
THE OBJECT-ORIENTED DESIGN
PROCESS AND DESIGN AXIOMS

(CH -9)

By:
Mr.Prachet Bhuyan
Assistant Professor,

School of Computer Engineering,
KIIT University

Topics to be Discussed
9.1 INTRODUCTION
9.2 THE O-O DESIGN PROCESS
9.3 O-O DESIGN AXIOMS
9.4 COROLLARIES9.4 COROLLARIES

9.4.1 Corollary 1: Uncoupled Design with Less
Information Content

9.4.2 Corollary 2: Single Purpose
9.4.3 Corollary 3: Large Number of Simpler Classes,

Reusability

School of Computer Engineering, KIIT
University

2

Topics to be Discussed contd..

9.4.4 Corollary 4: Strong Mapping
9.4.5 Corollary 5: Standardization
9.4.6 Corollary 6: Designing with Inheritance

9.5 DESIGN PATTERNS9.5 DESIGN PATTERNS

School of Computer Engineering, KIIT
University

3

9.1 INTRODUCTION

• OOA phase of software development was on
“what needs to be done”.

• The objects discovered during analysis can
serve as the framework for design.

• The class’s attributes, methods and
associations identified during analysis must be
designed for as a data type expressed in the
implementation language.

• New classes can be introduced to store
intermediate result during program execution.

School of Computer Engineering, KIIT
University

4

9.1 INTRODUCTION contd..

• During design phase we elevate the various
object models (individuals, organizations,
machines, etc) into logical entities, some of
which might relate more to the computerwhich might relate more to the computer
domain (such as UIs or access layer).

• Good design simplifies the implementation
and maintenance of a project.

• The design model does not look terribly
different from the analysis model.

School of Computer Engineering, KIIT
University

5

9.1 INTRODUCTION contd..

• The difference between OOA & OOD is that, at
OOD level, we focus on the view and access
classes, such as:
– How to maintain information or– How to maintain information or
– The best way to interact with the a user or
– Present information

• However the time spent on design has a great
impact on the over all success of the software
development project.

School of Computer Engineering, KIIT
University

6

9.1 INTRODUCTION contd..

• Here we look at the O-O design process and
axioms.

• The basic goal of axiomatic process is :
– To formalize the design process– To formalize the design process
– Assist in establishing a scientific foundation for the

O-O design process
– To provide a fundamental basis for creation of

systems.

School of Computer Engineering, KIIT
University

7

9.2 THE O-O DESIGN PROCESS

OOD Design Process in UA

Continue Testing

School of Computer Engineering, KIIT
University

8

9.2 THE O-O DESIGN PROCESS

The O-O design process consists of the following
activities:

1. Apply design axioms to design classes, their
attributes, methods, associations, structuresattributes, methods, associations, structures
& protocols.

i. Refine and complete the static UML class
diagram by adding details to the UML class
diagram. This steps consists of:

a) Refine attributes

School of Computer Engineering, KIIT
University

9

9.2 THE O-O DESIGN PROCESS contd..

b) Design methods & Protocols by utilizing a UML
activity diagram to represent the method’s algorithm.

c) Refine associations between classes (if required)
d) Refine class hierarchy & design with inheritance (if

required)required)

ii. Iterate and refine again.

2. Design the access layer (CH-11)
i. Create mirror classes. For every business class

identified and created, create one access class.
ii. Identify access layer class relationships.

School of Computer Engineering, KIIT University 10

9.2 THE O-O DESIGN PROCESS contd..

iii. Simplify classes and their relationships. Eliminate
redundant classes & structures.

a) Redundant classes: Do not keep two classes that
perform similar translate request and translate results
activities. Simply select one and eliminate the other.activities. Simply select one and eliminate the other.

b) Method classes: Revisit the classes consisting of only
one or two methods to see if they can be eliminated
or combined with existing clases.

iv. Iterate and refine again.

3. Design the view layer classes (CH-12)

School of Computer Engineering, KIIT University 11

9.2 THE O-O DESIGN PROCESS contd..

i. Design the macro level user interface, identifying
view layer objects.

ii. Design the micro level user interface, consists of:
a) Design the view layer objects by applying the design

axioms and corollaries.
b) Build a prototype of the view layer interface.

iii. Test usability & user satisfaction
iv. Iterate & refine.

4. Iterate & refine the whole design.

School of Computer Engineering, KIIT
University

12

9.3 O-O DESIGN AXIOMS

• An axiom is a fundamental truth that always is
observed to be valid and for which there is no
counterexample or exception.

• A theorem is a proposition that may not be self-• A theorem is a proposition that may not be self-
evident but can be proven from accepted
axioms. (hence equivalent to a law or principle)

• A corollary is a proposition that follows from an
axiom or another proposition that has been
proven.

School of Computer Engineering, KIIT
University

13

9.3 O-O DESIGN AXIOMS contd..

Suh’s design axioms applied to O-O design:
• AXIOM 1: The independence axiom. Maintain the

independence of components.
– Axiom 1 deals with relationships between system– Axiom 1 deals with relationships between system

components (such as classes, requirements and
software components)

• AXIOM 2: The information axiom. Minimize the
information content of the design.
– Axiom 2 deals with the complexity of design.

School of Computer Engineering, KIIT
University

14

9.3 O-O DESIGN AXIOMS contd..

• Axiom 2 is concerned with simplicity. Occam’s razor
rule of simplicity in terms of O-O:
– The best designs usually involves the least complex code

but not necessarily the fewest number of classes or
methods.methods.

– Minimizing complexity should be the goal, because that
produces the most easily maintained and enhanced
application.

– In an o-o system, the best way to minimize complexity is
to use inheritance and the system’s built-in classes and
to add as little as possible to what already is there.

School of Computer Engineering, KIIT
University

15

9.3 O-O DESIGN AXIOMS contd..

• OCCAM’S RAZOR Says..
• “The best theory explains the known• “The best theory explains the known

facts with a minimum amount of
complexity and maximum simplicity and
straightforwardness.”

School of Computer Engineering, KIIT
University

16

9.4 COROLLARIES

• From the two design axioms, many corollaries
may be derived.

• These corollaries may be more useful in
making specific design decisions, than themaking specific design decisions, than the
original axioms in actual situations.

• They may even be called design rules derived
from two basic axioms.

School of Computer Engineering, KIIT
University

17

9.4 COROLLARIES contd..

• The Origin of Corollaries:

COROLLARY 4

School of Computer Engineering, KIIT
University

18

AXIOM 1

AXIOM 2

COROLLARY 1

COROLLARY 2

COROLLARY 3

COROLLARY 5COROLLARY 6

9.4 COROLLARIES contd..

• Corollary 1: Uncoupled Design with Less
Information Content.
– Highly cohesive objects can improve coupling

because only a minimal amount of essentialbecause only a minimal amount of essential
information need be passed between objects.

• Corollary 2: Single Purpose.
– Each class must have a single, clearly defined

purpose which can be describe in few sentences.

School of Computer Engineering, KIIT
University

19

9.4 COROLLARIES contd..

• Corollary 3: Large Number of Simple Classes.
– Keeping the classes simple allows reusability.

• Corollary 4: Strong Mapping.
– There must be strong association between the

physical system (analysis’s object) & logical design
(design’s object)

School of Computer Engineering, KIIT
University

20

9.4 COROLLARIES contd..

• Corollary 5: Standardization. (Promote it.)
– By designing interchangeable components &
– By reusing existing classes & components.

• Corollary 6: Design with Inheritance.• Corollary 6: Design with Inheritance.
– Common behavior (methods) must be moved to

superclasses.
– The superclass-sub class structure must make

logical sense.

School of Computer Engineering, KIIT
University

21

9.4.1 Corollary 1: Uncoupled Design with
Less Information Content

• The main goal here is:
– To maximize objects cohesiveness among objects &

software components to improve coupling.

• 9.4.1.1 COUPLING: Coupling is a measure of the• 9.4.1.1 COUPLING: Coupling is a measure of the
strength of association established by a
connection from one object or software
component to another.
– Coupling is a binary relationship: A is coupled with B
– Strong coupling among objects complicates a system.

School of Computer Engineering, KIIT
University

22

9.4.1 Corollary 1: Uncoupled Design with
Less Information Content contd..

• The degree of coupling is a function of:
1. How complicated the connection is.
2. Whether the connection refers to the object

itself or something inside it.itself or something inside it.
3. What is being sent or received.

• The degree or strength of coupling between
two components is measured by the amount
& complexity of information transmitted
between them.

School of Computer Engineering, KIIT
University

23

9.4.1 Corollary 1: Uncoupled Design with
Less Information Content contd..

• Strong Coupling: Coupling increases (becomes
stronger) with increasing complexity or
obscurity of the interface.

• Low or Weak Coupling: Coupling decreases• Low or Weak Coupling: Coupling decreases
(becomes lower) when the connection is to
the component interface rather than to an
internal component.
– Coupling also is lower for data connections than

for control connections.
School of Computer Engineering, KIIT

University
24

üO-O Design has TWO types of Coupling:
1. Interaction Coupling : Involves the amount and

complexity of messages between components.
– General Guideline: is to keep the messages as simple

9.4.1 Corollary 1: Uncoupled Design with
Less Information Content contd..

– General Guideline: is to keep the messages as simple
& infrequent as possible.

– Ex: If a message connection involves more than three
parameters (eg: in Method(X,Y,Z) where X,Y,Z are
parameters and any change in one will have ripple
effect of changes in other. Hence TIGHTLY COUPLED.

School of Computer Engineering, KIIT
University

25

• E is a Tightly Coupled Object:

9.4.1 Corollary 1: Uncoupled Design with
Less Information Content contd..

A B C

School of Computer Engineering, KIIT
University

26

D E F

IHG

• Types of Interaction Coupling are:

9.4.1 Corollary 1: Uncoupled Design with
Less Information Content contd..

DEGREE OF
COUPLING

NAME OF COUPLING DESCRIPTION

VERY HIGH CONTENT COUPLING The connection involves direct reference to
attributes or methods of another object.

HIGH COMMON COUPLING The connection involves two objects accessing

School of Computer Engineering, KIIT
University

27

HIGH COMMON COUPLING The connection involves two objects accessing
a global data space for both to read & write.

MEDIUM CONTROL COUPLING The connection involves explicit control of the
processing logic of one object by another.

LOW STAMP COUPLING Involves passing an aggregate data structure to
another object, using partial of it.

VERY LOW DATA COUPLING (Should
be the goal of

Architectural Design)

Involves either simple data items or aggregate
structures all of whose elements are used by
the receiving object.

2. Inheritance Coupling: It is a form of coupling
between super and sub classes.
– A subclass is coupled to its super class in terms of

attributes and methods.

9.4.1 Corollary 1: Uncoupled Design with
Less Information Content contd..

attributes and methods.
– Unlike interaction coupling, high inheritance

coupling is desirable.

School of Computer Engineering, KIIT
University

28

• 9.4.1.2 COHESION : There is a need to
consider interactions within a single object or
software component, called cohesion.
– It reflects the “single-purposeness” of an object.

9.4.1 Corollary 1: Uncoupled Design with
Less Information Content contd..

– It reflects the “single-purposeness” of an object.
– Highly cohesive components can lower coupling as

a minimum information of essential information
need be passes between components.

– It helps to design classes which have very specific
purpose.

School of Computer Engineering, KIIT
University

29

• Types of Cohesion are:
– Method Cohesion: Like function cohesion, means

that method should carry only one function.
– Class Cohesion: It means that all the class’s methods

9.4.1 Corollary 1: Uncoupled Design with
Less Information Content contd..

– Class Cohesion: It means that all the class’s methods
and attributes must be highly cohesive, (used by
internal methods or derived classes’ methods).

– Inheritance Cohesion: - Concerned with:
• How interrelated are the classes ?
• Does specialization really portray specialization or it is just

something arbitrary ?
School of Computer Engineering, KIIT

University
30

• Every class should be clearly defined.
• It is necessary to achieve the system’s goal.
• During documentation we should be able to

explain the purpose of a class in one or two

9.4.2 Corollary 2: Single Purpose

explain the purpose of a class in one or two
sentences.

• If not, then rethink the class and try to subdivide
the class into more independent pieces.

• Keep it simple. (Each method to provide one
service.)

School of Computer Engineering, KIIT
University

31

9.4.3 Corollary 3: Large Number of Simpler
Classes, Reusability

• Simpler classes is beneficial.
• It is difficult to foresee all future scenarios of the

class to be reused.
• The less specialized the classes are, more• The less specialized the classes are, more

problems can be solved by combining them with
less subclasses. GUIDELINE:

• “The smaller are your classes, the better are your
chances of reusing them in other projects. Large
and complex classes are too specialized to be
reused” School of Computer Engineering, KIIT

University
32

• Coad & Yourdon describes FOUR reasons why
people are not utilizing reusability concept
more:
1. Software engineering textbooks teach new

9.4.3 Corollary 3: Large Number of Simpler
Classes, Reusability contd..

1. Software engineering textbooks teach new
practitioners to build systems from “first
principle”; reusability is not promoted or even
discussed.

School of Computer Engineering, KIIT
University

33

2. The “not invented here” syndrome and the
intellectual challenge of solving problem an
interesting problem in one’s own unique way
mitigates against reusing someone else’s software
component.

9.4.3 Corollary 3: Large Number of Simpler
Classes, Reusability contd..

component.
3. Unsuccessful experiences with software reusability

in the past have convinced many practitioners and
development managers that the concept is not
practical.

School of Computer Engineering, KIIT
University

34

4. Most organization provide no reward for reusability;
sometimes productivity is measured in terms of new
lines of codes written plus a discounted credit (e.g.,
50% less credit) for reused lines of code.

9.4.3 Corollary 3: Large Number of Simpler
Classes, Reusability contd..

• Benefits of Software Reusability:
Ø Higher productivity
Ø The software development team that achieves 80%

reusability is four times as productive as the team
that achieves only 20% reusability.

School of Computer Engineering, KIIT
University

35

ØUsing successful design patterns we can recreate.
ØO-O design encourages reusable libraries

supported by OOP languages.
ØO-O design emphasizes on reusing concepts like:

9.4.3 Corollary 3: Large Number of Simpler
Classes, Reusability contd..

ØO-O design emphasizes on reusing concepts like:
i. Encapsulation
ii. Modularization (e.g., class structure)
iii. Polymorphism

School of Computer Engineering, KIIT
University

36

9.4.4 Corollary 4: Strong Mapping

• OOA & OOD are based on same UML model.
• Eg; During analysis we might identify a class

EMPLOYEE. During the design phase, we need
to design this class:to design this class:
– Design its methods
– Design its association with other objects
– Design its view & access classes

School of Computer Engineering, KIIT
University

37

• A strong mapping links classes identified
during analysis and classes designed during
the design phase.

• According to Martin & Odell:

9.4.4 Corollary 4: Strong Mapping contd..

• According to Martin & Odell:
– With O-O technique the same paradigm is used

for analysis, design & implementation.
– The analyst identifies objects’ types & inheritance

& think about the events that change the state of
object.

School of Computer Engineering, KIIT
University

38

– The designer adds details to this model perhaps
designing screens, user interaction, and client-
server interaction.

– The thought process flows so naturally from

9.4.4 Corollary 4: Strong Mapping contd..

analyst to design that it may be difficult to tell
where analysis ends and design begins.

School of Computer Engineering, KIIT
University

39

9.4.5 Corollary 5: Standardization

• To reuse one should have good understanding of
classes in OOP environment.

• Most OOP such as Smalltalk, Java, C++, or
PowerBuilder come with built-in class libraries.PowerBuilder come with built-in class libraries.

• O-O systems grow as you create new
applications.

• The knowledge of existing class will help in reuse
by inheriting from the existing class libraries.

School of Computer Engineering, KIIT
University

40

Some shortfall:
• However class libraries are not always well

documented and updated.
• Class libraries should be easily searched based

9.4.5 Corollary 5: Standardization contd..

• Class libraries should be easily searched based
on user’s criteria.

Solution:
• Making a repository of Design Patterns can

give some solutions to all these problems.

School of Computer Engineering, KIIT
University

41

9.4.6 Corollary 6: Designing with
Inheritance

• When you implement a class you have to
determine its ancestor, along with:
– What attributes it will have &
– What messages it will understand.– What messages it will understand.

• Then its methods & protocols are constructed.
• Ideally you will choose inheritance to

minimize the amount of program instructions.

School of Computer Engineering, KIIT
University

42

• Issue here will be:
– Achieving Multiple Inheritance in a Single

Inheritance System.
– Avoiding Inheriting Inappropriate Behaviors.

9.4.6 Corollary 6: Designing with
Inheritance contd..

– Avoiding Inheriting Inappropriate Behaviors.

• Eg: Developing an application for the
government that manages the licensing
procedure for a variety of regulated entities:

• Like: License, Motor Vehicle, Private Vehicle,
Commercial Vehicle, Restaurant, FoodTruck.

School of Computer Engineering, KIIT
University

43

• The Initial Inheritance Design

9.4.6 Corollary 6: Designing with
Inheritance contd..

School of Computer Engineering, KIIT
University

44

• The Single Inheritance Design Modified to
Allow Licensing Food Trucks.

9.4.6 Corollary 6: Designing with
Inheritance contd..

School of Computer Engineering, KIIT
University

45

• Alternately you can Modify the Single
Inheritance Design to Allow Licensing Food
Truck.

9.4.6 Corollary 6: Designing with
Inheritance contd..

School of Computer Engineering, KIIT
University

46

• Multiple Inheritance Design of the System
Structure

9.4.6 Corollary 6: Designing with
Inheritance contd..

School of Computer Engineering, KIIT
University

47

• Design Patterns are devices:
– that allows systems to share knowledge about

their design,
– by describing commonly recurring structures of

9.5 DESIGN PATTERNS (Eg:)

– by describing commonly recurring structures of
communicating components

– that solve a general design problem within a
particular context.

• Documenting patterns is one way that allows
reuse & sharing information of best practices.

School of Computer Engineering, KIIT
University

48

Design Pattern example created by Kutotsuchi
• Pattern Name: Facade
• Rational & Motivation: This pattern can make

the task of accessing a large number of

9.5 DESIGN PATTERNS (Eg:) contd..

the task of accessing a large number of
modules much simpler by providing an
additional interface layer.
– This is done by creating a small collection of

classes that have a single class that is used to
access them, the FACADE.

School of Computer Engineering, KIIT
University

49

• Classes: There can be any number of classes
involved in this “facade” system, but
– At least four or more classes are required: One
client, the facade, & the classes underneath the

9.5 DESIGN PATTERNS (Eg:) contd..

client, the facade, & the classes underneath the
facade.

– A facade would be having limited coding most of
the time making calls to lower layers.

• Advantages: Using the facade to make the
interfacing between many modules or classes.

School of Computer Engineering, KIIT
University

50

• Disadvantages: We may loose some
functionality contained in the lower level of
classes, but this depends on how the facade
was designed.

9.5 DESIGN PATTERNS (Eg:) contd..

was designed.
• Example: Imagine there is a need to write a

program that needs to represent a building as
rooms that can be manipulated to interact
with objects(windows, screens, projector, etc)
in the room to change their state.

School of Computer Engineering, KIIT
University

51

• Using a Design Pattern FAÇADE Eliminates the need for
the client class to deal with a large number of classes.

9.5 DESIGN PATTERNS (Eg:) contd..

School of Computer Engineering, KIIT
University

52

• END of CHAPTER 9

• USE DESIGN PATTERNS IN YOUR O-O • USE DESIGN PATTERNS IN YOUR O-O
SOFTWARE DESIGN

School of Computer Engineering, KIIT
University

53

