

Universality and Parametrisation

Notation

1. Pa denotes the URM program with gödel number a.

2. For any a ∈ N and n ≥ 1

φ
(n)
a = the n-ary function computed by Pa.

= f
(n)
Pa

D
(n)
a = the domain of φ

(a)
a .

R
(n)
a = the range of φ

(n)
a .

3. The above are abbreviated to

φa, Da, Ra respectively when n = 1.

4. Since every computable function has an infinite number of programs that implement it,
the enumeration

Q0, Q1, Q2 ,...

is an enumeration of unary computable functions with repetitions.

Theorem 7.1 There is a total unary function that is not computable.

Proof: Assume Q
(1)
0 , Q

(1)
1 , Q

(1)
2 ,... is an enumeration of

PARTREC(1): Consider the total function f : N→ N.

f(n) =

{

Q
(1)
n (n) + 1 if Q

(1)
n (n) ↓ .

0 otherwise.

65
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Claim 1. f(n) is the different from every function in the enumeration of computable functions.

Claim 2. f(n) is total. Hence f(n) is not computable 2

The following is the picture of computable functions that we have.

PARTREC(1)

PRIMREC(1)

f : N−7→N

f : N → N

7.1 The Parametrisation theorem (Simplified form)

Assume f : N×N−7→N is computable (∈ PARTREC(2)) for each fixed value a ∈ N. We may
define a unary function ga : N−7→N such that

∀y ∈ N : ga(y) = f(a, y) i.e ga ≃ λy[f(a, y)]

Then clearly since f is computable ga is also computable and in fact there is a program Pa for
each a ∈ N which computes f(a, y) for any given a

Theorem 7.2 Let f : N×N−7→N be computable. Then there exists a total computable function
h : N→ N such that f(x, y) ≃ Q

(1)
h(x)(y) .

Proof: We need to construct a program Qa for each a which computes

f(a, y) for each y. let F computes f .

2
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C(1, 2)

Z(1)

S(1)

S(1)

.

...

.

.

F

y y

R1 R1 R2

a 0

Initial state of Qa

Initial state of F

Where F computes f .

effectively computable, k is

effectively computable. Hence

Qk(a)
(y) = f(a, y)

a - times

Qa differs from
Qa′ only in
this part

For a 6= a, ,

Let k(a) = Qa = γ(Qa)

Since F is fixed and is

0 . . . . . .

Qa :

Examples

1. Let f(x, y) = yx. By the s−m−n theorem there is a total computable function h : N→ N
such that for any fixed n ∈ N, h(n) is the Godel number of the program that computes
yn.

2. Let f(x, y) =

{

y if x/y.

⊥ otherwise.

Then f is computable since

f(x, y) = x.

(

µz[x.z = y]

)

x = 0, y = 0⇒ f(x, y) = 0 = y
x = 0, y 6= 0⇒ f(x, y) = ⊥
x 6= 0, y = 0⇒ f(x, y) = 0 = y

x 6= 0, y 6= 0⇒ f(x, y) =

{

y ← x/y

⊥ ← x ∤ y

Then there is a total computable function h : N→ N. such that for each fixed n.

Qh(n)(y) is defined iff n/y iff y is in the range of Qh(n)

therefore Dom

(

(Qh(n)(y)

)

= {ni|i ∈ N} = nN = Range

(

Qh(n)(y)

)

The generalized Smn theorem

For each m,n ≥ 1 , there is total computable (m+ 1)-ary function sm
n (e,

⇀
x ) such that
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Q
(m+n)
e (

⇀
x ,
⇀
y ) = Q

sm
n (e,

⇀
x )

(
⇀
y ) for all

⇀
x ,
⇀
y .

Proof: Let Q(i, x) be the subroutine 2

.

R1

0

to be transformed to

y1

Rn

R1

R1

Rm Rm+1 Rm+n

yn 0x1 xm y1

yn

Z(i)

S(i)

S(i)

x-times

for given values of

recursive
functionGiven

i and x this is
a primitive

...

. . . .

. . .

. . .

. . . . . .

we use the following code

C(n, m + n)

C(2, m + 2)

C(1, m + 1)

Q(1, x1)

Pe

.

.

.

...
C(m, xm)

effectively computable.

From this definition and the

recursive
no jumps, it is primitive
Since this code contains

it follows that sm
n (e,

⇀
x ) is

effectiveness of and −1

7.2 Universal functions and Programs

Definition 7.1 The universal function for n-ary computable functions is the (n+1)-ary func-
tion

ψ
(n)
u (e, x1, ..., xn) ≃ Q

(n)
e (x1, ..., xn)

Question. Is ψ
(n)
u a computable functions ?

Theorem 7.3 For each n ≥ 1, the universal function ψ
(n)
u is computable.
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Proof outline: Assume a fixed n > 0, given a number e, decode the program Pe and mimic the
computation of Pe step by step by writing down the configuration of the registers and the next

instruction to be executed. If and when this computation stops, the required value of Q
(n)
e (

⇀
x )

will be in R1.

Configuration: The registers are coded by

c =
∏

i≤1

piri

where !Ri = ri and pi is the i − th prime number. The current state of any computation is
given by

σ = π(c, j) with c = π−1
1 (ρ) j = π−1

2 (ρ).

where j is the serial number of the next instruction to be executed .

Convention. j = 0 if the computation is to be stopped.

1 n n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7 n + 8 n + 12n + 9 . .

e 1 2 30
1

Serial number

be executed
of next instr to

configuration of Pe.
current

c◦

length
of Pe + 1required to check

whether execution
of Pe has to halt.

opcode
opcode + arguments
of the instruction to
be executed

remember to
set redundant
argument to 0.

After decoding the arguments

J(n + 9, n + 7, )
J(n + 9, n + 6, )
J(n + 9, n + 5, ) Same target for Z and S instructions

⇀
x

Initially
Y

i≥1

pi
xi

e = 2a1(1 + 2a2+1(1 + 2a3+1(...(1 + 2ar+1)...)))− 1

a1 = µz1 ≤ e[2z1+1 ∤ e] , τ−1
−1 (e) = (e+ 1)/2a1 , tl(e) =

τ−1
−1 (e)

2
− 1
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a2 = µz2 ≤ e[2z2+1 ∤ tl(e)] hd(e) = µz ≤ e [ 22+1 ∤ e ]

a3 = µz3 ≤ e[2z3+1 ∤ tl2(e)] for 1 ≤ i ≤ r

...

ai = µzi ≤ e[2zi+1 ∤ tli−1(e)] i-th (e, i) = hd(tli−1(e))

therefore n− th(e, i) =

{

ψ
(n)
U (e,

⇀
x ) = execute(e,

⇀
x ) = c1(e,

⇀
x , µt[next(e,

⇀
x , t) = 0])

conf(e,
⇀
x , t) = { configuration ofter t- step of execution

finalconf(e,
⇀
x ) = conf(e,

⇀
x , µt[next(e,

⇀
x , t) = 0])

Assume given
⇀
x , e in the registers R1, ..., Rn+1

set Rn+2 ← 1.

Rn+3 ← c(
⇀
x ) =

∏

i≥1

pixi

Rn+4 ← len(Pe)

S(n+ 4)

J(n + 2, n+ 4, 0) to the end of the program if Pe has to halt.

Rn+5 ← decode(n+ 2)
︸ ︷︷ ︸

— decode the instruction whose serial number is stored in Rn+2

and the arguments in Rn+7, Rn+8, Rn+9

while decoding, put the opcode in Rn+6,

Rn+3 ← execute(n + 5)

β−1 — gives various opcodes and registers to

2

Lemma 7.4 Let τ : N+ → N be the coding on non-empty sequences. such that

τ [a1, ..., ak] = 2a1(1 + 2a2+1(1 + 2a3+1(...(1 + 2ak+1)...)))− 1 = e.

Then the following functions are primitive recursive

(i) hd(e) = a1 for the k ≥ 1

(ii) tl(e) = τ [a2, . . . , ak] for k ≥ 2.
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(iii) len(e) = k. for k ≥ 1

Proof: (i) Consider e = 2a1(1+2a2+1(1+2a3+1(...(1+2ak+1)...)))−1. Clearly e+1 has at least
one non-zero bit in its representation and e+ 1 ≥ 1. we have

hd(e) = νz ≤ e+ 1[2z|(e+ 1)] = a1

(ii) Since all sequences are non-empty consider the coding τ◦ : N⋆ → N defined also for empty
sequences with τ◦[ ] = 0 and τ ◦ [ak, ..., ak] = τ [ak, ..., ak] + 1.

for all single element sequences [a]

τ [a] = 2a − 1 τ◦[a] = 2a

hd[a] = a. Hence for any e ≥ 0 if e+ 1 is a power of 2, then is a single element sequence

2

ispwr2(x)=







0← x = 0

∃ z ≤ x[2z = x]

len(e) = µk ≤ (e+ 1)[ispwrof 2(tlk(e+ 1))]

for all e ≥ 0, e+ 1 > 0 and has at least one non-zero bit in its representation.

τ [a1, ..., ak] =







2a1 − 1 if k = 1

(2τ [a2, ..., ak] + 1)2a1−1) if k > 1.

e = (2 e′ + 1)2a1 − 1

therefore
e+ 1

2a1
= 2e′ − 1

therefore e′ =

(

(e+1)
2a1
− 1

)

2
=

(e+ 1)− 2a1

2a1+1
=

(e+ 1)− 2hd(e)

2hd(e)+1

len(e)µk ≤ e+ 1 [tlk(e) = 0]
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s =
∏

j≥1

where rj =!Rj

c = π(s, i)

e r 0 1 2 3 c s i β(Ii) oi reg1 reg2 reg3

arguments
r(Pe)

opcodes

Length of

configuration
current

current
state serial no

of next
instruction
of Pe to be
executed

opcode of Ii

Pe

trm(β(Ii), 4).

=
β(Ii) − trm(β(Ii), 4)

4

⇀
x

n + 1 n + 2 π
−1
1 (c) π

−1
2 (c)

Depending upon 0i fill up

Pe = [I1, ..., Ir]

e = τ [I1, ...Ir]

= 2a1(1 + 2a2+1(1 + 2a3+1(...(1 + 2ar+1)...)))− 1

τ [0] = 20 − 1 = 0

e = 2a1(1 + 2a2+1(1 + 2a3+1(...(1 + 2ar+1)...)))−1

hd(e) = a1

tl(e) = 2a2(1 + 2a3+1(...(1 + 2ar+1)...)))− 1

e+ 1

2a1
= 1 + 2a2(1 + 2a3+1(...(1 + 2ar+1)...))

e+ 1

2a1
− 1 = 2a2(1 + 2a3+1(...(1 + 2ar+1)...))

( e+1
2a1
− 1)

2
= 2a2(1 + 2a3+1(...(1 + 2ar+1)...))
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e+ 1

2a1+1
−

1

2
= 2a2(1 + 2a3+1(...(1 + 2ar+1)...))

2(e+ 1)− 1

2a1+1
= 2a2(1 + 2a3+1(...(1 + 2ar+1)...))

2(e+ 1)− 1

2a1+1
− 1 = tl(e)

Universal Programs : Summary

Assume for any arguments
⇀
x and Gödel number e, the program Pe is in some configuration

c = π(s, j) then we may define the function

move(
⇀
x , e, c) = c′ which is primitive recursive

where c′ =







π(s, 0) if i > len(e) or i = 0

π(s′, i′) if i ≤ len(e)

where i′ =







i+ 1 if opcode (i) < 3

i′′ if opcode (i) = 3 and π−1
2 (i) = i′′

and s′ =







s

p
rj

j

if opcode (i) = 0 and first (i) = j

spj if opcode (i) = 1 and first (i) = j

sp
rj

k

prk

k

if opcode (i) = 2 and first (i) = j

and second (i) = k

s if opcode (i) = 3

where rj = νj ≤ s[pj
j|s]
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rk = νk ≤ s[pk
k|s]

We may the define the function

Steps (
⇀
x , e, c, 0) = c

steps (
⇀
x , e, c, t+ 1) = move(

⇀
x , e, step(

⇀
x , e, c, t))

and finally we may define for any configuration c,

state(c) = π1
−1(c)

nextinstr(c) = π−1
2 (c)

output(c) = νk ≤ c[pk
1|state(c)]
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and

execute(
⇀
x , e) = output(cf)

where cf = steps(
⇀
x , e, c0, µt[nextinstr(steps(

⇀
x , e, c0, t)) = 0])

︸ ︷︷ ︸

This function is not prim.rec
it is however partial recursive
since it is an unbounded
minimization of a prim.rec
function

Corollary 7.5 For any URM program P and inputs
⇀
x with |

⇀
x | = n ≥ 1 , Q

(n)
r(p) is a partial

recursive function i.e for any n ≥ 1 , URM (n) = PARTREC(N)

Undecidability : The Hallting Program

Theorem 7.6 The predicate “ programs x halts on input y ” defined by halt(x,y)=







1 if Qx(y) ↓

0 otherwise.

is undecidable i.e. its characteristic function halt(x,y) is not URM-computable.(equivalently
partial recursive)

Proof: By contradication. If halt is computable then so is the function f(x) = halt(x, x)1. and
there exists a URM program Pf which computes f . Now consider he program P ′

f constructed
as follows.let

Pf
′ ::

p + 3. J(1, m + 1, p + 3)

p + 2. S(m + 1)

p + 1. Z(m + 1)

Pf what does P ′

f computes ? It computes the
function.

m = ρ(Pf ) and Pf consist of p instructions

f ′ =







0 if f(x) = 0

⊥ if f(x) = 1

1whether program x halts on input x
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Let r(P ′
f) = y. Then f ′(y) =







0 if f(y) = 0⇔ halt(y, y) = 0

⊥ if f(y) = 1⇔ halt(y, y) = 1

PROGRAM y HALTS ON INPUT y IFF PROGRAM y DOES NOT
HALT ON INPUT y.

2



Chapter 8

The type-free λ-calculus

In the previous chapters we have studied two models of computability both of which were firmly
grounded in the concept of numbers. This was deliberate – a notion of computability which
does not involve numbers and operations on numbers would somehow be unsatisfactory. How-
ever, throughout our school education in mathematics, numbers have always been conceptual
rather than concrete. In the early years of our education in arithmetic we have dealt mainly
with numerals i.e. sequences of symbols which represent numbers. The interpretation of these
(sequences of) symbols as numbers and operations on numbers leads us to believe that we are
computing with numbers. But in reality, the methods we have learned are really methods for
manipulating representations rather than concepts themselves. However we have internalised
them to such a large extent that we seldom make the distinction between numbers and their
representation. The arithmetic we have learnt includes algorithms and methods of computing
which utilise the representation of numbers instead of numbers themselves. In later years (in
secondary school and high school) we gradually progressed to algebra (the use and manipula-
tion of unknown or symbolic quantities) and geometry (requiring spatial reasoning invloving
points, lines, planes and measures associated with spatial objects). High school mathematics
subjects like trigonometry, mensuration, coordinate geometry and the calculus combine spatial
reasoning with algebraic reasoning.

Clearly therefore, the question of using and manipulating pure symbols (or pure symbols in con-
junction with quantities) is an important aspect of computing and hence needs to be addressed
for its computational power.

In this chapter we study two calculi — the λ-calculus and combinatory logic – that are purely
symbol-based and per se free of interpretations. They may be regarded as pure symbol-
processing. The notion of a calculus itself recognizes (uninterpreted) symbol manipulation
and processing as its main feature. These calculi are important for several reasons.

1. These calculi form the basis for modern functional programming languages in both design
and implementation and

2. historically these calculi predate other models of computation.

77
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Syntax. x, y ∈ V , where V is a countably infinite collection of variables.

L ::= x Variable
| λx[L] λ-abstraction
| (L L) λ-application

Precedence and Associativity conventions

1. (L1 L2 L3) denotes ((L1 L2) L3) i.e. application is left associative

2. λxy[L] denotes λx[λy[L]]

Free and bound variables

V (x) = {x}

V (λx[L]) = V (L) ∪ {x}

FV (x) = {x} FV (λx[L]) = FV (L) r {x} V ((LM)) = V (L) ∪ V (M)

FV ((LM)) = FV (L) ∪ FV (M) BV (L) = V (L)− FV (L)

The meta-operation of substitution(to ensure no “capture of free-variables”)

x{N/x} ≡ N

y{N/x} ≡ y
(LM){N/x} ≡ (L{N/x}M{N/x})
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(λx[L]){N/x} ≡ λx[L]

(λy[L]){N/x} ≡ λy[L{N/x}] y 6= x
& y 6∈ FV (N)

(λy[L]){N/x} ≡ λz[L{Z/y}{N/x}] y 6= x
& y ∈ FV (N)

& z 6∈ FV (L) ∪ FV (N)

α, β, η conversion

λx[L] −→α λy[L{y/x}], y 6∈ FV (L) RENAMING BOUND VARIABLES

(λx[L]M) −→β L{M/x} FUNCTIONAL CALL

REPLACEMENT OF PARAMETERS(FORMAL)

BY ARGUMENTS (ACTUAL)

λx[(L x)] −→η L EXTENSIONALITY

Closure of conversions under any context

−→λ denotes −→α , −→β , −→η

L −→λ L′

λx[L] −→λ λx[L′]

L −→λ L′

(LM) −→λ (L′ M)

M −→λ M ′

(LM) −→λ (LM ′)

Question. Verify that the above rules do not lead to capture of free variables.

−→⋆
λ =

⋃

n≥0

−→η
λ where L −→◦

λ M if L ≡M

L −→k+1
λ M if ∃N : L −→k

λ N −→λ M



80 CHAPTER 8. THE TYPE-FREE λ-CALCULUS

λ-Equality =λ

=λ is the least relation such that

L =λ M if L→⋆
λ M

L =λ M if M =λ L

L =λ M if L =λ N and N =λ M .

Combinatory logic & λ-calculus

Schonfinkel 1924

Turing 1937 post 1936

Godel 1931 presented in 1934.

Church 1933,1936,1941

Kleene 1935,1936.

Rosser 1935

Assume an infinite collection of variables symbols x, y, z, f, g1...

Assume two distinguished
symbols S and K

The language of CL(combinator) is
expressions generated by the grammar

C ::= S |K | (C C) |x
↑

application is left associative

A combinator(C0 ::= K|S|C0 C0) is
term containing only S and K and no other variables.

The language of λ is generated by the grammer

L ::= x | λx[L] | (L L)

Λ0 is the collection
of closed λ-terms are combined

Λ ⊇ Λ0 is the language.
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S LM N −→W ((LN)(M N))

K LM −→W L

S stand for stong composition

−→W stand for week contracion

K stand for constant

(λx[L]M) −→β {M/x}L

S
df
= λ x y z [((x z)(y z))]

K
df
= λ x y [x]

{M/x}x ≡M

{M/x}(LN) ≡ ({M/x} L {M/x}N)

{M/x}x ≡M

{M/x}y ≡ y

{M/x}λ x [L] ≡ λ x [L]

{M/x}λ y[L] ≡ λ y [{M/x}L]

{M/x}(LM) ≡ ({M/x} L {M/x}M)
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Example. Consider a new combinator B (for composition) BLMN = (L(MN))

Define B
df
≡ S(KS)K.

B LM N

≡ S(K S) K LM N

−→W K S L(K L)M N

−→W S(K L)M N

−→W K L N(M N)

−→W L (M N)

Example. Define the commutation operator which commutes two arguments

CX Y Z = X Z Y

Define C = S(B B S)(KK)

Then CX Y Z

≡ S (B B S) (K K)X Y Z

−→W B B SX(K KX)Y Z

−→W B B SX K Y Z
︸ ︷︷ ︸

1

−→W B (SX) K Y Z

1This is not a relex if you parenthesize it complete



Bibliography

[1] Hopcroft J and Ullman J D. Automata, Languages and Computation. Addison-Wesley, New
York, 1983.

[2] Davis M. Computability and Unsolvability. Dover Publications Inc., New York, 1982.

[3] Davis M and Weyukar E. Computability, Complexity and Languages. Academic Press, New
York, 1983.

[4] Cutland N. Computability: An Introduction to Recursive Function Theory. CUP, Cam-
bridge, Great Britain, 1980.

83


