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Abstract

In this paper we will discuss two methods to measure chaos for dynamical systems;
the Lyapunov Exponent test and the 0—1 test. The Lyapunov Exponent test requires
phase space reconstruction and has been used for a longer time, where the 0 — 1 test
is quite new and works directly with the time series. To make a comparison, we will
use the logistic map, f,(x) = az(l — x), to show advantages and disadvantages of
the two methods. In chapter 1, we will introduce the notion of chaos and see why
the logistic map is a very good example when discussing chaos. After this chapter,
we will introduce the two methods to distinguish between regular, i.e. periodic,
dynamics and chaotic dynamics. Next to that, we will see the implementation of the
tests with regard to the logistic map. A comparison between the two tests can be
read in the last chapter. Here we see that, although the 0 — 1 test seemed a better
test at the start, the Lyapunov Exponent test is much easier to understand and to
implement, provided that the map f is known explicitly. It is also able to determine
the bifurcation points and the super attractive points, if present, whereas the 0 — 1
test is not able to find those. However if a phase space reconstruction is not possible,
the 0 — 1 test can still be used and is therefore a more general test to measure chaos.
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1 Introduction

In this bachelor thesis we will analyze dynamical systems. There are different types
of dynamical systems. An n’th-order autonomous time-continuous system is defined

as follows:
d

S = 1@, () = M

where z(t) € R" is the state at time ¢, and f : R® — R" is called the vector field.
The solution to is written as ¢(xg) and is called the flow.

A dynamical system does not always have to be autonomous. An n’th-order
non-autonomous time-continuous dynamical system is defined by:

dx
— = f(l’,t), IL‘(to) = Z9. (2)
dt
Here the vector field does depend on time, unlike the autonomous case. The solution
to (2)) is then written as ¢ (o, to).
We can also have time-discrete systems. Such systems are defined as

Thk41 :P(J}k), k:0,1,2,... (3)

A good way of illustrating the behavior of a discrete dynamical system is by
making a bifurcation diagram. Such a diagram is created by choosing a random
initial condition, iterating this initial condition 200 times and then plotting the value
of the 100 next iterates.

In this paper we will consider two tests that can measure whether or not a dy-
namical system displays regular dynamics or chaotic dynamics. The logistic map, a
time-discrete dynamical system, is used to explain when a system is chaotic and to
show how both tests work.
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2 Chaos

It is often interesting to consider the long term behavior of a dynamical system. Some
systems behave regularly, that is, they are periodic. When a system is periodic, it is
relatively easy to predict what will happen after a while when you know some points
in the beginning. However, not all systems are periodic and for these we see that
there is something ‘chaotic’ going on. Without knowing the exact definition of chaos,
one has obviously a vision in mind about what chaos looks like. We often imagine
chaos to be something where there is precisely no structure at all; we observe full
randomness. Even if there is some pattern, the pattern won’t be of much interest.
However, this is not true; where there is chaos, there are extremely beautiful things
arising.

2.1 The logistic map

Let us consider the dynamical system that describes population growth. The logistic
model is the most basic model and is described by the following equation:

N'(t) = %N(t)(K — N(T)).

In this equation, N(t) is the number of animals in a population, a is the max-
imum rate of population growth and K represents a sort of ”ideal” population or
”carrying capacity”, which is basically the maximum size of the population. By a
straightforward change in variables, defining z(t) = %, 0 < z(0) <1, we get the
logistic equation

2 (t) = ax(1 — ).

For a < 0, x converges to 0, for a > 0,  converges to 1 and for a = 0 the size of
the population is constant. This is about the easiest and most straightforward result
one can get from a dynamical system.

However, it is sometimes more obvious to look at the growth of a population in
steps of years for example, instead of looking at the continuous model. This is where
the logistic map comes along:

Tpt1 = fa(zn) = axp(l — zy) for 0 < x9 < 1.

This discrete time equivalent of the logistic equation has some very peculiar features
and will be the example we will use most throughout this paper.

This logistic map seems very easy and basic, but the solutions turn out to be
not. Let us consider the bifurcation diagram as shown in Figure This diagram
is created by choosing a random initial condition, iterating this initial condition
200 times and then plotting the value of the next 100 iterates. We see that for
1 < o < 3, there is just one stable fixed point. But when a is made bigger than
3, a period doubling bifurcation occurs. This keeps happening until at some point
there is only chaos. This point is called the Feigenbaum point and is measured to be
at @ = Soo = 3.5699456. ... For s, < a < 4, the chaos appears to be bounded. A
special case is a = 4: Here we observe chaos on the whole interval [0, 1].

bt
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Figure 1 — The bifurcation diagram of the logistic map.

2.2 When is a system chaotic?

But when exactly is a system chaotic? The most important condition is that the
system depends sensitively on the initial values. But there are other conditions as
well. If the system has periodic orbits, then they should be dense. We also need the
system to be transitive. In the following definition we will state these along with
their formal definition.

Definition 2.1. A system f(xz) on the metric space (X, d) is chaotic if the following
three statements hold:

1. The periodic orbits are dense. Formally:
Ve e X, Ve >0, Ip € X & In > 0 such that f*(p) =p and d(z,p) < &;
2. The system is transitive. Formally:
For every two open subsets Uy,Uy C X, there is an n > 0 such that f™(Uy) N
Us 75 @;
3. The system 1s sensitive dependent on the initial values. Formally:
38 such that Yxg € X, Ve > 0, Jz; & In > 0 such that d(zp,x1) < € and

d(f"(zo), ["(x1)) = B.

It is not always easy to use only this definition. When it is too difficult to prove
that there is chaos with the previous statements, we can use other things as well.
One of the methods is using an equivalence with another system for which you can
proof chaos by using the definition only. When two systems are equivalent and we
can prove that there is chaos for one of the two, then the other system must also be
chaotic[3].
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Figure 2 — The first, second and third iterate of the tent map

Let’s see this in practice for the logistic map where a = 4. This is a special case of
the logistic map since for this map fs4(x) we observe chaos on the interval [0,1]. It is
very difficult to prove that there is chaos for fy(x) by using the formal definition, but
we can prove that there is chaos for another map which turns out to be equivalent
to fa(x). This map is called the tent map:

2 ifo<z<i
(r) = . .

In Figure 2] we can see the first, second and third iterate of the tent map, which is
useful to understand the proof of our statement that the tent map is chaotic.

(4)

Proof. We can prove that the three statements of the definition hold for the tent
map:

1. (Density of periodic points) 7" maps each interval 551, £] to [0,1] for k =
1,...,2". Therefore, T" intersects the line y = x once in each interval. As a
result, each interval contains a fixed point of T or equivalently, a periodic point
of T of period n. Therefore, periodic points of 7" are dense in [0, 1].

2. (Transitivity) Let U; and U be open sub-intervals of [0,1]. For n sufficiently

large and for some k, Uy contains an interval of the form [2%, %] Therefore,
T™ maps U; to [0,1] which contains Us. This means that the tent map is

transitive.

3. (Sensitive dependence on initial conditions) Let xg € [0,1]. We will show that
a sensitivity constant 8 = 0.5 works. As in (2), any open interval U of the
form [2%, %} around x( is mapped by T" to [0, 1] for some sufficiently large n.
Therefore, there exists yo € U such that |f"(xo) — f™(yo0)| > 0.5 = 5. So the
tent map has a sensitive dependence on the initial conditions.

O]

This proves the fact that the tent map is chaotic. So we only have to formulate
a conjugacy with fy(z) = 4x(1 — z) in order to state that f4(z) is chaotic. Two
systems f and g are conjugate when f oh = h o g. Indeed, there exists a conjugacy
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_ 1

via h(z) = sin?(%£) = 1(1 — cos(wz)) since

h(T(z)) = 1(1 — cos(2mz))
=1 — cos?(mx)

=1+ cos(mzx) — cos(mzx) — cos?(rx)

= 4( — Lcos(m2))(1 — § + § cos(rz))
= 4(3(1 — cos(mx)))(1 — 2(1 — cos(mx)))
= fa(h(z))

We used T'(x) = 2z, but the same is true for T'(z) = 2 — 2z. We have now shown
that the logistic map for a = 4 is conjugate with the tent map, which is chaotic on
[0, 1], so we can conclude that the logistic map for a = 4 is also chaotic on [0, 1]. We
can also see this intuitively when looking at the first two iterates of the logistic map
(Figure [3) and compare these to the first two iterates of the tent map (Figure [2)).
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Figure 3 — The first and second iterate of f(z) = 4z(1 — x)

The resemblance is striking and this shows that we can prove that there is chaos
in a similar manner for the logistic map as for the tent map.

2.3 Superattractive points

Let us go back to the bifurcation diagram (Figure|l]) of the logistic map. The stable,
or attractive, points are plotted in this diagram. These are the stable fixed points

of fo(x) = ax(l — x). To calculate the fixed points of a map, you have to solve
fa(x) = 2, which gives you two fixed points: pg =0 and p; =1 — %

A fixed point z* is stable, or attractive, if |f'(z*)] < 1 and it is unstable, or
repelling, if | f/(z*)| > 1. If | f’(2*)| = 1, then the stability of the fixed point depends
| /" (2*)|. This can be explained by looking at the Taylor series of f, around the point
x*. Besides, we notice that derivatives of order higher than two vanish, since we are
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Figure 4 — Convergence to super attractive fixed point z* = 0.5 with a = 2

dealing with a quadratic function.

fa(2®) = 2"
fa(@) = 2" + fo(z*)(z — z*) + £ (a*) (& — 2*)?
Tpie1 = 2" + fr (") (2 — 2%) — 2a(xy — x*)z

(w1 — | = | fa(@®)llen — 2| + |20l |z, — 2™

When |f/(z*)| # 0, we can neglect higher order terms, because |z, — z*| will be
smaller than 1. Hence we can see that for | f/(z*)| < 1, the distance to the fixed point
is decreasing, while if |f/(z*)| > 1, it is increasing. When |f/(z*)| = 1, the second
order derivative determines whether this distance is increasing or decreasing.

For the logistic map, we can now calculate the stability of its fixed points py and
p1. Since f'(z) = a(l — 2z), we see that pp = 0 is stable when a < 1 and unstable
when a > 1. For p; we calculate f'(p1) =2 — a, so we can conclude that p, is stable
when |2 —a| < 1, i.e. when a € (1,3), and unstable elsewhere. We thus have a
bifurcation at a = 1.

After a = 3 a 2-cycle arises. To calculate this 2-cycle one has to compute the fixed
points of f2(z). It is calculated to be stable for 3 < a < 1+ /6. When that 2-cycle
is not stable anymore, one computes the fixed points of f(x). This will give us a
4-cycle for f,(x), which has again an even smaller range of stability. This continues
until we arrive at the Feigenbaum point.

But something interesting happens when the fixed point is actually the top of
the parabola of f,(z), as seen in Figure When this is the case, the fixed point
is approach much faster. Indeed, we say that a fixed point x* is super attractive if
f'(z*) = 0. Since the parabola has it maximum at xp,.x = 0.5, we have to solve the
equation 0.5 = 0.5a(1 — 0.5).



Bachelorproject 2016 K. Lok 52393263

0.558
window 1
TTTTTITTTI T T T T T I T e [T e[ rrrrrrrr T T T T T T T T T T 1T T 5 7 | O B B L B 0443
4o a8 & 3.828 3.84 3.85 3.857
(a) The widest window (b) Zooming in reveals more self-similarity

Figure 5 — The widest window of the bifurcation diagram of the logistic map

The solution for this equation is a = 2. To see what really happens here, we take
a look at Figure [dl We see that for a = 2, the fixed point is approached much faster
than for a = 1.75 or a = 2.75 for example! We can again explain this by looking at the
Taylor series: at this point | f'(2*)| = 0, so the first order term vanishes! That means
we're left with only the second order term and hence the convergence is quadratic
(which is much faster). We call the value of a for which quadratic convergence to the
super attractive fixed point £* = 0.5 occurs a super attractive parameter and name it
s1 = 2. This super attractive parameter is not the only super attractive parameter.
In each part where there is a new cycle, there is one such parameter. For 1 < a < 3
we have s; = 2, for 3 < a < 1+ /6 the super attractive point is the solution of
f2(0.5) = 0.5, which is s3 = 1 + /5. In each segment we find one super attractive
parameter.

2.4 Windows in the chaotic part

Once a is past the Feigenbaum point, we observe chaos. However when we take a
closer look to that part of the bifurcation diagram (Figure , we see that there are
some gaps where there seems to be no chaos. Let us take a closer look to those gaps.

Figure pb|shows that the gap reveals a bifurcation diagram which is very similar to
the entire bifurcation diagram. This leads to the idea that there are similar dynamics
here. There are three periodic attractors before the period doubling starts and these
turn out to be the fixed points of f3(z). This window is not the only one; there are
uncountable many windows. We won’t go into much detail and we refer the reader
to [6] for more information on the windows.

10



Bachelorproject 2016 K. Lok 52393263

3 Tests for chaos

As seen in the previous chapter, it is not always easy to use the definition only to
check for chaos. It is therefore essential to come up with other tests that are easier
to use. In this section, we will consider two tests, the Lyapunov Exponent test and
the 1 — 0 test, which can both be used to determine the dynamics of a system.

3.1 The Lyapunov Exponent

One of the most used tests is the Lyapunov Exponent test, since it is easy to imple-
ment if the map f is known explicitly.

3.1.1 Description of the test

In this paper we will focus on discrete time systems, since we use the discrete lo-
gistic map to show the workings of the tests. The Lyapunov Exponent test for
one-dimensional maps is based on the average exponential growth for n iterations.
To see this, we begin with a starting condition zg, and add a perturbation ¢,
such that zg + ¢ is the perturbed starting condition. The error after n iterations
is then f™(z¢ +¢) — f™(z0), and the relative error w It is of course
interesting what will happen when the perturbation is infinitesimally small. When
a system is regular, the relative error won’t be too high. But when a system is
chaotic, it is sensitive dependent on initial conditions and therefore the relative error
after n iterations will be very big. Since we want to look at an infinitesimally small
error we might as well take the limit where ¢ — 0: lim._q w. This
is actually the derivative of f" evaluated at zo; (% f"(z))|g=z,- We know that
(o) = fP1(f(x0)) = f*1(x1) etc., so we can use the chain rule to obtain

(@)

which is the product of the local growth factors. A growth factor smaller than 1
corresponds to contraction, whereas a growth factor greater than 1 shows expansion.
The average exponential growth factor for n iterates is then

= fl(@n1)f (xn—2)--- f'(x0),

T=x0

(il )]+ | o)),

The logarithm of a value higher than 1 will be positive and the logarithm of a value
lower than 1 will be negative. The Lyapunov Exponent is than the limit of this for
n — 0o, which gives us the following definition:

Definition 3.1. The Lyapunov Exponent of a discrete time system xp+1 = f(x)
s given by

n—00 1 4

n—1
A= lim lZln|f’(xi)|.
=0

11
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Lyapunov Exponents are used to measure chaos. This depends on the sign of A
as follows:

e A\ >0, {z,} shows chaotic behavior;
e A\ <0, {z,} shows periodic behavior;
e )\ = 0, a bifurcation occurs.

3.1.2 The algorithm

In the script below we see how a Lyapunov Exponent can be calculated using a com-
puter. As an input, we plug in the function, the derivative of the function, the initial
value and the number of iteration we wish.

function lambda=lyapunov (f,df,x0,iter)

s = 0;
x = x0;
for i = 1:200
x = £(x);
end
for i = 1:iter
s = s + log(abs(df(x)));

lambda = s/ij;
x = f(x);

end

Since we will be using this script only for the logistic map in this paper, the script
was slightly altered such that one can plug in the value of a as well.

function lambda=lyapunov(f,df,a,x0,iter)

s = 0;
x = x0;
for i = 1:200
x = f(x,a);
end
for i = 1:iter
s = s + log(abs(df(x,a)));

lambda = s/i;
X = f(X’a);
end

According to the script which can be found in Appendix[A]we can see that in order to
get the error between the actual value (In(2), see below for the confirmation of this)
and the numerical limit smaller then 1075, we need 365 iterates. For a = 4 and 365

12
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iterations, we find that A = 0.6932... This value corresponds to the value of In(2).
For the logistic map, we can confirm this very easily. We have already seen that the
logistic map for a = 4 is conjugate with the tent map. The Lyapunov Exponent for
the tent map is easily calculated (recall that the tent map is given in subsection
equation ) We know that [T"(z)| = 2, Va # 3. The Lyapunov Exponent is now
determined as follows:

n—1
.1 /
A= Jim 2 T e
n—1

1
= lim — » In(2
Jim ) 2 ()

= T}Ln;oﬁnln(Q)

= In(2)

How does this relate to the logistic map for a = 47 In subsection we stated
that there exists a conjugacy via h(z) = sin?(Z) for the logistic map fa and the tent
map T'(z). If we take ¢(z) to be the inverse of h(z), where ¢(z) = 2 arcsin(y/z), we
see that

¢(fa(zn) = T(¢(zn))
= ¢ (fa(wn)) - filzn) = T(¢(xn)) - ¢'(2n)

¢,($n)
= f, Tn) =T o(xn,
) =) G )
The Lyapunov Exponent of f4(z) is then calculated as follows:
n—1
A= lim — Zln | fa(s)|
n—1
¢' (i)

= lim 2 T 0@ - 7 vy
n—1

= i~ S 0T (0(wn))| + In 6 ()] — 1n |6 1)

1
= lim 71n|¢ (zo)] — hm 71n|d>(;1:n | + hm —Zln]T’

= im S W) ()
=1

= In(2).

(*) NOTE: It is clear that lim, , 2 In|¢/(20)| = 0 when zg # 0 and xo # 1, since
In|¢'(x0)] is constant. However, it is "not at all obvious that limy, 00 = In |¢/(xn)\ = 0!
In almost all cases this will indeed be 0, but there are certain requirements for this

limit to exist. See [I] for more details on this.

13
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Figure 6 — Plot of the Lyapunov Exponent versus a for the logistic map.

3.1.3 Bifurcations, super attractive points and the windows

In Figure [6] we see three very interesting things. First of all, we observe for 0 <
a < 3.57 some Lyapunov Exponents to be 0. This corresponds to the bifurcations
occurring for those values of a. For example at a = 3, where there is a period doubling
bifurcation and from where a 2-cycle appears.

We see also that for some values of a the Lyapunov Exponent is in fact —oo. These
are characteristic for the super attractive points we have seen in subsection This
is not hard to see. When we take for example s; = 2, we have the fixed point to be
x* = 0.5. For this fixed point |f'(z*)| = 0 holds, so when lim;_,o, x; = * = 0.5 (and
this value is approached very fast), then lim; oo In|f’(x;)| = —oo. It is easily seen
that the Lyapunov Exponent for a = 2 is then A = limy, o0 £ Z?;ol In|f(z;)| = —c0.
The same happens for the other super attractive points.

The third interesting fact arises after the Feigenbaum point. From this point,
there is chaos, but not everywhere, as seen in subsection These windows are
clearly seen in Figure [6]

14
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3.2 The 0 —1 test

Where the Lyapunov Exponent test needs phase space reconstruction in order to
determine whether a dynamical system is chaotic, for the 0 — 1 test we only need to
know the time series ¢(n) for n = 1,2,... of the dynamical system. Basically, this
test provides a 2-dimensional system derived from ¢(n) for which we can define the
mean square displacement M (n). The growth rate of M(n) will give us knowledge
about the dynamics of the system we started with.

3.2.1 Description of the test

The 0 — 1 test uses the time series ¢(n) for n = 1,2,... to drive the 2-dimensional
System

p(n+1) =p(n) + ¢(n+ 1) cos(cn),
g(n+1) =q(n) + ¢(n + 1) sin(cn), (5)

where ¢ € (0,27) is fixed. The mean square displacement of this 2-dimensional
system is given as follows:

It’s growth rate is then:
log(M
K = lim 2080()
n—oo  log(n)
In general, K takes either the value K = 0 or K = 1, where K = 0 means that the
system is regular and K = 1 means that the system is chaotic [2]

The 2-dimensional system as seen in is bounded when the time series repre-
sent regular dynamics. The mean square displacement M (n) is then bounded as
well and returns K = 0 as a growth rate. When the system we consider is chaotic,
the 2-dimensional system as seen in behaves approximately like a 2-dimensional
Brownian motion, which can be seen as the random motion of a particle in a fluid as
a result from collision with other particles. The mean square displacement of such
a diffusive Brownian motion grows linearly, and will give us the growth rate K = 1.
All in all we see the following cases:

Underlying dynamics | Dynamics of p(n) and q(n) | M(n) K
regular bounded bounded
chaotic diffusive linear 1

3.2.2 The algorithm

The algorithm for this test is slightly more involved than the algorithm used for the
Lyapunov Exponent test. First we have to solve the 2-dimensional system . We

15
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obtain:
n n

pe(n) =Y (j) cos(jc),  ge(n) = ¢(j) sin(jo).

=1 j=1
The following script provides two arrays p and ¢, where the i’th entry of p is equal
to pc(i) and similar for ¢:

function [p,ql=pq(phi,c,n,N)

co = zeros(n+N,1);

si = zeros(n+N,1);

p = zeros(n+N,1);

q = zeros(n+N,1);

for i = 1:N+n
co(i) = cos(ixc);
si(i) = sin(ix*c);

end

p(1) = phi(1l)*co(1);

q(1) phi (1) *si(1);
for i = 2:N+n
p(i) = p(i-1)+phi(i)*co(i);
q(i) = q(i-1)+phi(i)*si(i);
end

The following function calculates the growth rate K for a fixed value of n. In this
script, we can additionally plug in the value of a for the logistic map. This script also
plots p versus q. These plots show very clearly the difference between regular and
chaotic dynamics. in[7], we can see these plots for the logistic map for two different
values of a. The script for ¢(n) = ax, (1 — z,) can be found in Appendix

function K=searchK(a,n,N,x0,c)
s = 0;

phi = phiscript(a,n,N,x0);
[p,q] = pq(phi,c,n,N);
plot(p,q)

1:N
s + ((p(i+n)-p(i)) "2 + (q(i+n)-q(i))"2);

for

end
M = s/N;
K = log(M)/log(n);

16
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(a) Regular dynamics at a = 3.55 (b) Chaotic dynamics at a = 3.97

Figure 7 — Plot of p versus ¢ for the logistic map.
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(a) The slope of the red line is approx. 0, (b) The slope of the red line is approx. 1 here,
which corresponds to the regular dynamics which corresponds to the chaotic dynamics at
of a = 3.55. a=3.97.

Figure 8 — Plot of log(M(n)) versus log(n) for the logistic map. The red line is the fitted
straight line which determines the value of K by its slope.

However, when we just stop at some random value of n, we might stop at an incon-
venient value of M. In Figure [9a] and Figure [9d the value of K was calculated by
this method and plotted versus different values of c¢. One can see that it does not
always turn out right. Therefore, it is better to determine K by fitting a straight
line to the graph of log(M(n)) versus log(n). The following script uses the previous
to calculate M for different values of n, after which it plots log(M (n)) versus log(n)
together with the fitted straight line. In Figure [§] we see these plots for the logistic
map. corresponds to a = 3.55, i.e. regular dynamics, and corresponds to the
chaotic dynamics at @ = 3.97. Finally, the script returns the value of the slope of the
straight line, which will be the value of K.
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function Kslope=plotMn(a,N,x0,c,stapgrootte)

i=1;

groot = ceil(N/stapgrootte);
Marray = zeros(groot,1);
Narray = zeros(groot,1);

for n = 1l:stapgrootte:N
[K,M] = findK(a,n,N,x0,c);
Marray (i) = log(M);
Narray (i) = log(m);
i = i+1;

end

coefs = polyfit(Narray,Marray,1);
plot(Narray ,Marray,’b’,0:10,polyval (coefs ,0:10),°’r’)
Kslope=coefs (1);

In Figure [8] we used N = 5000, xog = 0.7 and ¢ = 0.8. For a = 3.55, the slope
corresponding to the value of K is then 0.0036..., and for a = 3.97 it is 0.8831....
These values are very close to the expected values of 0 and 1, so we can see that
this test is highly accurate. Going back to Figure [9] we see now that the method of
the fitted straight line is, especially for the regular case, much better than when the
first method is used. For the chaotic case, Figure [9¢| and [9d] we see that the second
method shows more deviations than when the first method is used, but the mean is
closer to 1. In [2] another method to compute K was presented, which will again be
better and will give an even more accurate value for K than the method with the
fitted straight line.

3.2.3 Bifurcations, super attractive points and the windows

In Figure [L0] we see the value of K for different values of a, starting at a = 3.3. The
parts where there are regular dynamics are clearly seen in this graph, K is zero for
all values of a below the Feigenbaum point. The windows in the chaotic part where
there is no chaos are also visible. Where for the Lyapunov Exponent test one was
also able to see the bifurcations and the super attractive points, here this is not the
case. The test does what it is made for and provides no extra’s.
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(a) Plot for a = 3.55, corresponding to
regular dynamics, using the first method.
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(c) Plot for a = 3.97, corresponding to
chaotic dynamics, using the first method.

0 1 2 3 4 5 B

(b) Plot for a = 3.55, corresponding to regu-
lar dynamics, using the slope of the red line.
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(d) Plot for a = 3.97, corresponding to
chaotic dynamics, using the slope of the red
line.

Figure 9 — Plot of K versus c for the logistic map.
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ask -

Figure 10 — Plot of K versus a for the logistic map for 3.3 <a <4

4 Comparison

Now that we have studied the two tests, the Lyapunov Exponent test and the 0 —
1 test, we are ready to compare the two. Both tests have clear advantages and
disadvantages. We will compare the test for ease of understanding the methods,
ease of implementation and computation time, generality, accuracy and insight in
the dynamics.

For the Lyapunov Exponent test, it is very clear to understand how this test was
arrived at (subsection [3.1.1)). It does not involve very difficult mathematics and it
seems like a logical way to measure chaos. The 0 — 1 test on the other hand is much
more complex. The reasons to construct a two-dimensional system from the time
series are not very clear and the proofs for why the test indeed works involve more
advanced mathematics. This works highly in favor of the Lyapunov Exponent test.

Also when we look at the implementation of the two tests, we see that the script
that was used for the Lyapunov Exponent test is much smaller than the scripts that
were used for the 0 — 1 test. Not only do we need a longer and more involved script,
we also have some variables on which the test depends, namely ¢, n and N. The fact
that you need to plot a fitted straight line through log(M(n)) versus log(n) makes
it even more complex. We also measured the computation time for both tests and
concluded that the computation time for the 0 — 1 test is significantly longer than
the time needed to compute Lyapunov Exponents.

However, the 0 — 1 test is way more general than the Lyapunov Exponent test.
We did not see this very clearly since we only used the logistic map to show the
workings of the tests, but we do observe that for the Lyapunov Exponent test we
needed the map f,(x) explicitly, whereas the 0 — 1 test only needs the time series.
This means that even when we only have a data set of successive x;’s, we can still
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determine whether we are dealing with a chaotic system or a regular system. This is
the main advantage of the 0 — 1 test and probably the reason why it is invented.

Both test are accurate. For the parts where the logistic map is chaotic, no test
returns that the system is regular, and vice versa. We can see this for the Lyapunov
Exponent test and for the 0 — 1 test in Figure [0] respectively Figure Both test
therefore return correct answers to the question ”Is this system chaotic or not?”.

The Lyapunov Exponent gives a lot of extra information about the dynamics of
the system than the 0—1 test does. Of course, the 0—1 test does its job and returns a 0
for regular and a 1 for chaotic dynamics, but that is all. The Lyapunov Exponent also
shows the bifurcation points of the dynamical system (here the Lyapunov Exponent
is 0) and the super attractive points (where the Lyapunov Exponent is —oc). These
extra’s are a very nice aspect of the Lyapunov Exponent test.

We can conclude that when a phase space reconstruction is possible, the Lyapunov
Exponent test has some major advantages compared to the 0 — 1 test; but when this
is not possible, we can still use the 0 — 1 test and the accuracy was maintained.

5 Conclusion

In this paper we have examined the notion of chaos for dynamical systems. The
main criterion for a system to be chaotic is that it is sensitive dependent on initial
conditions. This criterion can be tested in two ways, by using the Lyapunov Exponent
test and by using the 0—1 test. We have used the logistic map to show how both tests
work. Although the 0 — 1 test is much more general and is suitable for the analysis
of many different dynamical systems, including experimental data, the Lyapunov
Exponent test appears to be more elegant in understanding and in use, and has
some beneficial extra’s, for example it’s ability to show super attractive fixed points.
If a phase space reconstruction is possible, the Lyapunov Exponent test is highly
favorable, but if a phase space reconstruction is not possible, the 0 — 1 test can be
used.
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A Matlab codes

The script that was used for computing how many iterations had to be used in order

to get the error smaller that 1076:

a = 4;
i=1;

s = 0;

x = 0.7;
lambda = 0;
err = 1000;

for j=1:200
x = a*x*(1-x);
end

while err>tol
s = s + log(abs(a*x(1-2*x)));
lambda = s/ij;

x = a*x*(1-x);

i = i+1;

err = abs(lambda-log(2));
end
lim
i

The following function makes an array in which ¢(n) = ax,(1 — x,):

function phi=phiscript(a,n,N,x0)
phi = zeros(n+N,1);

x = x0;
for i = 1:200
x = a*x*(1-x);
end
for i = 1:N+n
phi(i) = x;
x = a*x*(1-x);
end
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The following script was used to plot K versus a for a given value of ¢ as seen in

Figure

function a=differenta(c,N,x0O,nsteps,al0,al,stapgrootte2)

Karray = zeros(nsteps,1);
Aarray = zeros(nsteps,1);
for i = 1:nsteps

a a0+i/nsteps*(al-al);
Kslope = plotMn(a,N,x0,c,stapgrootte2);
Karray (i) = Kslope;
Aarray (i) = a;
end

plot (Aarray ,Karray,’b’,Aarray,0,’r’)
axis ([3.3 4 -1 2])

The following script was used to produce Figure [0 where we see the Lyapunov Ex-
ponent plotted versus a for the logistic map:

function lyap=lya(f,df,x0,iter,stapgrootte)
lyap = ceil(4/stapgrootte);

Aarray = zeros(lyap,1);

Larray = zeros(lyap,1);

i=1;

for a = O:stapgrootte:4
lim = lyapunov (f,df,a,x0,iter);

Aarray (i) = a;
Larray (i) = lim;
i= i+l

end

plot (Aarray,Larray,’b’,Aarray,0,’r’)
axis ([0 4 -3 1])
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The next script plots ¢ versus K as seen in Figure [0

function kenc=kc(a,N,x0,stapgroottel,stapgrootte2)

i=1;

f = 2x%xpi;

kenc = ceil(f/stapgroottel);
Karray = zeros(kenc,1);
Carray = zeros (kenc,1);

for ¢ = O:stapgroottel:f
Kslope=plotMn(a,N,x0,c,stapgrootte2);
Karray (i) = Kslope;
Carray (i)
i = i+1;

C;
end

plot(Carray,Karray)
axis ([0 2*pi -2 2])
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