The Mathematics of Light

Math Club Topics

Overview

Review of fractions
Review of first degree equations
Review of functions

- The sine function

Electromagnetic waves, light, colors and the wavelength of light
\square Geometrical optics: light rays, refraction and reflection of light
\square Lenses, image formation through lenses and the thin lens equation
\square Optical instruments with lenses.

Review of functions

\square In general, a function is a black box which is promised to do specific task(s), each and every time we ask it to do.

\square You give something to the black box as input, and it returns the result as output, as shown by the schematic function diagram above

The "Clean" Function

\square A washing machine can be regarded as a black box that performs the function "to clean"

Keuming Univensity Ms. Gina Rablau, Kettering University

Mathematical Functions

\square Unlike the washing machine, a mathematical function is a rule (the promised "to do" list) that assigns to each real number x another real number y.
\square The input to the function, x, is called the argument of the function. The output of the function, y, is called the value of the function.
\square In other words, a mathematical function is a black box that transforms a set of numbers into another set of numbers, according to a specific rule.

Example: The Doubling Function

\square A simple example of a function: the doubling function

\square For any value of the argument, x_{0}, the value of the function is twice the value of the argument, $y=2 x_{0}$.

The input of the function can be any real number, and the output will be twice that number.

Graph of a Function

\square The graph of a function is a powerful graphical way of representing what a mathematical function does.
\square The graph of a function shows all the possible values of the input to (argument of) that function, and all the corresponding values of the output of that function
\square Example: the graph of the doubling function

The Sine Function

A particular class (or family) of functions of huge importance for many practical applications, including for Light and Optics, is the class of trigonometric functions.
\square The input of a trigonometric function is an angle. Angles are measured in degrees (which have the symbol ${ }^{\circ}$).
$>$ Another unit used for angles in science and engineering is the radian (which has the symbol rad). There is a simple relation between these two units:

$$
180^{\circ}=\pi \text { radians }
$$

where $\pi=3.14$.

The Action of the Sine Function

\square The action of sine function can be understood from its graph.

The Action of the Sine Function

\square So how does a sine function actually do its black box magic?

$$
\sin A=\frac{\text { length of opposite side }}{\text { length of hypotenuse }}=\frac{a}{c}
$$

\square In a right angle triangle, the sine of an angle is equal to the ratio between the length of the side of the triangle opposite that angle and the length of the hypotenuse:

adiacent
The Mathematics of Light
Ms. Gina Rablau, Kettering University

Kenering Univensity

Class Activity

> Step 1: Please draw a right triangle with an acute angle A and measure the length of the opposite side of angle A and the length of the hypotenuse and evaluate the ratio
$>$ and record it.
> Step 2: Now, use a rapporteur and measure angle A and compute sin A. Please compare this result with the one found in Step 1.
$>$ Step 3: Please extend both the base and the hypotenuse of your triangle obtaining in this way a new triangle. Repeat Step 1 and 2 on this new triangle. Did you obtain a different value for sin A when using the measurements of this new triangle? Is the result consistent with your expectation?

Optics, Dr. C. Rablau
Kenering Univensity

We6 Resources for Optics

- HyperPhysics - Light and Vision (Georgia State University)
- http://hyperphysics.phy-astr.gsu.edu/hbase/hph.htm|\#ahph
- Molecular Expressions - Physics of Light and Color (FSU and the National High Magnetic Fields Lab)
- http://micro.magnet.fsu.edu/primer/lightandcolor/index.html
> General Physics Java Applets by Surendranath Reddy - http:///surendranath.tripod.com/
\square Optics is by its nature a visual science. A wealth of Java Applets found on these sites help visualize optics phenomena.

The Mathematics of Light
Keuming Univensity
Ms. Gina Rablau, Kettering University

The Broad Spectrum of Light

\square Optics is the science that studies light.
\square Light, in its broadest sense, is more than only visible light
\square The ultraviolet (UV) and infrared (IR) regions of the spectrum facilitate some of the most important applications of optics.

Wave Properties of Light

\square Light travels as a wave, similar to water waves

or to the waves on the vibrating strings of a guitar

\square But, unlike these waves, the oscillations of a light wave are in electric field strength, not in spatial displacement.

The Mathematics of Light
Kenering University

Wave Properties of Light

What oscillates and propagates in a light wave is an electric field

Snapshot (in time) of the electric field of the wave

The Mathematics of Light
Kenering University

A Built-in Length Scale The Wavelength λ

\square Each "color" of light has a number associated to it - the wavelength (λ) of the light wave (measured in nm or $\mu \mathrm{m}$).
\square Visible light extends from $\mathbf{4 0 0} \mathbf{~ n m ~ (v i o l e t) ~ t o ~ ~ 8 0 0 ~ (R e d) ~ n m . ~}$
\square The spatial profile of the wave repeats itself identically after a distance equal to the wavelength - hence the name.

The wavelength acts as a length scale built into the light wave.

The Mathematics of Light
Ketueling Univensity
Ms. Gina Rablau, Kettering University

The Electromagnetic Spectrum

* Light is a tiny part of a huge spectrum of electromagnetic waves

$\begin{array}{r} 10^{4} \quad 10^{8} \\ \quad \text { radio } \end{array}$				${ }^{6} \quad 10^{2}$		0^{24}	Frequency (Hz)
		IR	UV	X-rays	γ-rays		
$1 \begin{array}{llllllll}10^{4} & 10^{-8} & 10^{12} & 10^{16}\end{array}$							
	700 nm	60	nm	500		400	

* Light in vacuum has wavelengths between ~ 400 nm and $\sim 800 \mathrm{~nm} ; 1 \mathrm{~nm} \equiv 10^{-9} \mathrm{~m}$ (a nanometer)
* $1 \mu \mathrm{~m} \equiv 10^{-6} \mathrm{~m}$ (a micron) $; 1 \AA \equiv 10^{-10} \mathrm{~m} \equiv 0.1 \mathrm{~nm}$

Propagation of Light

$>$ In a homogeneous medium (a medium that has the same index of refraction everywhere), and only in a homogeneous medium, light propagates in a straight line.

- A Ray of light is a line that shows the direction of propagation of a light wave

Light source Light Ray

- A Beam of light is a collection of light rays Divergent Beam

The Index of Refraction

> In vacuum all electromagnetic waves - including visible light - travel at the same speed:

$$
c=2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s} \cong 3 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

$>$ The index of refraction of a medium is defined as the ratio of the speed of light in vacuum, c, and the speed of light in that medium, v

$$
n=\frac{c}{v}
$$

> Except for vacuum, the index of refraction of any medium has a (slight) dependence on the color (i.e. on the wavelength) of the light - this is called dispersion of light: different colors propagate through the medium at different speeds

$$
n=n(\lambda) \rightarrow v=v(\lambda)
$$

The Mathematics of Light
Kenering Univensity
Ms. Gina Rablau, Kettering University

Refraction of Light

> Refraction of Light: "bending" of a light ray when it crosses the boundary (interface) between two different optical media.
> Snell's Law

- $\mathrm{n}_{1} \sin \theta_{1}=\mathrm{n}_{2} \sin \theta_{2}$
> Snell's Law Calculator
 http://hyperphysics.phy-astr.gsu.edu/hbase/geoopt/refr.html\#c1
> Refraction JAVA applet:
http://micro.magnet.fsu.edu/primer/java/refraction/refractionangles/index.html
The Mathematics of Light
Ketuering Univensity
Ms. Gina Rablau, Kettering University

Refraction of Light - "Take 2"

> Refraction of Light: "bending" of a light ray when it crosses the boundary (interface) between two different optical media.
$>$ Snell's Law: $\mathrm{n}_{1} \sin \theta_{1}=\mathrm{n}_{2} \sin \theta_{2}$ (or $\mathrm{n}_{\mathrm{i}} \sin \theta_{\mathrm{i}}=\mathrm{n}_{\mathrm{t}} \sin \theta_{\mathrm{t}}$)
> Consequences:

- (A) If $n_{1}<n_{2}$, then $\theta_{2}<\theta_{1}$, i.e. the light ray is bent towards the normal
- (B) If $n_{1}>n_{2}$, then $\theta_{2}>\theta_{1}$, i.e. the light ray is bent away from the normal

The Mathematics of Light
Ms. Gina Rablau, Kettering University

Transmitted
Keukinile (refreted) Ray ersily

Total InternalReflection

> When light is incident upon a medium of lesser index of refraction, the exit (refraction) angle is greater than the incident angle.

> As the incident angle increases, the exit angle increases as well; when the incident angle reaches a value called the critical angle, θ_{c} the refraction angle will be equal to 90°.
> For angles of incidence grater than the critical angle, there will be total internal reflection (i.e. no light will be transmitted into the $2^{\text {nd }}$ medium)

The Mathematics of Light
Ketuling Univensity
Ms. Gina Rablau, Kettering University

Total Internal Reflection

$>$ Snell's law at critical angle, $n_{1} \sin \theta_{c}=n_{2} \sin 90^{\circ}$, leads to:

$$
\sin \theta_{c}=\frac{n_{2}}{n_{1}} \quad \text { which means } \theta_{c}=\arcsin \left(\frac{n_{2}}{n_{1}}\right)
$$

> JAVA Applet: The critical angle of reflection
http://micro.magnet.fsu.edu/primer/java/refraction/criticalangle/index.html
> JAVA Applet: Total internal reflection at water-air interface
http://www.phy.ntnu.edu.tw/java/light/flashLight.htm|
http://www.physics.mclarenhigh.com/javapm/java/totintrefl/index.html

The Mathematics of Light
Kenting University
Ms. Gina Rablau, Kettering University

Application: Optical Fibers

\square The light is trapped in the (solid) core of the fiber and propagates through it by total internal reflection.

The Mathematics of Light

Ms. Gina Rablau, Kettering University
Kenting University

Image Formation by Lenses

To create an image of an object, we use lenses and/or mirrors.

Lenses

- A lens is a transparent material (like glass or plastic) that (usually) has two spherical surfaces.
> Converging lenses are lenses that are thinner at the edges and thicker at the center. They transform a parallel beam of light into a converging beam of light (i.e. they "focus" together the light rays incident on the lens).

The Mathematics of Light
Ms. Gina Rablau, Kettering University

Figure 1
(c)

PlanoConvex

Positive Meniscus

Kenting Uhiversity

Focal Points and Focal Length

> Object focal point: the point where one has to place a point light source for the emerging beam to be a parallel beam of light.

> Image Focal Point: a parallel light beam parallel to the optical axis of the lens will be focused at a point called the image focal point.

The Mathematics of Light
Ketuling Univensity
Ms. Gina Rablau, Kettering University

Focal Points and Focal Length

> The two focal points are located at the same distance f from the lens, called the focal length of the lens.
> The thin lens equation is an equation that relates (connects) the distance between the object and the lens (s_{0}) to the distance between its image and the lens (s_{i})

$$
\frac{1}{s_{o}}+\frac{1}{s_{i}}=\frac{1}{f}
$$

$>$ Our goal is to use this equation to find where the image is formed (to find s_{i}) for various positions of the object (various object distances s_{0})

JAVA Applets for Lenses

> Converging Lens Focal Point http://micro.magnet.fsu.edu/primer/java/components/perfectlens/index.htm|
> Simple Bi-Convex Thin Lenses
http://micro.magnet.fsu.edu/primer/java/lenses/simplethinlens/index.html
> Magnification with a Bi-Convex Lens
http://micro.magnet.fsu.edu/primer/java/lenses/magnify/index.html
> Image Formation with Converging Lenses
http://micro.magnet.fsu.edu/primer/java/lenses/magnify/index.html
> Image Formation with Diverging Lenses
http://micro.magnet.fsu.edu/primer/java/lenses/diverginglenses/index.htm|
> Geometrical Construction of Ray Diagrams - Thick Lenses
http://micro.magnet.fsu.edu/primer/java/components/characteristicrays/index.html

The Mathematics of Light
Keuering Univensity
Ms. Gina Rablau, Kettering University

Worked -Out Example

- A point light source is placed on the optical axis at a distance of 60 cm in front (i.e. to the left) of a converging lens that has a focal length of 10 cm . Calculate the distance between the lens and the image.

Worked -Out Example

> A point light source is placed on the optical axis at a distance of 60 cm in front (i.e. to the left) of a converging lens having a focal length of 10 cm . Calculate the distance between the lens and the image.

$$
\begin{aligned}
& f=100 \mathrm{~mm} \left\lvert\, \begin{array}{c}
\begin{array}{c}
\text { On-axis } \\
\text { Point Source } \\
\text { (Object) }
\end{array} \\
\frac{1}{s_{o}}+\frac{1}{s_{i}}=\frac{1}{f} \quad s_{i}=\frac{s_{o} \cdot f}{s_{o}-f}=\frac{(60) \cdot(10)}{60-10}=12 \mathrm{~cm} \\
\text { Point Image } \\
\text { The Mathematics of Light } \\
\text { Ms. Gina Rablau, Kettering University }
\end{array}\right. \\
& \text { Ketuering University }
\end{aligned}
$$

Ray Tracing

> To construct graphically the image of an object, we use a drawing technique called ray tracing. Ray tracing makes use of three particular light rays:

1. A ray (any ray) passing through the optical center of the lens will pass undeviated (will continue in a straight line through the lens).

The Mathematics of Light
Reatring University
Ms. Gina Rablau, Kettering University

Ray Tracing

2. A ray (any ray) incident on the lens that is paralle/ to the optical axis will be refracted (bent) through the image focal point of the lens.

The Mathematics of Light
Kenering Univensity
Ms. Gina Rablau, Kettering University

Ray Tracing

3. A ray (any ray) incident on the lens and passing through the object focal point of the lens will be refracted parallel to the optical axis.

Ray Tracing

> The image of a point of the object is found at the intersection of these three light rays. In fact, any two of the three rays are enough for constructing the image of a point of the object.
> The image of the entire object is the totality of images of the constituent object points.

The Mathematics of Light
Kenting University Ms. Gina Rablau, Kettering University

Image Formation Case Study 1

The Mathematics of Light
Keltering University
Ms. Gina Rablau, Kettering University

Image Formation Case Study 1

Image Formation Case Study 1

Image Formation Case Study 1

The Mathematics of Light
Kenering Univensity

Image Formation Case Study 1

The Mathematics of Light
Kenering Univensity

Image Formation Case Study 1

Image Formation Case Study 1

The Mathematics of Light
Kenering University
Ms. Gina Rablau, Kettering University

Image Formation

> JAVA Applets: Image Formation through Converging Lenses http://micro.magnet.fsu.edu/primer/java/lens/bi-convex.htm| http://www.phys.ksu.edu/perg/vgm/laserweb/Java/Javapm/java/Clens/index.html http://micro.magnet.fsu.edu/primer/java/lenses/simplethinlens/index.html
> JAVA Applet: Image Formation through Diverging Lenses http://micro.magnet.fsu.edu/primer/java/lens/bi-concave.html
http://www.phys.ksu.edu/perg/vqm/laserweb/Java/Javapm/java/Dlens/index.html

The Mathematics of Light
Ketueting Univensity
Ms. Gina Rablau, Kettering University

