
Theory of Computation I: Introduction to Formal Languages and

Automata

Noah Singer

April 8, 2018

1 Formal language theory

Definition 1.1 (Formal language). A formal language is any set of strings drawn from an alphabet Σ.

We use ε to denote the “empty string”; that is, the string that contains precisely no characters. Note:
the language containing the empty string, {ε}, is not the same as the empty language {}.

Definition 1.2 (Language operations). Given formal languages A and B:

1. The concatenation of A and B, denoted A · B or AB, is defined as {ab | a ∈ A, b ∈ B}, where ab
signifies “string a followed by string b”.

2. The union of A and B, denoted A ∪B, is defined as {c | c ∈ A ∨ c ∈ B}.

3. The language A repeated n times, denoted An, is defined as

An = A ·A ·A · · ·A ·A︸ ︷︷ ︸
n times

if n > 0 or {ε} if n = 0.

4. The Kleene star of a language A, denoted A?, is defined as

A? =
⋃
i∈N

Ai = {ε} ∪A ∪A ·A ∪A ·A ·A ∪ · · ·

.

Exercise .1: Language operations

1. Let A = {a, b} and B = {c, d, e}. Compute the following:

(a) A ·B
(b) A · ∅
(c) A · {ε}

(d) A ∪B ∪ ∅
(e) (BA) ∪A3

(f) A?

(g) B?A3

(h) BA?B

(i) (AB)?A

2. Consider the operations ∪ and · on formal languages. In abstract algebra terms, are they
associative and/or commutative? Do they have identities and/or inverses?

Definition 1.3 (Formal grammar). A formal grammar is a 4-tuple G = (N,Σ, P, S), where:

1. N is a finite set of nonterminal symbols.

2. Σ is a finite set of terminal symbols and N ∩ Σ = ∅

1



3. P is a set of productions, where P ⊆ ((Σ ∪N)?N(Σ ∪N)?)× (Σ ∪N)?.

4. S is a special start symbol in N .

These productions can be viewed as rewriting rules of the form

α→ β

where α and β are strings of terminals and nonterminals and α has at least one nonterminal.

Definition 1.4 (Grammar derivation). Given two strings x, y ∈ (Σ∪N)?, x “derives y in one step”, written
x =⇒

G
y, iff

∃α, β, γ, δ ∈ (Σ ∪N)? : (x = γαδ) ∧ (y = γβδ) ∧ ((α→ β) ∈ P )

This just means that we can divide x three ways into γαδ and then divide y into γβδ–note that γ and δ
are the same–where α → β is a production of our grammar. Essentially, the grammar is “replacing α with
β” to transform x into y.

If there’s some sequence of z1, z2, z3, . . . such that x =⇒ z1 =⇒ z2 =⇒ · · · =⇒ y, then we say that
x derives y. If y can be derived in a finite number of steps from S, then it is a sentential form; if y
consists only of terminal symbols, then it is a sentence of the grammar G. (They’re called “terminal”
symbols because they’re the end of the derivation.) G determines a language, denoted L(G)–precisely all the
sentences that G derives!

Definition 1.5 (Ambiguous grammar). A grammar is ambiguous iff it has a sentence that can be derived
two different ways.

We will examine this more later, but ambiguous grammars are undesirable because they admit multiple
correct derivations–or parses–of the same sentence, which we certainly want to avoid if we are designing
parsing algorithms.

Exercise .2: Grammars and languages

1. Describe the languages derived from the following grammars. Are any equivalenta? Are any
ambiguous?

(a) S → abc

(b) S → abS
S → ε

(c) S → aSb
S → ε

(d) S → S ∗ S
S → S/S
S → S + S
S → S − S

S → (S)
S → digit

(e) F → T ∗ T
F → T/T
F → T
T → T + T
T → T − T
T → (F )
T → digit

2. Bonus: construct a grammar that derives {anbncn | n ∈ N}.
aMore specifically, weakly equivalent in the sense that they derive the same language?

Now let’s look at some specific types of grammars. Chomsky (1956) defined a general hierarchy of formal
languages that we’ll use throughout this activity:

Type Grammar Automaton Productions
0 Unrestricted Turing machine α→ β
1 Context-sensitive Non-deterministic linear bounded automaton γAδ → γαδ
2 Context-free Non-determinsitic pushdown automaton A→ α
3 Regular Finite automaton A→ a, A→ Ba, A→ B, A→ ε

2



We’ll introduce the automata later, but note how Type-3, the regular grammars, has the most restrictions
on the productions that are allowed; type-0 has no restrictions and so includes all formal grammars.

2 Regular languages and finite automata

In computer science and discrete mathematics, an automaton is a mathematical model of a “machine”.
Given some input, it follows a defined sequence of steps to produce an output. Often, based on some
predefined set of “decision rules”, an automaton moves between various states depending on the input.
Sometimes, the automaton will choose to accept an input string; in general, it may also halt or loop
indefinitely.

Automata are intimately linked to formal language theory, because every automaton M recognizes a
formal language of strings L(M)–exactly the strings that the language accepts. Automata are important
for two main reasons: 1) For discrete mathematics purposes, they are compact and finite representations of
important kinds of formal languages, that give us insight into their properties, and 2) For computer science
purposes, they are models of computation. Any particular automaton is, from the computer science
standpoint, a program–a specific set of instructions for how to transform some input to some output.

The family of languages that a certain class of automata can recognize will often be strictly contained
within a larger family recognized by a more general class of automata; thus, the latter class is a more powerful
model of computation than the former. As you might have guessed, our ultimate goal in this activity is to
prove the equivalence of different classes of languages, grammars, and automata.

Let’s start by considering the simplest important class of automaton!

2.1 Definitions

Definition 2.1 (Deterministic finite automaton). A determinsitic finite automaton is a 5-tuple (Q,Σ, δ, q0, F ),
where:

1. Q is a finite set of states that the DFA may exist in.

2. Σ is the alphabet, a finite set of symbols that the DFA reads in.

3. δ : Q × Σ → Q is the transition function, which maps the current state and the next input symbol
to a new state.

4. q0 ∈ Q is the start state of the DFA.

5. F ⊆ Q is the set of accept states of the DFA.

Definition 2.2 (DFA acceptance). A DFA defined by (Q,Σ, δ, q0, F ) accepts a string w = a1a1 . . . an iff
there exists some sequence of states r0r1 . . . rn in Q where:

1. r0 = q0 (r0 is the start state).

2. ri+1 = δ(ri, ai+1), for i between 0 and n− 1 (ri+1 follows from ri on input character ai+1).

3. rn ∈ F (rn is an accept state).

Conceptually, the DFA is given an input string, “begins” in the start state and “follows” the transitions;
each transition maps the current state and the current input symbol to a new state. The input symbol is
then “consumed”. If, when the input is entirely consumed, the DFA lands in an accept state, then the DFA
accepts the string.

DFAs are nice because they’re easy to visualize! The rules are simple: draw the states as labelled circles;
draw transitions as arrows between states; draw the input state with an arrow coming in from nowhere; draw
accept states with double lines instead of single lines.

3



Exercise .3: DFA practice

1. Consider the following DFA. What language does it recognize?

q q0 q00 q001

0

1

0

1

0

1

0, 1

2. Construct DFAs which recognize the following languages (Σ = {0, 1}).

(a) Binary strings of even length

(b) Binary strings with exactly four 1’s

(c) Binary strings with an odd number of 1’s

(d) Binary strings divisible by 3

Now, let’s look at a closely related type of automaton: the nondeterministic finite automaton (NFA).
Nondeterminism is a property that some automata possess where the decision rules specify than more than
one action to take. Their actions are not fully “determined”; they can explore many paths at the same time,
and accept if any such path reaches an accept state. NFAs are also allowed to have so called ε-transitions,
which occur without any input being consumed–it’s useful for expressing branches in the program logic.

Definition 2.3 (Nondeterministic finite automaton). A nondeterministic finite automaton is a 5-tuple
(Q,Σ, δ, q0, F ), where:

1. Q is a finite set of states that the NFA may exist in.

2. Σ is the alphabet, a finite set of symbols that the NFA reads in.

3. ∆ : Q× (Σ ∪ {ε})→ P(Q) is the transition function, which maps the current state and the next input
symbol or ε to a new subset of states.

4. q0 ∈ Q is the start state of the NFA.

5. F ⊆ Q is the set of accept states of the NFA.

Definition 2.4 (ε-closure). The ε-closure of some state q ∈ Q, denoted E(q), is the set of states reachable
from q through only ε-transitions. In other words, it is the set of states p ∈ Q such that there exists some
sequence of states q0q2...qk where:

1. q0 = q

2. qi+1 ∈ ∆(q1, ε)

3. qk = p

Similarly, we can define the ε-closure of a set of states as the union of their closures. ε-closure is simply
a useful mathematical trick that we can employ to define and prove things more succinctly.

Definition 2.5 (NFA acceptance). An NFA defined by (Q,Σ,∆, q0, F ) accepts a string w = a1a1 . . . an iff
there exists some sequence of states r0r1 . . . rn in Q where:

1. r0 = E(q0)

2. ri+1 ∈ E(∆(ri, ai+1)), for i between 0 and n− 1

3. rn ∈ F

4



Exercise .4: NFA practice

1. Consider the following NFA. Determine the language that it accepts, as well as the ε-closure of
all states.

q

q20 q21

q30 q31 q32

ε

ε

0

0

0 0

0

2. Construct both an NFA and DFA to recognize all binary strings containing the substring 010.
Which is easier?

A final definition that’s much more concise, convenient and intuitive:

Definition 2.6 (Regular language). The family of regular languages R is defined as the closure of the
family of atomic languages {∅, {ε}, {s0}, {s1}, . . .} for si ∈ Σ under the operations of union, concatenation,
and Kleene star.

2.2 Equivalence

Theorem 2.1 (Powerset construction). Any non-deterministic finite automaton with n states can be con-
verted into an equivalent deterministic finite automaton with up to 2n states.

To understand why this is true, consider that a DFA keeps track of only a single state at a time, while
an NFA needs to keep track of many states at a time. But the NFA can only possibly be in a finite subset of
its states at any given time! So the basic idea is to have a DFA state for every set of states the NFA could
possibly be in. The DFA’s initial state is the set containing only the NFA’s initial state, which reflects the
fact that the NFA can still only start in one place. Transitions from one DFA state to another on any given
input symbol reflect all possible destinations from any state in the original set of state on that input symbol.

Proof. If the NFA has ε-transitions, we can consolidate the states by taking ε-closures until there are no
more ε-transitions. Therefore, we assume that it has no ε-transitions.

For any NFA N = (QN ,ΣN ,∆N , q0N , FN ), we will specify an equivalent DFA M as follows:

1. QM = P(QN )

2. ΣM = ΣN

3. q0M = {q0N}

4. δM (S ∈ QM , x ∈ Σ) =
⋃
x∈S

∆(q, x)

5. FM = {∃q(q ∈ S ∧ q ∈ FN ) | S ∈ P(QN )}

Theorem 2.2 (Thompson construction). All regular languages may be recognized by non-deterministic finite
automata.

5



Proof. Let N (A) denote the NFA corresponding to regular language A. We show that N ({ε}) and N ({x})
for x ∈ Σ exist. We then show how to construct the NFA under each regular language operation and therefore
our proof is complete by closure.

The NFA for x ∈ Σ ∪ {ε} is:

s e
x

The NFA for A ∪B, where A and B are regular, is:

N (A)

N (B)

s

sA

sB

eA

eB

e

ε

ε

ε

ε

The NFA for A ·B, where A and B are regular, is:

N (A)

N (B)

sA eA

sB eB

ε

The NFA for A?, where A is regular, is:

N (A)s sA eA e
ε

ε

ε

ε

Theorem 2.3 (Kleene’s algorithm). The language recognized by any given deterministic finite automaton
is regular.

6



Proof. Let the DFA M = (Q,Σ, δ, qo, F ) where Q = {q0, q1, . . . , qn}. Let Rk
ij denote the language of strings

that take the DFA from state qi to state qj while only passing through states with numbers less than or
equal to k (not including the starting and stopping states).

To start out, R−1ij should only contain the alphabet symbols that take qi to qj .

R−1ij =

{
{x ∈ Σ | δ(qi, x) = qj} i 6= j

{x ∈ Σ | δ(qi, x) = qj} ∪ {ε} i = j

Now, consider some arbitrary 0 ≤ k ≤ n, and states qi and qj . Consider any path from qi to qj that
doesn’t pass through states about k. All such paths either contain k or do not contain k. Thus,

Rk
ij = Rk−1

ij ∪ (Rk−1
ik · (Rk−1

kk )? ·Rk−1
kj )

where the first term represents passing from qi to qj while avoiding qk while the second represents passing
from qi to qk, back to qk any number of times, and then to qj .

Finally, the regular language that represents the entire DFA is⋃
qi∈F

Rn
0i

and this language is certainly regular since we constructed it using only union, concatenation, and Kleene
star.

We’ve shown that any language an NFA recognizes, a DFA can recognize; that any regular language can
be recognized by an NFA; and that every language that a DFA can recognize is regular. Thus, DFAs, NFAs,
and regular languages are all equivalent!

Now, let’s recall that regular grammars are those whose productions are of the forms A → a, A → Ba,
or A → ε. Note that there is a simple one-to-one correspondence between NFAs and regular grammars...
you can figure this one out yourself!

Exercise .5: Regular equivalences

In the following problems, follow the methods in the above proofs.

1. Convert the following NFA to a DFA. What language does it recognize?

q q0 q00 q001

0,1

0 0 1

2. Show that the following DFA recognizes a regular language.

q

q0

q1

0

1

0

1

1

0

7



3. Show that the following regular language is recognized by an NFA and construct a regular
grammar that represents it.

{0, 1}? · {010}

4. Show that the following regular grammar derives a regular language.

S → S0, S → A,A→ B1, B → C0, C → D1, D → D1, D → ε

2.3 Pumping lemma

We have four equally powerful ways of describing regular languages. But why do we need grammars that
are more general than regular languages? Well, it turns out that we can prove that some languages certainly
are not regular.

Theorem 2.4 (Pumping lemma). For any regular language L, there exists some integer p ≥ 1that for every
string w where |w| ≥ p, there are three strings x, y, z where:

1. |y| > 0

2. |xy| ≤ p

3. ∀i ≥ 0, xyiz ∈ L

We say that the string y can be “pumped”. Let’s try and visualize it.

qx qy qz
x

y

z

Proof. For some regular language A, there must exist a DFA M which recognizes it. Let p be the number
of states of M . Let w ∈ L be a string such that |w| ≥ p. Then let the sequence of the start state and first p
states that w takes through M be labeled q0, q1, q2, . . . , qp. By the pigeonhole principle, since this sequence
has p + 1 states in it, one state must have been visited twice. Let qs denote this state. The section of w
that takes M from the first occurrence of state qs to the second is then y. Clearly, |y| > 0. |xy| ≤ p since
s ≤ p. The string y can also be repeated any number of times. The conditions of the theorem are therefore
satisfied.

Exercise .6: Pumping lemma applications

Show that the following languages are not regular.

1. {anbn | n ∈ N}

2. {a2n | n ∈ N}

8


