
The GoF Design Patterns Reference
Version 2.0 / 01.10.2017 / Generated 12.01.2018

Copyright © 2014-2018 w3sDesign. All rights reserved.

The GoF Design Patterns Reference w3sDesign / V 2.0 / 12.01.2018 ii

Table of Contents
Preface ... viii
I. Introduction .. 1

1. DESIGN PRINCIPLES .. 2
2. OVERVIEW .. 7

II. Creational Patterns ... 11
1. ABSTRACT FACTORY ... 12

Intent ... 12
Problem ... 13
Solution ... 14
Motivation 1 .. 16
Applicability .. 17
Structure, Collaboration .. 18
Consequences ... 19
Implementation .. 20
Sample Code 1 ... 21
Sample Code 2 ... 24
Sample Code 3 ... 26
Related Patterns ... 28

2. BUILDER .. 29
Intent ... 29
Problem ... 30
Solution ... 31
Motivation 1 .. 32
Applicability .. 33
Structure, Collaboration .. 34
Consequences ... 35
Implementation .. 36
Sample Code 1 ... 37
Related Patterns ... 39

3. FACTORY METHOD .. 40
Intent ... 40
Problem ... 41
Solution ... 42
Motivation 1 .. 43
Applicability .. 44
Structure, Collaboration .. 46
Consequences ... 47
Implementation .. 48
Sample Code 1 ... 50
Sample Code 2 ... 52
Related Patterns ... 53

4. PROTOTYPE ... 54
Intent ... 54
Problem ... 55
Solution ... 56
Motivation 1 .. 57
Applicability .. 58
Structure, Collaboration .. 59
Consequences ... 60
Implementation .. 61
Sample Code 1 ... 62
Sample Code 2 ... 64
Related Patterns ... 66

The GoF Design Patterns Reference w3sDesign / V 2.0 / 12.01.2018 iii

5. SINGLETON ... 67
Intent ... 67
Problem ... 68
Solution ... 69
Motivation 1 .. 70
Applicability .. 71
Structure, Collaboration .. 72
Consequences ... 73
Implementation .. 74
Sample Code 1 ... 75
Related Patterns ... 76

III. Structural Patterns .. 77
1. ADAPTER ... 78

Intent ... 78
Problem ... 79
Solution ... 80
Motivation 1 .. 81
Applicability .. 82
Structure, Collaboration .. 83
Consequences ... 84
Implementation .. 85
Sample Code 1 ... 86
Sample Code 2 ... 88
Related Patterns ... 89

2. BRIDGE .. 90
Intent ... 90
Problem ... 91
Solution ... 92
Motivation 1 .. 93
Applicability .. 94
Structure, Collaboration .. 95
Consequences ... 96
Implementation .. 97
Sample Code 1 ... 98
Related Patterns ... 99

3. COMPOSITE ... 100
Intent ... 100
Problem ... 101
Solution ... 102
Motivation 1 .. 104
Applicability ... 105
Structure, Collaboration .. 106
Consequences ... 107
Implementation ... 108
Sample Code 1 ... 109
Sample Code 2 ... 111
Related Patterns .. 113

4. DECORATOR .. 114
Intent ... 114
Problem ... 115
Solution ... 116
Motivation 1 .. 117
Applicability ... 118
Structure, Collaboration .. 119
Consequences ... 120

The GoF Design Patterns Reference w3sDesign / V 2.0 / 12.01.2018 iv

Implementation ... 121
Sample Code 1 ... 122
Sample Code 2 ... 124
Related Patterns .. 125

5. FACADE ... 126
Intent ... 126
Problem ... 127
Solution ... 128
Motivation 1 .. 129
Applicability ... 130
Structure, Collaboration .. 131
Consequences ... 132
Implementation ... 133
Sample Code 1 ... 134
Related Patterns .. 136

6. FLYWEIGHT ... 137
Intent ... 137
Problem ... 138
Solution ... 139
Motivation 1 .. 140
Applicability ... 141
Structure, Collaboration .. 142
Consequences ... 144
Implementation ... 145
Sample Code 1 ... 146
Related Patterns .. 148

7. PROXY ... 149
Intent ... 149
Problem ... 150
Solution ... 151
Motivation 1 .. 152
Applicability ... 153
Structure, Collaboration .. 154
Consequences ... 155
Implementation ... 156
Sample Code 1 ... 157
Related Patterns .. 158

IV. Behavioral Patterns ... 159
1. CHAIN OF RESPONSIBILITY .. 160

Intent ... 160
Problem ... 161
Solution ... 162
Motivation 1 .. 163
Applicability ... 164
Structure, Collaboration .. 165
Consequences ... 166
Implementation ... 167
Sample Code 1 ... 168
Related Patterns .. 170

2. COMMAND .. 171
Intent ... 171
Problem ... 172
Solution ... 173
Motivation 1 .. 174
Applicability ... 175

The GoF Design Patterns Reference w3sDesign / V 2.0 / 12.01.2018 v

Structure, Collaboration .. 176
Consequences ... 177
Implementation ... 178
Sample Code 1 ... 179
Related Patterns .. 181

3. INTERPRETER ... 182
Intent ... 182
Problem ... 183
Solution ... 184
Motivation 1 .. 186
Applicability ... 187
Structure, Collaboration .. 188
Consequences ... 189
Implementation ... 190
Sample Code 1 ... 192
Sample Code 2 ... 194
Related Patterns .. 198

4. ITERATOR .. 199
Intent ... 199
Problem ... 200
Solution ... 201
Motivation 1 .. 202
Applicability ... 203
Structure, Collaboration .. 204
Consequences ... 205
Implementation ... 206
Sample Code 1 ... 207
Sample Code 2 ... 209
Related Patterns .. 213

5. MEDIATOR ... 214
Intent ... 214
Problem ... 215
Solution ... 216
Motivation 1 .. 217
Applicability ... 218
Structure, Collaboration .. 219
Consequences ... 220
Implementation ... 221
Sample Code 1 ... 222
Related Patterns .. 225

6. MEMENTO ... 226
Intent ... 226
Problem ... 227
Solution ... 228
Motivation 1 .. 229
Applicability ... 230
Structure, Collaboration .. 231
Consequences ... 232
Implementation ... 233
Sample Code 1 ... 234
Related Patterns .. 236

7. OBSERVER ... 237
Intent ... 237
Problem ... 238
Solution ... 239

The GoF Design Patterns Reference w3sDesign / V 2.0 / 12.01.2018 vi

Motivation 1 .. 240
Applicability ... 241
Structure, Collaboration .. 242
Consequences ... 243
Implementation ... 244
Sample Code 1 ... 245
Sample Code 2 ... 247
Sample Code 3 ... 249
Sample Code 4 ... 252
Related Patterns .. 254

8. STATE ... 255
Intent ... 255
Problem ... 256
Solution ... 257
Motivation 1 .. 258
Applicability ... 259
Structure, Collaboration .. 260
Consequences ... 261
Implementation ... 262
Sample Code 1 ... 263
Sample Code 2 ... 265
Related Patterns .. 267

9. STRATEGY ... 268
Intent ... 268
Problem ... 269
Solution ... 270
Motivation 1 .. 272
Applicability ... 273
Structure, Collaboration .. 275
Consequences ... 276
Implementation ... 277
Sample Code 1 ... 278
Sample Code 2 ... 280
Sample Code 3 ... 283
Related Patterns .. 289

10. TEMPLATE METHOD ... 291
Intent ... 291
Problem ... 292
Solution ... 293
Motivation 1 .. 294
Applicability ... 295
Structure, Collaboration .. 296
Consequences ... 297
Implementation ... 298
Sample Code 1 ... 299
Sample Code 2 ... 300
Related Patterns .. 301

11. VISITOR .. 302
Intent ... 302
Problem ... 303
Solution ... 304
Motivation 1 .. 305
Applicability ... 306
Structure, Collaboration .. 307
Consequences ... 308

The GoF Design Patterns Reference w3sDesign / V 2.0 / 12.01.2018 vii

Implementation ... 309
Sample Code 1 ... 310
Sample Code 2 ... 312
Related Patterns .. 317

V. GoF Design Patterns Update ... 318
1. DEPENDENCY INJECTION .. 319

Intent ... 319
Problem ... 320
Solution ... 321
Motivation 1 .. 322
Applicability ... 323
Structure, Collaboration .. 324
Consequences ... 325
Implementation ... 326
Sample Code 1 ... 327
Related Patterns .. 329

A. Bibliography .. 330

Preface w3sDesign / V 2.0 / 12.01.2018 viii

Preface
In software engineering, design patterns describe how to solve recurring design problems to
design flexible and reusable object-oriented software.

w3sDesign presents the up-to-date version of the well-known GoF¹ design patterns in a compact
and memory friendly way so that they can be learned and memorized as fast as possible.

We use a simple and consistent language and repeat important phrases whenever appropriate.
Because a picture is worth a thousand words, each section of each design pattern starts with UML
diagrams to quickly communicate the key aspects of the design under discussion.

New design patterns that are widely used today but not included in the original twenty-three GoF
design patterns will be added. This release starts with the Dependency Injection design pattern,
and others will follow in next releases.

By working through individual design patterns, you will learn how to design objects that are
easier to implement, change, test, and reuse.
Simple, ready-to-run code samples show how to implement design patterns by using object-
oriented programming languages such as Java.

At w3sDesign you will find all you need to know, and you will get the skills that software
developers need today.

It's all for free, and it's pretty fast. Enjoy it!

¹ Design Patterns: Elements of Reusable Object-Oriented Software.
 Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides.
 Published October 1994. Copyright © 1995 by Addison-Wesley.
 (The authors of the book are commonly referred to as "GoF" or "Gang of Four".)

Introduction w3sDesign / V 2.0 / 12.01.2018 1

Part I. Introduction

DESIGN PRINCIPLES w3sDesign / V 2.0 / 12.01.2018 2

DESIGN PRINCIPLES w3sDesign / V 2.0 / 12.01.2018 3

DESIGN PRINCIPLES w3sDesign / V 2.0 / 12.01.2018 4

DESIGN PRINCIPLES w3sDesign / V 2.0 / 12.01.2018 5

DESIGN PRINCIPLES w3sDesign / V 2.0 / 12.01.2018 6

OVERVIEW w3sDesign / V 2.0 / 12.01.2018 7

OVERVIEW w3sDesign / V 2.0 / 12.01.2018 8

OVERVIEW w3sDesign / V 2.0 / 12.01.2018 9

OVERVIEW w3sDesign / V 2.0 / 12.01.2018 10

Creational Patterns w3sDesign / V 2.0 / 12.01.2018 11

Part II. Creational Patterns

ABSTRACT FACTORY w3sDesign / V 2.0 / 12.01.2018 12

Intent

The intent of the Abstract Factory design pattern is to:
"Provide an interface for creating families of related or dependent objects
without specifying their concrete classes." [GoF]
See Problem and Solution sections for a more structured description of the intent.

• The Abstract Factory design pattern solves problems like:
– How can a class be independent of how the objects it requires are created?

– How can different families of related or dependent objects be created?

• An inflexible way is to create objects directly within the class (Client) that requires the objects.
This commits the class to particular objects and makes it impossible to change the instantiation
later independently from (without changing) the class.

• The Abstract Factory pattern describes how to solve such problems:
– Provide an interface for creating families of related or dependent objects

without specifying their concrete classes:
AbstractFactory | createProductA(),createProductB(),…

– The process of object creation (new ProductA1(), for example) is abstracted by referring
to an interface (delegating to a factory object): factory.createProductA().
There is no longer anything in the client code that instantiates a concrete class.

ABSTRACT FACTORY w3sDesign / V 2.0 / 12.01.2018 13

Problem

The Abstract Factory design pattern solves problems like:
How can a class be independent of how the objects it requires are created?
How can different families of related or dependent objects be created?
See Applicability section for all problems Abstract Factory can solve. See Solution section
for how Abstract Factory solves the problems.

• An inflexible way is to create objects (new ProductA1(),new ProductB1()) directly within
the class (Client) that requires (uses) the objects.

• This commits (couples) the class to particular objects and makes it impossible to change the
instantiation later independently from (without having to change) the class. It stops the class
from being reusable if other objects are required, and it makes the class hard to test because
real objects can't be replaced with mock objects.
"Instantiating look-and-feel-specific classes of widgets throughout the application makes it
hard to change the look and feel later." [GoF, p87]
Furthermore, "Specifying a class name when you create an object commits you to a particular
implementation instead of a particular interface." [GoF, p24]

• That's the kind of approach to avoid if we want that a class is independent of how its objects
are created.

• For example, designing reusable classes that require (depend on) other objects.
A reusable class should avoid creating the objects it requires directly (and often it doesn't know
at compile-time which class to instantiate) so that it can request the objects it requires at run-
time (from a factory object).

• For example, supporting different look-and-feels in a Web/GUI application.
Instantiating look-and-feel-specific classes throughout an application should be avoided so that
a look and feel can be selected and exchanged at run-time.

Background Information

• The Swing GUI toolkit of the Java platform, for example, lets you create (and switch between)
different families of objects to support different look-and-feels (like Java, Windows, and
custom look-and-feels).

ABSTRACT FACTORY w3sDesign / V 2.0 / 12.01.2018 14

Solution

The Abstract Factory design pattern provides a solution:
Encapsulate creating a family of objects in a separate factory object.
A class delegates object creation to a factory object
instead of instantiating concrete classes directly.
Describing the Abstract Factory design in more detail is the theme of the following sections.
See Applicability section for all problems Abstract Factory can solve.

• The key idea in this pattern is to abstract the process of object creation.
The process of object creation (new ProductA1(), for example) is abstracted by referring to
an interface (delegating to a factory object): factory.createProductA().
There is no longer anything in the client code that instantiates a concrete class.
"Creational patterns ensure that your application is written in terms of interfaces,
not implementations." [GoF, p18]

• Define separate factory objects:
– For all supported families of objects, define a common interface for creating a family of

objects (AbstractFactory | createProductA(),createProductB(),…).
– Define classes (Factory1,…) that implement the interface.

• This enables compile-time flexibility (via inheritance).
The way objects are created can be implemented and changed independently from clients by
defining new (sub)classes.

• A class (Client) delegates the responsibility for creating objects to a factory object
(factory.createProductA(),factory.createProductB(),…).

• This enables run-time flexibility (via object composition).
A class can be configured with a factory object, which it uses to create objects, and even more,
the factory object can be exchanged dynamically.

ABSTRACT FACTORY w3sDesign / V 2.0 / 12.01.2018 15

Background Information

• "Not only must we avoid making explicit constructor calls; we must also be able to replace
an entire widget set easily. We can achieve both by abstracting the process of object
creation." [GoF, p48]

• Abstract Factory is often referred to as Factory or Factory Object because all design patterns
do some kind of abstraction. The Strategy pattern, for example, abstracts and encapsulates an
algorithm. "Abstraction and encapsulation are complementary concepts [...] For abstraction to
work, implementations must be encapsulated." [GBooch07, p51]

• For simple applications that do not need exchangeable families of objects, a common
implementation of the Abstract Factory pattern is just a concrete factory class that acts as both
the interface and implementation (see Implementation).
"Also note that MazeFactory is not an abstract class; thus it acts as both the AbstractFactory
and the ConcreteFactory. This is another common implementation for simple applications of
the Abstract Factory pattern." [GoF, p94]

ABSTRACT FACTORY w3sDesign / V 2.0 / 12.01.2018 16

Motivation 1

Consider the left design (problem):

• Hard-wired object creation.
– Creating objects is implemented (hard-wired) directly within a class (Client).
– This makes it hard to change the way objects are created (which concrete classes get

instantiated) independently from (without having to change) the class.

• Distributed object creation.
– Creating objects is distributed across the classes of an application.

Consider the right design (solution):

• Encapsulated object creation.
– Creating objects is implemented (encapsulated) in a separate class (Factory1).
– This makes it easy to change the way objects are created (which concrete classes get

instantiated) independently from (without having to change) clients.

• Centralized object creation.
– Creating objects is centralized in a single Factory1 class.

ABSTRACT FACTORY w3sDesign / V 2.0 / 12.01.2018 17

Applicability

Design Problems

• Creating Objects
– How can a class be independent of how the objects it requires are created?
– How can a class request the objects it requires (from a factory object)

instead of creating the objects directly?
– How can a class delegate object creation to a factory object?
– How can a class be configured with a factory object?

• Creating Different Object Families
– How can families of related or dependent objects be created?
– How can be ensured that a family of related or dependent objects

is created and used together (consistent object families)?
– How can an application be configured with a family of objects?
– How can a family of objects be selected and exchanged at run-time?

Refactoring Problems

• Inflexible Code
– How can instantiating concrete classes throughout an application (compile-

time implementation dependencies) be refactored?
– How can object creation that is distributed across an application

be centralized? Move Creation Knowledge to Factory (68) [JKerievsky05]

Testing Problems

• Unit Testing
– How can the objects a class requires be replaced with mock objects so that the class can be

unit tested in isolation?

ABSTRACT FACTORY w3sDesign / V 2.0 / 12.01.2018 18

Structure, Collaboration

Static Class Structure

• Client

– Requires ProductA and ProductB objects.
– Refers to the AbstractFactory interface to create ProductA and ProductB objects and is

independent of how the objects are created (which concrete classes are instantiated).
– Maintains a reference (factory) to an AbstractFactory object.

• AbstractFactory

– Defines an interface for creating a family of product objects.

• Factory1,…
– Implement the AbstractFactory interface by creating and returning the objects.

Dynamic Object Collaboration

• In this sample scenario, a Client object delegates creating product objects to a Factory1
object.
Let's assume that the Client is configured with a Factory1 object.

• The interaction starts with the Client that calls createProductA() on the installed Factory1
object.

• Factory1 creates a ProductA1 object and returns (a reference to) it to the Client.

• Thereafter, the Client calls createProductB() on Factory1.

• Factory1 creates a ProductB1 object and returns it to the Client.

• The Client can then use the ProductA1 and ProductB1 objects as required.

• See also Sample Code / Example 1.

ABSTRACT FACTORY w3sDesign / V 2.0 / 12.01.2018 19

Consequences

Advantages (+)

• Avoids compile-time implementation dependencies.
– Instead of instantiating concrete classes directly, clients delegate instantiation to a separate

factory object.

• Ensures creating consistent object families.
– When an application supports creating multiple families of related objects, it must be ensured

that a family of related objects is created and used together (see Sample Code / Example 3).

• Makes exchanging whole object families easy.
– Because a factory object encapsulates creating a complete family of objects, the whole

family can be exchanged by exchanging the factory object.

Disadvantages (–)

• Requires extending the Factory interface to extend an object family.
– The Factory interface must be extended to extend a family of objects (to support new kinds

of objects).

• Introduces an additional level of indirection.
– The pattern achieves flexibility by introducing an additional level of indirection (clients

delegate instantiation to a separate factory object), which makes clients dependent on a
factory object.

ABSTRACT FACTORY w3sDesign / V 2.0 / 12.01.2018 20

Implementation

Implementation Issues

Variant 1: Abstract Factory
Creating different families of objects.

• Interface and implementation are cleanly separated.

• This is the way to implement the Abstract Factory pattern for applications that support creating
families of related or dependent objects (see Sample Code / Example 1).

• "An application typically needs only one instance of a ConcreteFactory per product family. So
it's usually best implemented as a Singleton(127)." [GoF, p90] See Sample Code / Example 3.

Variant 2: Concrete Factory
Creating (a family of) objects.

• Interface and implementation are not cleanly separated.

• The concrete Factory1 class acts as both interface and implementation (it abstracts and
implements object creation).

• This is a common way to implement the Abstract Factory pattern for applications that do not
need to create families of objects but want to be independent of how their objects are created
(see Sample Code / Example 2).

• "Also note that MazeFactory is not an abstract class; thus it acts as both the AbstractFactory
and the ConcreteFactory. This is another common implementation for simple applications of
the Abstract Factory pattern." [GoF, p94]

• "Notice that the [concrete] MazeFactory is just a collection of factory methods. This is the
most common way to implement the Abstract Factory pattern." [GoF, p94]

ABSTRACT FACTORY w3sDesign / V 2.0 / 12.01.2018 21

Sample Code 1

Basic Java code for implementing the sample UML diagrams.

 1 package com.sample.abstractfactory.basic1;
 2 public class MyApp {
 3 public static void main(String[] args) {
 4 // Creating a Client object
 5 // and configuring it with a factory object.
 6 Client client = new Client(new Factory1());
 7 // Calling an operation on the client.
 8 System.out.println(client.operation());
 9 }
10 }

Client : Delegating creating objects to a factory object.
Factory1: Creating a ProductA1 object.
Factory1: Creating a ProductB1 object.
Hello World from ProductA1 and ProductB1!

 1 package com.sample.abstractfactory.basic1;
 2 public class Client {
 3 private ProductA productA;
 4 private ProductB productB;
 5 private AbstractFactory factory;
 6
 7 public Client(AbstractFactory factory) {
 8 this.factory = factory;
 9 }
10 public String operation() {
11 System.out.println("Client : Delegating creating objects to a factory object.");
12 productA = factory.createProductA();
13 productB = factory.createProductB();
14 // Doing something appropriate on the created objects.
15 return "Hello World from " + productA.getName() + " and "
16 + productB.getName() + "!";
17 }
18 }

 1 package com.sample.abstractfactory.basic1;
 2 public interface AbstractFactory {
 3 ProductA createProductA();
 4 ProductB createProductB();
 5 }

 1 package com.sample.abstractfactory.basic1;
 2 public class Factory1 implements AbstractFactory {
 3 public ProductA createProductA() {
 4 System.out.println("Factory1: Creating a ProductA1 object.");
 5 return new ProductA1();
 6 }
 7 public ProductB createProductB() {
 8 System.out.println("Factory1: Creating a ProductB1 object.");
 9 return new ProductB1();
10 }
11 }

ABSTRACT FACTORY w3sDesign / V 2.0 / 12.01.2018 22

 1 package com.sample.abstractfactory.basic1;
 2 public class Factory2 implements AbstractFactory {
 3 public ProductA createProductA() {
 4 System.out.println("Factory2: Creating a ProductA2 object.");
 5 return new ProductA2();
 6 }
 7 public ProductB createProductB() {
 8 System.out.println("Factory2: Creating a ProductB2 object.");
 9 return new ProductB2();
10 }
11 }

Product inheritance hierarchy.

 1 package com.sample.abstractfactory.basic1;
 2 public interface ProductA {
 3 String getName();
 4 }

 1 package com.sample.abstractfactory.basic1;
 2 public class ProductA1 implements ProductA {
 3 public String getName() {
 4 return "ProductA1";
 5 }
 6 }

 1 package com.sample.abstractfactory.basic1;
 2 public class ProductA2 implements ProductA {
 3 public String getName() {
 4 return "ProductA2";
 5 }
 6 }

 1 package com.sample.abstractfactory.basic1;
 2 public interface ProductB {
 3 String getName();
 4 }

 1 package com.sample.abstractfactory.basic1;
 2 public class ProductB1 implements ProductB {
 3 public String getName() {
 4 return "ProductB1";
 5 }
 6 }

 1 package com.sample.abstractfactory.basic1;
 2 public class ProductB2 implements ProductB {
 3 public String getName() {
 4 return "ProductB2";
 5 }
 6 }

Unit test classes.

 1 package com.sample.abstractfactory.basic1;
 2 import junit.framework.TestCase;
 3 public class ClientTest extends TestCase {
 4 // Creating a Client object
 5 // and configuring it with a mock factory.
 6 Client client = new Client (new FactoryMock());
 7
 8 public void testOperation() {
 9 assertEquals("Hello World from ProductAMock and ProductBMock!",
10 client.operation());
11 }
12 // More tests ...
13 }

 1 package com.sample.abstractfactory.basic1;
 2 public class FactoryMock implements AbstractFactory {
 3 public ProductA createProductA() {

ABSTRACT FACTORY w3sDesign / V 2.0 / 12.01.2018 23

 4 return new ProductAMock();
 5 }
 6 public ProductB createProductB() {
 7 return new ProductBMock();
 8 }
 9 }

 1 package com.sample.abstractfactory.basic1;
 2 public class ProductAMock implements ProductA {
 3 public String getName() {
 4 return "ProductAMock";
 5 }
 6 }

 1 package com.sample.abstractfactory.basic1;
 2 public class ProductBMock implements ProductB {
 3 public String getName() {
 4 return "ProductBMock";
 5 }
 6 }

ABSTRACT FACTORY w3sDesign / V 2.0 / 12.01.2018 24

Sample Code 2

Concrete Factory with static factory methods.
For simple applications that do not need to create families of objects
but want to separate and centralize object creation.

 1 package com.sample.abstractfactory.basic2;
 2 public class Client {
 3 // Running the Client class as application.
 4 public static void main(String[] args) {
 5
 6 System.out.println("Creating an order object:");
 7 Factory1.createOrder();
 8
 9 System.out.println("Creating a product object:");
10 Factory1.createProduct();
11 }
12 }

Creating an order object:
 Order1 object created.
Creating a product object:
 Product1 object created.

 1 package com.sample.abstractfactory.basic2;
 2 public class Factory1 {
 3 public static Order createOrder() {
 4 System.out.println(" Order1 object created.");
 5 return new Order1();
 6 }
 7 public static Product createProduct() {
 8 System.out.println(" Product1 object created.");
 9 return new Product1();
10 }
11 }

Order and Product hierarchies.

 1 package com.sample.abstractfactory.basic2;
 2 public interface Order {
 3 // ...
 4 }

 1 package com.sample.abstractfactory.basic2;
 2 public class Order1 implements Order {
 3 // ...
 4 }

 1 package com.sample.abstractfactory.basic2;
 2 public interface Product {
 3 // ...
 4 }

ABSTRACT FACTORY w3sDesign / V 2.0 / 12.01.2018 25

 1 package com.sample.abstractfactory.basic2;
 2 public class Product1 implements Product {
 3 // ...
 4 }

ABSTRACT FACTORY w3sDesign / V 2.0 / 12.01.2018 26

Sample Code 3

Creating families of objects. Ensuring that a family of related or dependent objects
is created and used together (consistent object families).

 1 package com.sample.abstractfactory.basic3;
 2 public class Client {
 3 // Running the Client class as application.
 4 public static void main(String[] args) {
 5 // Getting a factory object.
 6 AbstractFactory factory = AbstractFactory.getInstance();
 7
 8 System.out.println("Creating a family of objects:");
 9 factory.createProductA();
10 factory.createProductB();
11 System.out.println("Family of objects created.");
12 }
13 }

Creating a family of objects:
 creating a ProductA1 object ...
 creating a ProductB1 object ...
Family of objects created.

 1 package com.sample.abstractfactory.basic3;
 2 public abstract class AbstractFactory {
 3 // Implemented as Singleton.
 4 // See also Singleton / Implementation / Variant 2 (subclassing).
 5 private static AbstractFactory factory;
 6 public static final AbstractFactory getInstance() {
 7 if (factory == null) {
 8 // Deciding which factory to use.
 9 // For example, production or test (mock) factory.
10 factory = new Factory1();
11 }
12 return factory;
13 }
14 //
15 public abstract ProductA createProductA();
16 public abstract ProductB createProductB();
17 //
18 // Factory subclasses are implemented as private static nested classes
19 // to ensure that clients can't instantiate them directly.
20 //
21 private static class Factory1 extends AbstractFactory { // Family1
22 public ProductA createProductA() {
23 System.out.println(" creating a ProductA1 object ...");
24 return new ProductA1();
25 }
26 public ProductB createProductB() {
27 System.out.println(" creating a ProductB1 object ...");
28 return new ProductB1();
29 }
30 }
31
32 private static class Factory2 extends AbstractFactory { // Family2

ABSTRACT FACTORY w3sDesign / V 2.0 / 12.01.2018 27

33 public ProductA createProductA() {
34 System.out.println(" creating a ProductA2 object ...");
35 return new ProductA2();
36 }
37 public ProductB createProductB() {
38 System.out.println(" creating a ProductB2 object ...");
39 return new ProductB2();
40 }
41 }
42 }

Product inheritance hierarchy.

 1 package com.sample.abstractfactory.basic3;
 2 public interface ProductA {
 3 // ...
 4 }

 1 package com.sample.abstractfactory.basic3;
 2 public class ProductA1 implements ProductA {
 3 // ...
 4 }

 1 package com.sample.abstractfactory.basic3;
 2 public class ProductA2 implements ProductA {
 3 // ...
 4 }

 1 package com.sample.abstractfactory.basic3;
 2 public interface ProductB {
 3 // ...
 4 }

 1 package com.sample.abstractfactory.basic3;
 2 public class ProductB1 implements ProductB {
 3 // ...
 4 }

 1 package com.sample.abstractfactory.basic3;
 2 public class ProductB2 implements ProductB {
 3 // ...
 4 }

ABSTRACT FACTORY w3sDesign / V 2.0 / 12.01.2018 28

Related Patterns

Key Relationships

• Abstract Factory - Dependency Injection
– Abstract Factory

A class delegates creating the objects it requires to a factory object,
which makes the class dependent on the factory.

– Dependency Injection
A class accepts the objects it requires from an injector object
without having to know the injector, which greatly simplifies the class.

• Abstract Factory - Factory Method
– Abstract Factory

defines a separate factory object for creating objects.
– Factory Method

defines a separate factory method for creating an object.

• Strategy - Abstract Factory
– Strategy

A class delegates performing an algorithm to a strategy object.
– Abstract Factory

A class delegates creating an object to a factory object.

• Strategy - Abstract Factory - Dependency Injection
– Strategy

A class can be configured with a strategy object.
– Abstract Factory

A class can be configured with a factory object.
– Dependency Injection

Actually performs the configuration by creating and injecting the objects a class requires.

BUILDER w3sDesign / V 2.0 / 12.01.2018 29

Intent

The intent of the Builder design pattern is to:
"Separate the construction of a complex object from its representation so that
the same construction process can create different representations." [GoF]
See Problem and Solution sections for a more structured description of the intent.

• The Builder design pattern solves problems like:
– How can a class (the same construction process)

create different representations of a complex object?

• Creating and assembling the parts of a complex object directly within a class makes it
impossible to create a different representation independently from (without having to change)
the class.

• For example, creating a bill of materials object (BOM).
It should be possible that a class (the same construction process) can create different product
structures (representations) of the BOM.

• The Builder pattern describes how to solve such problems:
– Separate the construction of a complex object from its representation -

encapsulate the creation of a complex object in a separate Builder object.
– A class can create different representations of a complex object by delegating to different

Builder objects.

BUILDER w3sDesign / V 2.0 / 12.01.2018 30

Problem

The Builder design pattern solves problems like:
How can a class (the same construction process)
create different representations of a complex object?
See Applicability section for all problems Builder can solve. See Solution section for how
Builder solves the problems.

• An inflexible way is to create and assemble the parts of a complex object (new ProductA1(),
add to complex object, new ProductB1(), add to complex object, …) directly within
a class (Client).

• This commits (couples) the class to creating a particular representation of the complex object
(ProductA1, ProductB1), which makes it impossible to create a different representation
(ProductA2, ProductB2, for example) independently from (without having to change) the
class.

• That's the kind of approach to avoid if we want that a class (the same construction process)
can create different representation of a complex object.

• For example, creating a bill of materials object (BOM).
A bill of materials is organized into a part-whole hierarchy (see also Composite for representing
a part-whole hierarchy). It describes the parts that make up a manufactured product and how
they are assembled.
A class should avoid instantiating concrete product classes directly so that it can create different
product structures (representations) of the BOM.

BUILDER w3sDesign / V 2.0 / 12.01.2018 31

Solution

The Builder design pattern provides a solution:
Encapsulate creating and assembling the parts of a complex object in a separate Builder
object.
A class delegates object creation to a Builder object
instead of instantiating concrete classes directly.
Describing the Builder design in more detail is the theme of the following sections.
See Applicability section for all problems Builder can solve.

• The key idea in this pattern is to separate creating and assembling the parts of a complex object
from other (construction) code (Director).

• Define separate Builder objects:
– Define an interface for creating parts of a complex object

(Builder | buildPartA(),buildPartB(),…).
– Define classes (Builder1,…) that implement the interface.

The object is created step by step to have finer control over the creation process.

• This enables compile-time flexibility (via inheritance).
The way the parts of a complex object are created and assembled can be implemented and
changed independently by defining new (sub)classes.

• A class (Director) delegates the responsibility for creating and assembling the parts of a
complex object to a Builder object (builder.buildPartA(),builder.buildPartB(),…).

• This enables run-time flexibility (via object composition).
A class (the same construction process) can use different Builder objects to create different
representations of a complex object.

BUILDER w3sDesign / V 2.0 / 12.01.2018 32

Motivation 1

Consider the left design (problem):

• Hard-wired object creation.
– Creating a representation of a complex object is implemented (hard-wired) directly within

a class (Client).
– This makes it hard to create a different representation independently from (without having

to change) the class.

• Complicated classes.
– Classes that include creating a complex object are hard to implement, change, test, and reuse.

Consider the right design (solution):

• Encapsulated object creation.
– Creating a representation of a complex object is implemented (encapsulated) in a separate

class (Builder1).
– This makes it easy to create a different representation independently from (without having

to change) clients (Director).

• Simplified classes.
– Classes that delegate creating a complex object are easier to implement, change, test, and

reuse.

BUILDER w3sDesign / V 2.0 / 12.01.2018 33

Applicability

Design Problems

• Creating Complex Objects
– How can a class (the same construction process)

create different representations of a complex object?

Refactoring Problems

• Complicated Code
– How can a class that includes creating a complex object be simplified?

Encapsulate Composite with Builder (96) [JKerievsky05]

BUILDER w3sDesign / V 2.0 / 12.01.2018 34

Structure, Collaboration

Static Class Structure

• Director

– Refers to the Builder interface to create parts of a complex object.
– Is independent of how the complex object is created (which concrete classes are instantiated,

i.e., which representation is created).
– Maintains a reference (builder) to a Builder object.

• Builder

– Defines an interface for creating parts of a complex object.

• Builder1,…
– Implement the Builder interface by creating and assembling the parts of a complex object.

Dynamic Object Collaboration

• In this sample scenario, a Director object delegates creating and assembling the parts of a
complex object to a Builder1 object.
Let's assume that the Director is configured with a Builder1 object.

• The interaction starts with the Director that calls buildPartA() on the installed Builder1
object.

• Builder1 creates a ProductA1 object and adds it to the ComplexObject.

• Thereafter, the Director calls buildPartB() on Builder1.

• Builder1 creates a ProductB1 object and adds it to the ComplexObject.

• The Director can then get the assembled ComplexObject from the Builder1 and use it as
required.

• See also Sample Code / Example 1.

BUILDER w3sDesign / V 2.0 / 12.01.2018 35

Consequences

Advantages (+)

• Avoids compile-time implementation dependencies.
– Instead of instantiating concrete classes directly, clients delegate instantiation to a separate

builder object.

• Simplifies clients.
– Because clients delegate creating a complex object to a builder object, they are easier to

implement, change, test, and reuse.

Disadvantages (–)

• Introduces an additional level of indirection.
– The pattern achieves flexibility by introducing an additional level of indirection (clients

delegate object creation to a separate builder object), which makes clients dependent on a
builder object.

BUILDER w3sDesign / V 2.0 / 12.01.2018 36

Implementation

Implementation Issues

Variant 1: Abstract Builder
Creating different representations.

• Interface and implementation are cleanly separated.

• This is the way to implement the Builder pattern for clients that need to create different
representations of a complex object.

Variant 2: Concrete Builder
Creating a complex object.

• Interface and implementation are not cleanly separated.

• The concrete builder class acts as both interface and implementation.

• This is a simple way to implement the Builder pattern for clients that do not need to create
different representations but want to be independent of how a complex object is created.

BUILDER w3sDesign / V 2.0 / 12.01.2018 37

Sample Code 1

Basic Java code for implementing the sample UML diagrams.

 1 package com.sample.builder.basic;
 2 public class MyApp {
 3 public static void main(String[] args) {
 4 // Creating a Director object
 5 // and configuring it with a Builder1 object.
 6 Director director = new Director(new Builder1());
 7 // Calling construct on the director.
 8 System.out.println(director.construct());
 9 }
10 }

Director: Delegating constructing a complex object to a builder object.
Builder1: Creating and assembling ProductA1.
Builder1: Creating and assembling ProductB1.
Hello World from Complex Objetct made up of ProductA1 ProductB1 objects!

 1 package com.sample.builder.basic;
 2 public class Director {
 3 private ComplexObject co;
 4 private Builder builder;
 5
 6 public Director(Builder builder) {
 7 this.builder = builder;
 8 }
 9 public String construct() {
10 System.out.println("Director: Delegating constructing "
11 + "a complex object to a builder object.");
12 builder.buildPartA();
13 builder.buildPartB();
14 co = builder.getResult();
15 return "Hello World from " + co.getParts() + " objects!";
16 }
17 }

 1 package com.sample.builder.basic;
 2 public interface Builder {
 3 void buildPartA();
 4 void buildPartB();
 5 ComplexObject getResult();
 6 }

 1 package com.sample.builder.basic;
 2 public class Builder1 implements Builder {
 3 private ComplexObject co = new ComplexObject();
 4
 5 public void buildPartA() {
 6 System.out.println("Builder1: Creating and assembling ProductA1.");
 7 co.add(new ProductA1());
 8 }
 9 public void buildPartB() {
10 System.out.println("Builder1: Creating and assembling ProductB1.");
11 co.add(new ProductB1());

BUILDER w3sDesign / V 2.0 / 12.01.2018 38

12 }
13 public ComplexObject getResult() {
14 return co;
15 }
16 }

 1 package com.sample.builder.basic;
 2 import java.util.*;
 3 public class ComplexObject {
 4 private List<Product> children = new ArrayList<Product>();
 5
 6 public String getParts() {
 7 Iterator<Product> i = children.iterator();
 8 String str ="Complex Objetct made up of";
 9 while (i.hasNext()) {
10 str += i.next().getName();
11 }
12 return str;
13 }
14 public boolean add(Product child) {
15 return children.add(child);
16 }
17 public Iterator<Product> iterator() {
18 return children.iterator();
19 }
20 }

Product inheritance hierarchy.

 1 package com.sample.builder.basic;
 2 public interface Product {
 3 String getName();
 4 }

 1 package com.sample.builder.basic;
 2 public interface ProductA extends Product {
 3 // ...
 4 }

 1 package com.sample.builder.basic;
 2 public class ProductA1 implements ProductA {
 3 public String getName() {
 4 return " ProductA1";
 5 }
 6 }

 1 package com.sample.builder.basic;
 2 public interface ProductB extends Product {
 3 // ...
 4 }

 1 package com.sample.builder.basic;
 2 public class ProductB1 implements ProductB {
 3 public String getName() {
 4 return " ProductB1";
 5 }
 6 }

BUILDER w3sDesign / V 2.0 / 12.01.2018 39

Related Patterns

Key Relationships

• Composite - Builder - Iterator - Visitor - Interpreter
– Composite provides a way to represent a part-whole hierarchy

as a tree (composite) object structure.
– Builder provides a way to create the elements of an object structure.
– Iterator provides a way to traverse the elements of an object structure.
– Visitor provides a way to define new operations for the elements of an object structure.
– Interpreter represents a sentence in a simple language

as a tree (composite) object structure (abstract syntax tree).

FACTORY METHOD w3sDesign / V 2.0 / 12.01.2018 40

Intent

The intent of the Factory Method design pattern is to:
"Define an interface for creating an object, but let subclasses decide which class
to instantiate. Factory Method lets a class defer instantiation to subclasses." [GoF]
See Problem and Solution sections for a more structured description of the intent.

• The Factory Method design pattern solves problems like:
– How can an object be created

so that subclasses can redefine which class to instantiate?

– How can a class defer instantiation to subclasses?

• An inflexible way is to create an object directly within the class (Creator) that requires (uses)
the object. This commits the class to a particular object and makes it impossible to change the
instantiation independently from (without having to change) the class.

• The Factory Method pattern describes how to solve such problems:
– Define an interface for creating an object,

i.e., define a separate operation (factory method) for creating an object,
– but let subclasses decide which class to instantiate.

so that subclasses can redefine which class to instantiate.

FACTORY METHOD w3sDesign / V 2.0 / 12.01.2018 41

Problem

The Factory Method design pattern solves problems like:
How can an object be created
so that subclasses can redefine which class to instantiate?
How can a class defer instantiation to subclasses?
See Applicability section for all problems Factory Method can solve. See Solution section
for how Factory Method solves the problems.

• An inflexible way is to create an object (new Product1()) directly within the class (Creator|
operation()) that requires (uses) the object.

• This commits (couples) the class to a particular object and makes it impossible to change the
instantiation (which class to instantiate) independently from (without having to change) the
class.

• That's the kind of approach to avoid if we want to create an object so that subclasses can
redefine the way the object is created.

• For example, designing reusable classes that require (depend on) other objects.
A reusable class should avoid creating the objects it requires directly (and often it doesn't
know which class to instantiate) so that users of the class can write subclasses to specify the
instantiation they need.

FACTORY METHOD w3sDesign / V 2.0 / 12.01.2018 42

Solution

The Factory Method design pattern provides a solution:
Define a separate operation (factory method) for creating an object.
Create an object by calling a factory method.
Describing the Factory Method design in more detail is the theme of the following sections.
See Applicability section for all problems Factory Method can solve.

• The key idea in this pattern is to create an object in a separate operation so that subclasses can
redefine which class to instantiate if necessary.

• Define a separate factory method:
– The pattern calls a (separate) operation that is (exclusively) responsible for "manufacturing"

an object a factory method. [GoF, p108]

• Create an objects by calling a factory method
(Product product = factoryMethod()).

• This enables compile-time flexibility (via subclassing).
Subclasses can be written to redefine the way an object is created.

• "People often use Factory Method as the standard way to create objects, but it isn't necessary
when the class that's instantiated never changes […]" [GoF, p136]

• Note that the Factory Method pattern can be implemented differently (abstract, concrete, or
static factory method). See Implementation.

FACTORY METHOD w3sDesign / V 2.0 / 12.01.2018 43

Motivation 1

Consider the left design (problem):

• Hard-wired object creation.
– Object creation is defined (hard-wired) directly within a class (Creator).
– This makes it hard to change the instantiation independently from (without having to change)

the class.

• Unknown object creation.
– A reusable class often doesn't know which class to instantiate.
– Users of the class should specify which class to instantiate to suit their needs (by writing

subclasses).

Consider the right design (solution):

• Encapsulated object creation.
– Object creation is defined (encapsulated) in a separate operation (factory method).
– This makes it easy to change the instantiation independently from the class (by adding new

subclasses).

• Deferred object creation.
– Creator defers instantiation to subclasses by calling an abstract factory method.
– "It gets around the dilemma of having to instantiate unforeseeable classes." [GoF, p110]

FACTORY METHOD w3sDesign / V 2.0 / 12.01.2018 44

Applicability

Design Problems

• Creating Objects
– How can an object be created

so that subclasses can redefine which class to instantiate?
– How can a class defer instantiation to subclasses?

• Flexible Alternative to Constructors
– How can a flexible alternative be provided to direct constructor calls?

Refactoring Problems

• Unclear Code
– How can multiple constructors of a class that differ only in their arguments

be named differently to avoid unclear code?
Replace Constructors with Creation Methods (57) [JKerievsky05]

FACTORY METHOD w3sDesign / V 2.0 / 12.01.2018 45

Background Information

• Inflexible constructor names can cause unclear code.
– In most languages, the constructor of a class must be named after the class.

If a class has multiple constructors, they all must have the same name, which makes it hard
to distinguish them and call the right one.

– Factory methods can be named freely to clearly communicate their intent.

• "Consider static factory methods instead of constructors." [JBloch08, Item 1]
See also Implementation.

• Refactoring and "Bad Smells in Code" [MFowler99] [JKerievsky05]
– Code smells are certain structures in the code that "smell bad" and indicate problems that

can be solved by a refactoring.
– The most common code smells are:

complicated code (including complicated/growing conditional code),
duplicated code,
inflexible code (that must be changed whenever requirements change), and
unclear code (that doesn't clearly communicate its intent).

FACTORY METHOD w3sDesign / V 2.0 / 12.01.2018 46

Structure, Collaboration

Static Class Structure

• Creator

– Requires a Product object.
– Defines an abstract factory method (factoryMethod()) for creating a Product object.
– Is independent of how the Product object is created (which concrete class is instantiated).
– Calls the factory method (product = factoryMethod()), but clients from outside the

Creator may also call the factory method.

• Creator1,...
– Subclasses implement the factory method.
– See Implementation for the two main implementation variants of the Factory Method

pattern.

FACTORY METHOD w3sDesign / V 2.0 / 12.01.2018 47

Consequences

Advantages (+)

• Avoids implementation dependencies.
– Creator classes do not instantiate concrete classes directly.
– They defer instantiation to subclasses (by calling a factory method) and are independent of

which concrete classes are instantiated.

Disadvantages (–)

• May require adding many subclasses.
– New subclasses may have to be added to change the way an object is created.
– Subclassing is fine when a class hierarchy already exists.

FACTORY METHOD w3sDesign / V 2.0 / 12.01.2018 48

Implementation

Implementation Issues

Variant 1: Abstract Factory Method

• The factory method is abstract and subclasses must provide an implementation.

• "The first case [abstract factory method] requires subclasses to define an implementation,
because there's no reasonable default. It gets around the dilemma of having to instantiate
unforeseeable classes." [GoF, p110]

Variant 2: Concrete Factory Method

• The factory method is concrete and provides a (default) implementation.

• The concrete factory method acts as both interface and implementation (it abstracts and
implements object creation).

• "In the second case [concrete factory method], the concrete Creator uses the factory
method primarily for flexibility. It's following a rule that says, "Create objects in a separate
operation so that subclasses can override the way they're created." This rule ensures that
designers of subclasses can change the class of objects their parent class instantiates if
necessary." [GoF, p110]

FACTORY METHOD w3sDesign / V 2.0 / 12.01.2018 49

Background Information

• Static Factory Method
– Static factory methods are widely used when flexibility is needed but overriding via

subclassing not.
– In most languages, the constructor of a class must be named after the class.

If a class has multiple constructors, they all must have the same name, which causes unclear
code. Factory methods can be named freely to clearly communicate their intent.

– Static factory methods can be accessed easily (via class name and operation name), and
their classes can control what instances exist at any time (for example, to avoid creating
unnecessary or duplicate objects, to cache objects as they are created [see also Flyweight],
or to guarantee to create only a single object [see also Singleton]).

– "A second advantage of static factory methods is that, unlike constructors, they are not
required to create a new object each time they're invoked." [JBloch08, Item 1]

– "Consider static factory methods instead of constructors." [JBloch08, Item 1]

FACTORY METHOD w3sDesign / V 2.0 / 12.01.2018 50

Sample Code 1

Basic Java code for implementing the sample UML diagrams.

 1 package com.sample.factorymethod.basic;
 2 public class MyApp {
 3 public static void main(String[] args) {
 4 Creator creator = new Creator1();
 5
 6 System.out.println(creator.operation());
 7 }
 8 }

Hello World from Creator1!
Product1 created.

 1 package com.sample.factorymethod.basic;
 2 public abstract class Creator {
 3 private Product product;
 4
 5 public abstract Product factoryMethod();
 6
 7 public String operation() {
 8 product = factoryMethod();
 9 return "Hello World from "
10 + this.getClass().getSimpleName() + "!\n"
11 + product.getName() + " created.";
12 }
13 }

 1 package com.sample.factorymethod.basic;
 2 public class Creator1 extends Creator {
 3 public Product factoryMethod() {
 4 return new Product1();
 5 }
 6 }

Product inheritance hierarchy.

 1 package com.sample.factorymethod.basic;
 2 public interface Product {
 3 String getName();
 4 }

 1 package com.sample.factorymethod.basic;
 2 public class Product1 implements Product {
 3 public String getName() {
 4 return "Product1";
 5 }
 6 }

 1 package com.sample.factorymethod.basic;
 2 public class Product2 implements Product {
 3 public String getName() {
 4 return "Product2";

FACTORY METHOD w3sDesign / V 2.0 / 12.01.2018 51

 5 }
 6 }

FACTORY METHOD w3sDesign / V 2.0 / 12.01.2018 52

Sample Code 2

Basic Java code for implementing static factory methods.
Static factory methods can't be overridden by subclasses (see Implementation).

 1 package com.sample.factorymethod.staticFM;
 2 public class MyApp {
 3 public static void main(String[] args) {
 4 // Calling static factory methods.
 5 System.out.println(Creator1.factoryMethod().getName() + " created.");
 6
 7 System.out.println(Creator2.factoryMethod().getName() + " created.");
 8 }
 9 }

Product1 created.
Product2 created.

 1 package com.sample.factorymethod.staticFM;
 2 public class Creator1 {
 3 // Static factory method.
 4 public static Product factoryMethod() {
 5 return new Product1();
 6 }
 7 }

 1 package com.sample.factorymethod.staticFM;
 2 public class Creator2 extends Creator1 {
 3 // Static methods can't be overridden by subclasses.
 4 public static Product factoryMethod() {
 5 return new Product2();
 6 }
 7 }

Product inheritance hierarchy.

 1 package com.sample.factorymethod.staticFM;
 2 public interface Product {
 3 String getName();
 4 }

 1 package com.sample.factorymethod.staticFM;
 2 public class Product1 implements Product {
 3 public String getName() {
 4 return "Product1";
 5 }
 6 }

 1 package com.sample.factorymethod.staticFM;
 2 public class Product2 implements Product {
 3 public String getName() {
 4 return "Product2";
 5 }
 6 }

FACTORY METHOD w3sDesign / V 2.0 / 12.01.2018 53

Related Patterns

Key Relationships

• Abstract Factory - Factory Method
– Abstract Factory

defines a separate factory object for creating objects.
– Factory Method

defines a separate factory method for creating an object.

• Factory Method - Prototype
– Factory Method uses subclasses to specify which class to instantiate

statically at compile-time.
– Prototype uses prototypes to specify which objects to create

dynamically at run-time.
Prototype will work wherever Factory Method will and with more flexibility.
For example, Abstract Factory can be implemented by using prototypes
instead of factory methods (see Prototype / Sample Code / Example 2).

• Iterator - Factory Method
– The operation for creating an iterator object is a factory method.

• Template Method - Factory Method
– A template method's primitive operation that is responsible for creating an object

is a factory method.

PROTOTYPE w3sDesign / V 2.0 / 12.01.2018 54

Intent

The intent of the Prototype design pattern is to:
"Specify the kinds of objects to create using a prototypical instance,
and create new objects by copying this prototype." [GoF]
See Problem and Solution sections for a more structured description of the intent.

• The Prototype design pattern solves problems like:
– How can objects be created

so that which objects to create can be specified at run-time?

– How can dynamically loaded classes be instantiated?

• The Prototype pattern describes how to solve such problems:
– Specify the kinds of objects to create using a prototypical instance, and create new objects

by copying this prototype.

– To act as a prototype, an object must implement the Prototype interface (clone()) for
copying itself.

– For example, a Product1 object that implements the clone() operation can act as
a prototype for creating Product1 objects.

PROTOTYPE w3sDesign / V 2.0 / 12.01.2018 55

Problem

The Prototype design pattern solves problems like:
How can objects be created
so that which objects to create can be specified at run-time?
How can dynamically loaded classes be instantiated?
See Applicability section for all problems Prototype can solve. See Solution section for how
Prototype solves the problems.

• An inflexible way is to create an object (new Product1()) directly within the class (Client)
that requires (uses) the object.

• This commits (couples) the class to a particular object at compile-time and makes it impossible
to specify which object to create at run-time.

• That's the kind of approach to avoid if we want to specify which objects to create at run-time.

• For example, designing reusable classes that require (depend on) other objects.
A reusable class should avoid creating the objects it requires directly (and often it doesn't know
at compile-time which class to instantiate) so that which objects to create can be specified
at run-time.

PROTOTYPE w3sDesign / V 2.0 / 12.01.2018 56

Solution

The Prototype design pattern provides a solution:
Define a Prototype object that returns a copy of itself.
Create new objects by copying a Prototype object.
Describing the Prototype design in more detail is the theme of the following sections.
See Applicability section for all problems Prototype can solve.

• The key idea in this pattern is to create new objects by copying existing objects.

• Define Prototype objects:
– To act as a prototype, an object must implement the Prototype interface (clone()) for

copying itself.
– For example, a Product1 object that implements the clone() operation can act

as a prototype for creating Product1 objects.

• Create new objects by copying a Prototype object
(Product product = prototype.clone()).

• This enables run-time flexibility (via object composition).
A class can be configured with different Prototype objects, which are copied to create new
objects, and even more, Prototype objects can be added and removed dynamically at run-time.

PROTOTYPE w3sDesign / V 2.0 / 12.01.2018 57

Motivation 1

Consider the left design (problem):

• Which object to create is specified at compile-time.
– Which object to create is specified at compile-time by a direct constructor call (new

Product1()).

Consider the right design (solution):

• Which object to create is specified at run-time.
– Which object to create is specified at run-time by copying a prototype object

(prototype.clone()).
– Prototypes can be added and removed dynamically at run-time.

PROTOTYPE w3sDesign / V 2.0 / 12.01.2018 58

Applicability

Design Problems

• Creating Objects
– How can objects be created

so that which objects to create can be specified at run-time?

• Instantiating Dynamically Loaded Classes
– How can dynamically loaded classes be instantiated?

PROTOTYPE w3sDesign / V 2.0 / 12.01.2018 59

Structure, Collaboration

Static Class Structure

• Client

– Requires a Product object.
– Refers to the Prototype interface to clone an object (prototype.clone()).

• Prototype

– Defines an interface for cloning an object (clone()).

• Product1,…
– Implement the Prototype interface.
– Any object that implements the Prototype interface can act as prototype for creating a copy

of itself.

Dynamic Object Collaboration

• In this sample scenario, a Client object calls clone() on a prototype:Product1 object,
which creates and returns a copy of itself (product:Product1).

• See also Sample Code / Example 1.

PROTOTYPE w3sDesign / V 2.0 / 12.01.2018 60

Consequences

Advantages (+)

• Allows adding and removing prototypes dynamically at run-time.
– "That's a bit more flexible than other creational patterns, because a client can install and

remove prototypes at run-time." [GoF, p119]

• Allows instantiating dynamically loaded classes.
– An instance of each dynamically loaded class is created automatically and can be stored in

a registry of available prototypes.
– "A client will ask the registry for a prototype before cloning it. We call this registry a

prototype manager." [GoF, p121]

• Provides a flexible alternative to Factory Method.
– Prototype doesn't need subclasses to specify which class to instantiate.
– Prototype will work wherever Factory Method will and with more flexibility.

Disadvantages (–)

• Can make the implementation of the clone operation difficult.
– "The hardest part of the Prototype pattern is implementing the Clone operation correctly. It's

particularly tricky when object structures contain circular references." [GoF, p121]
– "Override clone judiciously"

[JBloch08, Item 11]

Background Information

• A Registry is
"A well-known object that other objects can use to find common objects and services."
[MFowler03, Registry (480)]

• A Registry is often implemented as Singleton.

PROTOTYPE w3sDesign / V 2.0 / 12.01.2018 61

Implementation

Implementation Issues

• Implementing the clone operation.
– "The hardest part of the Prototype pattern is implementing the Clone operation correctly. It's

particularly tricky when object structures contain circular references." [GoF, p121]
– "Override clone judiciously"

[JBloch08, Item 11]

PROTOTYPE w3sDesign / V 2.0 / 12.01.2018 62

Sample Code 1

Basic Java code for implementing the sample UML diagrams.

 1 package com.sample.prototype.basic;
 2 public class MyApp {
 3 public static void main(String[] args) {
 4 // Creating a Client object
 5 // and configuring it with a Prototype object.
 6 Client client = new Client(new Product1("Product1"));
 7 // Calling an operation on the client.
 8 System.out.println(client.operation());
 9 }
10 }

Client: Cloning Product1.
Product1 object copied.

 1 package com.sample.prototype.basic;
 2 public class Client {
 3 private Product product;
 4 private Prototype prototype;
 5
 6 public Client(Prototype prototype) {
 7 this.prototype = prototype;
 8 }
 9 public String operation() {
10 product = prototype.clone();
11 return "Client: Cloning " + prototype.getClass().getSimpleName() + ".\n"
12 + product.getName() + " object copied.";
13 }
14 }

Product inheritance hierarchy.

 1 package com.sample.prototype.basic;
 2 public interface Product {
 3 String getName();
 4 }

 1 package com.sample.prototype.basic;
 2 public interface Prototype {
 3 Product clone();
 4 }

 1 package com.sample.prototype.basic;
 2 // Product1 implements both the Product and Prototype interface.
 3 public class Product1 implements Product, Prototype {
 4 private String name;
 5
 6 public Product1(String name) {
 7 this.name = name;
 8 }

PROTOTYPE w3sDesign / V 2.0 / 12.01.2018 63

 9 // Copy constructor needed by clone().
10 public Product1(Product1 p) {
11 this.name = p.getName();
12 }
13 @Override
14 public Product clone() {
15 return new Product1(this);
16 }
17 public String getName() {
18 return name;
19 }
20 }

PROTOTYPE w3sDesign / V 2.0 / 12.01.2018 64

Sample Code 2

Implementing Abstract Factory with prototypes instead of factory methods.

 1 package com.sample.prototype.basicAF;
 2 public class MyApp {
 3 public static void main(String[] args) {
 4 // Creating a Client object
 5 // and configuring it with a PrototypeFactory object.
 6 Client client = new Client(new PrototypeFactory(
 7 new ProductA1("ProductA1"), new ProductB1("ProductB1")));
 8 System.out.println(client.operation());
 9 }
10 }

Client: Delegating object creation to a prototype factory.
PrototypeFactory: Cloning a ProductA object.
PrototypeFactory: Cloning a ProductB object.
Hello World from ProductA1 and ProductB1!

 1 package com.sample.prototype.basicAF;
 2 public class Client {
 3 private ProductA productA;
 4 private ProductB productB;
 5 private PrototypeFactory ptFactory;
 6
 7 public Client(PrototypeFactory ptFactory) {
 8 this.ptFactory = ptFactory;
 9 }
10 public String operation() {
11 System.out.println("Client: Delegating object creation to a prototype factory.");
12 productA = ptFactory.createProductA();
13 productB = ptFactory.createProductB();
14 return "Hello World from " + productA.getName() + " and "
15 + productB.getName() + "!";
16 }
17 }

 1 package com.sample.prototype.basicAF;
 2 public class PrototypeFactory {
 3 private ProductA productA;
 4 private ProductB productB;
 5
 6 public PrototypeFactory(ProductA pa, ProductB pb) {
 7 this.productA = pa;
 8 this.productB = pb;
 9 }
10 public ProductA createProductA() {
11 System.out.println("PrototypeFactory: Cloning a ProductA object.");
12 return productA.clone();
13 }
14 public ProductB createProductB() {
15 System.out.println("PrototypeFactory: Cloning a ProductB object.");
16 return productB.clone();
17 }
18 }

PROTOTYPE w3sDesign / V 2.0 / 12.01.2018 65

Product inheritance hierarchy.

 1 package com.sample.prototype.basicAF;
 2 public interface ProductA {
 3 String getName();
 4 ProductA clone();
 5 }

 1 package com.sample.prototype.basicAF;
 2 public class ProductA1 implements ProductA {
 3 private String name;
 4
 5 public ProductA1(String name) {
 6 this.name = name;
 7 }
 8 // Copy constructor needed by clone().
 9 public ProductA1(ProductA1 pa) {
10 this.name = pa.getName();
11 }
12 @Override
13 public ProductA1 clone() {
14 return new ProductA1(this);
15 }
16 public String getName() {
17 return name;
18 }
19 }

 1 package com.sample.prototype.basicAF;
 2 public interface ProductB {
 3 String getName();
 4 ProductB clone();
 5 }

 1 package com.sample.prototype.basicAF;
 2 public class ProductB1 implements ProductB {
 3 private String name;
 4
 5 public ProductB1(String name) {
 6 this.name = name;
 7 }
 8 // Copy constructor needed by clone().
 9 public ProductB1(ProductB1 pa) {
10 this.name = pa.getName();
11 }
12 @Override
13 public ProductB1 clone() {
14 return new ProductB1(this);
15 }
16 public String getName() {
17 return name;
18 }
19 }

PROTOTYPE w3sDesign / V 2.0 / 12.01.2018 66

Related Patterns

Key Relationships

• Factory Method - Prototype
– Factory Method uses subclasses to specify which class to instantiate

statically at compile-time.
– Prototype uses prototypes to specify which objects to create

dynamically at run-time.
Prototype will work wherever Factory Method will and with more flexibility.
For example, Abstract Factory can be implemented by using prototypes
instead of factory methods (see Prototype / Sample Code / Example 2).

SINGLETON w3sDesign / V 2.0 / 12.01.2018 67

Intent

The intent of the Singleton design pattern is to:
"Ensure a class only has one instance, and
provide a global point of access to it." [GoF]
See Problem and Solution sections for a more structured description of the intent.

• The Singleton design pattern solves problems like:
– How can be ensured that a class has only one instance?

– How can the sole instance of a class be accessed globally?

• For example, system objects that hold global data (like database, file system, printer spooler,
or registry).
It must be ensured that such objects are instantiated only once within a system and that their
sole instance can be accessed easily from all parts of the system.

• As a reminder:
Global data should be kept to a minimum (needed primarily by system objects).
In the object-oriented approach, "there is little or no global data." [GBooch07, p36]
Instead, data should be stored (encapsulated) in those objects that primarily work on it and
passed (as parameter) to other objects if necessary.

SINGLETON w3sDesign / V 2.0 / 12.01.2018 68

Problem

The Singleton design pattern solves problems like:
How can be ensured that a class has only one instance?
How can the sole instance of a class be accessed globally?
See Applicability section for all problems Singleton can solve. See Solution section for how
Singleton solves the problems.

• The standard way is to call the public constructor of a class (new Class1()) each time a new
object is needed.

• That's the kind of approach to avoid if we want to ensure that a class can be instantiated only
once (has only one instance).

• For example, system objects that hold global data (like database, file system, printer spooler,
or registry).
It must be ensured that such objects are instantiated only once within a system and that their
sole instance can be accessed easily from all parts of the system.

• For example, avoiding creating large numbers of unnecessary objects.
It should be possible to avoid creating unnecessary (duplicate, functionally equivalent) objects
over and over again (to avoid excessive memory usage and system performance problems).
"It is often appropriate to reuse a single object instead of creating a new functionally equivalent
object each time it is needed." [JBloch08, p20]

Background Information

• Global data should be kept to a minimum (needed primarily by system objects).
In the object-oriented approach, "there is little or no global data." [GBooch07, p36]
Instead, data should be stored (encapsulated) in those objects that primarily work on it and
passed to other objects if necessary.

• A Registry is
"A well-known object that other objects can use to find common objects and services."
Registry (480) [MFowler03]

SINGLETON w3sDesign / V 2.0 / 12.01.2018 69

Solution

The Singleton design pattern provides a solution:
Hide the constructor of a class, and define a static operation (getInstance())
that returns the sole instance of the class.
Describing the Singleton design in more detail is the theme of the following sections. See
Applicability section for all problems Singleton can solve.

• The key idea in this pattern is to make a class itself responsible that it can be instantiated only
once.

• Hide the constructor of a class.
Declaring the constructor of a class private ensures that the class can neither be instantiated
(from outside the class) nor subclassed (because subclasses need the constructor of their parent
class).
"Enforce the singleton property with a private constructor or enum type" [JBloch08, Item 3]

• Define a static operation (getInstance()) that returns the sole instance of the class.
getInstance() is declared public and static.
A public static operation of a class is easy to access from anywhere within an
application by using the class name and operation name (= global point of access):
Singleton.getInstance().

SINGLETON w3sDesign / V 2.0 / 12.01.2018 70

Motivation 1

Consider the left design (problem):

• Multiple instances possible.
– The class provides a public constructor

(public Class() {}).
– Clients can call the public constructor of a class each time a new object is needed.

Consider the right design (solution):

• Only one instance possible.
– The class hides its constructor

(private Singleton() {}).
– A static operation (getInstance()) provides the sole instance of the class.
– A public static operation is easy to access from anywhere by using the class name and

operation name (Singleton.getInstance()).

SINGLETON w3sDesign / V 2.0 / 12.01.2018 71

Applicability

Design Problems

• Creating Single Objects
– How can be ensured that a class has only one instance?
– How can the sole instance of a class be accessed globally?

• Controlling Instantiation
– How can a class control its instantiation?
– How can the number of instances of a class be restricted?
– How can creating large numbers of unnecessary objects be avoided?

SINGLETON w3sDesign / V 2.0 / 12.01.2018 72

Structure, Collaboration

Static Class Structure

• Singleton

– (1) Defines an INSTANCE constant of type Singleton that holds the sole instance of the class.
– Fields declared final are initialized once and can never be changed.
– (2) Hides its constructor (private Singleton() {}).
– This ensures that the class can never be instantiated from outside the class.
– (3) Defines a static operation (getInstance()) for returning the sole instance of the class.

SINGLETON w3sDesign / V 2.0 / 12.01.2018 73

Consequences

Advantages (+)

• Can control object creation.
– The getInstance operation can control the creation process, for example, to allow more than

one instance of a class.

Disadvantages (–)

• Makes clients dependent on the concrete singleton class.
– This stops client classes from being reusable and testable.
– "Making a class a singleton can make it difficult to test its clients, as it's impossible to

substitute a mock implementation for a singleton unless it implements an interface that
serves as its type." [JBloch08 , p17]

– See also Abstract Factory / Sample Code / Example 3 / Creating families of objects.

• Can cause problems in a multi-threaded environment.
– In multi-threaded applications, a singleton that holds mutable data (i.e., data that can be

changed after the object is created) must be implemented carefully (synchronized).

SINGLETON w3sDesign / V 2.0 / 12.01.2018 74

Implementation

Implementation Issues

Variant 1: Subclassing not possible.

• (1) The INSTANCE constant is set to the instance of the class.
Fields declared final are initialized once and can never be changed.
In Java, "Final fields also allow programmers to implement thread-safe immutable objects
without synchronization." [JLS12, 17.5 Final Field Semantics]

• (2) The constructor of the class is hidden (declared private).
This ensures that the class can neither be instantiated (from outside the class) nor subclassed
(subclasses need/call the constructor of their parent class).

• (3) The public static getInstance() operation returns the INSTANCE constant.
Clients can access the sole instance easily by calling Singleton.getInstance().

• See also Flyweight and State / Sample Code.

Variant 2: Subclassing possible.

• (1) The instance field holds the instance of a subclass.

• (2) Singleton's default constructor is used.
Because the class is abstract, it can't be instantiated.

• (3) The public static final getInstance() operation must decide which subclass to instantiate.
This can be done in different ways: according to user input, system environment, configuration
file, etc.
Note that operations declared final can't be redefined by subclasses.

• See also Abstract Factory / Sample Code / Example 3 / Creating families of objects.

SINGLETON w3sDesign / V 2.0 / 12.01.2018 75

Sample Code 1

Basic Java code for implementing the sample UML diagram.

 1 package com.sample.singleton.basic;
 2 public class MyApp {
 3 public static void main(String[] args) {
 4 Singleton ref1 = null, ref2 = null;
 5 ref1 = Singleton.getInstance();
 6 ref2 = Singleton.getInstance();
 7 if (ref1 == ref2) {
 8 // The two singleton references are identical.
 9 System.out.println("Singleton instantiated only once.");
10 }
11 }
12 }

Singleton instantiated only once.

 1 package com.sample.singleton.basic;
 2 public class Singleton {
 3 // (1) INSTANCE constant that holds the sole instance.
 4 private static final Singleton INSTANCE = new Singleton();
 5 // (2) Private (hidden) constructor.
 6 private Singleton() { }
 7 // (3) Static operation that returns the sole instance.
 8 public static Singleton getInstance() {
 9 return INSTANCE;
10 }
11 }

SINGLETON w3sDesign / V 2.0 / 12.01.2018 76

Related Patterns

Key Relationships

• Flyweight - Singleton
– The Flyweight factory is usually implemented as Singleton.

Structural Patterns w3sDesign / V 2.0 / 12.01.2018 77

Part III. Structural Patterns

ADAPTER w3sDesign / V 2.0 / 12.01.2018 78

Intent

The intent of the Adapter design pattern is to:
"Convert the interface of a class into another interface clients expect.
Adapter lets classes work together that couldn't otherwise because of
incompatible interfaces." [GoF]
See Problem and Solution sections for a more structured description of the intent.

• The Adapter design pattern solves problems like:
– How can a class be reused that has not the interface clients require?

– How can classes work together that have incompatible interfaces?

• Often a class (Adaptee) can not be reused only because its interface doesn't conform to the
interface (Target) a client requires.

• The Adapter pattern describes how to solve such problems:
– Convert the interface of a class into another interface clients expect.

Define a separate Adapter class that converts the interface of a class (Adaptee) into another
interface (Target) clients require.

– Clients that require a Target interface can work through an Adapter to work with classes
that have an incompatible (not the Target) interface.

ADAPTER w3sDesign / V 2.0 / 12.01.2018 79

Problem

The Adapter design pattern solves problems like:
How can a class be reused that has not the interface clients require? How can classes work
together that have incompatible interfaces?
See Applicability section for all problems Adapter can solve. See Solution section for how
Adapter solves the problems.

• Often a class (Adaptee) can not be reused only because its interface doesn't conform to the
interface (Target) a client requires.

• An inflexible way to solve this problem is to change the class so that its interface conforms
to the required interface.
But it's impossible to change a class each time another interface is needed.

• That's the kind of approach to avoid if we want to reuse a class (Adaptee) that has an
incompatible interface independently from (without having to change) the class.

• In the Strategy design pattern, for example, clients require (depend on) a Strategy interface
for performing an algorithm.
To perform a specific algorithm, it should be possible that clients can work with a class that
has not the Strategy interface (see Sample Code / Example 2).

• For example, designing reusable classes.
To make a class more reusable, its interface should be adaptable so that clients that want to
reuse the class can specify the interface they require (built-in interface adaptation).

ADAPTER w3sDesign / V 2.0 / 12.01.2018 80

Solution

The Adapter design pattern provides a solution:
Define a separate Adapter class that converts the interface of a class (Adaptee)
into another interface (Target) clients require.
Work through an Adapter to work with classes that have not the required interface.
Describing the Adapter in more detail is the theme of the following sections.
See Applicability section for all problems Adapter can solve.

• The key idea in this pattern (object version) is to work through a separate Adapter object that
adapts the interface of an (already existing) object.
Clients do not know whether they are working with a Target object or an Adapter.

• There are two ways to define an Adapter:
– Class Adapter: Uses inheritance to implement a Target interface in terms of

(by inheriting from) an Adaptee class.
– Object Adapter: Uses object composition to implement a Target interface in terms of (by

delegating to) an Adaptee object (adaptee.specificOperation()).
– A class adapter commits to (inherits from) an Adaptee class at compile-time. An object

adapter is more flexible because it commits (delegates) to an Adaptee object at run-time
(see also Sample Code / Example 1).

– There exists a wide range of possible adaptations, from simply changing the
name of an operation to supporting an entirely different set of operations.

• Built-in interface adaptation.
To make a class (Adaptee) more reusable, it can be configured with an adapter object that
converts the interface of the class into the interface clients (that want to reuse the class) require.

ADAPTER w3sDesign / V 2.0 / 12.01.2018 81

Motivation 1

Consider the left design (problem):

• No adapter.
Clients can not reuse Adaptee.
– Clients that require (depend on) a Target interface can not reuse Adaptee only because its

interface doesn't conform to the Target interface.

Consider the right design (solution):

• Working through an adapter.
Clients can reuse Adaptee.
– Clients that require (depend on) a Target interface can reuse Adaptee by working through

an Adapter.

ADAPTER w3sDesign / V 2.0 / 12.01.2018 82

Applicability

Design Problems

• Class Adapter (Compile-Time Adaptation)
– How can a class be reused that has not the interface clients require?
– How can classes work together that have incompatible interfaces?
– How can an alternative interface be provided for a class?

• Object Adapter (Run-Time Adaptation)
– How can an object be reused that has not the interface clients require?
– How can objects work together that have incompatible interfaces?
– How can an alternative interface be provided for an object?

ADAPTER w3sDesign / V 2.0 / 12.01.2018 83

Structure, Collaboration

Static Class Structure

• Client

– Refers to (depends on) the Target interface.

• Target

– Defines an interface the Client class requires.

• Adapter

– Implements the Target interface in terms of Adaptee.

• Adaptee

– Defines a class that gets adapted.

Dynamic Object Collaboration

• In this sample scenario, a Client object works with a Target object directly and through an
adapter (of type Target) with an Adaptee object.

• The interaction starts with the Client object that calls operation() on a Target object, which
performs the request and returns to the Client.

• Thereafter, the Client calls operation() on an adapter object (of type Target).

• adapter calls specificOperation() on an Adaptee object, which performs the request and
returns to the adapter, which in turn returns to the Client.

• adapter can do work of its own before and/or after forwarding a request to Adaptee.

• See also Sample Code.

ADAPTER w3sDesign / V 2.0 / 12.01.2018 84

Consequences

Advantages (+)

• Supports reusing existing functionality.
– Often an already existing reusable object can not be reused only because its interface does

not match the interface a client depends on.
– By working through an adapter, clients can reuse existing objects that provide the needed

functionality but not the needed interface.

• Object adapter is more flexible than class adapter.
– The class adapter implements a Target interface in terms of (by inheriting from) an Adaptee

class.
– This commits the class adapter to an Adaptee class at compile-time and wouldn't work for

other Adaptee classes.
– Furthermore, if the Adaptee implementation classes belong to an other application, they are

usually hidden and can't be accessed.
– The object adapter, on the other hand, implements a Target interface in terms of (by

delegating to) an Adaptee object at run-time (independently from Adaptee implementation
classes).

Disadvantages (–)

ADAPTER w3sDesign / V 2.0 / 12.01.2018 85

Implementation

Implementation Issues

• Implementation Variants
– The implementation of an adapter depends on how different Adaptee and Target interfaces

are.
"There is a spectrum of possible work, from simple interface conversion - for
example, changing the names of operations - to supporting an entirely different set of
operations." [GoF, p142]

– An adapter can implement additional functionality that the adapted class doesn't provide but
the clients need.

ADAPTER w3sDesign / V 2.0 / 12.01.2018 86

Sample Code 1

Basic Java code for implementing the sample UML diagrams.

 1 package com.sample.adapter.basic;
 2 public class Client {
 3 // Running the Client class as application.
 4 public static void main(String[] args) {
 5 // Creating an object adapter
 6 // and configuring it with an Adaptee object.
 7 Target objectAdapter = new ObjectAdapter(new Adaptee());
 8 System.out.println("(1) Object Adapter: " + objectAdapter.operation());
 9
10 // Creating a class adapter
11 // that commits to the Adaptee class at compile-time.
12 Target classAdapter = new ClassAdapterAdaptee();
13 System.out.println("(2) Class Adapter : " + classAdapter.operation());
14 }
15 }

(1) Object Adapter: Hello World from Adaptee!
(2) Class Adapter : Hello World from Adaptee!

 1 package com.sample.adapter.basic;
 2 public interface Target {
 3 String operation();
 4 }

 1 package com.sample.adapter.basic;
 2 public class ObjectAdapter implements Target {
 3 private Adaptee adaptee;
 4
 5 public ObjectAdapter(Adaptee adaptee) {
 6 this.adaptee = adaptee;
 7 }
 8 public String operation() {
 9 // Implementing the Target interface in terms of
10 // (by delegating to) an Adaptee object.
11 return adaptee.specificOperation();
12 }
13 }

 1 package com.sample.adapter.basic;
 2 public class ClassAdapterAdaptee extends Adaptee implements Target {
 3 public String operation() {
 4 // Implementing the Target interface in terms of
 5 // (by inheriting from) the Adaptee class.
 6 return specificOperation();
 7 }
 8 }

 1 package com.sample.adapter.basic;
 2 public class Adaptee {
 3 public String specificOperation() {
 4 return "Hello World from Adaptee!";
 5 }

ADAPTER w3sDesign / V 2.0 / 12.01.2018 87

 6 }

ADAPTER w3sDesign / V 2.0 / 12.01.2018 88

Sample Code 2

Basic Java code for implementing Strategy with Adapter.

 1 package com.sample.adapter.strategy;
 2 public class Client {
 3 // Running the Client class as application.
 4 public static void main(String[] args) {
 5 Strategy strategy = new Strategy1();
 6 System.out.println("(1) " + strategy.algorithm());
 7
 8 strategy = new Adapter(new Adaptee());
 9 System.out.println("(2) " + strategy.algorithm());
10 }
11 }

(1) Working with Strategy1 to perform an algorithm!
(2) Working with Adaptee to perform a specific algorithm!

 1 package com.sample.adapter.strategy;
 2 public interface Strategy {
 3 String algorithm();
 4 }

 1 package com.sample.adapter.strategy;
 2 public class Strategy1 implements Strategy {
 3 public String algorithm() {
 4 // Implementing the algorithm.
 5 return "Working with Strategy1 to perform an algorithm!";
 6 }
 7 }

 1 package com.sample.adapter.strategy;
 2 public class Adapter implements Strategy {
 3 private Adaptee adaptee;
 4
 5 public Adapter(Adaptee adaptee) {
 6 this.adaptee = adaptee;
 7 }
 8 public String algorithm() {
 9 // Implementing the Strategy interface in terms of
10 // (by delegating to) an Adaptee object.
11 return adaptee.specificAlgorithm();
12 }
13 }

 1 package com.sample.adapter.strategy;
 2 public class Adaptee {
 3 public String specificAlgorithm() {
 4 return "Working with Adaptee to perform a specific algorithm!";
 5 }
 6 }

ADAPTER w3sDesign / V 2.0 / 12.01.2018 89

Related Patterns

Key Relationships

• Adapter - Bridge* - Composite - Decorator - Facade - Flyweight* - Proxy
These patterns are classified as structural design patterns. [GoF, p10]
– Adapter provides an alternative interface for an (already existing) class or object.
– Bridge* lets an abstraction and its implementation vary independently.
– Composite composes (already existing) objects into a tree structure.
– Decorator provides additional functionality for an (already existing) object.
– Facade provides an unified interface for (already existing) objects in a subsystem.
– Flyweight* supports large numbers of fine-grained objects efficiently.
– Proxy provides additional functionality when accessing an (already existing) object.

Background Information

• Structural design patterns
(shown in the second row of the main menu) are concerned with providing alternative behavior
for already existing classes or objects (without touching them).

• Bridge* and Flyweight* should be classified as behavioral design patterns
(shown in the third row of the main menu) that are concerned with designing related classes
and interacting objects having a desired behavior.

BRIDGE w3sDesign / V 2.0 / 12.01.2018 90

Intent

The intent of the Bridge design pattern is to:
"Decouple an abstraction from its implementation
so that the two can vary independently." [GoF]
See Problem and Solution sections for a more structured description of the intent.

• The Bridge design pattern solves problems like:
– How can an abstraction and its implementation vary independently?

– How can an implementation be selected and exchanged at run-time?

• For example, a reusable application that supports different hardware environments.
To make an application portable across different hardware environments, it should be possible
to select the appropriate hardware-specific implementation at run-time.

• The Bridge pattern describes how to solve such problems:
– Decouple an abstraction from its implementation - define separate inheritance hierarchies

for an abstraction (Abstraction) and its implementation (Implementor).
The Abstraction interface is implemented in terms of (by delegating to) an Implementor
object.

BRIDGE w3sDesign / V 2.0 / 12.01.2018 91

Problem

The Bridge design pattern solves problems like:
How can an abstraction and its implementation vary independently?
How can an implementation be selected and exchanged at run-time?
See Applicability section for all problems Bridge can solve. See Solution section for how
Bridge solves the problems.

• The standard way is to implement an abstraction by inheritance, i.e., different (sub)classes
(Implementor1,…) implement the abstraction (interface) in different ways.

• This commits (binds) the implementation to an abstraction at compile-time and makes it
impossible to change the implementation at run-time.
"Inheritance binds an implementation to the abstraction permanently, which makes it difficult
to modify, extend, and reuse abstractions and implementations independently. [GoF, p151]

• That's the kind of approach to avoid if we want that an implementation can be selected and
exchanged at run-time instead of committing to an implementation at compile-time.

• For example, a reusable application that supports different hardware environments.
To make an application portable across different hardware environments, it should be possible
to select the proper hardware-specific implementation at run-time.

BRIDGE w3sDesign / V 2.0 / 12.01.2018 92

Solution

The Bridge design pattern provides a solution:
Define separate inheritance hierarchies for an abstraction and its implementation.
Abstraction delegates its implementation to an Implementor object
instead of committing to an implementation at compile-time. Describing the Bridge design
in more detail is the theme of the following sections.
See Applicability section for all problems Bridge can solve.

• The key idea in this pattern is to separate (decouple) an abstraction from its implementation so
that the two can be defined independently from each other.
The pattern calls the relationship between an abstraction and its implementation a
bridge "because it bridges the abstraction and its implementation, letting them vary
independently." [GoF, p152]

• Define separate inheritance hierarchies for an abstraction (Abstraction)
and its implementation (Implementor).
– The Abstraction interface is implemented in terms of (by delegating to) an Implementor

object (imp.operationImp()).
– "Typically the Implementor interface provides only primitive operations, and Abstraction

defines higher-level operations based on these primitives." [GoF, p154]

• This enables compile-time flexibility (via inheritance).
Abstraction and implementation can be defined independently from each other.

• Abstraction delegates its implementation to an Implementor object
(imp.operationImp()).

• This enables run-time flexibility (via object composition).
Abstraction can be configured with an Implementor object, and even more, the Implementor
object can be exchanged at run-time.

BRIDGE w3sDesign / V 2.0 / 12.01.2018 93

Motivation 1

Consider the left design (problem):

• Implementation is coupled to the abstraction.
– The standard way is to implement an abstraction by inheritance.
– The Abstraction interface is implemented by an Implementor1 class, which commits

(binds) the implementation to the abstraction at compile-time.
– This makes it impossible to change the implementation at run-time.

Consider the right design (solution):

• Implementation is decoupled from the abstraction.
– Separate inheritance hierarchies are defined for an abstraction and its implementation.
– The Abstraction interface is implemented in terms of (by delegating to) an Implementor

object (imp.operationImp()).
– This makes it possible to change the implementation at run-time.

BRIDGE w3sDesign / V 2.0 / 12.01.2018 94

Applicability

Design Problems

• Defining Abstraction and Implementation Independently
– How can an abstraction and its implementation vary independently?
– How can a compile-time binding between

an abstraction and its implementation be avoided?

• Exchanging Implementations at Run-Time
– How can an abstraction be configured with an implementation?
– How can an implementation be selected and exchanged at run-time?

• Flexible Alternative to Subclassing
– How can a flexible alternative be provided to subclassing

for changing an implementation at compile-time?

BRIDGE w3sDesign / V 2.0 / 12.01.2018 95

Structure, Collaboration

Static Class Structure

• Abstraction

– Defines an interface for an abstraction.

• Abstraction1,…
– Implement the Abstraction interface in terms of (by delegating to) the Implementor

interface (imp.operationImp()).
– Maintains a reference (imp) to an Implementor object.

• Implementor

– For all supported implementations, defines a common interface for implementing an
abstraction.

– "Typically the Implementor interface provides only primitive operations, and Abstraction
defines higher-level operations based on these primitives." [GoF, p154]

• Implementor1,…
– Implement the Implementor interface.

Dynamic Object Collaboration

• In this sample scenario, an Abstraction1 object delegates implementation to an
Implementor1 object (by calling operationImp() on Implementor1).

• See also Sample Code / Example 1.

BRIDGE w3sDesign / V 2.0 / 12.01.2018 96

Consequences

Advantages (+)

• Provides a flexible alternative to subclassing.
– Inheritance is the standard way to support different implementations of an abstraction.
– But with inheritance, an implementation is bound to its abstraction at compile-time and can't

be changed at run-time.
– Furthermore, inheritance would require creating new subclasses for each new abstraction

extension class (proliferation of subclasses).
– Bridge makes it easy to compose abstraction objects and implementation objects

dynamically at run-time.

Disadvantages (–)

• Introduces an additional level of indirection.
– The pattern achieves flexibility by introducing an additional level of indirection (abstraction

delegates implementation to a separate Implementor object), which makes the abstraction
dependent on an Implementor object.

BRIDGE w3sDesign / V 2.0 / 12.01.2018 97

Implementation

Implementation Issues

• Interface Design
– The Abstraction and Implementor interfaces must be designed carefully so that the

Abstraction interface can be implemented in terms of (by delegating to) the Implementor
interface.

– "Typically the Implementor interface provides only primitive operations, and Abstraction
defines higher-level operations based on these primitives." [GoF, p154]

BRIDGE w3sDesign / V 2.0 / 12.01.2018 98

Sample Code 1

Basic Java code for implementing the sample UML diagrams.

 1 package com.sample.bridge.basic;
 2 public class MyApp {
 3 public static void main(String[] args) {
 4 // Creating an Abstraction1 object
 5 // and configuring it with an Implementor1 object.
 6 Abstraction abstraction = new Abstraction1(new Implementor1());
 7 // Calling an operation on abstraction.
 8 System.out.println(abstraction.operation());
 9 }
10 }

Abstraction1: Delegating implementation to an implementor.
Implementor1: Hello World1!

 1 package com.sample.bridge.basic;
 2 public interface Abstraction {
 3 String operation();
 4 }

 1 package com.sample.bridge.basic;
 2 public class Abstraction1 implements Abstraction {
 3 private Implementor imp;
 4 //
 5 public Abstraction1(Implementor imp) {
 6 this.imp = imp;
 7 }
 8 public String operation() {
 9 return "Abstraction1: Delegating implementation to an implementor.\n"
10 + imp.operationImp();
11 }
12 }

 1 package com.sample.bridge.basic;
 2 public interface Implementor {
 3 String operationImp();
 4 }

 1 package com.sample.bridge.basic;
 2 public class Implementor1 implements Implementor {
 3 public String operationImp() {
 4 return "Implementor1: Hello World1!";
 5 }
 6 }

BRIDGE w3sDesign / V 2.0 / 12.01.2018 99

Related Patterns

Key Relationships

• Adapter - Bridge* - Composite - Decorator - Facade - Flyweight* - Proxy
These patterns are classified as structural design patterns. [GoF, p10]
– Adapter provides an alternative interface for an (already existing) class or object.
– Bridge* lets an abstraction and its implementation vary independently.
– Composite composes (already existing) objects into a tree structure.
– Decorator provides additional functionality for an (already existing) object.
– Facade provides an unified interface for (already existing) objects in a subsystem.
– Flyweight* supports large numbers of fine-grained objects efficiently.
– Proxy provides additional functionality when accessing an (already existing) object.

Background Information

• Structural design patterns
(shown in the second row of the main menu) are concerned with providing alternative behavior
for already existing classes or objects (without touching them).

• Bridge* and Flyweight* should be classified as behavioral design patterns
(shown in the third row of the main menu) that are concerned with designing related classes
and interacting objects having a desired behavior.

COMPOSITE w3sDesign / V 2.0 / 12.01.2018 100

Intent

The intent of the Composite design pattern is to:
"Compose objects into tree structures to represent part-whole hierarchies. Composite lets
clients treat individual objects and compositions of objects uniformly." [GoF]
See Problem and Solution sections for a more structured description of the intent.

• The Composite design pattern solves problems like:
– How can a part-whole hierarchy be represented

so that clients can treat individual objects and compositions of objects uniformly?

• Tree structures are widely used in object-oriented systems to represent hierarchical object
structures like part-whole hierarchies.

• A tree structure consists of individual (Leaf) objects and subtree (Composite) objects.
A Composite object has children, that is, Leaf objects or other (lower-level) Composite
objects.

• The Composite pattern describes how to solve such problems:
– Compose objects into tree structures to represent part-whole hierarchies.

– Define separate Composite objects that compose the objects in a part-whole hierarchy into
tree structures.

– Clients work through a common Component interface to treat Leaf and Composite objects
uniformly, which greatly simplifies clients and makes them easier to implement, change,
test, and reuse.

Background Information

• "A tree is a data structure composed of a set of nodes organized into a hierarchy. Each node
has a parent and an ordered list of zero, one, or multiple children. The children can be simple
nodes or complete subtrees.
In computer science, we draw trees with the root node at the top and the branches descending
below. Root nodes are analogous to the root directory on a disk. Children are analogous to files
and subdirectories." [TParr07, (2) p75]

COMPOSITE w3sDesign / V 2.0 / 12.01.2018 101

Problem

The Composite design pattern solves problems like:
How can a part-whole hierarchy be represented
so that clients can treat individual objects and compositions of objects uniformly?
See Applicability section for all problems Composite can solve. See Solution section for how
Composite solves the problems.

• An inflexible way to represent a part-whole hierarchy is to define (1) Part objects and (2)
Whole objects that act as containers for Part objects.
Clients of the hierarchy must treat Part and Whole objects differently, which makes them more
complex especially if the object structure is constructed and traversed dynamically.

• That's the kind of approach to avoid if we want to simplify client code so that all objects in
the hierarchy can be treated uniformly.

• For example, representing Bill of Materials.
A Bill of Materials (BOM) is a part-whole structure that describes the parts and subcomponents
(wholes) that make up a manufactured product (see also Builder for creating a BOM).
It should be possible, for example, to calculate the total price either of an individual part
or a complete subcomponent without having to treat part and subcomponent differently
(see Sample Code / Example 2 / BOM).

• For example, representing text documents.
A text document can be organized as part-whole hierarchy consisting of characters, pictures,
etc. (parts) and lines, pages, etc. (wholes).
It should be possible, for example, to treat displaying a particular page or the entire document
uniformly.

COMPOSITE w3sDesign / V 2.0 / 12.01.2018 102

Solution

The Composite design pattern provides a solution:
Define separate Composite objects that compose the objects of a part-whole hierarchy into
a tree structure.
Work through a common Component interface to treat Leaf and Composite
objects uniformly.
Describing the Composite design in more detail is the theme of the following sections.
See Applicability section for all problems Composite can solve.

• The key concept in this pattern is to compose Leaf objects and Composite objects if any into
higher-level Composite objects recursively (recursive composition). The resulting structure is
a tree structure that represents a part-whole hierarchy.

• Define separate Composite objects:
– Define a class (Composite) that maintains a container of child Component objects

(children) and forwards requests to these children (for each child in children:

child.operation()).
– For implementing child-related operations (like adding or removing child components to or

from the container) see Implementation.

• "The key to the Composite pattern is an abstract class [Component] that represents both
primitives and their containers." [GoF, p163]
– Clients can treat Leaf objects and entire Composite object structures uniformly (that is,

clients do not know whether they are working with Leaf or Composite objects):
– If the receiver of a request is a Leaf, the request is performed directly.

If the receiver is a Composite, the request is performed on all Component objects downwards
the hierarchy.

– This greatly simplifies clients of complex hierarchies and makes them easier to implement,
change, test, and reuse.

COMPOSITE w3sDesign / V 2.0 / 12.01.2018 103

Background Information

• Recursive Composition
For example, compose bottom-level leaf objects (leaf3,leaf4,leaf5) into a composite object
(composite2), compose this composite object and same-level leaf objects (leaf1,leaf2) into
a higher-level composite object (composite1), and so on recursively (see the above Sample
Object Collaboration).
The resulting structure is a tree structure that represents a part-whole hierarchy.

COMPOSITE w3sDesign / V 2.0 / 12.01.2018 104

Motivation 1

Consider the left design (problem):

• No common interface / direct access.
Complicated clients.
– No common interface is defined for individual objects (Part) and their containers (Whole).
– This forces clients to treat Part and Whole objects differently, which greatly complicates

client code for constructing and traversing complex hierarchies.

Consider the right design (solution):

• Working through a common interface.
Simplified clients.
– A common interface (Component) is defined for individual objects (Leaf) and their

containers (Composite).
– This lets clients treat Leaf and Composite objects uniformly, which greatly simplifies client

code for constructing and traversing complex hierarchies.

COMPOSITE w3sDesign / V 2.0 / 12.01.2018 105

Applicability

Design Problems

• Representing Part-Whole Hierarchies
– How can a part-whole hierarchy be represented

so that clients can treat individual objects and compositions of objects uniformly?
– How can a part-whole hierarchy be represented

so that clients can treat the hierarchy as single object?
– How can a part-whole hierarchy be represented as tree structure?

COMPOSITE w3sDesign / V 2.0 / 12.01.2018 106

Structure, Collaboration

Static Class Structure

• Client

– Refers to the Component interface.

• Component

– Defines a common interface for Leaf and Composite objects.

• Leaf

– Defines individual objects that get composed.

• Composite

– Maintains a container of child Component objects (children).
– Forwards requests to these children (for each child in children: child.operation()).

Dynamic Object Collaboration

• In this sample scenario, a Client object sends a request to the top-level Composite object in
the hierarchy.

• The request is forwarded to the child Component objects (lower-level Leaf and Composite
objects) recursively, that is, the request is performed on all objects downwards the hierarchy.

• A Composite object may do work of its own before and/or after forwarding a request, for
example, to compute total prices (see Sample Code / Example 2).

• See also Sample Code / Example 1.

COMPOSITE w3sDesign / V 2.0 / 12.01.2018 107

Consequences

Advantages (+)

• Simplifies clients.
– Clients can treat all objects in the hierarchy uniformly, which greatly simplifies client code.

• Makes adding new components easy.
– Clients refer to the common Component interface and are independent of its implementation.
– That means, clients do not have to be changed when new Composite or Leaf classes are

added or existing ones are extended.

• Allows building and changing complex hierarchies dynamically at run-time.
– The pattern shows how to apply recursive composition to build complex hierarchical object

structures dynamically at run-time.

Disadvantages (–)

• Uniformity versus type safety.
– There are two main design variants to implement child-related operations:

design for uniformity and design for type safety (see Implementation).
– The Composite pattern emphasizes uniformity over type safety.

COMPOSITE w3sDesign / V 2.0 / 12.01.2018 108

Implementation

Implementation Issues
Implementing Child-Related Operations
Adding a child component to the container (add(child)), removing a child component from the
container (remove(child)), and accessing a child component (getChild()).

Variant 1: Design for Uniformity

• The only way to provide uniformity is to define child-related operations in the Component
interface.

• This enables uniformity because clients can treat Leaf and Composite objects uniformly.

• But we loose type safety because Leaf and Composite interfaces (types) are not cleanly
separated.

• The abstract Component class implements default behavior for child-related operations like
"do nothing" or "throw an exception". The Leaf class inherits the default implementations,
and Composite must redefine them.

• Uniformity is useful for dynamic structures because clients often need to perform child-related
operations (in a document editor, for example, where the object structure is dynamically created
and changed each time a document is changed).

• The Composite design pattern emphasizes uniformity over type safety.

Variant 2: Design for Type Safety

• The only way to provide type safety is to define child-related operations solely in the Composite
class.

• This enables type safety because we can rely on the type system to enforce type constraints
(for example, that clients can not perform child-related operations on Leaf components).

• But we loose uniformity because clients must treat Leaf and Composite objects differently.

• Type safety is useful for static structures (that do not change very often) because most clients
do not need to perform child-related operations.

COMPOSITE w3sDesign / V 2.0 / 12.01.2018 109

Sample Code 1

Basic Java code for implementing the sample UML diagrams.

 1 package com.sample.composite.basic;
 2 public class Client {
 3 // Running the Client class as application.
 4 public static void main(String[] args) {
 5 // Building a tree structure.
 6 Component composite2 = new Composite("composite2 ");
 7 composite2.add(new Leaf("leaf3 "));
 8 composite2.add(new Leaf("leaf4 "));
 9 composite2.add(new Leaf("leaf5 "));
10 Component composite1 = new Composite("composite1 ");
11 composite1.add(new Leaf("leaf1 "));
12 composite1.add(composite2);
13 composite1.add(new Leaf("leaf2 "));
14
15 // Performing an operation on composite1
16 // (walking down the entire hierarchy).
17 System.out.println("(1) " + composite1.operation());
18
19 // Performing an operation on composite2
20 //(walking down the subtree).
21 System.out.println("(2) " + composite2.operation());
22
23 }
24 }

(1) composite1 leaf1 composite2 leaf3 leaf4 leaf5 leaf2
(2) composite2 leaf3 leaf4 leaf5

 1 package com.sample.composite.basic;
 2 import java.util.Collections;
 3 import java.util.Iterator;
 4 public abstract class Component {
 5 private String name;
 6 public Component(String name) {
 7 this.name = name;
 8 }
 9 public abstract String operation();
10
11 public String getName() {
12 return name;
13 }
14 // Default implementation for child management operations.
15 public boolean add(Component child) { // fail by default
16 return false;
17 }
18 public Iterator<Component> iterator() { // null iterator
19 return Collections.<Component>emptyIterator();
20 }
21 }

 1 package com.sample.composite.basic;
 2 public class Leaf extends Component {

COMPOSITE w3sDesign / V 2.0 / 12.01.2018 110

 3 public Leaf(String name) {
 4 super(name);
 5 }
 6 public String operation() {
 7 return getName();
 8 }
 9 }

 1 package com.sample.composite.basic;
 2 import java.util.*;
 3 public class Composite extends Component {
 4 private List<Component> children = new ArrayList<Component>();
 5
 6 public Composite(String name) {
 7 super(name);
 8 }
 9 public String operation() {
10 Iterator<Component> it = children.iterator();
11 String str = getName();
12 Component child;
13 while (it.hasNext()) {
14 child = it.next();
15 str += child.operation();
16 }
17 return str;
18 }
19 // Overriding the default implementation.
20 @Override
21 public boolean add(Component child) {
22 return children.add(child);
23 }
24 @Override
25 public Iterator<Component> iterator() {
26 return children.iterator();
27 }
28 }

COMPOSITE w3sDesign / V 2.0 / 12.01.2018 111

Sample Code 2

BOM Bill of Materials / Representing the BOM as tree/composite structure.
Calculating total prices (getPrice()) for composite components (Chassis and Mainboard).
See also Visitor design pattern, Sample Code / Example 2 (pricing visitor).

 1 package com.sample.composite.bom;
 2 public class Client {
 3 // Running the Client class as application.
 4 public static void main(String[] args) throws Exception {
 5 // Building the tree/composite structure.
 6 Component mainboard = new Mainboard("Mainboard", 100);
 7 mainboard.add(new Processor("Processor", 100));
 8 mainboard.add(new Memory("Memory ", 100));
 9 Component chassis = new Chassis("Chassis ", 100);
10 chassis.add(mainboard);
11 chassis.add(new Disk("Disk ", 100));
12 //
13 // Clients can treat the hierarchy as a single object.
14 // If the receiver is a leaf,
15 // the request is performed directly.
16 // If the receiver is a composite,
17 // the request is forwarded to its child components recursively.
18 //
19 System.out.println(chassis.getName() + " total price: " +
20 chassis.getPrice());
21 //
22 System.out.println(mainboard.getName() + " total price: " +
23 mainboard.getPrice());
24 }
25 }

Chassis total price: 500
Mainboard total price: 300

 1 package com.sample.composite.bom;
 2 import java.util.Collections;
 3 import java.util.Iterator;
 4 public abstract class Component {
 5 private String name;
 6 private long price;
 7 public Component(String name, long price) {
 8 this.name = name;
 9 this.price = price;
10 }
11 public String getName() {
12 return name;
13 }
14 public long getPrice() { // in cents
15 return price;
16 }
17 // Defining default implementation for child management operations.
18 public boolean add(Component c) { // fail by default
19 return false;
20 }

COMPOSITE w3sDesign / V 2.0 / 12.01.2018 112

21 public Iterator<Component> iterator() {
22 return Collections.emptyIterator(); // null iterator
23 }
24 public int getChildCount() {
25 return 0;
26 }
27 }

 1 package com.sample.composite.bom;
 2 import java.util.ArrayList;
 3 import java.util.Iterator;
 4 import java.util.List;
 5 public class CompositeComponent extends Component {
 6 private List<Component> children = new ArrayList<Component>();
 7 public CompositeComponent(String name, long price) {
 8 super(name, price);
 9 }
10 // Overriding the default implementation.
11 @Override
12 public long getPrice() {
13 long sum = super.getPrice();
14 for (Component child : children) {
15 sum += child.getPrice();
16 }
17 return sum;
18 }
19 @Override
20 public boolean add(Component child) {
21 return children.add(child);
22 }
23 @Override
24 public Iterator<Component> iterator() {
25 return children.iterator();
26 }
27 @Override
28 public int getChildCount() {
29 return children.size();
30 }
31 }

 1 package com.sample.composite.bom;
 2 public class Chassis extends CompositeComponent { // Composite
 3 public Chassis(String name, long price) {
 4 super(name, price);
 5 }
 6 }

 1 package com.sample.composite.bom;
 2 public class Mainboard extends CompositeComponent { // Composite
 3 public Mainboard(String name, long price) {
 4 super(name, price);
 5 }
 6 }

 1 package com.sample.composite.bom;
 2 public class Processor extends Component { // Leaf
 3 public Processor(String name, long price) {
 4 super(name, price);
 5 }
 6 }

 1 package com.sample.composite.bom;
 2 public class Memory extends Component { // Leaf
 3 public Memory(String name, long price) {
 4 super(name, price);
 5 }
 6 }

 1 package com.sample.composite.bom;
 2 public class Disk extends Component { // Leaf
 3 public Disk(String name, long price) {
 4 super(name, price);
 5 }
 6 }

COMPOSITE w3sDesign / V 2.0 / 12.01.2018 113

Related Patterns

Key Relationships

• Adapter - Bridge* - Composite - Decorator - Facade - Flyweight* - Proxy
These patterns are classified as structural design patterns. [GoF, p10]
– Adapter provides an alternative interface for an (already existing) class or object.
– Bridge* lets an abstraction and its implementation vary independently.
– Composite composes (already existing) objects into a tree structure.
– Decorator provides additional functionality for an (already existing) object.
– Facade provides an unified interface for (already existing) objects in a subsystem.
– Flyweight* supports large numbers of fine-grained objects efficiently.
– Proxy provides additional functionality when accessing an (already existing) object.

• Composite - Builder - Iterator - Visitor - Interpreter
– Composite provides a way to represent a part-whole hierarchy

as a tree (composite) object structure.
– Builder provides a way to create the elements of an object structure.
– Iterator provides a way to traverse the elements of an object structure.
– Visitor provides a way to define new operations for the elements of an object structure.
– Interpreter represents a sentence in a simple language

as a tree (composite) object structure (abstract syntax tree).

• Composite - Flyweight
– Composite and Flyweight often work together.

Leaf objects can be implemented as shared flyweight objects.

• Composite - Chain of Responsibility
– Composite and Chain of Responsibility often work together.

Existing composite object structures can be used to define the successor chain.

Background Information

• Structural design patterns
(shown in the second row of the main menu) are concerned with providing alternative behavior
for already existing classes or objects (without touching them).

• Bridge* and Flyweight* should be classified as behavioral design patterns
(shown in the third row of the main menu) that are concerned with designing related classes
and interacting objects having a desired behavior.

DECORATOR w3sDesign / V 2.0 / 12.01.2018 114

Intent

The intent of the Decorator design pattern is to:
"Attach additional responsibilities to an object dynamically. Decorators provide a flexible
alternative to subclassing for extending functionality." [GoF]
See Problem and Solution sections for a more structured description of the intent.

• The Decorator design pattern solves problems like:
– How can responsibilities be added to an object dynamically?

– How can the functionality of an object be extended at run-time?

• "A responsibility denotes the obligation of an object to provide a certain behavior." [GBooch07,
p600]
The terms responsibility, behavior, and functionality are usually interchangeable.

• "Sometimes we want to add responsibilities to individual objects, not to an entire class. A
graphical user interface toolkit, for example, should let you add properties like borders or
behaviors like scrolling to any user interface component." [GoF, p175]

• For example, reusable GUI/Web objects (like buttons, menus, or tree widgets).
It should be possible to add embellishments (i.e., borders, scroll bars, etc.) to basic GUI/Web
objects dynamically at run-time.
"In the Decorator pattern, embellishment refers to anything that adds responsibilities to an
object." [GoF, p47]

DECORATOR w3sDesign / V 2.0 / 12.01.2018 115

Problem

The Decorator design pattern solves problems like:
How can responsibilities be added to an object dynamically?
How can the functionality of an object be extended at run-time?
See Applicability section for all problems Decorator can solve. See Solution section for how
Decorator solves the problems.

• Subclassing is the standard way to extend the functionality of (add responsibilities to) a class
statically at compile-time.
Once a subclass (Subclass1) is instantiated, the functionality is bound to the instance for its
life-time and can't be changed at run-time.

• That's the kind of approach to avoid if we want to extend the functionality of an object at run-
time instead of extending the functionality of a class at compile-time.

• For example, reusable GUI/Web objects (like buttons, menus, or tree widgets).
It should be possible to add embellishments (i.e., borders, scroll bars, etc.) to basic GUI/Web
objects dynamically at run-time.

• For example, I/O data stream objects [Java Platform].
It should be possible to add responsibilities like handling data types and buffered data to basic
I/O objects that only handle raw binary data (see Sample Code / Example 2).

• For example, collections [Java Collections Framework].
It should be possible to add automatic synchronization (thread-safety) to a collection or taking
away the ability to modify a collection.

DECORATOR w3sDesign / V 2.0 / 12.01.2018 116

Solution

The Decorator design pattern provides a solution:
Define separate Decorator objects that add responsibilities to an object.
Work through Decorator objects to extend the functionality of an object at run-time.
Describing the Decorator design in more detail is the theme of the following sections.
See Applicability section for all problems Decorator can solve.

• The key idea in this pattern is to work through separate Decorator objects that 'decorate' (add
responsibilities to) an (already existing) object.
A decorator implements the Component interface transparently so that it can act as transparent
enclosure of the component that gets decorated.
"Clients generally can't tell whether they're dealing with the component or its enclosure
[…]." [GoF, p44]

• Define separate Decorator objects:
– Define a class (Decorator) that maintains a reference to a Component object (component)

and forwards requests to this component (component.operation()).
– Define subclasses (Decorator1,…) that implement additional functionality

(addBehavior()) to be performed before and/or after forwarding a request.

• Because decorators are transparent enclosures of the decorated component, they can be nested
recursively to add an open-ended number of responsibilities.
Changing the order of decorators allows adding any combinations of responsibilities.
In the above sequence diagram, for example, a client works through two nested decorator
objects that add responsibilities to a Component1 object (after forwarding the request).

DECORATOR w3sDesign / V 2.0 / 12.01.2018 117

Motivation 1

Consider the left design (problem):

• Extending functionality at compile-time.
– Subclasses implement additional responsibilities.
– Once a subclass is instantiated, the responsibility is bound to the instance for its life-time

and can't be changed at run-time.

• Explosion of subclasses.
– Extending functionality by subclassing requires creating a new subclass for each new

functionality and for each new combination of functionalities.
– Supporting a large number of functionalities and their combinations would produce an

explosion of subclasses.

Consider the right design (solution):

• Extending functionality at run-time.
– Decorator objects implement additional responsibilities.
– Clients can work through different Decorator objects to add different responsibilities at

run-time.

• Recursively nested decorators.
– Extending functionality by decorators requires creating a new decorator for each new

functionality but not for each new combination of functionalities.
– Decorators can be nested recursively for supporting an open-ended number of functionalities

and their combinations.

DECORATOR w3sDesign / V 2.0 / 12.01.2018 118

Applicability

Design Problems

• Extending Functionality at Run-Time
– How can responsibilities be added to (and withdrawn from) an object dynamically?
– How can the functionality of an object be extended at run-time?
– How can a simple class be defined that is extended at run-time

instead of implementing all foreseeable functionality in a complex class?

• Flexible Alternative to Subclassing
– How can a flexible alternative be provided to subclassing

for extending the functionality of a class at compile-time?

Refactoring Problems

• Inflexible Code
– How can classes that include hard-wired extensions (compile-time implementation

dependencies) be refactored? Move Embellishment to Decorator (144) [JKerievsky05]

DECORATOR w3sDesign / V 2.0 / 12.01.2018 119

Structure, Collaboration

Static Class Structure

• Client

– Refers to the Component interface.

• Component

– Defines a common interface for Component1 and Decorator objects.

• Component1

– Defines objects that get decorated.

• Decorator

– Maintains a reference to a Component object (component).
– Forwards requests to this component (component.operation()).

• Decorator1,Decorator2,…
– Implement additional functionality (addBehavior()) to be performed before and/or after

forwarding a request.

Dynamic Object Collaboration

• In this sample scenario, a Client object works through two decorators that add responsibilities
to a Component1 object.

• The Client calls operation() on the Decorator1 object.

• Decorator1 forwards the request to the Decorator2 object.

• Decorator2 forwards the request to the Component1 object.

• Component1 performs the request and returns to Decorator2.

• Decorator2 performs additional functionality (by calling addBehavior() on itself) and returns
to Decorator1.

• Decorator1 performs additional functionality and returns to the Client.

• See also Sample Code / Example 1.

DECORATOR w3sDesign / V 2.0 / 12.01.2018 120

Consequences

Advantages (+)

• Provides a flexible alternative to subclassing.
– Decorator provides a flexible alternative to extending functionality via subclassing.
– It's easy to combine (mix, sort, duplicate, etc.) functionalities by collaborating with different

decorators.
– Subclassing would require creating a new subclass for each new combination of

functionalities.

• Allows an open-ended number of added functionalities.
– Because decorators are transparent enclosures of the decorated object, they can be nested

recursively, which allows an open-ended number of added functionalities.
– Clients do not know whether they work with an object directly or through its decorators.

• Simplifies classes.
– "Instead of trying to support all foreseeable features in a complex, customizable class,

you can define a simple class and add functionality incrementally with Decorator
objects." [GoF, p178]

Disadvantages (–)

• Provides no reliability on object identity.
– A decorator object is transparent but not identical to the decorated object.
– Therefore, applications that depend on object identity should not use decorators.

DECORATOR w3sDesign / V 2.0 / 12.01.2018 121

Implementation

Implementation Issues

• Interface Conformance
– The key to the Decorator is

(1) to maintain a reference (component) to the decorated object and
(2) to implement the interface of the decorated object transparently by forwarding all
requests to it (component.operation()).

– This is called a transparent enclosure.
"Clients generally can't tell whether they're dealing with the component or its enclosure
[…]" [GoF, p44]

DECORATOR w3sDesign / V 2.0 / 12.01.2018 122

Sample Code 1

Basic Java code for implementing the sample UML diagrams.

 1 package com.sample.decorator.basic;
 2 public class Client {
 3 // Running the Client class as application.
 4 public static void main(String[] args) {
 5 // Working with the component directly.
 6 Component component = new Component1();
 7 System.out.println("(1) " + component.operation());
 8 // Working through decorators.
 9 component = new Decorator1(new Decorator2(component));
10 System.out.println("(2) " + component.operation());
11 }
12 }

(1) Hello World from Component1!
(2) *** === Hello World from Component1! === ***

 1 package com.sample.decorator.basic;
 2 public abstract class Component {
 3 public abstract String operation();
 4 }

 1 package com.sample.decorator.basic;
 2 public class Component1 extends Component {
 3 public String operation() {
 4 return "Hello World from Component1!";
 5 }
 6 }

 1 package com.sample.decorator.basic;
 2 public abstract class Decorator extends Component {
 3 Component component;
 4 public Decorator(Component component) {
 5 this.component = component;
 6 }
 7 public String operation() {
 8 // Forwarding to component.
 9 return component.operation();
10 }
11 }

 1 package com.sample.decorator.basic;
 2 public class Decorator1 extends Decorator {
 3 public Decorator1(Component component) {
 4 super(component); // calling the super class constructor
 5 }
 6 public String operation() {
 7 // Forwarding to component.
 8 String result = super.operation();
 9 // Adding functionality to result from component.
10 return addBehavior(result);
11 }
12 private String addBehavior(String result) {
13 return "***" + result + "***";

DECORATOR w3sDesign / V 2.0 / 12.01.2018 123

14 }
15 }

 1 package com.sample.decorator.basic;
 2 public class Decorator2 extends Decorator {
 3 public Decorator2(Component component) {
 4 super(component); // calling the super class constructor
 5 }
 6 public String operation() {
 7 // Forwarding to component.
 8 String result = super.operation();
 9 // Adding functionality to result from component.
10 return addBehavior(result);
11 }
12 private String addBehavior(String result) {
13 return " === " + result + " === ";
14 }
15 }

DECORATOR w3sDesign / V 2.0 / 12.01.2018 124

Sample Code 2

I/O Data Streams (Java Platform) / Adding functionality to basic I/O data streams.

 1 package com.sample.decorator.DataStreams;
 2 import java.io.*;
 3 public class Client {
 4 // Running the Client class as application.
 5 public static void main(String[] args) throws IOException {
 6 final String FILE = "testdata";
 7 //
 8 // Creating decorators for FileOutputStream (out).
 9 //
10 DataOutputStream out =
11 // Decorator1 adds support for writing data types
12 // (UTF-8, integer, etc.).
13 new DataOutputStream(
14 // Decorator2 adds support for buffered output.
15 new BufferedOutputStream(
16 // Basic binary output stream.
17 new FileOutputStream(FILE)));
18 //
19 // Working through the decorators (out).
20 //
21 out.writeUTF("ABC "); // writes string in UTF-8 format
22 out.writeInt(123); // writes integer data type
23 out.close();
24 //
25 // Creating decorators for FileInputStream (in).
26 //
27 DataInputStream in =
28 // Decorator1 adds support for reading data types
29 // (UTF-8, integer, etc.).
30 new DataInputStream(
31 // Decorator2 adds support for buffered input.
32 new BufferedInputStream(
33 // Basic binary input stream.
34 new FileInputStream(FILE)));
35 //
36 // Working through the decorators (in).
37 //
38 // in.readUTF() reads string in UTF-8 format.
39 // in.readInt() reads integer data type.
40 System.out.println(in.readUTF() + in.readInt());
41 in.close();
42 }
43 }

ABC 123

DECORATOR w3sDesign / V 2.0 / 12.01.2018 125

Related Patterns

Key Relationships

• Adapter - Bridge* - Composite - Decorator - Facade - Flyweight* - Proxy
These patterns are classified as structural design patterns. [GoF, p10]
– Adapter provides an alternative interface for an (already existing) class or object.
– Bridge* lets an abstraction and its implementation vary independently.
– Composite composes (already existing) objects into a tree structure.
– Decorator provides additional functionality for an (already existing) object.
– Facade provides an unified interface for (already existing) objects in a subsystem.
– Flyweight* supports large numbers of fine-grained objects efficiently.
– Proxy provides additional functionality when accessing an (already existing) object.

• Strategy - Decorator
– Strategy provides a way

to exchange the algorithm of an object at run-time.
This is done from inside the object.
The object is designed to delegate an algorithm to a Strategy object.
This is a key characteristic of object behavioral patterns.

– Decorator provides a way
to extend the functionality of an object at run-time.
This is done from outside the object.
The object already exists and isn't needed to be touched.
This is a key characteristic of object structural patterns.

Background Information

• Structural design patterns
(shown in the second row of the main menu) are concerned with providing alternative behavior
for already existing classes or objects (without touching them).

• Bridge* and Flyweight* should be classified as behavioral design patterns
(shown in the third row of the main menu) that are concerned with designing related classes
and interacting objects having a desired behavior.

• "Changing the skin of an object versus changing its guts.
We can think of a decorator as a skin over an object that changes its behavior. An alternative
is to change the object's guts. The Strategy(315) pattern is a good example of a pattern for
changing the guts." [GoF, p179]

FACADE w3sDesign / V 2.0 / 12.01.2018 126

Intent

The intent of the Facade design pattern is to:
"Provide an unified interface to a set of interfaces in a subsystem.
Facade defines a higher-level interface that makes the subsystem
easier to use." [GoF]
See Problem and Solution sections for a more structured description of the intent.

• The Facade design pattern solves problems like:
– How can a simple interface be provided for a complex subsystem?

– How can tight coupling between clients and the objects in a subsystem be avoided?

• A complex subsystem should provide a simplified (high-level) view that is good enough for
most clients that merely need basic functionality.

• The Facade pattern describes how to solve such problems:
– Provide an unified interface to a set of interfaces in a subsystem:

Facade | operation().
– Clients of the subsystem only refer to and know about the (simple) Facade interface and are

independent of the many different interfaces in the subsystem, which reduces dependencies
and makes clients easier to implement, change, test, and reuse.

FACADE w3sDesign / V 2.0 / 12.01.2018 127

Problem

The Facade design pattern solves problems like:
How can a simple interface be provided for a complex subsystem?
How can tight coupling between clients and the objects in a subsystem be avoided?
See Applicability section for all problems Facade can solve. See Solution section for how
Facade solves the problems.

• Complex software systems are often structured (layered) into subsystems.
Clients of a complex subsystem refer to and know about (depend on) many different objects
(having different interfaces), which makes the clients tightly coupled to the subsystem.
Tightly coupled objects are hard to implement, change, test, and reuse
because they depend on (refer to and know about) many different objects.

• That's the kind of approach to avoid if we want to minimize the dependencies on a subsystem.
"A common design goal is to minimize the communication and dependencies between
subsystems." [GoF, p185]

• A complex subsystem should provide a simplified (high-level) view that is good enough for
most clients that merely need some basic functionalities.
Clients that need more lower-level functionalities should be able to access the objects in the
subsystem directly.

FACADE w3sDesign / V 2.0 / 12.01.2018 128

Solution

The Facade design pattern provides a solution:
Define a separate Facade object that provides an unified interface for a set of interfaces
in a subsystem.
Work through a Facade to minimize dependencies on a subsystem.
Describing the Facade design in more detail is the theme of the following sections.
See Applicability section for all problems Facade can solve.

• The key idea in this pattern is to work through a separate Facade object that provides a simple
interface for (already existing) objects in a subsystem.
Clients can either work with a subsystem directly or its Facade.

• Define a separate Facade object:
– Define an unified interface for a set of interfaces in a subsystem (Facade).
– Implement the Facade interface

in terms of (by delegating to) the interfaces in the subsystem.

• Working through a Facade object minimizes dependencies on a subsystem (loose coupling),
which makes clients easier to implement, change, test, and reuse.
Clients that need more lower-level functionalities can access the objects in the subsystem
directly.

FACADE w3sDesign / V 2.0 / 12.01.2018 129

Motivation 1

Consider the left design (problem):

• No facade / direct access.
Tight coupling between client and subsystem.
– Clients refer to and know about (depend on) many different interfaces in the subsystem,

which makes clients harder to implement, change, test, and reuse.
– Clients must be changed when interfaces in the subsystem are added or extended.

Consider the right design (solution):

• Working through a facade.
Loose coupling between client and subsystem.
– Clients only refer to and know about (depend on) the simple Facade interface, which makes

clients easier to implement, change, test, and reuse.
– Clients do not have to be changed when interfaces in the subsystem are added or extended.

FACADE w3sDesign / V 2.0 / 12.01.2018 130

Applicability

Design Problems

• Making Complex Subsystems Easier to Use
– How can a simple interface be provided for a complex subsystem?
– How can a single entry point be provided for a subsystem?

• Avoiding Tight Coupling Between Subsystems
– How can dependencies on a subsystem be minimized?
– How can tight coupling between

clients and the objects in a subsystem be avoided?

FACADE w3sDesign / V 2.0 / 12.01.2018 131

Structure, Collaboration

Static Class Structure

• Client

– Refers to the Facade interface.

• Facade

– Defines a simple interface for a complex subsystem (by referring to many different interfaces
in the subsystem).

Dynamic Object Collaboration

• In this sample scenario, a Client object works through a Facade object to access many
different objects in a subsystem.

• The Client object calls an operation on the Facade object.

• Facade delegates the request to the objects in the subsystem that fulfill the request.

• Facade may do work of its own before and/or after forwarding a request.

• See also Sample Code / Example 1.

FACADE w3sDesign / V 2.0 / 12.01.2018 132

Consequences

Advantages (+)

• Decouples clients from a subsystem.
– Clients are decoupled from the subsystem by working through a Facade object.
– Clients only refer to and know about the simple Facade interface and are independent of the

complex subsystem (loose coupling).
– This makes clients easier to implement, change, test, and reuse.

• Decouples subsystems.
– When layering a complex system, Facade can define a single entry point for each subsystem.
– Subsystems collaborate with each other solely through their facades, which reduces and

simplifies dependencies between subsystems.

Disadvantages (–)

FACADE w3sDesign / V 2.0 / 12.01.2018 133

Implementation

Implementation Issues

• Implementation Variants
– The Facade interface is implemented in terms of (by delegating to) the appropriate interfaces

in the subsystem.
– "Although the subsystem objects perform the actual work, the facade may have to do work

of its own to translate its interface to subsystem interfaces." [GoF, p187]
– "A facade can provide a simple default view of the subsystem that is good enough for

most clients. Only clients needing more customizability will need to look behind the
facade." [GoF, p186]

FACADE w3sDesign / V 2.0 / 12.01.2018 134

Sample Code 1

Basic Java code for implementing the sample UML diagrams.

 1 package com.sample.facade.basic;
 2 public class Client {
 3 // Running the Client class as application.
 4 public static void main(String[] args) {
 5 // Creating a facade for a subsystem.
 6 Facade facade = new Facade1
 7 (new Class1(), new Class2(), new Class3());
 8 // Working through the facade.
 9 System.out.println(facade.operation());
10 }
11 }

Facade forwards to ... Class1 Class2 Class3

 1 package com.sample.facade.basic;
 2 public abstract class Facade {
 3 public abstract String operation();
 4 }

 1 package com.sample.facade.basic;
 2 public class Facade1 extends Facade {
 3 private Class1 object1;
 4 private Class2 object2;
 5 private Class3 object3;
 6
 7 public Facade1(Class1 object1, Class2 object2, Class3 object3) {
 8 this.object1 = object1;
 9 this.object2 = object2;
10 this.object3 = object3;
11 }
12 public String operation() {
13 return "Facade forwards to ... "
14 + object1.operation1()
15 + object2.operation2()
16 + object3.operation3();
17 }
18 }

 1 package com.sample.facade.basic;
 2 public class Class1 {
 3 public String operation1() {
 4 return "Class1 ";
 5 }
 6 }

 1 package com.sample.facade.basic;
 2 public class Class2 {
 3 public String operation2() {
 4 return "Class2 ";
 5 }
 6 }

FACADE w3sDesign / V 2.0 / 12.01.2018 135

 1 package com.sample.facade.basic;
 2 public class Class3 {
 3 public String operation3() {
 4 return "Class3 ";
 5 }
 6 }

FACADE w3sDesign / V 2.0 / 12.01.2018 136

Related Patterns

Key Relationships

• Adapter - Bridge* - Composite - Decorator - Facade - Flyweight* - Proxy
These patterns are classified as structural design patterns. [GoF, p10]
– Adapter provides an alternative interface for an (already existing) class or object.
– Bridge* lets an abstraction and its implementation vary independently.
– Composite composes (already existing) objects into a tree structure.
– Decorator provides additional functionality for an (already existing) object.
– Facade provides an unified interface for (already existing) objects in a subsystem.
– Flyweight* supports large numbers of fine-grained objects efficiently.
– Proxy provides additional functionality when accessing an (already existing) object.

Background Information

• Structural design patterns
(shown in the second row of the main menu) are concerned with providing alternative behavior
for already existing classes or objects (without touching them).

• Bridge* and Flyweight* should be classified as behavioral design patterns
(shown in the third row of the main menu) that are concerned with designing related classes
and interacting objects having a desired behavior.

FLYWEIGHT w3sDesign / V 2.0 / 12.01.2018 137

Intent

The intent of the Flyweight design pattern is to:
"Use sharing to support large numbers of fine-grained objects efficiently." [GoF]
See Problem and Solution sections for a more structured description of the intent.

• The Flyweight design pattern solves problems like:
– How can large numbers of fine-grained objects be supported efficiently?

• For example, to represent a text document at the finest levels, an object is needed for every
character in the document, which may result in a huge amount of objects.

• The Flyweight pattern describes how to solve such problems:
– Use sharing to support large numbers of fine-grained objects efficiently.

– Define Flyweight objects that store intrinsic (invariant) state.
Clients share Flyweight objects and pass in extrinsic (variant) state dynamically at run-time
when they invoke a flyweight operation (flyweight.operation(extrinsicState)).

– Intrinsic state is invariant (context independent) and therefore can be shared.
Extrinsic state is variant (context dependent) and therefore can not be shared and must be
passed in.

FLYWEIGHT w3sDesign / V 2.0 / 12.01.2018 138

Problem

The Flyweight design pattern solves problems like:
How can large numbers of fine-grained objects be supported efficiently?
See Applicability section for all problems Flyweight can solve. See Solution section for how
Flyweight solves the problems.

• A naive way to support large numbers of objects in an application is to create an object each
time it is needed.

• For example, text editing applications.
To represent a text document at the finest levels, an object is needed for every occurrence of
a character in the document, which can result in a huge amount of objects. "Even moderate-
sized documents may require hundreds of thousands of character objects, which will consume
lots of memory and may incur unacceptable run-time overhead." [GoF, p195]

• That's the kind of approach to avoid if we want to support large numbers of objects efficiently.

• It should be possible to reduce the number of physically created objects. Logically, there should
be an object for every occurrence of a character in the document.

• For example, language processing and translation applications.
It should be possible to process any size of documents efficiently.

FLYWEIGHT w3sDesign / V 2.0 / 12.01.2018 139

Solution

The Flyweight design pattern provides a solution:
Define separate Flyweight objects that store intrinsic (invariant) state.
Clients share Flyweight objects and pass in extrinsic (variant) state
instead of creating an object each time it is needed.
Describing the Flyweight design in more detail is the theme of the following sections.
See Applicability section for all problems Flyweight can solve.

• "The key concept here is the distinction between intrinsic and extrinsic state." [GoF, p196]
Flyweight objects store intrinsic state, and clients pass in extrinsic state.
Intrinsic state is invariant (context independent) and therefore can be shared.
For example, the code of a character in the used character set.
Extrinsic state is variant (context dependent) and therefore can not be shared.
For example, the position of a character in the document.

• Define separate Flyweight objects:
– Define an interface (Flyweight | operation(extrinsicState)) through which extrinsic

(variant) state can be passed in.
– Define classes (Flyweight1,…) that implement the Flyweight interface and store intrinsic

(invariant) state that can be shared.

• Clients share (reuse) Flyweight objects and pass in extrinsic state each time they invoke
a flyweight operation (flyweight.operation(extrinsicState)).
– To ensure that Flyweight objects are shared properly, clients must obtain flyweights solely

from the flyweight factory (getFlyweight(key)) that maintains a pool of shared Flyweight
objects.

– This greatly reduces the number of physically created objects.

FLYWEIGHT w3sDesign / V 2.0 / 12.01.2018 140

Motivation 1

Consider the left design (problem):

• Large number of physically created objects.
– To represent a text document, an object is created for each character in the

document.
– The number of physically created character objects depends on the number of characters

in the document.

Consider the right design (solution):

• Small number of physically created objects.
– To represent a text document, a Flyweight object is created for each character in the used

character set (flyweight pool).
– The number of physically created character objects is independent of the number of

characters in the document.
It depends on the number of characters in the character set.

– A flyweight stores only the intrinsic state (for example, the character code).
Clients provide the extrinsic state dynamically at run-time
(for example, the current position, font, and color of the character in the document).

FLYWEIGHT w3sDesign / V 2.0 / 12.01.2018 141

Applicability

Design Problems

• Supporting Large Numbers of Objects
– How can large numbers of fine-grained objects be supported efficiently?
– How can objects be shared to avoid creating large numbers of objects?
– How can small numbers of physically created objects

represent large numbers of logically different objects?

FLYWEIGHT w3sDesign / V 2.0 / 12.01.2018 142

Structure, Collaboration

Static Class Structure

• Client

– Refers to the Flyweight interface.
– Maintains a reference (flyweight) to a Flyweight object.
– Passes in extrinsic state when invoking a Flyweight operation

(operation(extrinsicState)).
– Requests a Flyweight object from the FlyweightFactory (by invoking

getFlyweight(key)).

• Flyweight

– Defines an interface (operation(extrinsicState)) through which extrinsic (variant) state
can be passed in.

• Flyweight1,…
– Implement the Flyweight interface.
– Store intrinsic (invariant) state that can be shared.

• UnsharedFlyweight1,…
– Implement the Flyweight interface but are not shared.

• FlyweightFactory

– Maintains a container of shared Flyweight objects (flyweight pool).
– Creates a Flyweight object if it doesn't exist and shares (reuses) an existing one.

Dynamic Object Collaboration

• In this sample scenario, a Client object shares a Flyweight1 object by requesting it from a
FlyweightFactory object.

• The interaction starts with the Client that calls getFlyweight(key) on the
FlyweightFactory.

• Because the flyweight does not already exist, the FlyweightFactory creates a Flyweight1
object and returns it to the Client.

• The Client calls operation(extrinsicState) on the returned Flyweight1 object by passing
in the extrinsic state.

• Thereafter, the Client again calls getFlyweight(key) on the FlyweightFactory.

• Because the flyweight already exists, the FlyweightFactory shares (reuses) the Flyweight1
object.

FLYWEIGHT w3sDesign / V 2.0 / 12.01.2018 143

• The Client calls operation(extrinsicState) on the returned Flyweight1 object.

• See also Sample Code / Example 1.

FLYWEIGHT w3sDesign / V 2.0 / 12.01.2018 144

Consequences

Advantages (+)

• Enables abstractions at the finest levels.
– A small number of physically created objects can represent an open-ended number of

logically different objects.

Disadvantages (–)

• Introduces run-time costs.
– Clients are responsible for passing in extrinsic state dynamically at run-time.
– Storing/retrieving/calculating extrinsic state each time a flyweight operation is performed

can impact memory usage and system performance.

• Provides no reliability on object identity.
– The same physically created object represents many logically different objects.
– Therefore, applications that depend on object identity should not use flyweights.

FLYWEIGHT w3sDesign / V 2.0 / 12.01.2018 145

Implementation

Implementation Issues

• Flyweight Factory
– To ensure that Flyweight objects are shared properly, clients must obtain flyweights solely

from the flyweight factory (getFlyweight(key)).
– A flyweight factory maintains a pool of shared flyweights.

If the requested flyweight already exists in the pool, it is shared (reused) and returned to
the client.
Otherwise, it is created, added to the pool, and returned.

– The key parameter in the getFlyweight(key) operation is needed to look up the right
flyweight in the pool (see Sample Code / Example 1).

FLYWEIGHT w3sDesign / V 2.0 / 12.01.2018 146

Sample Code 1

Basic Java code for implementing the sample UML diagrams.

 1 package com.sample.flyweight.basic;
 2 public class Client {
 3 // Running the Client class as application.
 4 public static void main(String[] args) {
 5 Flyweight flyweight;
 6 // Getting a FlyweightFactory object.
 7 FlyweightFactory flyweightFactory = FlyweightFactory.getInstance();
 8
 9 flyweight = flyweightFactory.getFlyweight("A");
10 System.out.println(flyweight.operation(100));
11
12 flyweight = flyweightFactory.getFlyweight("A");
13 System.out.println(flyweight.operation(200));
14
15 System.out.println("\n*** Number of flyweights created: "
16 + flyweightFactory.getSize() + " ***");
17 }
18 }

C r e a t i n g a flyweight with key = A
 performing an operation on the flyweight
 with intrinsic state = A and passed in extrinsic state = 100.
S h a r i n g a flyweight with key = A
 performing an operation on the flyweight
 with intrinsic state = A and passed in extrinsic state = 200.

*** Number of flyweights created: 1 ***

 1 package com.sample.flyweight.basic;
 2 public interface Flyweight {
 3 public String operation(int extrinsicState);
 4 }

 1 package com.sample.flyweight.basic;
 2 public class Flyweight1 implements Flyweight {
 3 private String intrinsicState;
 4 public Flyweight1(String intrinsicState) {
 5 this.intrinsicState = intrinsicState;
 6 }
 7 public String operation(int extrinsicState) {
 8 return " performing an operation on the flyweight\n "
 9 + " with intrinsic state = " + intrinsicState
10 + " and passed in extrinsic state = " + extrinsicState + ".";
11 }
12 }

 1 package com.sample.flyweight.basic;
 2 import java.util.HashMap;
 3 import java.util.Map;
 4 public class FlyweightFactory {
 5 // Implemented as Singleton.
 6 // See also Singleton / Implementation / Variant 1.

FLYWEIGHT w3sDesign / V 2.0 / 12.01.2018 147

 7 private static final FlyweightFactory INSTANCE = new FlyweightFactory();
 8 private FlyweightFactory() { }
 9 public static FlyweightFactory getInstance() {
10 return INSTANCE;
11 }
12 // Shared flyweight pool.
13 private Map<String, Flyweight> flyweights = new HashMap<String, Flyweight>();
14 // Creating and maintaining shared flyweights.
15 public Flyweight getFlyweight(String key) {
16 if (flyweights.containsKey(key)) {
17 System.out.println("S h a r i n g a flyweight with key = " + key);
18 return flyweights.get(key);
19 } else {
20 System.out.println("C r e a t i n g a flyweight with key = " + key);
21 Flyweight flyweight = new Flyweight1(key); // assuming key = intrinsic state
22 flyweights.put(key, flyweight);
23 return flyweight;
24 }
25 }
26 public int getSize() {
27 return flyweights.size();
28 }
29 }

FLYWEIGHT w3sDesign / V 2.0 / 12.01.2018 148

Related Patterns

Key Relationships

• Adapter - Bridge* - Composite - Decorator - Facade - Flyweight* - Proxy
These patterns are classified as structural design patterns. [GoF, p10]
– Adapter provides an alternative interface for an (already existing) class or object.
– Bridge* lets an abstraction and its implementation vary independently.
– Composite composes (already existing) objects into a tree structure.
– Decorator provides additional functionality for an (already existing) object.
– Facade provides an unified interface for (already existing) objects in a subsystem.
– Flyweight* supports large numbers of fine-grained objects efficiently.
– Proxy provides additional functionality when accessing an (already existing) object.

• Composite - Flyweight
– Composite and Flyweight often work together.

Leaf objects can be implemented as shared flyweight objects.

• Flyweight - Singleton
– The flyweight factory is usually implemented as Singleton.

Background Information

• Structural design patterns
(shown in the second row of the main menu) are concerned with providing alternative behavior
for already existing classes or objects (without touching them).

• Bridge* and Flyweight* should be classified as behavioral design patterns
(shown in the third row of the main menu) that are concerned with designing related classes
and interacting objects having a desired behavior.

PROXY w3sDesign / V 2.0 / 12.01.2018 149

Intent

The intent of the Proxy design pattern is to:
"Provide a surrogate or placeholder for another object
to control access to it." [GoF]
See Problem and Solution sections for a more structured description of the intent.

• The Proxy design pattern solves problems like:
– How can the access to an object be controlled?

– How can additional functionality be provided when accessing an object?

• For example, the access to sensitive, expensive, or remote objects should be controlled.

• The Proxy pattern describes how to solve such problems:
– Provide a surrogate or placeholder for another object to control access to it.

Define a separate Proxy object that acts as placeholder for another object (Subject). A
proxy implements the Subject interface so that it can act as placeholder anywhere a subject
is expected.

– Work through a Proxy object to control the access to an (already existing) object.

PROXY w3sDesign / V 2.0 / 12.01.2018 150

Problem

The Proxy design pattern solves problems like:
How can the access to an object be controlled?
How can additional functionality be provided when accessing an object?
See Applicability section for all problems Proxy can solve. See Solution section for how
Proxy solves the problems.

• Often it should be possible to provide additional functionality when accessing an (already
existing) object.
"[…] whenever there is a need for a more versatile or sophisticated reference to an object than
a simple pointer." [GoF, p208]

• For example, when accessing sensitive objects, it should be possible to check that clients have
the required access rights.

• For example, when accessing expensive objects, it should be possible to create them on demand
(i.e., to defer their instantiation until they are actually needed) and cache their data.

• For example, when accessing remote objects, it should be possible to hide complex network
communication details from clients.

PROXY w3sDesign / V 2.0 / 12.01.2018 151

Solution

The Proxy design pattern provides a solution:
Define a separate Proxy object that acts as substitute for another object (Subject).
Work through a Proxy object to control the access to a real subject.
Describing the Proxy design in more detail is the theme of the following sections.
See Applicability section for all problems Proxy can solve.

• The key idea in this pattern is to work through a separate Proxy object that performs additional
functionality when accessing an (already existing) object.
A proxy implements the Subject interface so that it can act as substitute wherever a subject is
expected. Clients do not know whether they are working with a real subject or its proxy.

• Define a separate Proxy object:
– Define a class (Proxy) that implements arbitrary functionality to control the access to a

RealSubject object.
– "The Proxy pattern introduces a level of indirection when accessing an object. The additional

indirection has many uses, depending on the kind of proxy:" [GoF, p210] For example:
A protection proxy acts as placeholder for sensitive objects
to check that clients have the required access rights.
A virtual proxy acts as placeholder for expensive objects
to defer their creation until they are actually needed.
A remote proxy acts as placeholder for remote objects
to hide complex network communication details from clients.

PROXY w3sDesign / V 2.0 / 12.01.2018 152

Motivation 1

Consider the left design (problem):

• No proxy / direct access.
Complicated clients.
– Clients access RealSubject directly.
– Handling remote or expensive objects, for example, makes clients harder to implement,

change, test, and reuse.

Consider the right design (solution):

• Working through a proxy.
Simplified clients.
– Clients work through a Proxy.
– Proxy hides implementation details from clients, which makes them easier to implement,

change, test, and reuse.

PROXY w3sDesign / V 2.0 / 12.01.2018 153

Applicability

Design Problems

• Controlling Access to Objects
– How can the access to an object be controlled?
– How can additional functionality be provided when accessing an object?

• Common Kinds of Proxies
– A protection proxy acts as placeholder for sensitive objects

to check that clients have the required access rights.
– A virtual proxy acts as placeholder for expensive objects

to defer their creation until they are actually needed.
– A remote proxy acts as placeholder for remote objects

to hide complex network communication details from clients.

PROXY w3sDesign / V 2.0 / 12.01.2018 154

Structure, Collaboration

Static Class Structure

• Client

– Refers to the Subject interface.

• Subject

– Defines a common interface for RealSubject and Proxy objects.

• RealSubject

– Defines objects that get substituted.

• Proxy

– Maintains a reference to a RealSubject object (realSubject).
– Implements additional functionality to control the access to this RealSubject object.
– Implements the Subject interface so that it can act as substitute whenever a Subject object

is expected.

Dynamic Object Collaboration

• In this sample scenario, a Client object works through a Proxy object that controls the access
to a RealSubject object.

• The Client object calls operation() on the Proxy object.

• The Proxy may perform additional functionality and forwards the request to the RealSubject
object, which performs the request.

• See also Sample Code / Example 1.

PROXY w3sDesign / V 2.0 / 12.01.2018 155

Consequences

Advantages (+)

• Simplifies clients.
– A proxy hides implementation details from clients, which makes them easier to implement,

change, test, and reuse.

Disadvantages (–)

• Proxy is coupled to real subject.
– A proxy implements the Subject interface and (usually) has direct access to the concrete

RealSubject class.
– "But if Proxies are going to instantiate RealSubjects (such as in a virtual proxy), then they

have to know the concrete class." [GoF, p213]

PROXY w3sDesign / V 2.0 / 12.01.2018 156

Implementation

Implementation Issues

• Interface Conformance
– Proxy implements the Subject interface so that it can act as a surrogate or placeholder

anywhere a subject is expected.
– Clients generally can't tell whether they're dealing with real subject directly or through its

proxy.
– Proxy (usually) has direct access to the concrete RealSubject class.

• Implementation Variants
– A proxy can implement arbitrary functionality.
– "The Proxy pattern introduces a level of indirection when accessing an object. The additional

indirection has many uses, depending on the kind of proxy:" [GoF, p210]

PROXY w3sDesign / V 2.0 / 12.01.2018 157

Sample Code 1

Basic Java code for implementing the sample UML diagrams.

 1 package com.sample.proxy.basic;
 2 public class Client {
 3 // Running the Client class as application.
 4 public static void main(String[] args) {
 5 // Creating a proxy for a real subject.
 6 Proxy proxy = new Proxy(new RealSubject());
 7 // Working through the proxy.
 8 System.out.println(proxy.operation());
 9 }
10 }

Hello world from Proxy and RealSubject!

 1 package com.sample.proxy.basic;
 2 public abstract class Subject {
 3 public abstract String operation();
 4 }

 1 package com.sample.proxy.basic;
 2 public class RealSubject extends Subject {
 3 public String operation() {
 4 return "RealSubject!";
 5 }
 6 }

 1 package com.sample.proxy.basic;
 2 public class Proxy extends Subject {
 3 private RealSubject realSubject;
 4
 5 public Proxy(RealSubject subject) {
 6 this.realSubject = subject;
 7 }
 8 public String operation() {
 9 return "Hello world from Proxy and " + realSubject.operation();
10 }
11 }

PROXY w3sDesign / V 2.0 / 12.01.2018 158

Related Patterns

Key Relationships

• Adapter - Bridge* - Composite - Decorator - Facade - Flyweight* - Proxy
These patterns are classified as structural design patterns. [GoF, p10]
– Adapter provides an alternative interface for an (already existing) class or object.
– Bridge* lets an abstraction and its implementation vary independently.
– Composite composes (already existing) objects into a tree structure.
– Decorator provides additional functionality for an (already existing) object.
– Facade provides an unified interface for (already existing) objects in a subsystem.
– Flyweight* supports large numbers of fine-grained objects efficiently.
– Proxy provides additional functionality when accessing an (already existing) object.

Background Information

• Structural design patterns
(shown in the second row of the main menu) are concerned with providing alternative behavior
for already existing classes or objects (without touching them).

• Bridge* and Flyweight* should be classified as behavioral design patterns
(shown in the third row of the main menu) that are concerned with designing related classes
and interacting objects having a desired behavior.

Behavioral Patterns w3sDesign / V 2.0 / 12.01.2018 159

Part IV. Behavioral Patterns

CHAIN OF RESPONSIBILITY w3sDesign / V 2.0 / 12.01.2018 160

Intent

The intent of the Chain of Responsibility design pattern is to:
"Avoid coupling the sender of a request to its receiver by giving more than one
object a chance to handle the request. Chain the receiving objects and pass the
request along the chain until an object handles it." [GoF]
See Problem and Solution sections for a more structured description of the intent.

• The Chain of Responsibility design pattern solves problems like:
– How can coupling the sender of a request to its receiver be avoided?

– How can more than one object handle a request?

• A request is an operation that one object (sender) performs on another (receiver).

• An inflexible way is to implement a request directly within the class that sends the request.
This couples the sender of a request to a particular receiver at compile-time.

• The Chain of Responsibility pattern describes how to solve such problems:
– Chain the receiving objects and pass the request along the chain until an object handles it.

– Define and chain Handler objects that either handle or forward a request. This results in a
chain of objects having the responsibility to handle a request.

Background Information

• Terms and definitions:
– "An object performs an operation when it receives a corresponding request from an other

object. A common synonym for request is message." [GoF, p361]
– A receiver is the target object of a request.
– A message is "An operation that one object performs on another. The terms message, method,

and operation are usually interchangeable." [GBooch07, p597]
– Coupling is "The degree to which software components depend on each other." [GoF, p360]

• Requests in UML sequence diagrams:
A sequence diagram shows the objects of interest and the requests (messages) between them.
Requests are drawn horizontally from sender to receiver, and their ordering is indicated by their
vertical position. That means, the first request is shown at the top and the last at the bottom.

CHAIN OF RESPONSIBILITY w3sDesign / V 2.0 / 12.01.2018 161

Problem

The Chain of Responsibility design pattern solves problems like:
How can coupling the sender of a request to its receiver be avoided?
How can more than one object handle a request?
See Applicability section for all problems Chain of Responsibility can solve. See Solution
section for how Chain of Responsibility solves the problems.

• An inflexible way is to implement (hard-wire) a request (receiver1.operation1()) directly
within the class (Sender) that sends the request.

• This commits (couples) the sender of a request to a particular receiver at compile-time and
makes it impossible to specify more than one receiver.

• That's the kind of approach to avoid if we want to specify multiple objects that can handle
a request.

• For example, providing context-sensitive help in a GUI/Web application.
In a context-sensitive help system, a user can click anywhere to get help information. That is,
multiple objects exist that can handle a help request by providing a specific help information.
Which object provides the help isn't known at compile-time and should be determined at run-
time (depending on run-time conditions).
"The problem here is that the object that ultimately provides the help isn't known explicitly to
the object [sender] (e.g., the button) that initiates the help request." [GoF, p223]

CHAIN OF RESPONSIBILITY w3sDesign / V 2.0 / 12.01.2018 162

Solution

The Chain of Responsibility design pattern provides a solution:
Define a chain of Handler objects having the responsibility to either handle a request or
forward it to the next handler.
A class sends a request to a chain of handlers
and doesn't know (is independent of) which handler handles the request.
Describing Chain of Responsibility in more detail is the theme of the following sections.
See Applicability section for all problems Chain of Responsibility can solve.

• "The idea of this pattern is to decouple senders and receivers by giving multiple objects a
chance to handle a request. The request gets passed along a chain of objects until one of them
handles it." [GoF, p223]

• Define and chain Handler objects:
– Define an interface for handling a request (Handler | handleRequest()).
– Objects that can handle a request implement the Handler interface by either handling the

request directly or forwarding it to the next handler (if any) on the chain.
– "Chain of Responsibility is a good way to decouple the sender and the receiver if the chain

is already part of the system's structure, and one of several objects may be in a position to
handle the request." [GoF, p348]

• A class (Sender) sends a request to a chain of handlers (handler.handleRequest()).
The request gets passed along the chain until a handler handles it.

• This enables loose coupling between the sender of a request and its receiver(s).
The object that sends a request has no explicit knowledge of the object (receiver) that ultimately
will handle the request.
The chain of Handler objects can be specified dynamically at run-time (Handler objects can
be added to and removed from the chain).

CHAIN OF RESPONSIBILITY w3sDesign / V 2.0 / 12.01.2018 163

Motivation 1

Consider the left design (problem):

• One receiver.
– The request is sent to a particular receiver (Receiver1 object).
– This couples the sender to a particular receiver.

Consider the right design (solution):

• Multiple receivers.
– The request gets passed along a chain of receivers (Handler objects).
– This decouples the sender from a particular receiver.
– The sender has no explicit knowledge of the handler (receiver) that ultimately will handle

the request.
– The chain of handlers can be changed at run-time (handlers can be added to and removed

from the chain).

CHAIN OF RESPONSIBILITY w3sDesign / V 2.0 / 12.01.2018 164

Applicability

Design Problems

• Avoiding Hard-Wired Requests
– How can coupling the sender of a request to its receiver be avoided?

• Specifying Multiple Receivers
– How can more than one object handle a request?
– How can the set of objects that can handle a request be specified dynamically?

CHAIN OF RESPONSIBILITY w3sDesign / V 2.0 / 12.01.2018 165

Structure, Collaboration

Static Class Structure

• Sender

– Refers to the Handler interface to handle a request (handler.handleRequest())
and is independent of how the request is handled (which handler handles the request).

– Maintains a reference (handler) to a Handler object on the chain.

• Handler

– Defines an interface for handling a request.
– Maintains a reference (successor) to the next Handler object on the chain.

• Receiver1,Receiver2,Receiver3,…
– Implement the Handler interface

by either handling a request directly or forwarding it to the next handler (if any) on the chain.

Dynamic Object Collaboration

• In this sample scenario, a Sender object sends a request to a Handler object on the chain. The
request gets forwarded along the chain until a handler (receiver3) handles it.

• The interaction starts with the Sender that calls handleRequest() on the receiver1 object
(of type Handler).

• receiver1 forwards the request by calling handleRequest() on the receiver2 object.

• receiver2 forwards the request by calling handleRequest() on the receiver3 object.

• receiver3 handles the request and returns to receiver2 (which returns to receiver1, which
in turn returns to the Sender).

• See also Sample Code / Example 1.

CHAIN OF RESPONSIBILITY w3sDesign / V 2.0 / 12.01.2018 166

Consequences

Advantages (+)

• Decouples sender from receiver.
– The pattern decouples the sender of a request from a particular receiver (handler) by sending

the request to a chain of handlers.

• Makes changing the chain of handlers easy.
– The chain of handlers can be changed at run-time (handlers can be added to and removed

from the chain).

Disadvantages (–)

• Successor chain can be complex.
– If there is no existing object structure that can be used to define and maintain a successor

chain, it may be hard to implement and maintain the chain (see Implementation).
– "Chain of Responsibility is a good way to decouple the sender and the receiver if the chain

is already part of the system's structure, and one of several objects may be in a position to
handle the request." [GoF, p348]

CHAIN OF RESPONSIBILITY w3sDesign / V 2.0 / 12.01.2018 167

Implementation

Implementation Issues

• Implementing the successor chain.
– There are two main variants to implement the successor chain:

• Variant1: Using existing links.
– Often existing object structures can be used to define the chain (see Composite).
– "Chain of Responsibility is a good way to decouple the sender and the receiver if the chain

is already part of the system's structure, and one of several objects may be in a position to
handle the request." [GoF, p348]

• Variant2: Defining new links.
– If no proper object structures exist, a new chain must be defined.

CHAIN OF RESPONSIBILITY w3sDesign / V 2.0 / 12.01.2018 168

Sample Code 1

Basic Java code for implementing the sample UML diagrams.

 1 package com.sample.cor.basic;
 2 public class Sender {
 3 // Running the Sender class as application.
 4 public static void main(String[] args) {
 5 // Creating the chain of handler objects.
 6 Handler handler = new Receiver1(new Receiver2(new Receiver3()));
 7 //
 8 System.out.println("Issuing a request to a handler object ... ");
 9 handler.handleRequest();
10 }
11 }

Issuing a request to a handler object ...
Receiver1: Passing the request along the chain ...
Receiver2: Passing the request along the chain ...
Receiver3: Handling the request.

 1 package com.sample.cor.basic;
 2 public abstract class Handler {
 3 private Handler successor;
 4 public Handler() { }
 5 public Handler(Handler successor) {
 6 this.successor = successor;
 7 }
 8 public void handleRequest() {
 9 // Forwarding to successor (if any).
10 if (successor != null) {
11 successor.handleRequest();
12 }
13 }
14 public boolean canHandleRequest() {
15 // Checking run-time conditions ...
16 return false;
17 }
18 }

 1 package com.sample.cor.basic;
 2 public class Receiver1 extends Handler {
 3 public Receiver1(Handler successor) {
 4 super(successor);
 5 }
 6 @Override
 7 public void handleRequest() {
 8 if (canHandleRequest()) {
 9 System.out.println("Receiver1: Handling the request ...");
10 } else {
11 System.out.println("Receiver1: Passing the request along the chain ...");
12 super.handleRequest();
13 }
14 }
15 }

CHAIN OF RESPONSIBILITY w3sDesign / V 2.0 / 12.01.2018 169

 1 package com.sample.cor.basic;
 2 public class Receiver2 extends Handler {
 3 public Receiver2(Handler successor) {
 4 super(successor);
 5 }
 6 @Override
 7 public void handleRequest() {
 8 if (canHandleRequest()) {
 9 System.out.println("Receiver2: Handling the request ...");
10 } else {
11 System.out.println("Receiver2: Passing the request along the chain ...");
12 super.handleRequest();
13 }
14 }
15 }

 1 package com.sample.cor.basic;
 2 // End of chain.
 3 public class Receiver3 extends Handler {
 4 @Override
 5 public void handleRequest() {
 6 // Must handle the request unconditionally.
 7 System.out.println("Receiver3: Handling the request.");
 8 }
 9 }

CHAIN OF RESPONSIBILITY w3sDesign / V 2.0 / 12.01.2018 170

Related Patterns

Key Relationships

• Composite - Chain of Responsibility
– Composite and Chain of Responsibility often work together.

Existing composite object structures can be used to define the successor chain.
"Chain of Responsibility is a good way to decouple the sender and the receiver if the chain
is already part of the system's structure, and one of several objects may be in a position to
handle the request." [GoF, p348]

COMMAND w3sDesign / V 2.0 / 12.01.2018 171

Intent

The intent of the Command design pattern is to:
"Encapsulate a request as an object, thereby letting you parameterize clients with different
requests, queue or log requests, and support undoable operations." [GoF]
See Problem and Solution sections for a more structured description of the intent.

• The Command design pattern solves problems like:
– How can coupling the invoker of a request to a request be avoided?

– How can an object be configured with a request?

• A request is an operation that one object performs on another.
From a more general point of view, a request is an arbitrary action to perform.
The terms request, message, operation, and method are usually interchangeable
just as performing, issuing, and sending a request.

• The Command pattern describes how to solve such problems:
– Encapsulate a request as an object - define separate classes (Command1,…) that implement

(encapsulate) a request, and define a common interface (Command | execute()) through
which a request can be executed.

Background Information

• Terms and definitions:
– "An object performs an operation when it receives a corresponding request from an other

object. A common synonym for request is message." [GoF, p361]
– A receiver is the target object of a request.
– A message is "An operation that one object performs on another. The terms message, method,

and operation are usually interchangeable." [GBooch07, p597]

• Requests in UML sequence diagrams:
A sequence diagram shows the objects of interest and the requests (messages) between them.
Requests are drawn horizontally from sender to receiver, and their ordering is indicated by their
vertical position. That means, the first request is shown at the top and the last at the bottom.

COMMAND w3sDesign / V 2.0 / 12.01.2018 172

Problem

The Command design pattern solves problems like:
How can coupling the invoker of a request to a request be avoided? How can an object be
configured with a request?
See Applicability section for all problems Command can solve. See Solution section for how
Command solves the problems.

• An inflexible way is to implement (hard-wire) a request (receiver1.action1()) directly
within the class (Invoker) that invokes the request.

• This commits (couples) the the invoker of a request to a particular request at compile-time and
makes it impossible to specify a request at run-time.
"When you specify a particular operation, you commit to one way of satisfying a request. By
avoiding hard-coded requests, you make it easier to change the way a request gets satisfied
both at compile-time and run-time." [GoF, p24]

• That's the kind of approach to avoid if we want to configure an object with a request at run-
time.

• For example, reusable classes that invoke a request in response to an user input.
A reusable class should avoid hard-wired requests so that it can be configured with a request
at run-time.

COMMAND w3sDesign / V 2.0 / 12.01.2018 173

Solution

The Command design pattern provides a solution:
Encapsulate a request in a separate Command object.
A class delegates a request to a Command object
and doesn't know (is independent of) how the request performed.
Describing the Command design in more detail is the theme of the following sections.
See Applicability section for all problems Command can solve.

• The key idea in this pattern is to encapsulate a request in a separate object that (1) can be
used and passed around just like other objects and (2) can be queued or logged to be called
at a later point.

• Define separate Command objects:
– Define a common interface for performing a request (Command | execute()).
– Define classes (Command1,…) that implement the Command interface.
– A command can implement arbitrary functionality. In the most simple case, it implements a

request by calling an operation on a receiver object (receiver1.action1()).

• This enables compile-time flexibility (via inheritance).
New commands can be added and existing ones can be changed independently by defining
new (sub)classes.

• A class (Invoker) delegates the responsibility for performing a request to a Command
object (command.execute()).

• This enables run-time flexibility (via object composition).
A class can be configured with a Command object, which it uses to perform a request, and even
more, the Command object can be exchanged dynamically.
Commands can be stored (in a history list, for example) to be executed or unexecuted at a later
time (to queue or log requests and to support undoable operations).

Background Information

• In a procedural language, a callback function is "a function that's registered somewhere
to be called at a later point. Commands are an object-oriented replacement for
callbacks." [GoF, p235]

COMMAND w3sDesign / V 2.0 / 12.01.2018 174

Motivation 1

Consider the left design (problem):

• Hard-wired request.
– The request (receiver1.action1()) is implemented (hard-wired) directly within the class

(Invoker).
– This makes it impossible to specify a request at run-time.
– When designing reusable objects, the particular request isn't known at compile-time and

should be specified at run-time.

Consider the right design (solution):

• Encapsulated request.
– The request (receiver1.action1()) is implemented (encapsulated) in a separate class

(Command1,…).
– The makes it possible to delegate a request to a Command object at run-time.
– Reusable objects can be configured with a Command object at run-time.

COMMAND w3sDesign / V 2.0 / 12.01.2018 175

Applicability

Design Problems

• Avoiding Hard-Wired Requests
– How can coupling the invoker of a request to a request be avoided?

• Exchanging Requests at Run-Time
– How can an object be configured with a request?
– How can a request be selected and exchanged at run-time?

• Queuing or Logging Requests
– How can requests be queued or logged?
– How can undoable operations be supported?

COMMAND w3sDesign / V 2.0 / 12.01.2018 176

Structure, Collaboration

Static Class Structure

• Invoker

– Refers to the Command interface to perform a request (command.execute())
and is independent of how the request is implemented.

– Maintains a reference (command) to a Command object.

• Command

– Defines a common interface for performing a request.

• Command1,…
– Implement the Command interface (for example, by calling action1() on a Receiver1

object).
– See also Implementation.

Dynamic Object Collaboration

• In this sample scenario, an Invoker object delegates performing a request to a Command object.
Let's assume that Invoker is configured with a Command1 object.

• The interaction starts with the Invoker object that calls execute() on its installed Command1
object.

• Command1 calls action1() on a Receiver1 object.

• See also Sample Code / Example 1.

COMMAND w3sDesign / V 2.0 / 12.01.2018 177

Consequences

Advantages (+)

• Makes adding new commands easy.
– "It's easy to add new Commands, because you don' have to change existing

classes." [GoF, p237]

• Makes exchanging commands easy.
– Objects can be configured with the needed Command object, and even more, the command

can be exchanged dynamically at run-time.

Disadvantages (–)

• Additional level of indirection.
– Command achieves flexibility by introducing an additional level of indirection (invokers

delegate a request to a separate Command object), which makes invokers dependent on a
Command object.

COMMAND w3sDesign / V 2.0 / 12.01.2018 178

Implementation

Implementation Issues

• Implementation Variants
– A command can implement arbitrary functionality.

Usually, a command implements a request by calling an operation on a receiver object
(receiver1.action1()).

– "At one extreme it merely defines a binding between a receiver and the actions that carry out
the request. At the other extreme it implements everything without delegating to a receiver
at all. […] Somewhere in between these extremes are commands[…]" [GoF, p238]

COMMAND w3sDesign / V 2.0 / 12.01.2018 179

Sample Code 1

Basic Java code for implementing the sample UML diagrams.

 1 package com.sample.command.basic;
 2 public class MyApp {
 3 public static void main(String[] args) {
 4 // Creating an Invoker object
 5 // and configuring it with a Command1 object.
 6 Invoker invoker = new Invoker(new Command1(new Receiver1()));
 7 // Calling an operation on invoker.
 8 invoker.operation();
 9 }
10 }

Invoker : Calling execute on the installed command ...
Command1 : Performing (carrying out) the request ...
Receiver1: Hello World1!

 1 package com.sample.command.basic;
 2 public class Invoker {
 3 private Command command;
 4
 5 public Invoker(Command command) {
 6 this.command = command;
 7 }
 8 public void operation() {
 9 System.out.println("Invoker : Calling execute on the installed command ... ");
10 command.execute();
11 }
12 }

 1 package com.sample.command.basic;
 2 public interface Command {
 3 void execute();
 4 }

 1 package com.sample.command.basic;
 2 public class Command1 implements Command {
 3 private Receiver1 receiver1;
 4
 5 public Command1(Receiver1 receiver1) {
 6 this.receiver1 = receiver1;
 7 }
 8 public void execute() {
 9 System.out.println("Command1 : Performing (carrying out) the request ...");
10 receiver1.action1();
11 }
12 }

 1 package com.sample.command.basic;
 2 public class Receiver1 {
 3 public void action1() {
 4 System.out.println("Receiver1: Hello World1!");
 5 }
 6 }

COMMAND w3sDesign / V 2.0 / 12.01.2018 180

COMMAND w3sDesign / V 2.0 / 12.01.2018 181

Related Patterns

Key Relationships

• Strategy - Command
– Strategy provides a way

to configure an object with an algorithm at run-time
instead of committing to an algorithm at compile-time.

– Command provides a way
to configure an object with a request at run-time
instead of committing to a request at compile-time.

• Command - Memento
– To support undoable operations,

Command and Memento often work together.
Memento stores state that command requires to undo its effects.

INTERPRETER w3sDesign / V 2.0 / 12.01.2018 182

Intent

The intent of the Interpreter design pattern is:
"Given a language, define a representation for its grammar along with an interpreter that
uses the representation to interpret sentences in the language." [GoF]
See Problem and Solution sections for a more structured description of the intent.

• The Interpreter design pattern solves problems like:
– How can a grammar for a simple language be defined

so that sentences in the language can be interpreted?

• Terms and definitions:
– A language is a set of valid sentences.
– A sentence = statement = expression.

[…] expressions are the core components of statements […] An expression is a construct
made up of variables, operators, and method invocations, which are constructed according
to the syntax of the language, that evaluates to a single value." [The Java Language]

– A grammar is a way of formally describing the structure (syntax) of a language.
It's a list of rules, which Interpreter uses to interpret sentences in the language.
The most common grammar notation is Extended Backus-Naur Form (EBNF).

• The Interpreter pattern describes how to solve such problems:
– Given a language, define a representation for its grammar -

by defining an Expression class hierarchy
– along with an interpreter that uses the representation to interpret sentences in the language -

every sentence in the language is represented by an abstract syntax tree (AST) made up of
instances of the Expression classes.
A sentence is interpreted by calling interpret(context) on its AST.

Background Information

• Domain-specific languages (DSL) [MFowler11]
are designed to solve problems in a particular domain. In contrast, general-purpose languages
are designed to solve problems in many domains.
DSLs are widely used, for example, ANT, CSS, regular expressions, SQL, HQL (Hibernate
Query Language), XML, framework configuration files, XSLT, etc.

INTERPRETER w3sDesign / V 2.0 / 12.01.2018 183

Problem

The Interpreter design pattern solves problems like:
How can a grammar for a simple language be defined
so that sentences in the language can be interpreted?
See Applicability section for all problems Interpreter can solve. See Solution section for how
Interpreter solves the problems.

• "If a particular kind of problem occurs often enough, then it might be worthwhile to express
instances of the problem as sentences in a simple language. Then you can build an interpreter
that solves the problem by interpreting these sentences." [GoF, p243]

• Specifying a search expression, for example, is a problem that often occurs. Implementing
(hard-wiring) it each time it is needed directly within a class (Context) is inflexible because
it commits (couples) the class to a particular expression and makes it impossible to change or
reuse the expression later independently from (without having to change) the class.

• That's the kind of approach to avoid if we want to specify and change search expressions
dynamically at run-time.

• For example, an object finder with arbitrary (dynamically changeable) search criteria.
Instead of hard-wiring a search expression each time it is needed, it should be possible to define
a simple query language so that search expressions can be specified and interpreted (evaluated)
dynamically (see Implementation and Sample Code / Example 2).

INTERPRETER w3sDesign / V 2.0 / 12.01.2018 184

Solution

The Interpreter design pattern provides a solution:
(1) Define a grammar for a simple language by an Expression class hierarchy.
(2) Represent a sentence in the language by an AST (abstract syntax tree).
(3) Interpret a sentence by calling interpret(context) on an AST.
Describing the Interpreter design in more detail is the theme of the following sections. See
Applicability section for all problems Interpreter can solve.

• (1) Define a grammar for a simple language by an Expression class hierarchy:
– Define an interface for interpreting an expression (AbstractExpression |

interpret(context)).
– Define classes (TerminalExpression) that implement the interpretation.

"[…] many kinds of operations can "interpret" a sentence." [GoF, p254]
Usually, an interpreter is considered to interpret (evaluate) an expression and return a simple
result, but any kind of operation can be implemented.

– Define classes (NonTerminalExpression) that forward interpretation to their child
expressions.

• (2) Represent a sentence in the language by an AST (abstract syntax tree):
– Every sentence in the language is represented by an abstract syntax tree made

up of TerminalExpression instances (tExpr1,tExpr2,…) and NonTerminalExpression
instances (ntExpr1,ntExpr2,…).

– The expression objects are composed recursively into a composite/tree structure that is called
abstract syntax tree (see Composite pattern).
Terminal expressions have no child expressions and perform interpretation directly.
Nonterminal expressions forward interpretation to their child expressions.
"The Interpreter pattern doesn't explain how to create an abstract syntax tree. In other words,
it doesn't address parsing. The abstract syntax tree can be created by a […] parser, or directly
by the client." [GoF, p247]

• (3) Interpret a sentence by calling interpret(context) on an AST.
– See also Implementation and Sample Code.

INTERPRETER w3sDesign / V 2.0 / 12.01.2018 185

Background Information

• A Parser Generator
uses a grammar file to generate a parser. The parser can be updated simply by updating the
grammar and regenerating. The generated parser can use efficient techniques to create ASTs
that would be hard to build and maintain by hand.

• ANTLR (ANother Tool for Language Recognition) [TParr07]
is a open source parser generator for reading, processing, executing, or translating structured
text or binary files. It's widely used to build languages, tools, and frameworks. From a grammar,
ANTLR generates a parser that can build and walk parse trees.

INTERPRETER w3sDesign / V 2.0 / 12.01.2018 186

Motivation 1

Consider the left design (problem):

• Hard-wired expression.
– The search expression is hard-wired directly within a class (Context).
– This makes it hard to specify new expressions or change existing ones both at compile-time

and at run-time.

Consider the right design (solution):

• Separated expression.
– The search expression is represented by a separate AST (abstract syntax tree).
– This makes it easy to create new expressions (ASTs) or change existing ones dynamically

at run-time (by a parser).
– A Parser Generator uses a grammar file to generate a parser. The generated parser can then

create new ASTs efficiently.

INTERPRETER w3sDesign / V 2.0 / 12.01.2018 187

Applicability

Design Problems

• Interpreting Sentences in Simple Languages
(Domain Specific Languages)
– How can a grammar for a simple language be defined

so that sentences in the language can be interpreted?
– How can instances of a problem be represented as sentences in a simple language

so that these sentences can be interpreted to solve the problem?

INTERPRETER w3sDesign / V 2.0 / 12.01.2018 188

Structure, Collaboration

Static Class Structure

• AbstractExpression

– Defines a common interface for interpreting terminal expressions (tExpr) and nonterminal
expressions (ntExpr).

• TerminalExpression

– Implements interpretation for terminal expressions.
– A terminal expression has no child expressions.

• NonTerminalExpression

– Maintains a container of child expressions (expressions).
– Forwards interpretation to its child expressions.
– A nonterminal expression is a composite expression and has child expressions (terminal and

nonterminal expressions). See also Composite pattern.

Dynamic Object Collaboration

• Let's assume that a Client object builds an abstract syntax tree (AST) to represent a sentence
in the language.

• The Client sends an interpret request to the AST.

• The nonterminal expression nodes of the AST (ntExpr1,ntExpr2) forward the request to their
child expression nodes.

• The terminal expression nodes (tExpr1,tExpr2,…) perform the interpretation directly.

• See also Sample Code / Example 1.

INTERPRETER w3sDesign / V 2.0 / 12.01.2018 189

Consequences

Advantages (+)

• Makes changing the grammar easy.
– The Interpreter pattern uses a class hierarchy to represent grammar rules.
– Clients refer to the AbstractExpression interface and are independent of its

implementation.
– Clients do not have to change when new terminal or nonterminal expression classes are

added.

• Makes adding new kinds of interpret operations easier.
– "[…] many kinds of operations can "interpret" a sentence." [GoF, p254]

Usually, an interpreter is considered to interpret an expression and return a simple result,
but any kind of operation can be performed.

– The Visitor pattern can be used to define new kinds of interpret operations without having
to change the existing expression class hierarchy.

Disadvantages (–)

• Makes representing complex grammars hard.
– The Interpreter pattern uses (at least) one class to represent each grammar rule.
– Therefore, for complex grammars, the class hierarchy becomes large and hard to maintain.
– Parser generators are an alternative in such cases. They can represent complex grammars

without building complex class hierarchies.

INTERPRETER w3sDesign / V 2.0 / 12.01.2018 190

Implementation

Implementation Issues

• Let's assume, we want to define a grammar (syntax) for a simple query language so that
sentences (search expressions) in the language can be specified and interpreted (evaluated)
dynamically. For example, search expressions should look like:
((x and y) or (y and z and (not x)))

where x,y,z are terminal expressions (VarExpr) for arbitrary search criteria.
For example, searching product objects:
((group == "PC" and prize > 1000) or

 (prize > 1000 and description containing "TV" and (group is not "PC"))).

See the above diagrams and Sample Code / Example 2.

• (1) Define a grammar for a simple query language:
– Grammar rules (in EBNF notation) would look like:

expression : andExp | orExp | notExp | varExp | '(' expression ')';

andExp : expression 'and' expression;

orExp : expression 'or' expression;

notExp : 'not' expression;

varExp : 'x' | 'y' | 'z';

– andExp, orExp, notExp are nonterminal expression rules.
– varExp x,y,z are terminal expression rules for arbitrary search criteria that evaluate to

true or false.
For example, searching product objects:
setVarExp(x, product.getGroup() == "PC" ? true : false);

setVarExp(y, product.getPrice() > 1000 ? true : false);

setVarExp(z, product.getDescription().contains("TV") ? true : false);

• (2) Represent a sentence (search expression) in the language by an AST:
– Every sentence in the language is represented by an abstract syntax tree (AST) made up of

instances of the Expression classes.
"The Interpreter pattern doesn't explain how to create an abstract syntax tree. In other words,
it doesn't address parsing. The abstract syntax tree can be created by a […] parser, or directly
by the client." [GoF, p247]

• (3) Interpret a sentence (evaluate a search expression):
– Clients call evaluate(context) on an AST.
– The interpret (evaluate) operation on each terminal expression node uses the context to store

and access the state of the interpretation.
– The interpret (evaluate) operation on each nonterminal expression node forwards

interpretation to its child expression nodes. See also Sample Code / Example 2.

INTERPRETER w3sDesign / V 2.0 / 12.01.2018 191

INTERPRETER w3sDesign / V 2.0 / 12.01.2018 192

Sample Code 1

Basic Java code for implementing the sample UML diagrams.

 1 package com.sample.interpreter.basic;
 2 public class Client {
 3 // Running the Client class as application.
 4 public static void main(String[] args) throws Exception {
 5 // Building an abstract syntax tree (AST).
 6 AbstractExpression ntExpr2 = new NonTerminalExpression("ntExpr2");
 7 ntExpr2.add(new TerminalExpression(" tExpr3"));
 8 ntExpr2.add(new TerminalExpression(" tExpr4"));
 9 ntExpr2.add(new TerminalExpression(" tExpr5"));
10 AbstractExpression ntExpr1 = new NonTerminalExpression("ntExpr1");
11 ntExpr1.add(new TerminalExpression(" tExpr1"));
12 ntExpr1.add(ntExpr2);
13 ntExpr1.add(new TerminalExpression(" tExpr2"));
14 Context context = new Context();
15 // Interpreting the AST (walking the tree).
16 ntExpr1.interpret(context);
17 }
18 }

ntExpr1:
 interpreting ... tExpr1
 interpreting ... ntExpr2
ntExpr2:
 interpreting ... tExpr3
 interpreting ... tExpr4
 interpreting ... tExpr5
ntExpr2 finished.
 interpreting ... tExpr2
ntExpr1 finished.

 1 package com.sample.interpreter.basic;
 2 public class Context {
 3 // Input data and workspace for interpreting.
 4 }

 1 package com.sample.interpreter.basic;
 2 public abstract class AbstractExpression {
 3 private String name;
 4 public AbstractExpression(String name) {
 5 this.name = name;
 6 }
 7 public abstract void interpret(Context context);
 8 //
 9 public String getName() {
10 return name;
11 }
12 // Defining default implementation for child management operations.
13 public boolean add(AbstractExpression e) { // fail by default
14 return false;
15 }
16 }

INTERPRETER w3sDesign / V 2.0 / 12.01.2018 193

 1 package com.sample.interpreter.basic;
 2 import java.util.ArrayList;
 3 import java.util.List;
 4 public class NonTerminalExpression extends AbstractExpression {
 5 private List<AbstractExpression> expressions = new ArrayList<AbstractExpression>();
 6 //
 7 public NonTerminalExpression(String name) {
 8 super(name);
 9 }
10 public void interpret(Context context) {
11 System.out.println(getName() + ": ");
12 for (AbstractExpression expression : expressions) {
13 System.out.println(
14 " interpreting ... " + expression.getName());
15 expression.interpret(context);
16 }
17 System.out.println(getName() + " finished.");
18 }
19 // Overriding the default implementation.
20 @Override
21 public boolean add(AbstractExpression e) {
22 return expressions.add(e);
23 }
24 }

 1 package com.sample.interpreter.basic;
 2 public class TerminalExpression extends AbstractExpression {
 3 public TerminalExpression(String name) {
 4 super(name);
 5 }
 6 public void interpret(Context context) {
 7 // ...
 8 }
 9 }

INTERPRETER w3sDesign / V 2.0 / 12.01.2018 194

Sample Code 2

Object finder with arbitrary (dynamically changeable) search criteria.

Defining a simple query language so that search expressions can be specified and interpreted
(evaluated) dynamically.
For example, search expressions should look like:
((x and y) or (y and z and (not x)))

where x,y,z are terminal expressions (VarExpr) for arbitrary search criteria.
For example, searching product objects:
((group == "PC" and prize > 1000) or

 (prize > 1000 and description containing "TV" and (group is not "PC"))).

See also Implementation for a detailed description of this example.

 1 package com.sample.interpreter.search;
 2 import java.util.ArrayList;
 3 import java.util.List;
 4 import com.sample.data.Product;
 5 import com.sample.data.SalesProduct;
 6 public class Client {
 7 // Running the Client class as application.
 8 public static void main(String[] args) throws Exception {
 9 //
10 // Creating a collection of product objects.
11 //
12 List<Product> products = new ArrayList<Product>();
13 products.add(new SalesProduct("PC1", "PC", "Product PC 1000", 1000));
14 products.add(new SalesProduct("PC2", "PC", "Product PC 2000", 2000));
15 products.add(new SalesProduct("PC3", "PC", "Product PC 3000", 3000));
16 //
17 products.add(new SalesProduct("TV1", "TV", "Product TV 1000", 1000));
18 products.add(new SalesProduct("TV2", "TV", "Product TV 2000", 2000));
19 products.add(new SalesProduct("TV3", "TV", "Product TV 3000", 3000));
20 //
21 // Representing the search expression:
22 // ((x and y) or (y and z and (not x)))
23 // by an AST (usually generated by a parser).
24 //
25 VarExpr x = new VarExpr("X");
26 VarExpr y = new VarExpr("Y");
27 VarExpr z = new VarExpr("Z");
28 //
29 Expression andExpr1 = new AndExpr();
30 andExpr1.add(x);
31 andExpr1.add(y);
32 //
33 Expression andExpr2 = new AndExpr();
34 andExpr2.add(y);
35 andExpr2.add(z);
36 Expression notExpr = new NotExpr();
37 notExpr.add(x);
38 andExpr2.add(notExpr);
39 //

INTERPRETER w3sDesign / V 2.0 / 12.01.2018 195

40 Expression expression = new OrExpr();
41 expression.add(andExpr1);
42 expression.add(andExpr2);
43 //
44 // For each product:
45 // - specifying the search criteria dynamically and setting the context
46 // - interpreting (evaluating) the AST (search expression).
47 //
48 Context context = new Context();
49 for (Product p : products) {
50 // For example, searching products with:
51 // (group == "PC" and prize > 1000) or
52 // (prize > 1000 and description containing "TV" and group is not "PC").
53 // Setting VarExpr x,y,z in context to true or false.
54 context.setVarExpr(x, p.getGroup() == "PC" ? true : false);
55 context.setVarExpr(y, p.getPrice() > 1000 ? true : false);
56 context.setVarExpr(z, p.getDescription().contains("TV") ? true : false);
57 // Interpreting (evaluating) the AST (search expression).
58 if (expression.evaluate(context))
59 System.out.println("Product found: " + p.getDescription());
60 }
61 }
62 }

Product found: Product PC 2000
Product found: Product PC 3000
Product found: Product TV 2000
Product found: Product TV 3000

 1 package com.sample.interpreter.search;
 2 import java.util.HashMap;
 3 import java.util.Map;
 4 public class Context {
 5 // Workspace for mapping VarExp name to true or false.
 6 Map<String, Boolean> varExprMap = new HashMap<String, Boolean>();
 7 //
 8 public void setVarExpr(VarExpr v, boolean b) {
 9 varExprMap.put(v.getName(), b);
10 }
11 public boolean getVarExpr(String name) {
12 return varExprMap.get(name);
13 }
14 }

 1 package com.sample.interpreter.search;
 2 import java.util.Collections;
 3 import java.util.Iterator;
 4 public abstract class Expression {
 5 public abstract boolean evaluate(Context context);
 6 //
 7 // Defining default implementation for child management operations.
 8 public boolean add(Expression e) { // fail by default
 9 return false;
10 }
11 public Iterator<Expression> iterator() {
12 return Collections.emptyIterator(); // null iterator
13 }
14 }

 1 package com.sample.interpreter.search;
 2 public class VarExpr extends Expression { // Terminal Expression
 3 private String name;
 4 public VarExpr(String name) {
 5 this.name = name;
 6 }
 7 // Getting true or false from context.
 8 public boolean evaluate(Context context) {
 9 return context.getVarExpr(name);
10 }
11 public String getName() {
12 return name;
13 }
14 }

 1 package com.sample.interpreter.search;

INTERPRETER w3sDesign / V 2.0 / 12.01.2018 196

 2 import java.util.ArrayList;
 3 import java.util.Iterator;
 4 import java.util.List;
 5 public abstract class NonTerminalExpression extends Expression {
 6 private List<Expression> expressions = new ArrayList<Expression>();
 7 //
 8 public abstract boolean evaluate(Context context);
 9 // Overriding the default implementation.
10 @Override
11 public boolean add(Expression e) {
12 return expressions.add(e);
13 }
14 @Override
15 public Iterator<Expression> iterator() {
16 return expressions.iterator();
17 }
18 }

 1 package com.sample.interpreter.search;
 2 import java.util.Iterator;
 3 public class AndExpr extends NonTerminalExpression { // NonTerminal Expression
 4 public boolean evaluate(Context context) {
 5 Iterator<Expression> it = iterator();
 6 while (it.hasNext()) {
 7 if (!it.next().evaluate(context))
 8 return false;
 9 }
10 return true;
11 }
12 }

 1 package com.sample.interpreter.search;
 2 import java.util.Iterator;
 3 public class OrExpr extends NonTerminalExpression { // NonTerminal Expression
 4 public boolean evaluate(Context context) {
 5 Iterator<Expression> it = iterator();
 6 while (it.hasNext()) {
 7 if (it.next().evaluate(context))
 8 return true;
 9 }
10 return false;
11 }
12 }

 1 package com.sample.interpreter.search;
 2 import java.util.Iterator;
 3 public class NotExpr extends NonTerminalExpression { // NonTerminal Expression
 4 public boolean evaluate(Context context) {
 5 Iterator<Expression> it = iterator();
 6 while (it.hasNext()) {
 7 if (it.next().evaluate(context))
 8 return false;
 9 }
10 return true;
11 }
12 }

Other interfaces and classes used in this example.

 1 package com.sample.data;
 2 public interface Product {
 3 void operation();
 4 String getId();
 5 String getGroup();
 6 String getDescription();
 7 long getPrice();
 8 }

 1 package com.sample.data;
 2 public class SalesProduct implements Product {
 3 private String id;
 4 private String group;
 5 private String description;
 6 private long price;

INTERPRETER w3sDesign / V 2.0 / 12.01.2018 197

 7 //
 8 public SalesProduct(String id, String group, String description, long price) {
 9 this.id = id;
10 this.group = group;
11 this.description = description;
12 this.price = price;
13 }
14 public void operation() {
15 System.out.println("SalesProduct: Performing an operation ...");
16 }
17 public String getId() {
18 return id;
19 }
20 public String getGroup() {
21 return group;
22 }
23 public String getDescription() {
24 return description;
25 }
26 public long getPrice() {
27 return price;
28 }
29 }

INTERPRETER w3sDesign / V 2.0 / 12.01.2018 198

Related Patterns

Key Relationships

• Composite - Builder - Iterator - Visitor - Interpreter
– Composite provides a way to represent a part-whole hierarchy

as a tree (composite) object structure.
– Builder provides a way to create the elements of an object structure.
– Iterator provides a way to traverse the elements of an object structure.
– Visitor provides a way to define new operations for the elements of an object structure.
– Interpreter represents a sentence in a simple language

as a tree (composite) object structure (abstract syntax tree).

ITERATOR w3sDesign / V 2.0 / 12.01.2018 199

Intent

The intent of the Iterator design pattern is to:
"Provide a way to access the elements of an aggregate object sequentially
without exposing its underlying representation." [GoF]
See Problem and Solution sections for a more structured description of the intent.

• The Iterator design pattern solves problems like:
– How can the elements of an aggregate object be accessed and traversed

without exposing its underlying representation?

• For example, an aggregate object like a list, set, or other kind of collection.
It should be possible to access and traverse the elements of a collection without having to know
its underlying representation (data structures).

• Exposing an aggregate's representation isn't possible because this would break its
encapsulation.

ITERATOR w3sDesign / V 2.0 / 12.01.2018 200

Problem

The Iterator design pattern solves problems like:
How can the elements of an aggregate object be accessed and traversed
without exposing its underlying representation?
See Applicability section for all problems Iterator can solve. See Solution section for how
Iterator solves the problems.

• One way to solve this problem is to extend the aggregate interface with operations for access
and traversal.
For example, traversing front-to-back: next(),hasNext().

• This commits the aggregate object to particular access and traversal operations and makes it
impossible to add new operations later without having to change the aggregate interface.
For example, traversing back-to-front: previous(),hasPrivious().
"But you probably don't want to bloat the List [Aggregate] interface with operations for
different traversals, even if you could anticipate the ones you will need." [GoF, p257]

• That's the kind of approach to avoid if we want to define new access and traversal operations
without having to change the aggregate interface.

• For example, an aggregate object like a list, set, or other kind of collection.
It should be possible to access and traverse the elements of a collection in different ways
without knowing (depending on) its representation (data structures). See Sample Code /
Example 2.

ITERATOR w3sDesign / V 2.0 / 12.01.2018 201

Solution

The Iterator design pattern provides a solution:
Encapsulate the access and traversal of an aggregate in a separate Iterator object.
Clients request an Iterator object from an aggregate (createIterator())
and use it to access and traverse the aggregate.
Describing the Iterator design in more detail is the theme of the following sections.
See Applicability section for all problems Iterator can solve.

• "The key idea in this pattern is to take the responsibility for access and traversal out of the list
[aggregate] object and put it into an iterator object." [GoF, p257]

• Define separate Iterator objects:
– Define an interface for accessing and traversing the elements of an aggregate object

(Iterator | next(),hasNext()).
– Define classes (Iterator1,…) that implement the Iterator interface.

An iterator is usually implemented as inner class of an aggregate class.
This enables the iterator to access the internal data structures of the aggregate (see
Implementation).

– New access and traversal operations can be added by defining new iterators.
For example, traversing back-to-front: previous(),hasPrevious().

• An aggregate provides an interface for creating an iterator (createIterator()).

• Clients can use different Iterator objects to access and traverse an aggregate object
in different ways. Multiple traversals can be in progress on the same aggregate object
(simultaneous traversals).

Background Information

• For example, the Java Collections Framework provides
– a general purpose iterator

(next(),hasNext(),remove())
– and an extended listIterator

(next(),hasNext(),previous(),hasPrevious(),remove(),…).

• Consequently, there are two factory methods for creating an iterator
(iterator() and listIterator()).

ITERATOR w3sDesign / V 2.0 / 12.01.2018 202

Motivation 1

Consider the left design (problem):

• Aggregate responsible for access and traversal.
– The aggregate is also responsible for accessing and traversing its elements.
– This makes it impossible to define new traversal operations independently from the

aggregate.

• One traversal.
– Only one traversal can be performed on the same aggregate.

Consider the right design (solution):

• Iterator responsible for access and traversal.
– The responsibility for access and traversal is separated from the aggregate.
– This makes it easy to define new traversal operations independently from the aggregate.

• Multiple traversals.
– Multiple traversals can be performed on the same aggregate.

ITERATOR w3sDesign / V 2.0 / 12.01.2018 203

Applicability

Design Problems

• Accessing and Traversing Object Structures
– How can the elements of an aggregate object be accessed and traversed

without exposing its underlying representation?
– How can new traversal operations be defined for an aggregate object

without changing its interface?

• Performing Different Traversals
– How can different traversals be performed on an aggregate object?
– How can multiple traversals be pending on the same aggregate object

(simultaneous traversals)?

ITERATOR w3sDesign / V 2.0 / 12.01.2018 204

Structure, Collaboration

Static Class Structure

• Client

– Refers to the Aggregate interface to create an Iterator object.
– Refers to the Iterator interface to access and traverse an Aggregate object.

• Aggregate

– Defines an interface for creating an Iterator object.

• Aggregate1,…
– Implement createIterator() by returning an instance of the corresponding iterator class

(Iterator1).

• Iterator

– Defines an interface for accessing and traversing the elements of an Aggregate object.

• Iterator1,…

– Implement the Iterator interface.
– An iterator is usually implemented as inner class of an aggregate class so that it can access

the internal (private) data structures of the aggregate.

Dynamic Object Collaboration

• In this sample scenario, a Client object uses an Iterator1 object to traverse an Aggregate1
object front-to-back.

• The interaction starts with the Client object that calls createIterator() on the Aggregate1
object.

• Aggregate1 creates an Iterator1 object and returns (a reference to) it to the Client.

• Thereafter, the Client uses the Iterator1 to traverse the elements of Aggregate1 front-to-
back (while iterator.hasNext(): iterator.next()).

• See also Sample Code / Example 1.

ITERATOR w3sDesign / V 2.0 / 12.01.2018 205

Consequences

Advantages (+)

• Enables simultaneous traversals.
– Multiple traversals can be in progress on the same aggregate.

• Simplifies the aggregate interface.
– The iterator interface is separated, and this simplifies the aggregate interface.

• Allows changing the traversal dynamically at run-time.
– "Iterators make it easy to change the traversal algorithm: just replace the iterator instance

with a different one." [GoF, p260]

ITERATOR w3sDesign / V 2.0 / 12.01.2018 206

Implementation

Implementation Issues

• Implementing iterators.
– There are two main variants to implement an iterator:

• Variant1: Iterators have privileged access to an aggregate.
– An iterator is implemented as inner class of an aggregate implementation class.

This enables the iterator to access the private data structures of the aggregate
(see Sample Code / Example 1 and 2).

– The aggregate provides an interface for creating an iterator object (createIterator()).
Aggregate implementation classes are responsible for instantiating the appropriate iterator
class. (This is an example of applying the Factory Method design pattern.)

• Variant2: Iterators access an aggregate through its interface.
– Another way is to design an extended Aggregate interface so that iterators can access the

aggregate efficiently.

ITERATOR w3sDesign / V 2.0 / 12.01.2018 207

Sample Code 1

Basic Java code for implementing the sample UML diagrams.

 1 package com.sample.iterator.basic;
 2 public class Client {
 3 // Running the Client class as application.
 4 public static void main(String[] args) {
 5 // Setting up an aggregate.
 6 Aggregate<String> aggregate = new Aggregate1<String>(3);
 7 aggregate.add(" ElementA ");
 8 aggregate.add(" ElementB ");
 9 aggregate.add(" ElementC ");
10 //
11 // Creating an iterator.
12 Iterator<String> iterator = aggregate.createIterator();
13 //
14 System.out.println("Traversing the aggregate front-to-back:");
15 while (iterator.hasNext()) {
16 System.out.println(iterator.next());
17 }
18 }
19 }

Traversing the aggregate front-to-back:
 ElementA
 ElementB
 ElementC

 1 package com.sample.iterator.basic;
 2 public interface Aggregate<E> {
 3 // ...
 4 Iterator<E> createIterator();
 5 boolean add(E element);
 6 }

 1 package com.sample.iterator.basic;
 2 public interface Iterator<E> {
 3 E next();
 4 boolean hasNext();
 5 }

 1 package com.sample.iterator.basic;
 2 import java.util.NoSuchElementException;
 3 public class Aggregate1<E> implements Aggregate<E> { // E = Type parameter
 4 // Hiding the representation.
 5 private Object[] elementData; // represented as object array
 6 private int idx = 0;
 7 private int size;
 8 //
 9 public Aggregate1(int size) {
10 if (size < 0)
11 throw new IllegalArgumentException("size: " + size);
12 this.size = size;
13 elementData = new Object[size];
14 }

ITERATOR w3sDesign / V 2.0 / 12.01.2018 208

15 public boolean add(E element) {
16 if (idx < size) {
17 elementData[idx++] = element;
18 return true;
19 } else
20 return false;
21 }
22 public int getSize() {
23 return size;
24 }
25 // Factory method for instantiating Iterator1.
26 public Iterator<E> createIterator() {
27 return new Iterator1<E>();
28 }
29 //
30 // Implementing Iterator1 as inner class.
31 //
32 private class Iterator1<E> implements Iterator<E> {
33 // Holds the current position in the traversal.
34 private int cursor = 0; // index of next element to return
35 //
36 public boolean hasNext() {
37 return cursor < size;
38 }
39 public E next() { // E = Type of element returned by this method
40 if (cursor >= size)
41 throw new NoSuchElementException();
42 return (E) elementData[cursor++]; // cast from Object to E
43 }
44 }
45 }

ITERATOR w3sDesign / V 2.0 / 12.01.2018 209

Sample Code 2

Using the iterator provided by the Java Collections Framework.

 1 package com.sample.iterator.collection;
 2 import java.util.List;
 3 import java.util.ArrayList;
 4 import java.util.Iterator;
 5 import java.util.ListIterator;
 6 public class Client {
 7 // Running the Client class as application.
 8 public static void main(String[] args) throws Exception {
 9 // Setting up a collection (list) of customers.
10 int size = 50;
11 List<Customer> list = new ArrayList<Customer>();
12 for (int i = 0; i < size; i++)
13 list.add(new Customer1("Customer" + i, 100));
14 //
15 //
16 //===
17 System.out.println("(1) Front-to-end traversal (via basic iterator): ");
18 //===
19 int count = 0;
20 long sum = 0;
21 Iterator<Customer> iterator = list.iterator();
22 while (iterator.hasNext()) {
23 sum += iterator.next().getSales();
24 count++;
25 }
26 System.out.println(" Total sales of " + count + " customers is: " + sum);
27 //
28 //
29 //===
30 System.out.println("\n(2) Backward traversal from position-to-front " +
31 (size / 2) + " (via list Iterator): ");
32 //===
33 count = 0;
34 sum = 0;
35 ListIterator<Customer> listIterator = list.listIterator(size / 2);
36 while (listIterator.hasPrevious()) {
37 sum += listIterator.previous().getSales();
38 count++;
39 }
40 System.out.println(" Total sales of " + count + " customers is: " + sum);
41 //
42 //
43 //===
44 System.out.println("\n(3) Direct access customer (via list interface): ");
45 //===
46 int position = size / 10;
47 Customer customer = list.get(position);
48 System.out.println(" Customer at position " +
49 position + " is: " + customer.getName());
50 //
51 //
52 //===
53 System.out.println("\n(4) Search customer (via list interface): ");

ITERATOR w3sDesign / V 2.0 / 12.01.2018 210

54 //===
55 int index = list.indexOf(customer);
56 System.out.println(" Index of first occurrence of " +
57 list.get(index).getName() + " is: " + index);
58 }
59 }

(1) Front-to-end traversal (via basic iterator):
 Total sales of 50 customers is: 5000

(2) Backward traversal from position-to-front 25 (via list Iterator):
 Total sales of 25 customers is: 2500

(3) Direct access customer (via list interface):
 Customer at position 5 is: Customer5

(4) Search customer (via list interface):
 Index of first occurrence of Customer5 is: 5

 1 package java.util; // Provided by the Java platform.
 2 public interface Iterator<E> {
 3 boolean hasNext();
 4 E next();
 5 // ...
 6 }

 1 package java.util; // Provided by the Java platform.
 2 public interface ListIterator<E> extends Iterator<E> {
 3 boolean hasPrevious();
 4 E previous();
 5 // ...
 6 }

 1 package com.sample.iterator.collection;
 2 public interface Customer {
 3 long getSales();
 4 String getName();
 5 }

 1 package com.sample.iterator.collection;
 2 public class Customer1 implements Customer {
 3 private String name;
 4 private long sales;
 5 public Customer1(String name, long sales) {
 6 this.name = name;
 7 this.sales = sales;
 8 }
 9 public long getSales() {
10 return sales;
11 }
12 public String getName() {
13 return name;
14 }
15 }

Background Information:
Copyright (c) 1997, 2010, Oracle and/or its affiliates.
All rights reserved.

 1 package java.util; // Provided by the Java platform.
 2 public interface Collection<E> extends Iterable<E> {
 3 int size();
 4 boolean isEmpty();
 5 boolean contains(Object o);
 6 //
 7 Iterator<E> iterator();
 8 //
 9 boolean add(E e);
10 boolean remove(Object o);
11 // ...
12 }

 1 // List is an ordered collection (also known as a sequence).

ITERATOR w3sDesign / V 2.0 / 12.01.2018 211

 2 // Unlike sets, lists allow duplicate elements.
 3 // ListIterator allows element insertion/replacement and
 4 // bidirectional access in addition to Iterator.
 5 // ...
 6 package java.util; // Provided by the Java platform.
 7 public interface List<E> extends Collection<E> {
 8 // Iterating
 9 ListIterator<E> listIterator(); // Starting at position 0
10 ListIterator<E> listIterator(int index); // Starting at position index
11 // Positional access
12 E get(int index);
13 E set(int index, E element);
14 // Search
15 int indexOf(object o);
16 // ...
17 }

 1 // ArrayList is a resizable array implementation of the List interface.
 2 package java.util; // Provided by the Java platform.
 3 public class ArrayList<E> extends AbstractList<E>
 4 implements List<E>, RandomAccess, Cloneable, java.io.Serializable {
 5 // The array buffer into which the elements of the ArrayList are stored.
 6 // The capacity of the ArrayList is the length of this array buffer.
 7 private transient Object[] elementData;
 8 // The size of the ArrayList (the number of elements it contains).
 9 private int size;
10 // ...
11 public ListIterator<E> listIterator() {
12 return new ListItr(0);
13 }
14 public Iterator<E> iterator() {
15 return new Itr();
16 }
17 private class Itr implements Iterator<E> {
18 int cursor; // index of next element to return
19 int lastRet = -1; // index of last element returned; -1 if no such
20 int expectedModCount = modCount;
21 public boolean hasNext() {
22 return cursor != size;
23 }
24 public E next() {
25 checkForComodification();
26 int i = cursor;
27 if (i >= size)
28 throw new NoSuchElementException();
29 Object[] elementData = ArrayList.this.elementData;
30 if (i >= elementData.length)
31 throw new ConcurrentModificationException();
32 cursor = i + 1;
33 return (E) elementData[lastRet = i];
34 } // ...
35 }
36 private class ListItr extends Itr implements ListIterator<E> {
37 ListItr(int index) {
38 super();
39 cursor = index;
40 }
41 public boolean hasPrevious() {
42 return cursor != 0;
43 }
44 public int nextIndex() {
45 return cursor;
46 }
47 public int previousIndex() {
48 return cursor - 1;
49 }
50 public E previous() {
51 checkForComodification();
52 int i = cursor - 1;
53 if (i < 0)
54 throw new NoSuchElementException();
55 Object[] elementData = ArrayList.this.elementData;
56 if (i >= elementData.length)
57 throw new ConcurrentModificationException();
58 cursor = i;
59 return (E) elementData[lastRet = i];

ITERATOR w3sDesign / V 2.0 / 12.01.2018 212

60 } // ...
61 } // ...
62 }

ITERATOR w3sDesign / V 2.0 / 12.01.2018 213

Related Patterns

Key Relationships

• Composite - Builder - Iterator - Visitor - Interpreter
– Composite provides a way to represent a part-whole hierarchy

as a tree (composite) object structure.
– Builder provides a way to create the elements of an object structure.
– Iterator provides a way to traverse the elements of an object structure.
– Visitor provides a way to define new operations for the elements of an object structure.
– Interpreter represents a sentence in a simple language

as a tree (composite) object structure (abstract syntax tree).

• Iterator - Factory Method
– The operation for creating an iterator object is a factory method.

MEDIATOR w3sDesign / V 2.0 / 12.01.2018 214

Intent

The intent of the Mediator design pattern is to:
"Define an object that encapsulates how a set of objects interact. Mediator
promotes loose coupling by keeping objects from referring to each other
explicitly, and it lets you vary their interaction independently." [GoF]
See Problem and Solution sections for a more structured description of the intent.

• The Mediator design pattern solves problems like:
– How can tight coupling between a set of interacting objects be avoided?

– How can the interaction between a set of objects be changed independently?

• Coupling is the degree to which objects depend on each other.
– Tightly coupled objects are hard to implement, change, test, and reuse

because they depend on (refer to and know about) many different objects.
– Loosely coupled objects are easier to implement, change, test, and reuse

because they have only minimal dependencies on other objects.

• The Mediator pattern describes how to solve such problems:
– Define an object (Mediator) that encapsulates how a set of objects interact.

– The key idea in this pattern is to let objects interact with each other indirectly through a
Mediator object that controls and coordinates the interaction.
This makes the objects loosely coupled because they only depend on (refer to and know
about) the simple Mediator interface.

MEDIATOR w3sDesign / V 2.0 / 12.01.2018 215

Problem

The Mediator design pattern solves problems like:
How can tight coupling between a set of interacting objects be avoided?
How can the interaction between a set of objects be changed independently?
See Applicability section for all problems Mediator can solve. See Solution section for how
Mediator solves the problems.

• An inflexible way is to define a set of interacting objects (Colleague1,Colleague2,…) by
referring to (and update) each other directly, which results in many interconnections between
them.

• This tightly couples the objects to each other and makes it impossible to change the interaction
independently from (without having to change) the objects, and it stops the objects from being
reusable and makes them hard to test.
Tightly coupled objects are hard to implement, change, test, and reuse
because they depend on (refer to and know about) many different objects.

• That's the kind of approach to avoid if we want to keep a set of interacting objects loosely
coupled.

• For example, defining a set of interacting objects (like buttons, menu items, and input/display
fields) in a GUI/Web application.
It should be possible (1) to change the interaction behavior independently from (without having
to change) the objects and (2) to reuse the objects in different applications.

MEDIATOR w3sDesign / V 2.0 / 12.01.2018 216

Solution

The Mediator design pattern provides a solution:
Define a separate Mediator object that encapsulates how a set of objects interact.
Objects interact with a Mediator object
instead of interacting with each other directly.
Describing the Mediator design in more detail is the theme of the following sections.
See Applicability section for all problems Mediator can solve.

• The key idea in this pattern is to let objects interact with each other indirectly through a common
Mediator object that controls and coordinates the interaction.

• Define a separate Mediator object:
– Define an interface for interacting with colleagues (Mediator | mediate()).
– Define classes (Mediator1,…) that implement the interaction behavior by controlling and

coordinating the interaction between colleagues.

• This enables compile-time flexibility (via class inheritance).
New colleagues can be added and the interaction behavior of existing ones can be changed
independently by defining new Mediator (sub)classes.

• Colleagues delegate interaction to a Mediator object (mediator.mediate()).

• This makes colleagues loosely coupled because they only refer to and know about their
mediator and have no explicit knowledge of each other.
"[…] each colleague communicates with its mediator whenever it would have otherwise
communicated with another colleague." GoF [p277]

MEDIATOR w3sDesign / V 2.0 / 12.01.2018 217

Motivation 1

Consider the left design (problem):

• Tightly coupled colleagues.
– A set of colleagues interact with each other directly by referring to and knowing about each

other (tight coupling).
– Tightly coupled objects depend on (refer to and know about) many other objects having

different interfaces, which makes them hard to implement, change, test, and reuse.

• Distributed interaction behavior.
– It's hard to change the way the objects interact with each other because the interaction is

distributed among the objects.

Consider the right design (solution):

• Loosely coupled colleagues.
– A set of colleagues interact with each other indirectly by referring to and knowing about the

Mediator interface (loose coupling).
– Loosely coupled objects have only minimal dependencies (by working through a common

interface), which makes them easier to implement, change, test, and reuse.

• Encapsulated interaction behavior.
– It's easy to change the way the objects interact with each other because it is encapsulated

in a separate Mediator object.
– Note that the mediator itself isn't designed for being reusable, but it is designed for making

colleagues reusable.
– "This can make the mediator itself a monolith that's hard to maintain." [GoF, p277]

MEDIATOR w3sDesign / V 2.0 / 12.01.2018 218

Applicability

Design Problems

• Avoiding Tight Coupling Between Interacting Objects
– How can tight coupling between a set of interacting objects be avoided?
– How can the interaction between a set of objects

be changed independently from the objects?

MEDIATOR w3sDesign / V 2.0 / 12.01.2018 219

Structure, Collaboration

Static Class Structure

• Mediator

– Defines an interface for controlling and coordinating the interaction among colleagues.

• Mediator1,…
– Implement the Mediator interface.
– Maintain explicit references (colleague1,colleague2,…) to colleagues.

• Colleague1,Colleague2,…
– Refer to the Mediator interface instead of referring to each other directly.

Dynamic Object Collaboration

• In this sample scenario, a Mediator1 object mediates (controls and coordinates) the interaction
between Colleague1 and Colleague2 objects (to synchronize their state, for example).
Let's assume that Colleague1 and Colleague2 are configured with a Mediator1 object.

• Let's assume that the state of Colleague1 changes, which causes Colleague1 to call
mediate(this) on its Mediator1 object.

• Colleague1 passes itself (this) to the Mediator1 so that Mediator1 can call back and get
the changed data.

• The Mediator1 gets the changed data from Colleague1 and performs an action2() on
Colleague2.

• Thereafter, assuming that the state of Colleague2 changes, Colleague2 calls mediate(this)
on its Mediator1.

• The Mediator1 now gets the changed data from Colleague2 and performs an action1() on
Colleague1.

• See also Sample Code / Example 1.

MEDIATOR w3sDesign / V 2.0 / 12.01.2018 220

Consequences

Advantages (+)

• Decouples colleagues.
– The colleagues interact with each other indirectly through the Mediator object/interface and

have no explicit knowledge of each other.
– Loosely coupled objects are easier to implement, change, and reuse.

• Centralizes interaction behavior.
– The mediator encapsulates (centralizes) the interaction behavior that otherwise would be

distributed among the interacting colleagues.

• Makes changing the interaction behavior easy.
– The interaction behavior can be changed independently from colleagues by adding new

Mediator (sub)classes.

Disadvantages (–)

• Can make the mediator complex.
– Because the mediator encapsulates (centralizes) the interaction behavior of a set of objects,

it can get complex.
– The complexity increases with the complexity and number of colleagues.
– "This can make the mediator itself a monolith that's hard to maintain." [GoF, p277]

MEDIATOR w3sDesign / V 2.0 / 12.01.2018 221

Implementation

Implementation Issues

• Implementing the interaction behavior.
– The mediator is responsible for controlling and coordinating the interactions (updates) of

the colleagues.
– The complexity of mediator increases with the complexity and number of colleagues.
– Colleagues interact with each other indirectly by calling mediate(this) on their mediator.
– A colleague passes itself (this) to the mediator so that the mediator can call back to know

what changed (to get the required data from the colleague).
"When communicating with the mediator, a colleague passes itself as an argument, allowing
the mediator to identify the sender." [GoF, p278]

MEDIATOR w3sDesign / V 2.0 / 12.01.2018 222

Sample Code 1

Basic Java code for implementing the sample UML diagrams.

 1 package com.sample.mediator.basic;
 2 public class MyApp {
 3 public static void main(String[] args) {
 4 Mediator1 mediator = new Mediator1();
 5 // Creating colleagues
 6 // and configuring them with a Mediator1 object.
 7 Colleague1 c1 = new Colleague1(mediator);
 8 Colleague2 c2 = new Colleague2(mediator);
 9 // Setting mediator's colleagues.
10 mediator.setColleagues(c1, c2);
11
12 System.out.println("(1) Changing state of Colleague1 ...");
13 c1.setState("Hello World1!");
14
15 System.out.println("\n(2) Changing state of Colleague2 ...");
16 c2.setState("Hello World2!");
17 }
18 }

(1) Changing state of Colleague1 ...
 Colleague1: My state changed to: Hello World1! Calling my mediator ...
 Mediator : Mediating the interaction ...
 Colleague2: My state synchronized to: Hello World1!

(2) Changing state of Colleague2 ...
 Colleague2: My state changed to: Hello World2! Calling my mediator ...
 Mediator : Mediating the interaction ...
 Colleague1: My state synchronized to: Hello World2!

 1 package com.sample.mediator.basic;
 2 public abstract class Mediator {
 3 // Mediating the interaction between colleagues.
 4 public abstract void mediate(Colleague colleague);
 5 }

 1 package com.sample.mediator.basic;
 2 public class Mediator1 extends Mediator {
 3 private Colleague1 colleague1;
 4 private Colleague2 colleague2;
 5 void setColleagues(Colleague1 colleague1, Colleague2 colleague2) {
 6 this.colleague1 = colleague1;
 7 this.colleague2 = colleague2;
 8 }
 9 public void mediate(Colleague colleague) {
10 System.out.println(" Mediator : Mediating the interaction ...");
11 // Message from colleague1 that its state has changed.
12 if (colleague == colleague1) {
13 // Performing an action on colleague2.
14 String state = colleague1.getState();
15 colleague2.action2(state);
16 }
17 // Message from colleague2 that its state has changed.

MEDIATOR w3sDesign / V 2.0 / 12.01.2018 223

18 if (colleague == colleague2) {
19 // Performing an action on colleague1.
20 String state = colleague2.getState();
21 colleague1.action1(state);
22 }
23 }
24 }

MEDIATOR w3sDesign / V 2.0 / 12.01.2018 224

 1 package com.sample.mediator.basic;
 2 public abstract class Colleague {
 3 Mediator mediator;
 4 public Colleague(Mediator mediator) {
 5 this.mediator = mediator;
 6 }
 7 }

 1 package com.sample.mediator.basic;
 2 public class Colleague1 extends Colleague {
 3 private String state;
 4 public Colleague1(Mediator mediator) {
 5 super(mediator); // Calling the super class constructor
 6 }
 7 public String getState() {
 8 return state;
 9 }
10 void setState(String state) {
11 if (state != this.state) {
12 this.state = state;
13 System.out.println(" Colleague1: My state changed to: "
14 + this.state + " Calling my mediator ...");
15 mediator.mediate(this);
16 }
17 }
18 void action1 (String state) {
19 // For example, synchronizing and displaying state.
20 this.state = state;
21 System.out.println(" Colleague1: My state synchronized to: "
22 + this.state);
23 }
24 }

 1 package com.sample.mediator.basic;
 2 public class Colleague2 extends Colleague {
 3 private String state;
 4 public Colleague2(Mediator mediator) {
 5 super(mediator);
 6 }
 7 public String getState() {
 8 return state;
 9 }
10 void setState(String state) {
11 if (state != this.state) {
12 this.state = state;
13 System.out.println(" Colleague2: My state changed to: "
14 + this.state + " Calling my mediator ...");
15 mediator.mediate(this);
16 }
17 }
18 void action2 (String state) {
19 // For example, synchronizing and displaying state.
20 this.state = state;
21 System.out.println(" Colleague2: My state synchronized to: "
22 + this.state);
23 }
24 }

MEDIATOR w3sDesign / V 2.0 / 12.01.2018 225

Related Patterns

Key Relationships

• Mediator - Observer
– Mediator provides a way to keep interacting objects loosely coupled

by defining a Mediator object that centralizes (encapsulates) interaction behavior.
– Observer provides a way to keep interacting objects loosely coupled

by defining Subject and Observer objects that distribute interaction behavior so that when
a subject changes state all registered observers are updated.

– "The difference between them is that Observer distributes communication by introducing
Observer and Subject objects, whereas a Mediator object encapsulates the communication
between other objects." [GoF, p346]

MEMENTO w3sDesign / V 2.0 / 12.01.2018 226

Intent

The intent of the Memento design pattern is:
"Without violating encapsulation, capture and externalize an object's internal
state so that the object can be restored to this state later." [GoF]
See Problem and Solution sections for a more structured description of the intent.

• The Memento design pattern solves problems like:
– Without violating encapsulation,

how can an object's internal state be captured and externalized
so that the object can be restored to this state later?

• Encapsulation means hiding an object's representation (data structures like fields, arrays,
collections, etc.) and implementation inside the object so that they cannot be accessed from
outside the object.

• Internal state of an object means all internal data structures plus their values.

• The problem here is to save an object's internal state without making the representation (data
structures) visible and accessible from outside the object.

MEMENTO w3sDesign / V 2.0 / 12.01.2018 227

Problem

The Memento design pattern solves problems like:
Without violating encapsulation,
how can an object's internal state be captured and externalized
so that the object can be restored to this state later?
See Applicability section for all problems Memento can solve. See Solution section for how
Memento solves the problems.

• A well-designed object is encapsulated.
That means, an object's representation (data structures) and implementation are hidden inside
the object and are invisible and inaccessible from outside the object.

• In standard object-oriented languages, encapsulation is supported by specifying a private
access level to protect against access from outside the object (in UML class diagrams this is
shown as minus sign).

• The problem here is to save the internal state of an object externally (to another object) without
making the representation (data structures) of the object accessible from outside the object.

• For example, designing checkpoints and undo mechanisms.
It should be possible to save a snapshot of an object's internal state externally so that the object
can be restored to this state later. A direct access to the object's data structures isn't possible
because this would break its encapsulation.

Background Information

• Encapsulation is "The result of hiding a representation and implementation in an object." [GoF,
p360]

• As a reminder, an object has an outside view (public interface/operations) and an inside view
(private/hidden representation and implementation).
Encapsulation means hiding a representation and implementation in an object.
Clients can only see the outside view of an object and are independent of any changes of an
object's representation and implementation.
That's the essential benefit of encapsulation.
See also Design Principles.

• "At any given point in time, the state of an object encompasses all of the (usually
static) properties of the object plus the current (usually dynamic) values of each of these
properties." [GBooch07, p600]

MEMENTO w3sDesign / V 2.0 / 12.01.2018 228

Solution

The Memento design pattern provides a solution:
Define Originator and Memento objects
so that an originator saves/restores its internal state to/from a memento.
Describing the Memento design in more detail is the theme of the following sections.
See Applicability section for all problems Memento can solve.

• The key idea in this pattern is to make an object (originator) itself responsible for saving/
restoring its internal state (to/from a memento). Only the originator that created a memento
is permitted to access it.

• Define Originator and Memento objects:
– Originator defines an operation for saving its internal state to a memento

(createMemento(): return new Memento(state)) and for restoring to a previous state
from a memento (restore(memento): state = memento.getState()).

– Memento defines the required data structures to store an originator's internal state, and it is
protected against access by objects other than the originator.
This is usually achieved by implementing memento as inner class of originator and declaring
all members of memento private (see Implementation and Sample Code).

• Clients (caretaker) that are responsible for saving/restoring an originator's internal state hold a
list of mementos so that a memento can be passed back to the originator to restore to a previous
state.
But a caretaker isn't permitted to access a memento. Only the originator that created a memento
is permitted to access it. This enables to save and restore originator's internal state without
violating its encapsulation.

MEMENTO w3sDesign / V 2.0 / 12.01.2018 229

Motivation 1

Consider the left design (problem):

• Originator's internal state can't be saved.
– Clients can not save the originator's internal state because it is encapsulated (hidden inside

the originator) and can not be accessed from outside the originator.

Consider the right design (solution):

• Originator's internal state can be saved.
– The originator itself is responsible for saving its internal state to a memento

(createMemento()).
– Clients (caretaker) can save the originator's internal state by calling createMemento() on

the originator, which creates and returns a memento.
– Clients (caretaker) are responsible for requesting and holding mementos, but they aren't

permitted to access them.
– Only the originator that created the mementos is permitted to access them.

MEMENTO w3sDesign / V 2.0 / 12.01.2018 230

Applicability

Design Problems

• Saving and Restoring an Object's Internal State
– Without violating encapsulation,

how can an object's internal state be captured and externalized
so that the object can be restored to this state later?

MEMENTO w3sDesign / V 2.0 / 12.01.2018 231

Structure, Collaboration

Static Class Structure

• Caretaker

– Refers to the Originator class to save and restore originator's internal state.
– Holds Memento objects, created and returned by the originator, and passes back a memento

to the originator to restore to a previous state.
– Isn't permitted to access a Memento object.

• Originator

– Defines an operation (createMemento()) for saving its current internal state to a Memento
object.

– Defines an operation (restore(memento)) for restoring to a previous state from a passed
in Memento object.

• Memento

– Stores an originator's internal state.
– Only the originator that created a memento can access it.
– This is usually implemented by making memento an inner class of originator and declaring

all members of memento private.
– See also Implementation and Sample Code.

Dynamic Object Collaboration

• This sample scenario shows (1) saving and (2) restoring the internal state of an Originator
object.

• (1) To save the Originator's current internal state, the Caretaker calls createMemento() on
the Originator.

• The Originator creates a new Memento object, saves its current internal state (setState()),
and returns the Memento object to the Caretaker.

• The Caretaker holds (takes care of) the returned Memento object(s).

• (2) To restore the Originator to a previous state, the Caretaker calls restore(memento) on
the Originator by providing the Memento object to be restored.

• The Originator gets the state to be restored from the provided Memento object (getState()).

• See also Sample Code / Example1.

MEMENTO w3sDesign / V 2.0 / 12.01.2018 232

Consequences

Advantages (+)

• Preserves encapsulation.
– An object's internal state can be saved externally (to another object) without violating

encapsulation (without making the internal data structures accessible).

Disadvantages (–)

• May introduce run-time costs.
– Creating large numbers of mementos with large amounts of data may impact memory usage

and system performance.
– "Unless encapsulating and restoring Originator state is cheap, the pattern might not be

appropriate." [GoF, p286]

MEMENTO w3sDesign / V 2.0 / 12.01.2018 233

Implementation

Implementation Issues

• Originator must have privileged access.
– A memento must be protected against access by objects other than originator.
– This is usually implemented by making the Memento class an inner class of the Originator

class and declaring all members of the Memento class private.
– This enables originator to access the private data structures of memento.

MEMENTO w3sDesign / V 2.0 / 12.01.2018 234

Sample Code 1

Basic Java code for implementing the sample UML diagrams.

 1 package com.sample.memento.basic;
 2 import java.util.ArrayList;
 3 import java.util.List;
 4 public class Caretaker {
 5 // Running the Caretaker class as application.
 6 public static void main(String[] args) {
 7 Originator originator = new Originator();
 8 Originator.Memento memento; // Memento is inner class of Originator
 9 // List of memento objects.
10 List<Originator.Memento> mementos = new ArrayList<Originator.Memento>();
11
12 originator.setState("A");
13 // Saving state.
14 memento = originator.createMemento();
15 mementos.add(memento); // adding to list
16 System.out.println("(1) Saving current state : "
17 + originator.getState());
18 originator.setState("B");
19 // Saving state.
20 memento = originator.createMemento();
21 mementos.add(memento); // adding to list
22 System.out.println("(2) Saving current state : "
23 + originator.getState());
24 // Restoring to previous state.
25 memento = mementos.get(0); // getting previous (first) memento from the list
26 originator.restore(memento);
27 System.out.println("(3) Restoring to previous state : "
28 + originator.getState());
29 }
30 }

(1) Saving current state : A
(2) Saving current state : B
(3) Restoring to previous state : A

 1 package com.sample.memento.basic;
 2 public class Originator {
 3 // Hiding internal state.
 4 private String state;
 5 // ...
 6 // Saving internal state.
 7 public Memento createMemento() {
 8 Memento memento = new Memento();
 9 memento.setState(state);
10 return memento;
11 }
12 // Restoring internal state.
13 void restore(Memento memento) {
14 state = memento.getState();
15 }
16 //
17 public String getState() {
18 return state;

MEMENTO w3sDesign / V 2.0 / 12.01.2018 235

19 }
20 void setState(String state) {
21 this.state = state;
22 }
23 //
24 // Implementing Memento as inner class.
25 // All members are private and accessible only by originator.
26 //
27 public class Memento {
28 // Storing Originator's internal state.
29 private String state;
30 // ...
31 private String getState() {
32 return state;
33 }
34 private void setState(String state) {
35 this.state = state;
36 }
37 }
38 }

MEMENTO w3sDesign / V 2.0 / 12.01.2018 236

Related Patterns

Key Relationships

• Command - Memento
– Command and Memento often work together

to support undoable operations.
Memento stores state that command requires to undo its effects.

OBSERVER w3sDesign / V 2.0 / 12.01.2018 237

Intent

The intent of the Observer design pattern is to:
"Define a one-to-many dependency between objects so that when one object
changes state, all its dependents are notified and updated automatically." [GoF]
See Problem and Solution sections for a more structured description of the intent.

• The Observer design pattern solves problems like:
– How can a one-to-many dependency between objects be defined

without making the objects tightly coupled?

– How can an object notify an open-ended-number of other objects?

• Coupling is the degree to which objects depend on each other.
– Tightly coupled objects are hard to implement, change, test, and reuse

because they depend on (refer to and know about) many different objects (having different
interfaces).

– Loosely coupled objects are easier to implement, change, test, and reuse
because they have only minimal dependencies on other objects.

• The Observer pattern describes how to solve such problems:
– Define a one-to-many dependency between objects so that when one object changes state,

all its dependents are notified and updated automatically.

– The key idea in this pattern is to establish a flexible notification-registration mechanism
that notifies all registered objects automatically when an event of interest occurs.

OBSERVER w3sDesign / V 2.0 / 12.01.2018 238

Problem

The Observer design pattern solves problems like:
How can a one-to-many dependency between objects be defined
without making the objects tightly coupled?
How can an object notify an open-ended number of other objects?
See Applicability section for all problems Observer can solve. See Solution section for how
Observer solves the problems.

• An inflexible way to define a one-to-many dependency between objects is to define
one object (Subject1) that implements updating the state of dependent objects
(Dependent1,Dependent2,…). That means, subject must know how to update the state of many
different objects (having different interfaces).

• This commits (tightly couples) the subject to particular dependent objects and makes it
impossible to change the objects (add new ones or remove existing ones) independently from
(without having to change) the subject. It stops the subject from being reusable and makes the
subject hard to test.
Tightly coupled objects are hard to implement, change, test, and reuse
because they depend on (refer to and know about) many different objects.
"You don't want to achieve consistency by making the classes tightly coupled, because that
reduces their reusability." [GoF, p293]

• That's the kind of approach to avoid if we want to keep the objects in a one-to-many dependency
loosely coupled.

• For example, a data object and multiple presentation objects in a GUI/Web application.
When the data object changes state, all presentation objects that depend on this data object's
state should be updated (synchronized) automatically and immediately to reflect the data
change (see Sample Code / Example 2).

• For example, event handing in a GUI/Web application.
When a user clicks a button, all objects that depend on (listen for) the button's 'click event'
should be notified that a 'click event' occurred (see Sample Code / Example 3/4).

OBSERVER w3sDesign / V 2.0 / 12.01.2018 239

Solution

The Observer design pattern provides a solution:
Define Subject and Observer objects
so that when a subject changes state,
all registered observers are notified and updated automatically.
Describing the Observer design in more detail is the theme of the following sections.
See Applicability section for all problems Observer can solve.

• The key idea in this pattern is to establish a flexible notification-registration interaction by
notifying (calling update on) all registered observers automatically when an event of interest
occurs.

• Define Subject and Observer objects:
– Subject defines an interface for registering and unregistering observers (attach(o),

detach(o)) and for notifying observers (notify()), i.e., calling update() on all registered
observers.

– Observer defines an interface for updating state (update()), i.e., synchronizing observer's
state with subject's state.

• When a subject changes state, all registered observers are notified and updated
automatically (for each o in observers: o.update()).

• This enables loose coupling between subject and observers.
Subject and observers have no explicit knowledge of each other. An open-ended number of
observers can observe a subject. New observers can be added to and existing ones can be
removed from the subject independently and dynamically.

• "This kind of interaction is also known as publish-subscribe.
The subject is the publisher of notifications. It sends out these notifications without
having to know who its observers are. Any number of observers can subscribe to receive
notifications." [GoF, p294]

OBSERVER w3sDesign / V 2.0 / 12.01.2018 240

Motivation 1

Consider the left design (problem):

• Tight coupling
between subject and dependents.
– Subject implements (is responsible for) updating dependent objects.
– Subject refers to and knows about (how to update) many different objects having different

interfaces (tight coupling).
– Adding new dependent objects or removing existing ones requires changing subject.
– Tightly coupled objects depend on (refer to and know about) many other objects having

different interfaces, which makes the objects hard to implement, change, test, and reuse.

Consider the right design (solution):

• Loose coupling
between subject and observers.
– Subject delegates (the responsibility for) updating to dependent objects (observers).
– Subject only refers to and knows about the common Observer interface for updating state

(loose coupling).
– An open-ended number of observers can be added/removed independently and dynamically

(attach(o)/detach(o)).
– Loosely coupled objects have only minimal dependencies (by working through a common

interface), which makes the objects easier to to implement, change, test, and reuse.

OBSERVER w3sDesign / V 2.0 / 12.01.2018 241

Applicability

Design Problems

• Defining One-to-many Dependencies Between Objects
– How can a one-to-many dependency between objects be defined

without making the objects tightly coupled?
– How can be ensured that when one object changes state

an open-ended number of dependent objects are updated automatically?
– How can consistency between dependent objects be maintained?

• Flexible Notification-Registration (Publish-Subscribe) Interaction
– How can an object notify an open-ended number of other objects?
– How can a publisher notify an open-ended number of subscribers?

OBSERVER w3sDesign / V 2.0 / 12.01.2018 242

Structure, Collaboration

Static Class Structure

• Subject

– Refers to the Observer interface to update dependent objects (observers) and is
independent of how the objects are updated.

– Maintains a list of dependent objects (observers).
– Defines an interface for registering and unregistering observers (attach(o), detach(o)).
– Defines an interface for notifying observers (notify()), i.e., calling update() on all

registered observers: for each o in observers: o.update().
– Usually, calls notify() on itself when its state changes.

• Subject1

– Stores state observers depend on.

• Observer

– Defines an interface for updating state (update()), i.e., synchronizing observer's state with
subject's state.

• Observer1,Observer2,,…
– Dependent objects that implement the Observer interface.
– Store state that should stay consistent with subject's state.
– Maintain a reference (subject) to the subject they observe to get the changed data

(getState).

Dynamic Object Collaboration

• In this sample scenario, Observer1 and Observer2 objects register themselves on a Subject1
object and are subsequently notified and updated when Subject1 changes state.

• The interaction starts with the Observer1 and Observer2 objects that call attach(this) on
Subject1 to register themselves.

• Thereafter, let's assume that the state of Subject1 changes, Subject1 calls notify() on itself.

• notify() calls update() on the registered Observer1 and Observer2 objects, which in turn
get the changed data (getState()) from Subject1 to update (synchronize) their state.

• There are different ways to exchange (push/pull) data between Subject and Observer objects
(see Implementation).

• See also Sample Code / Example 1.

OBSERVER w3sDesign / V 2.0 / 12.01.2018 243

Consequences

Advantages (+)

• Decouples subject from observers.
– Subject only refers to and knows about the simple Observer interface for updating

(synchronizing) state (update()).
– "Because Subject and Observer aren't tightly coupled, they can belong to different layers of

abstraction in a system. [GoF, p296]
– Loosely coupled objects are easier to implement, change, test, and reuse.

• Makes adding/withdrawing observers easy.
– Observers can be added to (attach(o)) and withdrawn from a subject independently and

dynamically.
– Usually, observers are responsible for registering and unregistering themselves on a subject.
– Subject's sole responsibility is to hold a list of observers and notify (call update() on) them

when its state changes.

Disadvantages (–)

• Can make the update behavior complex.
– A change on the subject may cause a cascade of updates to observers and their dependent

objects.
– The Mediator design pattern can be applied to implement a complex dependency relationship

between subject(s) and observers.

OBSERVER w3sDesign / V 2.0 / 12.01.2018 244

Implementation

Implementation Issues

• Implementation Variants
– The Subject and Observer interfaces must be designed carefully so that the data

can be passed/accessed efficiently to let observers know what changed in subject.
There are two main variants:

• Variant1: Push Data
– Subject passes the changed data to its observers:

update(data1,data2,…)

– The Observer interface may get complex because it must enable to pass in the changed data
for all supported observers (whether the data is simple or complex).

• Variant2: Pull Data
– Subject passes nothing but itself to its observers so that they can call back to get (pull) the

required data from subject:
update(this)

– The Subject interface may get complex because it must enable all supported observers to
access the needed data.

• "The pull model emphasizes the subject's ignorance of its observers, whereas the push model
assumes subjects know something about their observers' needs." [GoF, p298]

OBSERVER w3sDesign / V 2.0 / 12.01.2018 245

Sample Code 1

Basic Java code for implementing the sample UML diagrams.

 1 package com.sample.observer.basic;
 2 public class MyApp {
 3 public static void main(String[] args) {
 4 Subject1 s1 = new Subject1();
 5 // Creating observers and registering them on subject1.
 6 Observer o1 = new Observer1(s1);
 7 Observer o2 = new Observer2(s1);
 8
 9 System.out.println("Changing state of Subject1 ...");
10 s1.setState(100);
11 }
12 }

Changing state of Subject1 ...
Subject1 : State changed to : 100
 Notifying observers ...
Observer1: State updated to : 100
Observer2: State updated to : 100

 1 package com.sample.observer.basic;
 2 import java.util.ArrayList;
 3 import java.util.List;
 4 public abstract class Subject {
 5 private List<Observer> observers = new ArrayList<Observer>();
 6 // Registration interface.
 7 public void attach(Observer o) {
 8 observers.add(o);
 9 }
10 // Notification interface.
11 // notify() is already used by the Java Language (to wake up threads).
12 public void notifyObservers() {
13 for (Observer o : observers)
14 o.update();
15 }
16 }

 1 package com.sample.observer.basic;
 2 public class Subject1 extends Subject {
 3 private int state = 0;
 4 //
 5 public int getState() {
 6 return state;
 7 }
 8 void setState(int state) {
 9 this.state = state;
10 System.out.println(
11 "Subject1 : State changed to : " + state +
12 "\n Notifying observers ...");
13 // Notifying observers that state has changed.
14 notifyObservers();
15 }
16 }

OBSERVER w3sDesign / V 2.0 / 12.01.2018 246

 1 package com.sample.observer.basic;
 2 public abstract class Observer {
 3 // Synchronizing observer's state with subject's state.
 4 public abstract void update();
 5 }

 1 package com.sample.observer.basic;
 2 public class Observer1 extends Observer {
 3 private int state;
 4 private Subject1 subject;
 5 public Observer1(Subject1 subject) {
 6 this.subject = subject;
 7 // Registering this observer on subject.
 8 subject.attach(this);
 9 }
10 public void update() {
11 this.state = subject.getState();
12 System.out.println(
13 "Observer1: State updated to : " + this.state);
14 }
15 }

 1 package com.sample.observer.basic;
 2 public class Observer2 extends Observer {
 3 private int state;
 4 private Subject1 subject;
 5 public Observer2(Subject1 subject) {
 6 this.subject = subject;
 7 // Registering this observer on subject.
 8 subject.attach(this);
 9 }
10 public void update() {
11 this.state = subject.getState();
12 System.out.println(
13 "Observer2: State updated to : " + this.state);
14 }
15 }

OBSERVER w3sDesign / V 2.0 / 12.01.2018 247

Sample Code 2

Synchronizing state between a timer object (time of day) and a clock object.

 1 package com.sample.observer.timer;
 2 import java.util.Calendar;
 3 public class Client {
 4 public static void main(String[] args) throws InterruptedException {
 5 Timer timer = new Timer(); // subject
 6 // Creating a clock (observer) and registering it on timer (subject).
 7 Clock clock = new Clock(timer);
 8 final Calendar calendar = Calendar.getInstance();
 9 for (int i = 0; i < 3; i++) {
10 Thread.sleep(1000); // one second
11 calendar.setTimeInMillis(System.currentTimeMillis());
12 int h = calendar.get(Calendar.HOUR_OF_DAY);
13 int m = calendar.get(Calendar.MINUTE);
14 int s = calendar.get(Calendar.SECOND);
15 // Changing timer's state every second.
16 timer.tick(h, m, s);
17 }
18 }
19 }

Timer : Time of day changed to : 20:20:38
Clock : Updated/Synchronized to : 20:20:38
Timer : Time of day changed to : 20:20:39
Clock : Updated/Synchronized to : 20:20:39
Timer : Time of day changed to : 20:20:40
Clock : Updated/Synchronized to : 20:20:40

 1 package com.sample.observer.timer;
 2 import java.util.ArrayList;
 3 import java.util.List;
 4 public abstract class Subject {
 5 private List<Observer> observers = new ArrayList<Observer>();
 6 // Registration interface.
 7 public void attach(Observer o) {
 8 observers.add(o);
 9 }
10 // Notification interface.
11 public void notifyObservers() {
12 for (Observer o : observers)
13 o.update(this);
14 }
15 }

OBSERVER w3sDesign / V 2.0 / 12.01.2018 248

 1 package com.sample.observer.timer;
 2 public class Timer extends Subject {
 3 private int hour = 0;
 4 private int minute = 0;
 5 private int second = 0;
 6 public int getHour() {
 7 return hour;
 8 }
 9 public int getMinute() {
10 return minute;
11 }
12 public int getSecond() {
13 return second;
14 }
15 // Changing time of day and notifying observers.
16 public void tick(int hour, int minute, int second) {
17 System.out.printf(
18 "Timer : Time of day changed to : %02d:%02d:%02d %n",
19 hour, minute, second);
20 this.hour = hour;
21 this.minute = minute;
22 this.second = second;
23 // Notifying observers that time has changed.
24 notifyObservers();
25 }
26 }

 1 package com.sample.observer.timer;
 2 public abstract class Observer {
 3 public abstract void update(Subject s);
 4 }

 1 package com.sample.observer.timer;
 2 public class Clock extends Observer {
 3 private Timer subject;
 4 public Clock(Timer subject) {
 5 this.subject = subject;
 6 // Registering this clock on subject.
 7 subject.attach(this);
 8 }
 9 public void update(Subject s) {
10 if (this.subject == s) {
11 System.out.printf(
12 "Clock : Updated/Synchronized to : %02d:%02d:%02d %n",
13 subject.getHour(), subject.getMinute(), subject.getSecond());
14 }
15 }
16 }

OBSERVER w3sDesign / V 2.0 / 12.01.2018 249

Sample Code 3

Event handling in a GUI application (Java Swing).

The ActionListener interface has a single operation: actionPerformed(event).
This is the action to be performed when an action event occurs.
This example shows registering an event (=action) listener for a mouse click on a button:
When clicking the Button1, a message is shown in the TextArea1.
There are different variants to implement the interface:

**
Variant1: Implementing the ActionListener interface with inner classes.
**

 1 package com.sample.observer.gui;
 2 import java.awt.event.*;
 3 import javax.swing.*;
 4 public class GUIDemo1 extends JPanel {
 5 JButton button1;
 6 JTextArea textArea1;
 7 public GUIDemo1() {
 8 button1 = new JButton("Button1");
 9 add(button1);
10 textArea1 = new JTextArea("TextArea1", 5, 15);
11 add(textArea1);
12 // Creating an ActionListener object and registering it on button1
13 // (for being notified when an action event occurs).
14 button1.addActionListener(new ActionListener() {
15 // Anonymous inner class.
16 // Implementing the ActionListener interface.
17 public void actionPerformed(ActionEvent e) {
18 textArea1.append("\nNotification from Button1:\n " +
19 "User clicked the Button1.");
20 }
21 });
22 }
23 private static void createAndShowGUI() {
24 // Creating the GUI.
25 JFrame frame = new JFrame("GUIDemo1");
26 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
27 JComponent contentPane = new GUIDemo1();
28 frame.setContentPane(contentPane);
29 // Showing the GUI.
30 frame.pack();
31 frame.setVisible(true);
32 }
33 public static void main(String[] args) {
34 // For thread safety, invoked from event-dispatching thread.
35 javax.swing.SwingUtilities.invokeLater(new Runnable() {
36 public void run() {
37 createAndShowGUI();
38 }
39 });
40 }

OBSERVER w3sDesign / V 2.0 / 12.01.2018 250

41 }

OBSERVER w3sDesign / V 2.0 / 12.01.2018 251

**
Variant2: Implementing without inner classes.
**

 1 package com.sample.observer.gui;
 2 import java.awt.event.*;
 3 import javax.swing.*;
 4 public class GUIDemo2 extends JPanel
 5 implements ActionListener {
 6 JButton button1;
 7 JTextArea textArea1;
 8 public GUIDemo2() {
 9 button1 = new JButton("Button1");
10 add(button1);
11 textArea1 = new JTextArea("TextArea1", 10, 20);
12 add(textArea1);
13 // Registering this object/ActionListener on button1
14 // (for being notified when an action event occurs).
15 button1.addActionListener(this);
16 }
17 // Implementing the ActionListener interface.
18 public void actionPerformed(ActionEvent e) {
19 if (e.getSource() == button1) {
20 textArea1.append("\nNotification from Button1: \n " +
21 "User clicked the Button1.");
22 }
23 }
24 private static void createAndShowGUI() {
25 // Creating the GUI.
26 JFrame frame = new JFrame("GUIDemo2");
27 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
28 JComponent contentPane = new GUIDemo2();
29 frame.setContentPane(contentPane);
30 // Showing the GUI.
31 frame.pack();
32 frame.setVisible(true);
33 }
34 public static void main(String[] args) {
35 // For thread safety, invoked from event-dispatching thread.
36 javax.swing.SwingUtilities.invokeLater(new Runnable() {
37 public void run() {
38 createAndShowGUI();
39 }
40 });
41 }
42 }

OBSERVER w3sDesign / V 2.0 / 12.01.2018 252

Sample Code 4

Event handling in a HTML document (DOM / JavaScipt).

The W3C Document Object Model (DOM) is a standard interface for accessing and updating
HTML and XML documents. It is separated into 3 different parts: Core DOM, XML DOM, and
HTML DOM.
The HTML DOM represents a HTML document as a tree (=composite) structure of objects
(nodes).
Everything found in a HTML document can be accessed and changed dynamically.
The DOM Event Model allows registering event listeners (=observers) on DOM element nodes.
This example shows registering an event listener for a mouse click on a button:
When clicking the Button1, a message is shown in the TextArea1.
There are three variants for registering event listeners:

Variant1: Hard-wiring event handling directly into the HTML code:
<button onclick="function(){…};"></button>

 1 <!DOCTYPE html>
 2 <html>
 3 <head>
 4 <script>
 5 function updateTextArea() {
 6 var buttonNode = document.getElementById("textArea1");
 7 buttonNode.innerHTML += "\nNotification from Button1: \n " +
 8 "User clicked the Button1.";
 9 }
10 </script>
11 </head>
12
13 <body>
14 <button id="button1" onclick="updateTextArea();">Button1</button>
15 <!-- ========================== -->
16 <textarea id="textArea1" rows="4" cols="25">TextArea1</textarea>
17 </body>
18 </html>

Variant2: Separating event handling (JavaScript code) from HTML code:
buttonNode.addEventListener('click', function(){…}, false);
This is the most flexible way.
Note that Internet Explorer 6-8 didn't support the DOM standard.

 1 <!DOCTYPE html>
 2 <html>
 3 <head>
 4 <script type="text/javascript">
 5 function dynamicRegistration() {

OBSERVER w3sDesign / V 2.0 / 12.01.2018 253

 6 var buttonNode = document.getElementById('button1');
 7 if (buttonNode.addEventListener) {
 8 buttonNode.addEventListener('click', updateTextArea, false);
 9 <!-- === -->
10 } else { // Internet Explorer 6-8
11 buttonNode.attachEvent('onclick', updateTextArea);
12 }
13 }
14 function updateTextArea() {
15 var textNode = document.getElementById("textArea1");
16 textNode.innerHTML += "\nNotification from Button1: \n " +
17 "User clicked the Button1.";
18 } ;
19 </script>
20 </head>
21
22 <body onload="dynamicRegistration();">
23 <button id="button1">Button1</button>
24 <textarea id="textArea1" rows="4" cols="25">TextArea1</textarea>
25 </body>
26 </html>

Variant3: Separating event handling (JavaScript code) from HTML code:
buttonNode.onclick = function(){…};
This way, only one handler can be set per event and element.

 1 <!DOCTYPE html>
 2 <html>
 3 <head>
 4 <script type="text/javascript">
 5 function dynamicRegistration() {
 6 var buttonNode = document.getElementById('button1');
 7 buttonNode.onclick = function() {
 8 <!-- =============================== -->
 9 var textNode = document.getElementById("textArea1");
10 textNode.innerHTML += "\nNotification from Button1: \n " +
11 "User clicked the Button1.";
12 }
13 } ;
14 </script>
15 </head>
16
17 <body onload="dynamicRegistration();">
18 <button id="button1">Button1</button>
19 <textarea id="textArea1" rows="4" cols="25">TextArea1</textarea>
20 </body>
21 </html>

OBSERVER w3sDesign / V 2.0 / 12.01.2018 254

Related Patterns

Key Relationships

• Mediator - Observer
– Mediator provides a way to keep interacting objects loosely coupled

by defining a Mediator object that centralizes (encapsulates) interaction behavior.
– Observer provides a way to keep interacting objects loosely coupled

by defining Subject and Observer objects that distribute interaction behavior so that when
a subject changes state all registered observers are updated.

– "The difference between them is that Observer distributes communication by introducing
Observer and Subject objects, whereas a Mediator object encapsulates the communication
between other objects." [GoF, p346]

STATE w3sDesign / V 2.0 / 12.01.2018 255

Intent

The intent of the State design pattern is to:
"Allow an object to alter its behavior when its internal state changes.
The object will appear to change its class." [GoF]
See Problem and Solution sections for a more structured description of the intent.

• The State design pattern solves problems like:
– How can an object alter its behavior when its internal state changes?

– How can state-specific behavior be defined
so that new states can be added and the behavior of existing states can be
changed independently?

• For example, a sales order object in an order processing system.
A sales order object can be in one of different states. When it receives a request, it behaves
differently depending on its current internal state.
It should be possible to add new states and change the behavior of existing states independently
from (without having to change) the sales order classes.

STATE w3sDesign / V 2.0 / 12.01.2018 256

Problem

The State design pattern solves problems like:
How can an object alter its behavior when its internal state changes?
How can state-specific behavior be defined
so that new states can be added and the behavior of existing states can be
changed independently?
See Applicability section for all problems State can solve. See Solution section for how State
solves the problems.

• An inflexible way is to implement (hard-wire) state-specific behavior directly within a class
(Context) that depends on its internal state. Conditional statements (switch(state)) are
required that depend on this state. Each conditional branch implements the corresponding state-
specific behavior.

• This commits the class to a particular state-specific behavior and makes it impossible to add
new states or change the behavior of existing states later independently from (without having
to change) the class.
Classes that include state-specific behavior are harder to implement, change, test, and reuse.
"[…] we'd have look-alike conditional or case statements scattered throughout Context's
implementation. Adding a new state could require changing several operations, which
complicates maintenance." [GoF, p307]

• That's the kind of approach to avoid if we want that new states can be added and the behavior
of existing states can be changed independently.

• For example, a sales order object in an order processing system.
A sales order object can be in one of different states. When it receives a request, it behaves
differently depending on its current internal state.
It should be possible to add new states and change the behavior of existing states independently
from (without having to change) the sales order classes.

STATE w3sDesign / V 2.0 / 12.01.2018 257

Solution

The State design pattern provides a solution:
Encapsulate state-specific behavior in a separate State object.
A class delegates state-specific behavior to its current State object
instead of implementing state-specific behavior directly.
Describing the State design in more detail is the theme of the following sections.
See Applicability section for all problems State can solve.

• The key idea in this pattern is to encapsulate an object's state-specific behavior in a separate
State object. "This lets you treat the object's state as an object in its own right that can vary
independently from other objects." [GoF, p306]

• Define separate State objects:
– For all possible states, define a common interface for performing state-specific behavior

(State | operation(…)).
– Define classes (State1,State2,…) that implement the State interface for each state.

• This enables compile-time flexibility (via inheritance).
"Because all state-specific code lives in a State subclass, new states and transitions can be
added easily by defining new subclasses." [GoF, p307]

• A class (Context) delegates the responsibility for performing state-specific behavior to
its current State object (state.operation(…)).

• This enables run-time flexibility (via object composition).
A class can change its behavior at run-time by changing its current State object.
Usually, the State objects are responsible for changing Context's current state at run-time
when a state transition occurs (see also Collaboration and Sample Code).

STATE w3sDesign / V 2.0 / 12.01.2018 258

Motivation 1

Consider the left design (problem):

• Hard-wired state-specific behavior.
– The behavior of different states is implemented (hard-wired) directly within a class

(Context).
– This makes it impossible to add new states or change the behavior of existing states

independently from (without having to change) the Context class.

• Conditional statements required.
– Conditional statements are needed to switch between different states.

• Complicated class.
– Classes that include state-specific behavior get more complex and harder to implement,

change, test, and reuse.

Consider the right design (solution):

• Encapsulated state-specific behavior.
– The behavior for each state is implemented (encapsulated) in a separate class

(State1,State2,…).
– This makes it easy to add new states or change the behavior of existing states independently

from (without having to change) the Context class.

• No conditional statements required.
– Conditional statements are replaced by delegating to different State objects.

• Simplified class.
– Classes that delegate state-specific behavior get less complex and easier to implement,

change, test, and reuse.

STATE w3sDesign / V 2.0 / 12.01.2018 259

Applicability

Design Problems

• Defining State-Specific Behavior
– How can an object alter its behavior when its internal state changes?
– How can state-specific behavior be defined

so that new states can be added and the behavior of existing states can be
changed independently?

– How can conditional statements that depend on an object's internal state be avoided?

Refactoring Problems

• Complicated Code
– How can conditional statements that depend on an object's internal state be eliminated?

Replace State-Altering Conditionals with State (166) [JKerievsky05]

STATE w3sDesign / V 2.0 / 12.01.2018 260

Structure, Collaboration

Static Class Structure

• Context

– Refers to the State interface to perform state-specific behavior (state.operation()) and
is independent of how the behavior is implemented.

– Maintains a reference (state) to its current State object.

• State

– For all possible states, defines a common interface for performing state-specific behavior.

• State1,State2,…
– Implement the State interface for each state.

Dynamic Object Collaboration

• In this sample scenario, a Context object delegates state-specific behavior to its current state
object.
Let's assume that Context is configured with an (initial) State1 object.

• The interaction starts with the Context object that calls operation(this) on its current state
object (State1).

• Context passes itself (this) to State1 so that State1 can call back and change context's
current state object.

• State1 performs the state1-specific operation and, assuming that a state transition occurs,
changes context's current state object to State2 by calling setState(State2) on Context.

• Thereafter, the Context object again calls operation(this) on its current state object
(State2).

• State2 performs the state2-specific operation and calls setState(State1) on Context to
switch to State1.

• See also Sample Code / Example 1.

STATE w3sDesign / V 2.0 / 12.01.2018 261

Consequences

Advantages (+)

• Makes adding new states easy.
– "Because all state-specific code lives in a State subclass, new states and transitions can be

added easily by defining new subclasses." [GoF, p307]

• Avoids conditional statements for switching between states.
– Instead of hard-coding multiple/large conditional statements that switch between the

different states, Context delegates state-specific behavior to its current State object.
– "That imposes structure on the code and makes its intent clearer." [GoF, p307]

• Ensures consistent states.
– Context's state is changed by replacing its current State object. This can avoid inconsistent

internal states.

• Makes state transitions explicit.
– "Introducing separate objects for different states makes the transitions more explicit." [GoF,

p307]

Disadvantages (–)

• May require extending the Context interface.
– The Context interface may have to be extended to let State objects change Context's state.

• Introduces an additional level of indirection.
– State achieves flexibility by introducing an additional level of indirection (clients delegate

to separate State objects), which makes clients dependent on a State object.

STATE w3sDesign / V 2.0 / 12.01.2018 262

Implementation

Implementation Issues

• State Transitions
– Usually, the State objects are responsible to change Context's current state dynamically

when a state transition occurs.
– Context doesn't know anything about its states.

The State objects define the state transitions and state-specific operations.
This makes Context easier to implement, change, test, and reuse.

STATE w3sDesign / V 2.0 / 12.01.2018 263

Sample Code 1

Basic Java code for implementing the sample UML diagrams.

 1 package com.sample.state.basic;
 2 public class MyApp {
 3 public static void main(String[] args) {
 4 // Creating a Context object
 5 // and configuring it with the initial State1 object.
 6 Context context = new Context(State1.getInstance());
 7 // Calling an operation on context.
 8 System.out.println("(1) " + context.operation());
 9 // Calling the operation again.
10 System.out.println("(2) " + context.operation());
11 }
12 }

(1) Context: Delegating state-specific behavior to the current State object.
 State1 : Hello World1! Changing current state of Context to State2.
(2) Context: Delegating state-specific behavior to the current State object.
 State2 : Hello World2! Changing current state of Context to State1.

 1 package com.sample.state.basic;
 2 public class Context {
 3 private State state; // reference to the current State object
 4
 5 public Context(State state) {
 6 this.state = state;
 7 }
 8 public String operation() {
 9 return "Context: Delegating state-specific behavior to the current State object.\n"
10 + state.operation(this);
11 }
12 void setState(State state) { // package private
13 this.state = state;
14 }
15 }

 1 package com.sample.state.basic;
 2 public interface State {
 3 String operation(Context context);
 4 }

 1 package com.sample.state.basic;
 2 public class State1 implements State {
 3 // Implemented as Singleton.
 4 private static final State1 INSTANCE = new State1();
 5 private State1() { }
 6 public static State1 getInstance() {
 7 return INSTANCE;
 8 }
 9 public String operation(Context context) {
10 String result = " State1 : Hello World1!" +
11 " Changing current state of Context to State2.";
12 context.setState(State2.getInstance()); // state transition
13 return result;

STATE w3sDesign / V 2.0 / 12.01.2018 264

14 }
15 }

 1 package com.sample.state.basic;
 2 public class State2 implements State {
 3 // Implemented as Singleton.
 4 private static final State2 INSTANCE = new State2();
 5 private State2() { }
 6 public static State2 getInstance() {
 7 return INSTANCE;
 8 }
 9 public String operation(Context context) {
10 String result = " State2 : Hello World2!" +
11 " Changing current state of Context to State1.";
12 context.setState(State1.getInstance()); // state transition
13 return result;
14 }
15 }

STATE w3sDesign / V 2.0 / 12.01.2018 265

Sample Code 2

Network communication states (Connected / Closed).

 1 package com.sample.state.tcp;
 2 import java.io.OutputStream;
 3 public class MyApp {
 4 public static void main(String[] args) {
 5 OutputStream data = null;
 6 Connection connection = new Connection1(Closed.getInstance());
 7 connection.open();
 8 // ...
 9 connection.transmit(data);
10 // ...
11 connection.close();
12 }
13 }

State changed from CLOSED to CONNECTED.
State CONNECTED: Transmitting data ... Finished.
State changed from CONNECTED to CLOSED.

 1 package com.sample.state.tcp;
 2 import java.io.OutputStream;
 3 public abstract class Connection {
 4 public abstract void open();
 5 public abstract void transmit(OutputStream data);
 6 public abstract void close();
 7 abstract void setState(State state); // package private
 8 }

 1 package com.sample.state.tcp;
 2 import java.io.OutputStream;
 3 public class Connection1 extends Connection {
 4 private State state;
 5 // Configuring Context with a State.
 6 public Connection1(State state) {
 7 this.state = state;
 8 }
 9 public void open() {
10 state.open(this);
11 }
12 public void transmit(OutputStream data) {
13 state.transmit(this, data);
14 }
15 public void close() {
16 state.close(this);
17 }
18 void setState(State state) {
19 this.state = state;
20 }
21 }

 1 package com.sample.state.tcp;
 2 import java.io.OutputStream;
 3 public interface State {

STATE w3sDesign / V 2.0 / 12.01.2018 266

 4 void open(Connection c);
 5 void transmit(Connection c, OutputStream data);
 6 void close(Connection c);
 7 }

 1 package com.sample.state.tcp;
 2 import java.io.OutputStream;
 3 public class Connected implements State {
 4 // Implemented as Singleton.
 5 private static final Connected INSTANCE = new Connected();
 6 private Connected() { }
 7 public static Connected getInstance() {
 8 return INSTANCE;
 9 }
10 //
11 public void open(Connection c) {
12 System.out.println(
13 "State CONNECTED: *** Can't open connection " +
14 "(connection already opened). ***");
15 System.exit(-1);
16 }
17 public void transmit(Connection c, OutputStream data) {
18 // ...
19 System.out.println(
20 "State CONNECTED: Transmitting data ... Finished.");
21 }
22 public void close(Connection c) {
23 // ...
24 c.setState(Closed.getInstance());
25 System.out.println(
26 "State changed from CONNECTED to CLOSED.");
27 }
28 }

 1 package com.sample.state.tcp;
 2 import java.io.OutputStream;
 3
 4 import com.sample.state.basic.State1;
 5 public class Closed implements State {
 6 // Implemented as Singleton.
 7 private static final Closed INSTANCE = new Closed();
 8 private Closed() { }
 9 public static Closed getInstance() {
10 return INSTANCE;
11 }
12 //
13 public void open(Connection c) {
14 // ...
15 c.setState(Connected.getInstance());
16 System.out.println(
17 "State changed from CLOSED to CONNECTED.");
18 }
19 public void transmit(Connection c, OutputStream data) {
20 System.out.println(
21 "State CLOSED: *** Can't transmit data " +
22 "(connection is closed). ***");
23 System.exit(-1);
24 }
25 public void close(Connection c) {
26 System.out.println(
27 "State CLOSED: *** Can't close connection " +
28 "(connection already closed). ***");
29 System.exit(-1);
30 }
31 }

STATE w3sDesign / V 2.0 / 12.01.2018 267

Related Patterns

Key Relationships

STRATEGY w3sDesign / V 2.0 / 12.01.2018 268

Intent

The intent of the Strategy design pattern is to:
"Define a family of algorithms, encapsulate each one, and make them interchangeable.
Strategy lets the algorithm vary independently from clients that use it." [GoF]
See Problem and Solution sections for a more structured description of the intent.

• The Strategy design pattern solves problems like:
– How can a class be configured with an algorithm at run-time

instead of implementing an algorithm directly?

– How can an algorithm be selected and exchanged at run-time?

• The term algorithm is usually defined as a procedure that takes some value as input, performs
a finite number of steps, and produces some value as output.
From a more general point of view, an algorithm is an arbitrary piece of code that does
something appropriate.

• For example, calculating prices in an order processing system.
To calculate prices in different ways (depending on run-time conditions like type of customer,
volume of sales, product quantity, etc.), it should be possible to select the right pricing
algorithm (pricing 'strategy') at run-time.

• The Strategy pattern describes how to solve such problems:
– Define a family of algorithms, encapsulate each one, - define separate classes

(Strategy1,Strategy2,…) that implement (encapsulate) each algorithm,
– and make them interchangeable - and define a common interface (Strategy) through which

algorithms can be (inter)changed at run-time.

Background Information

• The Intent section is "A short statement that answers the following questions: What does the
design pattern do? What is its rationale and intent? What particular design issue or problem
does it address?" [GoF, p6]

• For providing a more structured and better comparable description of the intent, w3sDesign
has introduced separate Problem and Solution sections.
– The Problem section describes the key problems the design pattern can solve.
– The Solution section describes how the design pattern solves the problems.

• Hint: View how UML diagrams change when switching between sections or patterns.

STRATEGY w3sDesign / V 2.0 / 12.01.2018 269

Problem

The Strategy design pattern solves problems like:
How can a class be configured with an algorithm at run-time
instead of implementing an algorithm directly?
How can an algorithm be selected and exchanged at run-time?
See Applicability section for all problems Strategy can solve. See Solution section for how
Strategy solves the problems.

• An inflexible way is to implement (hard-wire) an algorithm directly within the class (Context)
that requires (uses) the algorithm. Conditional statements (switch(…)) are needed to switch
between different algorithms.

• This commits (couples) the class to particular algorithms at compile-time and makes it
impossible to change an algorithm later independently from (without having to change) the
class. It makes the class more complex, especially if multiple algorithms are needed, and stops
the class from being reusable if other algorithms are required.
"Hard-wiring all such algorithms into the classes that require them isn't desirable for several
reasons:" [GoF, p315] "Algorithms are often extended, optimized, and replaced during
development and reuse." [GoF, p24]

• That's the kind of approach to avoid if we want to configure a class with an algorithm at run-
time.

• For example, reusable classes that support different algorithms.
A reusable class should avoid implementing algorithms directly so that it can be configured
with an algorithm at run-time.

• For example, calculating prices in an order processing system.
To calculate prices in different ways (depending on run-time conditions), it should be possible
to select the right pricing algorithm at run-time (see Sample Code / Example 2).

• For example, sorting objects.
To sort objects in different ways, it should be possible to parameterize a sort operation with a
compare algorithm (see Sample Code / Example 3).

STRATEGY w3sDesign / V 2.0 / 12.01.2018 270

Solution

The Strategy design pattern provides a solution:
Encapsulate an algorithm in a separate Strategy object.
A class delegates an algorithm to a Strategy object
instead of implementing an algorithm directly.
Describing the Strategy design in more detail is the theme of the following sections. See
Applicability section for all problems Strategy can solve.

• The key idea in this pattern is to implement algorithms in a separate inheritance hierarchy so
that they can vary independently.

• Define separate Strategy objects:
– For all supported algorithms, define a common interface for performing an algorithm

(Strategy | algorithm(…)).
– Define classes (Strategy1,Strategy2,…) that implement the Strategy interface

(encapsulate an algorithm).

• This enables compile-time flexibility (via inheritance).
New algorithms can be added and existing ones can be changed independently by defining
new (sub)classes.

• A class (Context) delegates the responsibility for performing an algorithm to a Strategy
object (strategy.algorithm(…)).

• This enables run-time flexibility (via object composition).
A class can be configured with a Strategy object, which it uses to perform an algorithm, and
even more, the Strategy object can be exchanged dynamically.

STRATEGY w3sDesign / V 2.0 / 12.01.2018 271

Background Information

• Encapsulation is "The result of hiding a representation and implementation in an object." [GoF,
p360]

• As a reminder, an object has an outside view (public interface/operations) and an inside view
(private/hidden representation and implementation).
Encapsulation means hiding a representation and implementation in an object.
Clients can only see the outside view of an object and are independent of any changes of an
object's representation and implementation.
That's the essential benefit of encapsulation.
See also Design Principles.

• Terms and Definitions
– The term algorithm is usually defined as a procedure that takes some value as input, performs

a finite number of steps, and produces some value as output.
From a more general point of view, an algorithm is a piece of code.

– "A responsibility denotes the obligation of an object to provide a certain
behavior." [GBooch07, p600]

– The terms responsibility, behavior, and functionality are usually interchangeable.

STRATEGY w3sDesign / V 2.0 / 12.01.2018 272

Motivation 1

Consider the left design (problem):

• Hard-wired algorithms.
– Different algorithms are implemented

(hard-wired) directly within a class (Context).
– This makes it impossible to add new algorithms or change existing ones independently from

(without having to change) the Context class.

• Conditional statements required.
– Conditional statements are needed to switch between different algorithms.

• Complicated classes.
– Classes that include multiple algorithms get more complex and harder to implement, change,

test, and reuse.

Consider the right design (solution):

• Encapsulated algorithms.
– Each algorithm is implemented (encapsulated) in a separate class (Strategy1,Strategy2,

…).
– This makes it easy to add new algorithms or change existing ones independently from

(without having to change) the Context class.

• No conditional statements required.
– Conditional statements are replaced by delegating to different Strategy objects.

• Simplified classes.
– Classes that delegate an algorithm get less complex and easier to implement, change, test,

and reuse.

STRATEGY w3sDesign / V 2.0 / 12.01.2018 273

Applicability

Design Problems

• Exchanging Algorithms at Run-Time
– How can a class be configured with an algorithm at run-time

instead of implementing an algorithm directly?
– How can an algorithm be selected and exchanged at run-time?

• Flexible Alternative to Subclassing
– How can a flexible alternative be provided to subclassing

for changing an algorithm at compile-time?

Refactoring Problems

• Inflexible Code
– How can hard-wired algorithms (compile-time implementation dependencies)

be refactored?

• Duplicated Code
– How can algorithms that are duplicated in multiple places be refactored?
– How can many related classes that differ only in their algorithms be replaced

by a common class that is configured with one of many algorithms?

• Complicated Code
– How can conditional statements that switch between different algorithms be eliminated?

Replace Conditional Logic with Strategy (129) [JKerievsky05]

STRATEGY w3sDesign / V 2.0 / 12.01.2018 274

Background Information

• Refactoring and "Bad Smells in Code" [MFowler99] [JKerievsky05]
– Code smells are certain structures in the code that "smell bad" and indicate problems that

can be solved by a refactoring.
– The most common code smells are:

complicated code (including complicated/growing conditional code),
duplicated code,
inflexible code (that must be changed whenever requirements change), and
unclear code (that doesn't clearly communicate its intent).

STRATEGY w3sDesign / V 2.0 / 12.01.2018 275

Structure, Collaboration

Static Class Structure

• Context

– Refers to the Strategy interface to perform an algorithm (strategy.algorithm())
and is independent of how the algorithm is implemented.

– Maintains a reference (strategy) to a Strategy object.

• Strategy

– For all supported algorithms, defines a common interface for performing an algorithm.

• Strategy1,Strategy2,…
– Implement the Strategy interface.

Dynamic Object Collaboration

• In this sample scenario, a Context object delegates performing an algorithm to different
Strategy objects.
Let's assume that Context is configured with a Strategy1 object.

• The interaction starts with the Context object that calls algorithm() on its installed
Strategy1 object.

• Strategy1 performs the algorithm and returns the result to Context.

• Let's assume that Context changes its strategy to Strategy2 (because of run-time conditions
such as reaching a threshold, for example).

• Context now calls algorithm() on the Strategy2 object, which performs the algorithm and
returns the result to Context.

• There are different ways to select and change a strategy. For example, clients of Context might
change the strategy or pass the strategy to the Context.

• See also Sample Code / Example 1.

STRATEGY w3sDesign / V 2.0 / 12.01.2018 276

Consequences

Advantages (+)

• Avoids compile-time implementation dependencies.
– Clients refer to an interface (Strategy) and are independent of an implementation.

• Provides a flexible alternative to subclassing.
– Subclassing provides a way to change the algorithm of a class (at compile-time).

When a subclass is instantiated, its algorithm is fixed and can't be changed for the life-time
of the object.

– Strategy provides a way to change the algorithm of an object (at run-time) by delegating to
different Strategy objects.

• Avoids conditional statements for switching between algorithms.
– Conditional statements that switch between different algorithms are replaced by delegating

to different Strategy objects.
– "Code containing many conditional statements often indicates the need to apply the Strategy

pattern." [GoF, p318]

Disadvantages (–)

• Can make the common Strategy interface complex.
– The Strategy interface may get complex because it must pass in the needed data for all

supported algorithms (whether they are simple or complex; see Implementation).

• Requires that clients understand how strategies differ.
– "The pattern has a potential drawback in that a client must understand how Strategies

differ before it can select the appropriate one. Clients might be exposed to implementation
issues." [GoF, p318]

• Introduces an additional level of indirection.
– Strategy achieves flexibility by introducing an additional level of indirection (clients

delegate an algorithm to a separate Strategy object), which makes clients dependent on a
Strategy object.

– This "can complicate a design and/or cost you some performance. A design pattern should
only be applied when the flexibility it affords is actually needed." [GoF, p31]

STRATEGY w3sDesign / V 2.0 / 12.01.2018 277

Implementation

Implementation Issues

• Implementation Variants
– The Context and Strategy interfaces must be designed carefully so that the needed data can

be passed/accessed efficiently and new algorithms can be added without having to extend
an interface. There are two main variants:

• Variant1: Push Data
– Context passes the data to the strategy:

strategy.algorithm(data1,data2,…)

– The Strategy interface may get complex because it must pass in the needed data for all
supported algorithms (whether they are simple or complex).

• Variant2: Pull Data
– Context passes nothing but itself to the strategy, letting strategy call back to get (pull) the

required data from context:
strategy.algorithm(this)

– The Context interface may have to be extended to let strategies do their work and access
the needed data.

STRATEGY w3sDesign / V 2.0 / 12.01.2018 278

Sample Code 1

Basic Java code for implementing the sample UML diagrams.

 1 package com.sample.strategy.basic;
 2 public class MyApp {
 3 public static void main(String[] args) {
 4 // Creating a Context object
 5 // and configuring it with a Strategy1 object.
 6 Context context = new Context(new Strategy1());
 7 // Calling an operation on context.
 8 System.out.println("(1) " + context.operation());
 9 // Changing context's strategy.
10 context.setStrategy(new Strategy2());
11 System.out.println("(2) " + context.operation());
12 }
13 }

(1) Context: Delegating an algorithm to a strategy: Result = 1
(2) Context: Delegating an algorithm to a strategy: Result = 2

 1 package com.sample.strategy.basic;
 2 public class Context {
 3 private Strategy strategy;
 4
 5 public Context(Strategy strategy) {
 6 this.strategy = strategy;
 7 }
 8 public String operation() {
 9 return "Context: Delegating an algorithm to a strategy: Result = "
10 + strategy.algorithm();
11 }
12 public void setStrategy(Strategy strategy) {
13 this.strategy = strategy;
14 }
15 }

 1 package com.sample.strategy.basic;
 2 public interface Strategy {
 3 int algorithm();
 4 }

 1 package com.sample.strategy.basic;
 2 public class Strategy1 implements Strategy {
 3 public int algorithm() {
 4 // Implementing the algorithm.
 5 return 1; // return result
 6 }
 7 }

 1 package com.sample.strategy.basic;
 2 public class Strategy2 implements Strategy {
 3 public int algorithm() {
 4 // Implementing the algorithm.
 5 return 2; // return result
 6 }

STRATEGY w3sDesign / V 2.0 / 12.01.2018 279

 7 }

STRATEGY w3sDesign / V 2.0 / 12.01.2018 280

Sample Code 2

Order Processing / Calculating order netto prices using different pricing strategies.

 1 package com.sample.strategy.order;
 2 import com.sample.data.*;
 3 public class Client {
 4 // Running the Client class as application.
 5 public static void main(String[] args) {
 6 // Creating a sales order object
 7 // and configuring it with a (default) pricing strategy.
 8 Order order = new SalesOrder(new PercentagePricingStrategy());
 9 // Creating products and order lines.
10 Product product1A = new SalesProduct("1A", "01", "Product1A", 100);
11 Product product1B = new SalesProduct("1B", "01", "Product1B", 200);
12 order.createOrderLine(product1A, 1);
13 order.createOrderLine(product1B, 1);
14
15 System.out.println(
16 "(1) Total order brutto price : " +
17 order.getPrice());
18 System.out.println(
19 "(2) using the default percentage strategy (10%) : " +
20 order.getNetPrice());
21 System.out.println(
22 "(3) changing to threshold strategy (10%; above 200: 20%): " +
23 order.getNetPrice(new ThresholdPricingStrategy()));
24 }
25 }

(1) Total order brutto price : 300
(2) using the default percentage strategy (10%) : 270
(3) changing to threshold strategy (10%; above 200: 20%): 240

 1 package com.sample.data;
 2 public interface Order { // prices are in cents
 3 long getPrice();
 4 long getNetPrice();
 5 long getNetPrice(PricingStrategy strategy);
 6 void createOrderLine(Product product, int quantity);
 7 }

STRATEGY w3sDesign / V 2.0 / 12.01.2018 281

 1 package com.sample.data;
 2 import java.util.ArrayList;
 3 import java.util.List;
 4 public class SalesOrder implements Order {
 5 private List<OrderLine> orderLines = new ArrayList<OrderLine>();
 6 private PricingStrategy strategy;
 7 // Configuring sales order with a (default) strategy.
 8 public SalesOrder(PricingStrategy strategy) {
 9 this.strategy = strategy;
10 }
11 public long getPrice() {
12 long total = 0;
13 for (OrderLine orderLine : orderLines) {
14 total += orderLine.getPrice();
15 }
16 return total;
17 }
18 public long getNetPrice() {
19 // Delegating the calculation to the default strategy.
20 // Passing a reference to itself (this) so that strategy
21 // can act (call back) through the order interface.
22 return strategy.calculate(this);
23 }
24 public long getNetPrice(PricingStrategy strategy) {
25 // Delegating the calculation to the passed in strategy.
26 return strategy.calculate(this);
27 }
28 public void createOrderLine(Product product, int quantity) {
29 orderLines.add(new SalesOrderLine(product, quantity));
30 }
31 }

 1 package com.sample.data;
 2 public interface PricingStrategy {
 3 long calculate(Order order);
 4 }

 1 package com.sample.data;
 2 public class PercentagePricingStrategy implements PricingStrategy {
 3 public long calculate(Order order) {
 4 // Calculating percentage ...
 5 int percentage = 10;
 6 //
 7 long amount = order.getPrice();
 8 long rabat = amount / 100 * percentage;
 9 return amount - rabat;
10 }
11 }

 1 package com.sample.data;
 2 public class ThresholdPricingStrategy implements PricingStrategy {
 3 public long calculate(Order order) {
 4 // Calculating threshold, percentage low/high ...
 5 long threshold = 200;
 6 short percentageLow = 10;
 7 short percentageHigh = 20;
 8 //
 9 long amount = order.getPrice();
10 if (amount < threshold)
11 return amount - amount / 100 * percentageLow;
12 else
13 return amount - amount / 100 * percentageHigh;
14 }
15 }

STRATEGY w3sDesign / V 2.0 / 12.01.2018 282

Other interfaces and classes used in this example.

 1 package com.sample.data;
 2 public interface OrderLine {
 3 Product getProduct();
 4 int getQuantity();
 5 long getPrice();
 6 }

 1 package com.sample.data;
 2 public class SalesOrderLine implements OrderLine {
 3 private Product product;
 4 private int quantity;
 5 //
 6 public SalesOrderLine(Product product, int quantity) {
 7 this.product = product;
 8 this.quantity = quantity;
 9 }
10 public Product getProduct() {
11 return product;
12 }
13 public int getQuantity() {
14 return quantity;
15 }
16 public long getPrice() {
17 return product.getPrice() * quantity;
18 }
19 }

 1 package com.sample.data;
 2 public interface Product {
 3 void operation();
 4 String getId();
 5 String getGroup();
 6 String getDescription();
 7 long getPrice();
 8 }

 1 package com.sample.data;
 2 public class SalesProduct implements Product {
 3 private String id;
 4 private String group;
 5 private String description;
 6 private long price;
 7 //
 8 public SalesProduct(String id, String group, String description, long price) {
 9 this.id = id;
10 this.group = group;
11 this.description = description;
12 this.price = price;
13 }
14 public void operation() {
15 System.out.println("SalesProduct: Performing an operation ...");
16 }
17 public String getId() {
18 return id;
19 }
20 public String getGroup() {
21 return group;
22 }
23 public String getDescription() {
24 return description;
25 }
26 public long getPrice() {
27 return price;
28 }
29 }

STRATEGY w3sDesign / V 2.0 / 12.01.2018 283

Sample Code 3

Sorting customers using different compare strategies.
Customer Test Data:

ID Name---------------- PhoneNumber--- Birthday--

01 FirstName1 LastName1 (001) 002-0002 03.03.1980

02 FirstName3 LastName3 (001) 003-0003 01.01.1970

03 FirstName2 LastName2 (002) 001-0001 02.02.1980

PhoneNumber = (areaCode) + prefix + lineNumber.

 1 package com.sample.strategy.sort;
 2 import java.util.Comparator; // = Strategy (compare algorithm)
 3 import com.sample.data.Customer;
 4 import com.sample.data.Customers;
 5 import java.util.Collections;
 6 import java.util.List;
 7 public class Client {
 8 // Running the Client class as application.
 9 public static void main(String[] args) throws Exception {
10 // Creating the customers.
11 List<Customer> customerList = Customers.createTestData(3);
12
13 System.out.println(
14 "SORTING CUSTOMERS:\n\n" +
15 "(1) by using the default comparator \n" +
16 " = according to the customer ID: ");
17 Collections.sort(customerList);
18 System.out.println(customerList);
19
20 System.out.println("\n" +
21 "(2) by specifying the NAME comparator \n" +
22 " = according to the customer name: ");
23 Collections.sort(customerList, Customers.NAME);
24 System.out.println(customerList);
25
26 // Implementing individual requirements directly, for example:
27 System.out.println("\n" +
28 "(3) by implementing the comparator directly \n" +
29 " = according to the (area code) of the customer phone number \n" +
30 " and the customer name: ");
31 Collections.sort(customerList, new Comparator<Customer>() { // inner class
32 public int compare(Customer c1, Customer c2) {
33 // Implementing the comparator interface / compare().
34 if (c1.getPhoneNumber().getAreaCode() <
35 c2.getPhoneNumber().getAreaCode()) return -1;
36 if (c1.getPhoneNumber().getAreaCode() >
37 c2.getPhoneNumber().getAreaCode()) return 1;
38 // Area codes are equal, compare names:
39 // getName() returns an object of type Name;
40 // compareTo() implemented in the Name class.
41 return (c1.getName().compareTo(c2.getName()));
42 }
43 });
44 System.out.println(customerList);
45

STRATEGY w3sDesign / V 2.0 / 12.01.2018 284

46 System.out.println("\n" +
47 "(4) by specifying the BIRTHDAY comparator \n" +
48 " = according to the customer birthday descending: ");
49 Collections.sort(customerList, Customers.BIRTHDAY);
50 System.out.println(customerList);
51 }
52 }

SORTING CUSTOMERS:

(1) by using the default comparator
 = according to the customer ID:
[
Customer: 1 FirstName1 LastName1 (001) 002-0002 03.03.1980,
Customer: 2 FirstName3 LastName3 (001) 003-0003 01.01.1970,
Customer: 3 FirstName2 LastName2 (002) 001-0001 02.02.1980]

(2) by specifying the NAME comparator
 = according to the customer name:
[
Customer: 1 FirstName1 LastName1 (001) 002-0002 03.03.1980,
Customer: 3 FirstName2 LastName2 (002) 001-0001 02.02.1980,
Customer: 2 FirstName3 LastName3 (001) 003-0003 01.01.1970]

(3) by implementing the comparator directly
 = according to the (area code) of the customer phone number
 and the customer name:
[
Customer: 1 FirstName1 LastName1 (001) 002-0002 03.03.1980,
Customer: 2 FirstName3 LastName3 (001) 003-0003 01.01.1970,
Customer: 3 FirstName2 LastName2 (002) 001-0001 02.02.1980]

(4) by specifying the BIRTHDAY comparator
 = according to the customer birthday descending:
[
Customer: 1 FirstName1 LastName1 (001) 002-0002 03.03.1980,
Customer: 3 FirstName2 LastName2 (002) 001-0001 02.02.1980,
Customer: 2 FirstName3 LastName3 (001) 003-0003 01.01.1970]

 1 package java.util;
 2 // From the Java Language = Strategy (compare algorithm).
 3 public interface Comparator<T> {
 4 /**
 5 * The compare method must be implemented to compare
 6 * two objects for order:
 7 * returns a negative integer, zero, or a positive integer
 8 * as the first argument is less than, equal to,
 9 * or greater than the second.
10 */
11 int compare(T object1, T object2);
12 // ...
13 }

 1 package com.sample.data;
 2 import java.util.Comparator;
 3 import java.util.List;
 4 import java.util.ArrayList;
 5 import java.util.Date;
 6 import java.text.SimpleDateFormat;
 7 import java.text.ParseException;
 8 //
 9 // This is a non-instantiable class that holds (public)
10 // static utility methods needed for handling customers.
11 //
12 public class Customers {
13 private static final SimpleDateFormat dateFormatter =
14 new SimpleDateFormat("dd.MM.yyyy");
15 private Customers() { }
16 // NAME = reference to a comparator object.
17 public static final Comparator<Customer> NAME =
18 new Comparator<Customer>() { // inner class
19 // Implementing the comparator interface / compare().
20 public int compare(Customer c1, Customer c2) {
21 // compareTo() implemented in the Name class.
22 return c1.getName().compareTo(c2.getName());

STRATEGY w3sDesign / V 2.0 / 12.01.2018 285

23 }
24 } ;
25 // PHONENUMBER = reference to a comparator object.
26 public static final Comparator<Customer> PHONENUMBER =
27 new Comparator<Customer>() { // inner class
28 // Implementing the comparator interface / compare().
29 public int compare(Customer c1, Customer c2) {
30 // getPhoneNumber() returns an object of type PhoneNumber;
31 // compareTo() implemented in the PhoneNumber class.
32 return c1.getPhoneNumber().compareTo(c2.getPhoneNumber());
33 }
34 } ;
35 // BIRTHDAY = reference to a comparator object.
36 public static final Comparator<Customer> BIRTHDAY =
37 new Comparator<Customer>() { // inner class
38 // Implementing the comparator interface / compare().
39 public int compare(Customer c1, Customer c2) {
40 // compareTo() implemented in the Date class (Java platform).
41 return c2.getBirthday().compareTo(c1.getBirthday());
42 }
43 } ;
44 //
45 public static void checkData(int id, Name name, PhoneNumber pn, Date birthday) throws ParseException {
46 if (id < 0)
47 throw new IllegalArgumentException("Customer ID is negative");
48 if (birthday.compareTo(dateFormatter.parse("01.01.1900")) < 0 ||
49 birthday.compareTo(dateFormatter.parse("01.01.2000")) > 0)
50 throw new IllegalArgumentException("Birthday before 1900 or after 2000");
51 // ...
52 }
53 public static List<Customer> createTestData(int size) throws Exception {
54 List<Customer> customerList = new ArrayList<Customer>(size);
55 customerList.add(new Customer1(1,
56 new Name("FirstName1", " LastName1"),
57 new PhoneNumber(1, 2, 2), dateFormatter.parse("03.03.1980")));
58 customerList.add(new Customer1(2,
59 new Name("FirstName3", " LastName3"),
60 new PhoneNumber(1, 3, 3), dateFormatter.parse("01.01.1970")));
61 customerList.add(new Customer1(3,
62 new Name("FirstName2", " LastName2"),
63 new PhoneNumber(2, 1, 1), dateFormatter.parse("02.02.1980")));
64 return customerList;
65 }
66 }

 1 package com.sample.data;
 2 import java.util.Date;
 3 public interface Customer extends Comparable<Customer> {
 4 int getId();
 5 Name getName();
 6 PhoneNumber getPhoneNumber();
 7 Date getBirthday();
 8 }

 1 package com.sample.data;
 2 import java.text.SimpleDateFormat;
 3 // Skeletal implementation of the customer interface.
 4 import java.util.Date;
 5 public abstract class AbstractCustomer implements Customer {
 6 private final int id;
 7 private final Name name;
 8 private final PhoneNumber phoneNumber;
 9 private final Date birthday;
10 private static final SimpleDateFormat dateFormatter =
11 new SimpleDateFormat("dd.MM.yyyy");
12 // TODO Check
13 protected AbstractCustomer(int id, Name name, PhoneNumber pn, Date birthday) throws Exception {
14 Customers.checkData(id, name, pn, birthday);
15 this.id = id;
16 this.name = name;
17 this.phoneNumber = pn;
18 this.birthday = birthday;
19 }
20 @Override
21 public boolean equals(Object o) {
22 if (o == this) return true;

STRATEGY w3sDesign / V 2.0 / 12.01.2018 286

23 if (!(o instanceof Customer)) return false;
24 Customer c = (Customer) o;
25 return c.getId() == id;
26 }
27 @Override
28 public int hashCode() {
29 int result = 17;
30 result = 31 * result + id;
31 return result;
32 }
33 @Override
34 public String toString() {
35 return "\nCustomer: " + id + " " + name + " " + phoneNumber + " " +
36 dateFormatter.format(birthday);
37 }
38 // The compareTo method implements the Comparable interface.
39 // It defines the "natural ordering" (default ordering).
40 public int compareTo(Customer c) {
41 if (id < c.getId()) return -1;
42 if (id > c.getId()) return 1;
43 // All fields are equal.
44 return 0;
45 }
46 //
47 public int getId() {
48 return id;
49 }
50 public Name getName() {
51 return name;
52 }
53 public PhoneNumber getPhoneNumber() {
54 return phoneNumber;
55 }
56 public Date getBirthday() {
57 return birthday;
58 }
59 }

 1 package com.sample.data;
 2 import java.util.Date;
 3 public class Customer1 extends AbstractCustomer {
 4 public Customer1(int id, Name name, PhoneNumber pn, Date birthday) throws Exception {
 5 super(id, name, pn, birthday);
 6 // ...
 7 }
 8 // ...
 9 }

Other classes used in this example.

 1 package com.sample.data;
 2 public class Name implements Comparable<Name> {
 3 private final String firstName;
 4 private final String lastName;
 5 // ...
 6 public Name(String firstName, String lastName) {
 7 if (firstName == null || lastName == null)
 8 throw new NullPointerException();
 9 this.firstName = firstName;
10 this.lastName = lastName;
11 }
12 @Override
13 public boolean equals(Object o) {
14 if (!(o instanceof Name)) return false;
15 Name name = (Name) o;
16 return name.firstName.equals(firstName)
17 && name.lastName.equals(lastName);
18 }
19 @Override
20 public int hashCode() {
21 return 31 * firstName.hashCode() + lastName.hashCode();
22 }
23 @Override
24 public String toString() {

STRATEGY w3sDesign / V 2.0 / 12.01.2018 287

25 return firstName + " " + lastName;
26 }
27 // The compareTo method implements the Comparable interface.
28 // It defines the "natural ordering" (default ordering).
29 public int compareTo(Name name) {
30 int cmp = lastName.compareTo(name.lastName);
31 if (cmp != 0) return cmp;
32 // Last names are equal, compare first names.
33 return firstName.compareTo(name.firstName);
34 }
35 //
36 public String getFirstName() {
37 return firstName;
38 }
39 public String getLastName() {
40 return lastName;
41 }
42 }

 1 // Based on Joshua Bloch / Effective Java / Item 9,10, and 12.
 2 package com.sample.data;
 3 public class PhoneNumber implements Comparable<PhoneNumber> {
 4 private final short areaCode;
 5 private final short prefix;
 6 private final short lineNumber;
 7 public PhoneNumber(int areaCode, int prefix, int lineNumber) {
 8 rangeCheck(areaCode, 999, "area code");
 9 rangeCheck(prefix, 999, "prefix");
10 rangeCheck(lineNumber, 9999, "line number");
11 this.areaCode = (short) areaCode;
12 this.prefix = (short) prefix;
13 this.lineNumber = (short) lineNumber;
14 }
15 private static void rangeCheck(int arg, int max, String name) {
16 if (arg < 0 || arg > max)
17 throw new IllegalArgumentException(name + ": " + arg);
18 }
19 @Override
20 public boolean equals(Object o) {
21 if (o == this) return true;
22 if (!(o instanceof PhoneNumber)) return false;
23 PhoneNumber pn = (PhoneNumber) o;
24 return pn.lineNumber == lineNumber
25 && pn.prefix == prefix
26 && pn.areaCode == areaCode;
27 }
28 @Override
29 public int hashCode() {
30 int result = 17;
31 result = 31 * result + areaCode;
32 result = 31 * result + prefix;
33 result = 31 * result + lineNumber;
34 return result;
35 }
36 /**
37 * Returns the string representation of this phone number. The string
38 * consists of 14 characters whose format is "(XXX) YYY-ZZZZ", where XXX is
39 * the area code, YYY is the prefix, and ZZZZ is the line number.
40 */
41 @Override
42 public String toString() {
43 return String.format("(%03d) %03d-%04d",
44 areaCode, prefix, lineNumber);
45 }
46 // The compareTo method implements the Comparable interface.
47 // It defines the "natural ordering" (default ordering).
48 public int compareTo(PhoneNumber pn) {
49 if (areaCode < pn.areaCode) return -1;
50 if (areaCode > pn.areaCode) return 1;
51 // Area codes are equal, compare prefixes.
52 if (prefix < pn.prefix) return -1;
53 if (prefix > pn.prefix) return 1;
54 // Area codes and prefixes are equal, compare line numbers.
55 if (lineNumber < pn.lineNumber) return -1;
56 if (lineNumber > pn.lineNumber) return 1;
57 // All fields are equal.

STRATEGY w3sDesign / V 2.0 / 12.01.2018 288

58 return 0;
59 }
60 //
61 public int getAreaCode() {
62 return areaCode;
63 }
64 public int getPrefix() {
65 return prefix;
66 }
67 public int getLineNumber() {
68 return lineNumber;
69 }
70 }

STRATEGY w3sDesign / V 2.0 / 12.01.2018 289

Related Patterns

Key Relationships

• Strategy - Template Method - Subclassing
– Strategy provides a way

to change the algorithm/behavior of an object at run-time.
– Template Method provides a way

to change certain parts of the algorithm/behavior of a class at compile-time.
– Subclassing is the standard way

to change the algorithm/behavior of a class at compile-time.

• Strategy - Abstract Factory
– Strategy

A class delegates performing an algorithm to a strategy object.
– Abstract Factory

A class delegates creating an object to a factory object.

• Strategy - Abstract Factory - Dependency Injection
– Strategy

A class can be configured with a strategy object.
– Abstract Factory

A class can be configured with a factory object.
– Dependency Injection

Actually performs the configuration by creating and injecting the objects a class requires.

• Strategy - Decorator
– Strategy provides a way

to exchange the algorithm of an object at run-time.
This is done from inside the object.
The object is designed to delegate an algorithm to a Strategy object.

– Decorator provides a way
to extend the functionality of an object at run-time.
This is done from outside the object.
The object already exists and isn't needed to be touched. That's very powerful.

• Strategy - Command
– Strategy provides a way

to configure an object with an algorithm at run-time
instead of committing to an algorithm at compile-time.

– Command provides a way
to configure an object with a request at run-time

STRATEGY w3sDesign / V 2.0 / 12.01.2018 290

instead of committing to a request at compile-time.

TEMPLATE METHOD w3sDesign / V 2.0 / 12.01.2018 291

Intent

The intent of the Template Method design pattern is to:
"Define the skeleton of an algorithm in an operation, deferring some steps to subclasses.
Template Method lets subclasses redefine certain steps of an algorithm without changing
the algorithm's structure." [GoF]
See Problem and Solution sections for a more structured description of the intent.

• The Template Method design pattern solves problems like:
– How can the invariant parts of a behavior be implemented once

so that subclasses can implement the variant parts?

– How can subclasses redefine certain parts of a behavior (steps of an algorithm)
without changing the behavior's structure?

• The standard way is to define subclasses that redefine the behavior of a parent class.
This makes it impossible to redefine only certain parts of the behavior independently from
(without duplicating) the other parts.

• The Template Method pattern describes how to solve such problems:
– Define the skeleton of an algorithm in an operation, deferring some steps to subclasses.

– Define a primitive operation for each variant part of a behavior
(primitive1(),primitive2(),…).

– A templateMethod() defines the skeleton (structure) of a behavior by
- implementing the invariant parts and
- calling primitives to defer implementing the variant parts to subclasses.

TEMPLATE METHOD w3sDesign / V 2.0 / 12.01.2018 292

Problem

The Template Method design pattern solves problems like:
How can the invariant parts of a behavior be implemented once
so that subclasses can implement the variant parts?
How can subclasses redefine certain parts of a behavior
without changing the behavior's structure?
See Applicability section for all problems Template Method can solve. See Solution section
for how Template Method solves the problems.

• The standard way is to define subclasses (SubClass1|operation()) that redefine the behavior
of a parent class (Class|operation()).

• This makes it impossible to redefine only certain parts of the behavior independently from
(without having to duplicate) the other parts.

• That's the kind of approach to avoid if we want that subclasses can redefine only certain parts
of a behavior without changing the other parts or the structure of the behavior.

• For example, designing reusable classes.
It should be possible that a class implements the common (invariant) parts of a behavior and let
users of the class write subclasses to redefine the variant parts to suit their needs. But subclasses
should not be able to change anything else.

• For example, enforcing invariant parts of a behavior.
A behavior often requires invariant functionality to be performed before and/or after its core
functionality (for example, for setting up and resetting state).
It should be possible to redefine only the core functionality without changing the invariant
functionality.

TEMPLATE METHOD w3sDesign / V 2.0 / 12.01.2018 293

Solution

The Template Method design pattern provides a solution:
Define abstract operations (primitives) for the variant parts of a behavior.
Define a template method that
- implements the invariant parts of a behavior and
- calls primitives that subclasses implement.
Describing the Template Method design in more detail is the theme of the following sections.
See Applicability section for all problems Template Method can solve.

• The key idea in this pattern is to control subclassing.
Subclasses do no longer control how the behavior of a parent class is redefined.
Instead, a parent class controls how subclasses redefine it.
This is also referred to as inversion of control. "This refers to how a parent class calls the
operations of a subclass and not the other way around." [GoF, p327]

• Inversion of control is a common feature of frameworks.
When using a library (reusable classes), we call the code we want to reuse.
When using a framework (reusable application), we write subclasses and implement the variant
code the framework calls.

• Template methods are a fundamental technique for code reuse
(1) to implement the common (invariant) parts of a behavior once "and leave it up to subclasses
to implement the behavior that can vary." [GoF, p326] (2) and from a refactoring point of view,
to eliminate code duplication by factoring out invariant behavior among classes and localizing
(generalizing) it in a common class.

Background Information

• The pattern calls abstract operations for variant parts of a behavior primitives because the
template method composes primitive operations to get a more complex operation.

TEMPLATE METHOD w3sDesign / V 2.0 / 12.01.2018 294

Motivation 1

Consider the left design (problem):

• Hard-wired variant parts.
– The variant parts are implemented (hard-wired) directly within the other code.
– This makes it impossible for subclasses to redefine the variant parts independently from the

other code.

• Uncontrolled subclassing.
– Subclasses can redefine all parts of a behavior, even the invariant parts.

Consider the right design (solution):

• Separated variant parts.
– For each variant part an abstract operation (primitive1(),…) is defined.
– This makes it easy for subclasses to redefine the variant parts independently from the other

code.

• Controlled subclassing.
– Subclasses can redefine only the variant parts of a behavior.

TEMPLATE METHOD w3sDesign / V 2.0 / 12.01.2018 295

Applicability

Design Problems

• Code Reuse / Redefining Parts of a Behavior
– How can the invariant parts of a behavior be implemented once

so that subclasses can implement the variant parts?
– How can subclasses redefine certain parts of a behavior

without changing the behavior's structure?

• Extending Behavior at Specific Points
– How can subclasses extend a behavior only at specific points (hooks)?

• Controlling Subclassing
– How can a class control how it is subclassed?

Refactoring Problems

• Duplicated Code
– How can common behavior among classes be factored out

and localized (generalized) in a common class?
Form Template Method (205) [JKerievsky05]
"[…] common behavior among subclasses should be factored
and localized in a common class to avoid code duplication." [GoF, p326]

TEMPLATE METHOD w3sDesign / V 2.0 / 12.01.2018 296

Structure, Collaboration

Static Class Structure

• AbstractClass

– Defines a templateMethod() operation that defines the skeleton (template) of a behavior
by implementing the invariant parts of the behavior and calling abstract primitive1() and
primitive2() operations to defer implementing the variant parts to SubClass1.

– Defines abstract primitive operations for the variant parts of a behavior.

• SubClass1,…
– Implement the abstract primitive operations.

TEMPLATE METHOD w3sDesign / V 2.0 / 12.01.2018 297

Consequences

Advantages (+)

• Code Reuse
– "Template methods are a fundamental technique for code reuse. They are particularly

important in class libraries because they are the means for factoring out common behavior
in library classes." [GoF, p327]

• Inversion of Control
– Template methods lead to an inversion of control because subclasses no longer control how

the behavior of a parent class is redefined.

TEMPLATE METHOD w3sDesign / V 2.0 / 12.01.2018 298

Implementation

Implementation Issues

• Different Kinds of Operations
– "To reuse an abstract class effectively, subclass writers must understand which operations

are designed for overriding." [GoF, p328]
– Primitive operations - abstract operations that must be implemented by subclasses;

or concrete operations that provide a default implementation and can be redefined
by subclasses if necessary.
Primitive operations can be declared protected to enable subclassing over package
boundaries but keeping clients from calling them directly (see Sample Code).

– Final operations - concrete operations that can not be overridden by subclasses.
– Hook operations - concrete operations that do nothing by default and can be redefined by

subclasses if necessary.
– Template methods themselves can be declared final so that they can not be overridden.

TEMPLATE METHOD w3sDesign / V 2.0 / 12.01.2018 299

Sample Code 1

Basic Java code for implementing the sample UML diagram.

 1 package com.sample.templatemethod.basic;
 2 public abstract class AbstractClass {
 3 //
 4 protected abstract void primitive1();
 5 protected abstract void primitive2();
 6 //
 7 public final void templateMethod() {
 8 // ...
 9 primitive1();
10 // ...
11 primitive2();
12 // ...
13 }
14 }

 1 package com.sample.templatemethod.basic;
 2 public class SubClass1 extends AbstractClass {
 3 //
 4 protected void primitive1() {
 5 // ...
 6 }
 7 protected void primitive2() {
 8 // ...
 9 }
10 }

TEMPLATE METHOD w3sDesign / V 2.0 / 12.01.2018 300

Sample Code 2

Template method with abstract and concrete primitive operations.

 1 package com.sample.templatemethod.steps;
 2 public abstract class AbstractClass {
 3 // Abstract primitive operation:
 4 // - provides no default implementation
 5 // - must be implemented (overridden).
 6 protected abstract void primitive1();
 7 //
 8 // Concrete primitive operation:
 9 // - provides a default implementation
10 // - can be changed (overridden) optionally.
11 protected void primitive2() {
12 // variant code ...
13 }
14 public final void templateMethod() {
15 // invariant code ...
16 primitive1(); // calling primitive1 (variant code)
17 // invariant code ...
18 primitive2(); // calling primitive2 (variant code)
19 // invariant code ...
20 }
21 }

 1 package com.sample.templatemethod.steps;
 2 public class SubClass1 extends AbstractClass {
 3 //
 4 protected void primitive1() {
 5 // variant code ...
 6 }
 7 }

TEMPLATE METHOD w3sDesign / V 2.0 / 12.01.2018 301

Related Patterns

Key Relationships

• Strategy - Template Method - Subclassing
– Strategy provides a way

to change the algorithm/behavior of an object at run-time.
– Template Method provides a way

to change certain parts of the algorithm/behavior of a class at compile-time.
– Subclassing is the standard way

to change the algorithm/behavior of a class at compile-time.

• Template Method - Factory Method
– A template method's primitive operation that is responsible for creating an object

is a factory method.

VISITOR w3sDesign / V 2.0 / 12.01.2018 302

Intent

The intent of the Visitor design pattern is to:
"Represent an operation to be performed on the elements of an object structure.
Visitor lets you define a new operation without changing the classes of the elements on which
it operates." [GoF]
See Problem and Solution sections for a more structured description of the intent.

• The Visitor design pattern solves problems like:
– How can new operations be defined for the classes of an object structure

without changing the classes?

• For example, an object structure that represents the components of a technical equipment (Bill
of Materials).
Many different applications use the object structure, and it should be possible to define new
operations independently from (without having to change) the classes of the object structure.

• The Visitor pattern describes how to solve such problems:
– Represent an operation to be performed on the elements of an object structure.

– Define a separate Visitor object that represents operations to be performed on the elements
of an object structure.

– Define a dispatching operation accept(visitor) for each element
for "dispatching" (delegating) client requests to the "accepted visitor object".

– Clients traverse the object structure and call accept(visitor) on each element (by passing
in a visitor object).

VISITOR w3sDesign / V 2.0 / 12.01.2018 303

Problem

The Visitor design pattern solves problems like:
How can new operations be defined for the classes of an object structure
without changing the classes?
See Applicability section for all problems Visitor can solve. See Solution section for how
Visitor solves the problems.

• An inflexible way is to define new subclasses for the classes (ElementA,ElementB,…) of an
object structure each time a new operation is required.
This makes it hard to define (many) new operations for an object structure that contains (many)
different classes (having different interfaces). "The problem here is that distributing all these
operations across the various node [element] classes leads to a system that's hard to understand,
maintain, and change." [GoF, p331]

• That's the kind of approach to avoid if we want to define new operations for the classes of an
object structure independently from (without having to change/extend) the classes.

• For example, an object structure that represents the components of a technical equipment (Bill
of Materials).
Many different applications use the object structure, and it should be possible (for each
application) to define new operations (for example, for calculating total prices, computing
inventory, etc.) without having to change/extend the classes of the object structure (see Sample
Code / Example 2).

VISITOR w3sDesign / V 2.0 / 12.01.2018 304

Solution

The Visitor design pattern provides a solution:
Define a separate Visitor object that implements operations to be performed
on the elements of an object structure.
Clients traverse the object structure and call accept(visitor) on each element to delegate
the request to the "accepted visitor object".
The visitor object then performs the request ("visits" the element).
Describing the Visitor design in more detail is the theme of the following sections. See
Applicability section for all problems Visitor can solve.

• The key idea in this pattern is to define a double-dispatch operation accept(visitor) for
each Element class (see also Collaboration and Implementation).
"This is the key to the Visitor pattern. The operation that gets executed depends on both the
type of Visitor and the type of Element it visits." [GoF, p339]

• Define separate Visitor objects:
– For all supported Element classes, define a common Visitor interface by defining a "visit"

operation for each Element class (Visitor | visitElementA(e),visitElementB(e),…).
"We'll use the term visitor to refer generally to classes of objects that "visit" other objects
during a traversal and do something appropriate." [GoF, p74]

– Define classes (Visitor1,…) that implement the Visitor interface.

• This enables compile-time flexibility (via class inheritance).
"You create a new operation by adding a new subclass to the visitor class
hierarchy." [GoF, p333]

VISITOR w3sDesign / V 2.0 / 12.01.2018 305

Motivation 1

Consider the left design (problem):

• New operations are distributed across the Element classes.
– A new operation for each Element class is defined by adding subclasses.
– "The problem here is that distributing all these operations across the various node [element]

classes leads to a system that's hard to understand, maintain, and change." [GoF, p331]

Consider the right design (solution):

• New operations are encapsulated in a separate Visitor class.
– A new operation for each Element class is defined in a separate class (Visitor1).
– "You create a new operation by adding a new subclass to the visitor class

hierarchy." [GoF, p333]

VISITOR w3sDesign / V 2.0 / 12.01.2018 306

Applicability

Design Problems

• Defining New Operations for Object Structures
– How can new operations be defined for the classes of an object structure without changing

the classes?

• Flexible Alternative to Subclassing
– How can a flexible alternative be provided to subclassing

for defining new operations for the classes of an object structure?

VISITOR w3sDesign / V 2.0 / 12.01.2018 307

Structure, Collaboration

Static Class Structure

• Client

– Traverses the elements of an object structure.

• Element

– Defines an interface for dispatching (delegating) client requests to a Visitor object
(accept(visitor)).

• ElementA,ElementB,…
– Implement the dispatching interface

(see Implementation).

• Visitor

– For all supported Element classes, defines a common interface for "visiting" (performing
an operation on) each Element class.

– "We'll use the term visitor to refer generally to classes of objects that "visit" other objects
during a traversal and do something appropriate." [GoF, p74]

• Visitor1,…
– Implement the Visitor interface.

Dynamic Object Collaboration

• In this sample scenario, a Client object traverses the elements of an object structure
(ElementA,ElementB) and calls accept(visitor) on each element.
Lets assume that the Client provides a Visitor1 object.

• The interaction starts with the Client object that calls accept(visitor) on the ElementA
object.

• The dispatching operation accept(visitor) of ElementA calls visitElementA(this) on the
accepted Visitor1 object.

• ElementA passes itself (this) to Visitor1 so that Visitor1 can visit (call back) ElementA
and do its work on it (by calling operationA()).

• Thereafter, the Client calls accept(visitor) on ElementB, which calls
visitElementB(this) on the accepted Visitor1 object.

• Visitor1 does its work on ElementB (by calling operationB()).

• See also Sample Code / Example 1.

VISITOR w3sDesign / V 2.0 / 12.01.2018 308

Consequences

Advantages (+)

• Makes adding new operations easy.
– "You create a new operation by adding a new subclass to the visitor class

hierarchy." [GoF, p333]

• Enables visiting elements of different types across inheritance hierarchies.
– Visitor can visit elements that do not have a common interface, i.e., it can visit different types

of elements (ElementA,ElementB,…), that do not have to be related through inheritance.

• Makes accumulating state easy.
– Visitor makes it easy to accumulate state while traversing an object structure.
– It eliminates the need to pass the state to operations that perform the accumulation. The state

is accumulated and stored in the visitor object (see Sample Code / Example 2 / Pricing and
Inventory Visitors).

Disadvantages (–)

• Requires extending the visitor interface to support new element classes.
– The visitor interface must be extended to support new element classes in the object structure.
– Therefore, the Visitor pattern should be used only when the object structure is stable and

new element classes aren't added frequently.

• May require extending the element interfaces.
– The element interfaces may have to be extended to let all visitors do their work and access

the needed data and functionality.

• Introduces additional levels of indirection.
– The pattern achieves flexibility by introducing separate visitor objects and a double-dispatch

mechanism, which can complicate a design.

VISITOR w3sDesign / V 2.0 / 12.01.2018 309

Implementation

Implementation Issues

• Dispatching Operation accept(visitor)
– Each Element class of the object structure defines an accept(visitor) operation that

delegates (dispatches) client requests to the accepted (passed in) visitor object and the
visit operation that corresponds to the Element class. For example:
ElementA|accept(visitor) delegates to visitor.visitElementA(this),
ElementB|accept(visitor) delegates to visitor.visitElementB(this), …

– The accept(visitor) operation is a double-dispatch operation:
"This is the key to the Visitor pattern. The operation that gets executed depends on both the
type of Visitor and the type of Element it visits." [GoF, p339]

– The element itself (this) is passed to the visitor so that the visitor can visit (call back) this
element and do some work on it.

• Visitor Interface
– The Visitor interface defines a visit operation for each element class that should be

visited.
The interface must be extended when new element classes are added to the object structure
that should be visited.

• Element Interfaces
– The Element interfaces may have to be extended to let all visitors do their work and access

the needed data and functionality.

VISITOR w3sDesign / V 2.0 / 12.01.2018 310

Sample Code 1

Basic Java code for implementing the sample UML diagrams.

 1 package com.sample.visitor.basic;
 2 import java.util.ArrayList;
 3 import java.util.List;
 4 public class Client {
 5 // Running the Client class as application.
 6 public static void main(String[] args) {
 7 // Setting up an object structure.
 8 List<Element> elements = new ArrayList<Element>();
 9 elements.add(new ElementA());
10 elements.add(new ElementB());
11 // Creating a Visitor1 object.
12 Visitor visitor = new Visitor1();
13 // Traversing the object structure and
14 // calling accept(visitor) on each element.
15 for (Element element : elements) {
16 element.accept(visitor);
17 }
18 }
19 }

Visitor1: Visiting (doing something on) ElementA.
Hello World from ElementA!
Visitor1: Visiting (doing something on) ElementB.
Hello World from ElementB!

 1 package com.sample.visitor.basic;
 2 public abstract class Element {
 3 public abstract void accept(Visitor visitor);
 4 }

 1 package com.sample.visitor.basic;
 2 public class ElementA extends Element {
 3 public void accept(Visitor visitor) {
 4 visitor.visitElementA(this);
 5 }
 6 public String operationA() {
 7 return "Hello World from ElementA!";
 8 }
 9 }

 1 package com.sample.visitor.basic;
 2 public class ElementB extends Element {
 3 public void accept(Visitor visitor) {
 4 visitor.visitElementB(this);
 5 }
 6 public String operationB() {
 7 return "Hello World from ElementB!";
 8 }
 9 }

VISITOR w3sDesign / V 2.0 / 12.01.2018 311

 1 package com.sample.visitor.basic;
 2 public abstract class Visitor {
 3 public abstract void visitElementA(ElementA e);
 4 public abstract void visitElementB(ElementB e);
 5 }

 1 package com.sample.visitor.basic;
 2 public class Visitor1 extends Visitor {
 3 public void visitElementA(ElementA element) {
 4 System.out.println("Visitor1: Visiting (doing something on) ElementA.\n"
 5 + element.operationA());
 6 }
 7 public void visitElementB(ElementB element) {
 8 System.out.println("Visitor1: Visiting (doing something on) ElementB.\n"
 9 + element.operationB());
10 }
11 }

VISITOR w3sDesign / V 2.0 / 12.01.2018 312

Sample Code 2

BOM Bill of Materials / Using pricing and inventory visitors.
The pricing visitor calculates the number of components and the total price.
The inventory visitor calculates the inventory of each component.
The BOM is implemented as tree (composite) structure.
See also Composite design pattern, Sample Code / Example 2 (calculating total prices).

 1 package com.sample.visitor.bom;
 2 public class MyApp {
 3 public static void main(String[] args) throws Exception {
 4 // Building a BOM tree (composite structure).
 5 Equipment mainboard = new Mainboard("Mainboard", 100);
 6 mainboard.add(new Processor("Processor", 100));
 7 mainboard.add(new Memory("Memory ", 100));
 8 Equipment chassis = new Chassis("Chassis ", 100);
 9 chassis.add(mainboard);
10 chassis.add(new Disk("Disk ", 100));
11
12 System.out.println("(1) Traversing the BOM using a pricing visitor: ");
13 PricingVisitor pricingVisitor = new PricingVisitor();
14 chassis.accept(pricingVisitor);
15 System.out.println(
16 " Number of components: " + pricingVisitor.getNumberOfElements() +
17 "\n Total price : " + pricingVisitor.getTotalPrice());
18
19 System.out.println("(2) Traversing the BOM using an inventory visitor: ");
20 InventoryVisitor inventoryVisitor = new InventoryVisitor(new Inventory());
21 chassis.accept(inventoryVisitor);
22 }
23 }

(1) Traversing the BOM using a pricing visitor:
 Number of components: 5
 Total price : 500
(2) Traversing the BOM using an inventory visitor:
 Inventory for Processor: 10
 Inventory for Memory : 10
 Inventory for Mainboard: 10
 Inventory for Disk : 10
 Inventory for Chassis : 10

 1 package com.sample.visitor.bom;
 2 import java.util.ArrayList;
 3 import java.util.Iterator;
 4 import java.util.List;
 5 public abstract class Equipment {
 6 private String name;
 7 List<Equipment> children = new ArrayList<Equipment>();
 8 public Equipment(String name) {
 9 this.name = name;
10 }
11 //
12 public abstract void accept(EquipmentVisitor visitor);
13 //

VISITOR w3sDesign / V 2.0 / 12.01.2018 313

14 public String getName() {
15 return this.name;
16 } ;
17 public boolean add(Equipment e) {
18 return children.add(e);
19 }
20 public Iterator<Equipment> iterator() {
21 return children.iterator();
22 }
23 public int getChildCount() {
24 return children.size();
25 }
26 }

 1 package com.sample.visitor.bom;
 2 public abstract class EquipmentVisitor {
 3 public abstract void visitChassis(Chassis e);
 4 public abstract void visitMainboard(Mainboard e);
 5 public abstract void visitProcessor(Processor e);
 6 public abstract void visitMemory(Memory e);
 7 public abstract void visitDisk(Disk e);
 8 }

 1 package com.sample.visitor.bom;
 2 public class PricingVisitor extends EquipmentVisitor {
 3 private int count = 0;
 4 private long sum = 0;
 5 public void visitChassis(Chassis e) {
 6 count++;
 7 sum += e.getCostPrice();
 8 }
 9 public void visitMainboard(Mainboard e) {
10 count++;
11 sum += e.getBasicPrice();
12 }
13 public void visitProcessor(Processor e) {
14 count++;
15 sum += e.getPurchaseCost();
16 }
17 public void visitMemory(Memory e) {
18 count++;
19 sum += e.getPrice();
20 }
21 public void visitDisk(Disk e) {
22 count++;
23 sum += e.getUnitPrice();
24 }
25 public int getNumberOfElements() {
26 return count;
27 }
28 public long getTotalPrice() {
29 return sum;
30 }
31 }

 1 package com.sample.visitor.bom;
 2 public class InventoryVisitor extends EquipmentVisitor {
 3 private Inventory inventory;
 4 public InventoryVisitor(Inventory inventory) {
 5 this.inventory = inventory;
 6 }
 7 public void visitChassis(Chassis e) {
 8 inventory.operation(e);
 9 }
10 public void visitMainboard(Mainboard e) {
11 inventory.operation(e);
12 }
13 public void visitProcessor(Processor e) {
14 inventory.operation(e);
15 }
16 public void visitMemory(Memory e) {
17 inventory.operation(e);
18 }
19 public void visitDisk(Disk e) {
20 inventory.operation(e);
21 }

VISITOR w3sDesign / V 2.0 / 12.01.2018 314

22 }

VISITOR w3sDesign / V 2.0 / 12.01.2018 315

 1 package com.sample.visitor.bom;
 2 public class Inventory {
 3 private int quantity = 10;
 4 public void operation(Equipment e) {
 5 // Calculating inventory (quantity in stock).
 6 // ...
 7 System.out.println(" Inventory for " + e.getName() + ": " + quantity);
 8 }
 9 }

 1 package com.sample.visitor.bom;
 2 public class Chassis extends Equipment { // Composite
 3 private long price;
 4 public Chassis(String name, long price) {
 5 super(name);
 6 this.price = price;
 7 }
 8 public void accept(EquipmentVisitor visitor) {
 9 for (Equipment child : children) {
10 child.accept(visitor);
11 }
12 visitor.visitChassis(this);
13 }
14 public long getCostPrice() { // Net cost price in cents
15 return price;
16 }
17 }

 1 package com.sample.visitor.bom;
 2 public class Mainboard extends Equipment { // Composite
 3 private long price;
 4 public Mainboard(String name, long price) {
 5 super(name);
 6 this.price = price;
 7 }
 8 public void accept(EquipmentVisitor visitor) {
 9 for (Equipment child : children) {
10 child.accept(visitor);
11 }
12 visitor.visitMainboard(this);
13 }
14 public long getBasicPrice() { // Basic price in cents
15 return price;
16 }
17 }

 1 package com.sample.visitor.bom;
 2 public class Processor extends Equipment { // Leaf
 3 private long price;
 4 public Processor(String name, long price) {
 5 super(name);
 6 this.price = price;
 7 }
 8 public void accept(EquipmentVisitor visitor) {
 9 visitor.visitProcessor(this);
10 }
11 public long getPurchaseCost() { // Cost of purchase in cents
12 return price;
13 }
14 }

VISITOR w3sDesign / V 2.0 / 12.01.2018 316

 1 package com.sample.visitor.bom;
 2 public class Memory extends Equipment { // Leaf
 3 private long price;
 4 public Memory(String name, long price) {
 5 super(name);
 6 this.price = price;
 7 }
 8 public void accept(EquipmentVisitor visitor) {
 9 visitor.visitMemory(this);
10 }
11 public long getPrice() { // Unit price in cents
12 return price;
13 }
14 }

 1 package com.sample.visitor.bom;
 2 public class Disk extends Equipment { // Leaf
 3 private long price;
 4 public Disk(String name, long price) {
 5 super(name);
 6 this.price = price;
 7 }
 8 public void accept(EquipmentVisitor visitor) {
 9 visitor.visitDisk(this);
10 }
11 public long getUnitPrice() { // Unit price in cents
12 return price;
13 }
14 }

VISITOR w3sDesign / V 2.0 / 12.01.2018 317

Related Patterns

Key Relationships

• Composite - Builder - Iterator - Visitor - Interpreter
– Composite provides a way to represent a part-whole hierarchy

as a tree (composite) object structure.
– Builder provides a way to create the elements of an object structure.
– Iterator provides a way to traverse the elements of an object structure.
– Visitor provides a way to define new operations for the elements of an object structure.
– Interpreter represents a sentence in a simple language

as a tree (composite) object structure (abstract syntax tree).

GoF Design Patterns Update w3sDesign / V 2.0 / 12.01.2018 318

Part V. GoF Design Patterns Update

DEPENDENCY INJECTION w3sDesign / V 2.0 / 12.01.2018 319

Intent

The intent of the Dependency Injection design pattern is to:
Separate object creation from an application. Dependency Injection makes an application
independent of how its objects are created.
See Problem and Solution sections for a more structured description of the intent.

• The Dependency Injection design pattern solves problems like:
– How can a class be independent of how the objects it requires are created?

– How can the way objects are created be specified in separate configuration files?

• An inflexible way is to create objects directly within the class (Client) that requires the objects.
This commits the class to how the objects are created and makes it impossible to change the
instantiation later independently from (without changing) the class.

• The Dependency Injection pattern describes how to solve such problems:
– Separate object creation from an application:

– Define a separate Injector object that creates and injects the objects a class requires.
– A class accepts the objects it requires from an Injector object instead of creating the objects

directly.

DEPENDENCY INJECTION w3sDesign / V 2.0 / 12.01.2018 320

Problem

The Dependency Injection design pattern solves problems like:
How can a class be independent of how the objects it requires are created?
How can the way objects are created be specified in separate configuration files?
See Applicability section for all problems Dependency Injection can solve. See Solution
section for how Dependency Injection solves the problems.

• An inflexible way is to create objects (new ServiceA1(), new ServiceB1()) directly within
the class (Client) that requires (uses) the objects.

• This commits (couples) the class to particular objects and makes it impossible to change the
instantiation later independently from (without having to change) the class. It stops the class
from being reusable if other objects are required, and it makes the class hard to test because
real objects can't be replaced with mock objects.
Furthermore, a class often requires objects that have further dependencies, which in turn have
dependencies, and so on, which results in having to create a complex object structure manually.

• That's the kind of approach to avoid if we want that a class is independent of how its objects
are created.

• For example, designing reusable classes that require (depend on) other objects.
A reusable class should avoid creating the objects it requires directly (and often it doesn't know
at compile-time which class to instantiate) so that it can accept the objects it requires at run-
time (from an injector object).

• For example, supporting different configurations of an application.
Instantiating concrete classes throughout an application should be avoided so that the way
objects are created can be specified in separate (external) configuration files.

DEPENDENCY INJECTION w3sDesign / V 2.0 / 12.01.2018 321

Solution

The Dependency Injection pattern describes a solution:
Define a separate Injector object that creates and injects the objects a class requires.
A class accepts the objects it requires from an Injector object
instead of creating the objects directly.
Describing the Dependency Injection design in more detail is the theme of the following sections.
See Applicability section for all problems Dependency Injection can solve. [See also]

• The key idea in this pattern is to separate using objects from creating them.
A class is no longer responsible for creating the objects it requires (uses).
Instead, a separate injector object creates the objects and injects them into the class.
This is also referred to as inversion of control, which is a common feature of frameworks
(compare with Template Method).

• Define a separate Injector object:
– The way objects are created (that is, the mapping of interfaces to implementations) is

specified in separate configuration files or objects (ServiceA -> ServiceA1, ServiceB -
> ServiceB1).

– To let the injector do its work, classes must provide a constructor (and/or setter methods)
through which the objects can be passed in (injected).

• A class (Client) accepts the objects it requires automatically at run-time.
– A class can use objects solely through their interfaces (ServiceA,ServiceB) and doesn't

have to care about how the objects are created.
– This greatly simplifies classes and makes them easier to implement, change, test, and reuse.

DEPENDENCY INJECTION w3sDesign / V 2.0 / 12.01.2018 322

Motivation 1

Consider the left design (problem):

• Hard-wired object creation.
– Creating objects is implemented

(hard-wired) directly within a class (Client).
– This makes it hard to change the way objects are created independently from (without having

to change) the class.

• Distributed object creation.
– Creating objects is distributed across the classes of an application.

Consider the right design (solution):

• Separated object creation.
– A separate Injector creates and injects the objects. The way objects are created is defined

in separate configuration files.
– This makes it easy to change the way objects are created independently from (without having

to change) existing classes.

• Centralized object creation.
– Creating objects is centralized in a single Injector class.

DEPENDENCY INJECTION w3sDesign / V 2.0 / 12.01.2018 323

Applicability

Design Problems

• Creating Objects
– How can a class be independent of how the objects it requires are created?
– How can a class accept the objects it requires (from an injector object)

instead of creating the objects directly?

• Specifying Different Configurations
– How can the way objects are created (the mapping of interfaces to implementations)

be specified in separate configuration files or objects?
– How can an application support different configurations?

• Resolving Dependencies Recursively
– How can the objects a class requires be created recursively?

Refactoring Problems

• Inflexible Code
– How can instantiating concrete classes throughout an application (compile-

time implementation dependencies) be refactored?
– How can object creation that is distributed across an application

be centralized and externalized?

Testing Problems

• Unit Testing
– How can the objects a class requires be replaced with mock objects

so that the class can be unit tested in isolation?

DEPENDENCY INJECTION w3sDesign / V 2.0 / 12.01.2018 324

Structure, Collaboration

Static Class Structure

• Client

– Requires ServiceA and ServiceB objects.
– Accepts the objects from the Injector.
– Is independent of how the objects are created (which concrete classes are instantiated).
– Doesn't know the Injector.

• Injector

– Creates the ServiceA1 and ServiceB1 objects; creates the Client (if it doesn't already exist)
and injects the objects into the Client.

Dynamic Object Collaboration

• In this sample scenario, an Injector object creates ServiceA1 and ServiceB1 objects.
Thereafter, it creates a Client object and injects the ServiceA1 and ServiceB1 objects.
Let's assume that the Injector uses a Configuration file that maps ServiceA and ServiceB
interfaces to ServiceA1 and ServiceB1 implementations.

• The Injector starts with creating the ServiceA1 and ServiceB1 objects.

• Thereafter, the Injector creates the Client object and injects the ServiceA1 and ServiceB1
objects.

• The Client object can then use the ServiceA1 and ServiceB1 objects as required.

• See also Sample Code / Example1.

DEPENDENCY INJECTION w3sDesign / V 2.0 / 12.01.2018 325

Consequences

Advantages (+)

• Avoids compile-time implementation dependencies.
– Classes get their objects injected at run-time and are independent of (do not know) which

concrete classes are instantiated.

• Greatly simplifies classes.
– Classes get their objects injected automatically at run-time instead of having to create them,

which makes the classes easier to implement, change, test, and reuse.

• Makes changing the configuration of an application easy.
– Because the way objects are created is defined in separate configuration files, the

configuration of an application can be changed easily by using different configuration files.

• Ensures objects are configured properly.
– When using constructor injection, the dependencies of an object are created and injected

before it can be used.

Disadvantages (–)

DEPENDENCY INJECTION w3sDesign / V 2.0 / 12.01.2018 326

Implementation

Implementation Issues

• Implementation Variants
– To let the injector do its work, classes must provide a way to pass in the objects they require.

There are two main implementation variants:

• Variant1: Constructor Injection
– Classes define constructors that pass in the objects:

class Client ...

 private Service service;

 public Client(Service service) {

 this.service = service;

 }

• Variant2: Setter Injection
– Classes define setter methods to pass in the objects:

class Client ...

 private Service service;

 public void setService(Service service) {

 this.service = service;

 }

• Constructor Injection versus Setter Injection
– Constructor injection is a clear way to inject the dependencies of a class when it is

instantiated. It ensures that an object is configured properly before it is used.
– With setter injection, it can't be ensured that an object is configured before it is used because

dependencies can be injected at any time after the object is created.

DEPENDENCY INJECTION w3sDesign / V 2.0 / 12.01.2018 327

Sample Code 1

Basic Java code by using the open source Google Guice Injector.

 1 package com.sample.di.basic;
 2 import com.google.inject.Guice;
 3 import com.google.inject.Injector;
 4 public class MyApp {
 5 public static void main(String[] args) {
 6 // Requesting an Injector object.
 7 Injector injector = Guice.createInjector(new Configuration1());
 8 // Requesting a Client object from the injector.
 9 Client client = injector.getInstance(Client.class);
10 // Performing an operation on the client.
11 System.out.println(client.operation());
12 }
13 }

Client : Accepting objects from the injector.
Hello World from ServiceA1 and ServiceB1!

 1 package com.sample.di.basic;
 2 import com.google.inject.Inject;
 3 public class Client {
 4 private ServiceA serviceA;
 5 private ServiceB serviceB;
 6
 7 @Inject // Constructor Injection
 8 public Client(ServiceA serviceA, ServiceB serviceB) {
 9 System.out.println("Client : Accepting objects from the injector.");
10 this.serviceA = serviceA;
11 this.serviceB = serviceB;
12 }
13 public String operation() {
14 // Doing something appropriate on the accepted objects.
15 return "Hello World from " + serviceA.getName() + " and "
16 + serviceB.getName() + "!";
17 }
18 }

 1 package com.sample.di.basic;
 2 public interface ServiceA {
 3 String getName();
 4 }

 1 package com.sample.di.basic;
 2 public class ServiceA1 implements ServiceA {
 3 public String getName() {
 4 return "ServiceA1";
 5 } ;
 6 }

 1 package com.sample.di.basic;
 2 public interface ServiceB {
 3 String getName();
 4 }

DEPENDENCY INJECTION w3sDesign / V 2.0 / 12.01.2018 328

 1 package com.sample.di.basic;
 2 public class ServiceB1 implements ServiceB {
 3 public String getName() {
 4 return "ServiceB1";
 5 } ;
 6 }

 1 package com.sample.di.basic;
 2 import com.google.inject.*;
 3 public class Configuration1 extends AbstractModule {
 4 @Override
 5 protected void configure() {
 6 // Mapping (binding) interfaces to implementations.
 7 bind(ServiceA.class).to(ServiceA1.class);
 8 bind(ServiceB.class).to(ServiceB1.class);
 9 }
10 }

Unit test classes.

 1 package com.sample.di.basic;
 2 import com.google.inject.Guice;
 3 import com.google.inject.Injector;
 4 import junit.framework.TestCase;
 5 public class ClientTest extends TestCase {
 6 // Requesting an Injector object.
 7 Injector injector = Guice.createInjector(new ConfigurationMock());
 8 // Requesting a Client object from the injector.
 9 Client client = injector.getInstance(Client.class);
10
11 public void testOperation() {
12 assertEquals("Hello World from ServiceAMock and ServiceBMock!",
13 client.operation());
14 }
15 // More tests ...
16 }

 1 package com.sample.di.basic;
 2 public class ServiceAMock implements ServiceA {
 3 public String getName() {
 4 return "ServiceAMock";
 5 }
 6 }

 1 package com.sample.di.basic;
 2 public class ServiceBMock implements ServiceB {
 3 public String getName() {
 4 return "ServiceBMock";
 5 }
 6 }

 1 package com.sample.di.basic;
 2 import com.google.inject.*;
 3 public class ConfigurationMock extends AbstractModule {
 4 @Override
 5 protected void configure() {
 6 // Mapping (binding) interfaces to implementations.
 7 bind(ServiceA.class).to(ServiceAMock.class);
 8 bind(ServiceB.class).to(ServiceBMock.class);
 9 }
10 }

DEPENDENCY INJECTION w3sDesign / V 2.0 / 12.01.2018 329

Related Patterns

Key Relationships

• Abstract Factory - Dependency Injection
– Abstract Factory

A class delegates creating the objects it requires to a factory object,
which makes the class dependent on the factory.

– Dependency Injection
A class accepts the objects it requires from an injector object
without having to know the injector, which greatly simplifies the class.

• Strategy - Abstract Factory - Dependency Injection
– Strategy

A class can be configured with a strategy object.
– Abstract Factory

A class can be configured with a factory object.
– Dependency Injection

Actually performs the configuration by creating and injecting the objects a class requires.

Bibliography w3sDesign / V 2.0 / 12.01.2018 330

Appendix A. Bibliography
[JBloch08] [JB08]
Joshua Bloch.
Effective Java. Second Edition.
Sun Microsystems / Addison-Wesley, 2008.

[GBooch07] [GB07]
Grady Booch.
Object-Oriented Analysis and Design with Applications. Third Edition.
Addison-Wesley, 2007.

[MFowler99] [MF99]
Martin Fowler.
Refactoring - Improving the Design of Existing Code.
Addison-Wesley, 1999.

[MFowler03] [MF03]
Martin Fowler.
Patterns of Enterprise Application Architecture.
Addison-Wesley, 2003.

[MFowler11] [MF11]
Martin Fowler.
Domain-Specific Languages.
Addison-Wesley, 2011.

[MFowlerInjection] [MFI]
Martin Fowler.
Inversion of Control Containers and the Dependency Injection pattern.
https://martinfowler.com/articles/injection.html

[GoF]
Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[Java Collections]
Joshua Bloch.
Java Collections Framework.
Oracle, 2015: http://docs.oracle.com/javase/tutorial/collections/index.html

[Java Language Specification] [JLS12]
James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley.
The Java Language Specification. Java SE 8 Edition.
Oracle, 2015: http://docs.oracle.com/javase/specs/jls/se8/html/index.html

[JKerievsky05] [JK05]
Joshua Kerievsky.
Refactoring to Patterns.
Addison-Wesley, 2005.

[TParr07]
Terence Parr.
The Definitive ANTLR Reference. Building Domain-Specific Languages.
The Pragmatic Bookshelf, 2007.

Bibliography w3sDesign / V 2.0 / 12.01.2018 331

Language Implementation Patterns.
Create Your Own Domain-Specific and General Programming Languages.
The Pragmatic Bookshelf, 2009.

	The GoF Design Patterns Reference
	Table of Contents
	Preface
	Part I. Introduction
	DESIGN PRINCIPLES
	OVERVIEW

	Part II. Creational Patterns
	ABSTRACT FACTORY
	Intent
	Problem
	Solution
	Motivation 1
	Applicability
	Structure, Collaboration
	Consequences
	Implementation
	Sample Code 1
	Sample Code 2
	Sample Code 3
	Related Patterns

	BUILDER
	Intent
	Problem
	Solution
	Motivation 1
	Applicability
	Structure, Collaboration
	Consequences
	Implementation
	Sample Code 1
	Related Patterns

	FACTORY METHOD
	Intent
	Problem
	Solution
	Motivation 1
	Applicability
	Structure, Collaboration
	Consequences
	Implementation
	Sample Code 1
	Sample Code 2
	Related Patterns

	PROTOTYPE
	Intent
	Problem
	Solution
	Motivation 1
	Applicability
	Structure, Collaboration
	Consequences
	Implementation
	Sample Code 1
	Sample Code 2
	Related Patterns

	SINGLETON
	Intent
	Problem
	Solution
	Motivation 1
	Applicability
	Structure, Collaboration
	Consequences
	Implementation
	Sample Code 1
	Related Patterns

	Part III. Structural Patterns
	ADAPTER
	Intent
	Problem
	Solution
	Motivation 1
	Applicability
	Structure, Collaboration
	Consequences
	Implementation
	Sample Code 1
	Sample Code 2
	Related Patterns

	BRIDGE
	Intent
	Problem
	Solution
	Motivation 1
	Applicability
	Structure, Collaboration
	Consequences
	Implementation
	Sample Code 1
	Related Patterns

	COMPOSITE
	Intent
	Problem
	Solution
	Motivation 1
	Applicability
	Structure, Collaboration
	Consequences
	Implementation
	Sample Code 1
	Sample Code 2
	Related Patterns

	DECORATOR
	Intent
	Problem
	Solution
	Motivation 1
	Applicability
	Structure, Collaboration
	Consequences
	Implementation
	Sample Code 1
	Sample Code 2
	Related Patterns

	FACADE
	Intent
	Problem
	Solution
	Motivation 1
	Applicability
	Structure, Collaboration
	Consequences
	Implementation
	Sample Code 1
	Related Patterns

	FLYWEIGHT
	Intent
	Problem
	Solution
	Motivation 1
	Applicability
	Structure, Collaboration
	Consequences
	Implementation
	Sample Code 1
	Related Patterns

	PROXY
	Intent
	Problem
	Solution
	Motivation 1
	Applicability
	Structure, Collaboration
	Consequences
	Implementation
	Sample Code 1
	Related Patterns

	Part IV. Behavioral Patterns
	CHAIN OF RESPONSIBILITY
	Intent
	Problem
	Solution
	Motivation 1
	Applicability
	Structure, Collaboration
	Consequences
	Implementation
	Sample Code 1
	Related Patterns

	COMMAND
	Intent
	Problem
	Solution
	Motivation 1
	Applicability
	Structure, Collaboration
	Consequences
	Implementation
	Sample Code 1
	Related Patterns

	INTERPRETER
	Intent
	Problem
	Solution
	Motivation 1
	Applicability
	Structure, Collaboration
	Consequences
	Implementation
	Sample Code 1
	Sample Code 2
	Related Patterns

	ITERATOR
	Intent
	Problem
	Solution
	Motivation 1
	Applicability
	Structure, Collaboration
	Consequences
	Implementation
	Sample Code 1
	Sample Code 2
	Related Patterns

	MEDIATOR
	Intent
	Problem
	Solution
	Motivation 1
	Applicability
	Structure, Collaboration
	Consequences
	Implementation
	Sample Code 1
	Related Patterns

	MEMENTO
	Intent
	Problem
	Solution
	Motivation 1
	Applicability
	Structure, Collaboration
	Consequences
	Implementation
	Sample Code 1
	Related Patterns

	OBSERVER
	Intent
	Problem
	Solution
	Motivation 1
	Applicability
	Structure, Collaboration
	Consequences
	Implementation
	Sample Code 1
	Sample Code 2
	Sample Code 3
	Sample Code 4
	Related Patterns

	STATE
	Intent
	Problem
	Solution
	Motivation 1
	Applicability
	Structure, Collaboration
	Consequences
	Implementation
	Sample Code 1
	Sample Code 2
	Related Patterns

	STRATEGY
	Intent
	Problem
	Solution
	Motivation 1
	Applicability
	Structure, Collaboration
	Consequences
	Implementation
	Sample Code 1
	Sample Code 2
	Sample Code 3
	Related Patterns

	TEMPLATE METHOD
	Intent
	Problem
	Solution
	Motivation 1
	Applicability
	Structure, Collaboration
	Consequences
	Implementation
	Sample Code 1
	Sample Code 2
	Related Patterns

	VISITOR
	Intent
	Problem
	Solution
	Motivation 1
	Applicability
	Structure, Collaboration
	Consequences
	Implementation
	Sample Code 1
	Sample Code 2
	Related Patterns

	Part V. GoF Design Patterns Update
	DEPENDENCY INJECTION
	Intent
	Problem
	Solution
	Motivation 1
	Applicability
	Structure, Collaboration
	Consequences
	Implementation
	Sample Code 1
	Related Patterns

	Appendix A. Bibliography

