
Introduction to Information Retrieval

Priya Radhakrishnan,

Search and Information Extraction Lab (SIEL)
Slide Courtesy : IR - Hinrich Schütze and Christina Lioma

(http://nlp.stanford.edu/IR-book/newslides.html)

IE – Alexander Fraser (http://www.cis.uni-
muenchen.de/~fraser/information_extraction_2013_lecture/)

Information Retrieval
& Extraction

1

6 th IIIT Hyderabad Advanced School on Natural Language Processing

(IASNLP 2015), July 1 – 15, 2015, Hyderabad, India

Introduction to Information Retrieval

2

Outline

 Information Retrieval

 Definition and Motivation

 Inverted Index

 A simple Boolean information retrieval system

 Term vocabulary and postings list

 Dictionaries and tolerant retrieval

 Index construction and storage

 Scoring, term weighting and vector-space model (exercise)

 Ranking and Cosine Similarity

 Information Extraction

 Entity Extraction & Relation Extraction
2

Introduction to Information Retrieval

33

Introduction to Information Retrieval

44

Introduction to Information Retrieval

5

Definition of information retrieval

Information retrieval (IR) is finding material (usually documents) of

an unstructured nature (usually text) that satisfies an information

need from within large collections (usually stored on computers).

5

Introduction to Information Retrieval

6

Outline

 Information Retrieval

 Definition and Motivation

 Inverted Index

 A simple Boolean information retrieval system

 Term vocabulary and postings list

 Dictionaries and tolerant retrieval

 Index construction and storage

 Scoring, term weighting and vector-space model (exercise)

 Ranking and Cosine Similarity

 Information Extraction

 Entity Extraction & Relation Extraction
6

Introduction to Information Retrieval

7

Initial approaches

 GREP

 Index – large collection, flexible matching, ranked retrieval

 Incidence matrix

 The Boolean model is arguably the simplest model to base
an information retrieval system on.

 Queries are Boolean expressions, e.g., CAESAR AND BRUTUS

 The seach engine returns all documents that satisfy the
Boolean expression.

Does Google use the Boolean model?

7

Introduction to Information Retrieval

8

Term-document incidence matrix

8

Anthony
and
Cleopatra

Julius
Caesar

The
Tempest

Hamlet Othello Macbeth
. . .

ANTHONY
BRUTUS
CAESAR
CALPURNIA
CLEOPATRA
MERCY
WORSER
. . .

1
1
1
0
1
1
1

1
1
1
1
0
0
0

0
0
0
0
0
1
1

0
1
1
0
0
1
1

0
0
1
0
0
1
1

1
0
1
0
0
1
0

Introduction to Information Retrieval

9

Unstructured data in 1650 : Shakespeare

 Which plays of Shakespeare contain the words BRUTUS AND

CAESAR, but not CALPURNIA?

 One could grep all of Shakespeare’s plays for BRUTUS and
CAESAR, then strip out lines containing CALPURNIA

 Why is grep not the solution?

 Slow (for large collections)

 grep is line-oriented, IR is document-oriented

 “NOT CALPURNIA” is non-trivial

 Other operations (e.g., find the word ROMANS near

COUNTRYMAN) not feasible

9

Introduction to Information Retrieval

10

Term-document incidence matrix

Entry is 1 if term occurs. Example: CALPURNIA occurs in Julius Caesar.
Entry is 0 if term doesn’t occur. Example: CALPURNIA
doesn’t occur in The tempest.

10

Anthony
and
Cleopatra

Julius
Caesar

The
Tempest

Hamlet Othello Macbeth
. . .

ANTHONY
BRUTUS
CAESAR
CALPURNIA
CLEOPATRA
MERCY
WORSER
. . .

1
1
1
0
1
1
1

1
1
1
1
0
0
0

0
0
0
0
0
1
1

0
1
1
0
0
1
1

0
0
1
0
0
1
1

1
0
1
0
0
1
0

Introduction to Information Retrieval

11

Incidence vectors

 So we have a 0/1 vector for each term.

 To answer the query BRUTUS AND CAESAR AND NOT CALPURNIA:

 Take the vectors for BRUTUS, CAESAR AND NOT CALPURNIA

 Complement the vector of CALPURNIA

 Do a (bitwise) and on the three vectors

 110100 AND 110111 AND 101111 = 100100

11

Introduction to Information Retrieval

12

0/1 vector for BRUTUS

12

Anthony
and
Cleopatra

Julius
Caesar

The
Tempest

Hamlet Othello Macbeth
. . .

ANTHONY
BRUTUS
CAESAR
CALPURNIA
CLEOPATRA
MERCY
WORSER
. . .

1
1
1
0
1
1
1

1
1
1
1
0
0
0

0
0
0
0
0
1
1

0
1
1
0
0
1
1

0
0
1
0
0
1
1

1
0
1
0
0
1
0

result: 1 0 0 1 0 0

Introduction to Information Retrieval

13

Answers to query

Anthony and Cleopatra, Act III, Scene ii
Agrippa [Aside to Domitius Enobarbus]: Why, Enobarbus,

When Antony found Julius Caesar dead,
He cried almost to roaring; and he wept
When at Philippi he found Brutus slain.

Hamlet, Act III, Scene ii
Lord Polonius: I did enact Julius Caesar: I was killed i’

the Capitol; Brutus killed me.

13

Introduction to Information Retrieval

14

Bigger collections

 Consider N = 106 documents, each with about 1000 tokens

 ⇒ total of 109 tokens

 On average 6 bytes per token, including spaces and

 punctuation⇒ size of document collection is about 6 ・ 109 =
6 GB

 Assume there are M = 500,000 distinct terms in the
collection

 (Notice that we are making a term/token distinction.)

14

Introduction to Information Retrieval

15

Can’t build the incidence matrix

 M = 500,000 × 106 = half a trillion 0s and 1s.

 But the matrix has no more than one billion 1s.

 Matrix is extremely sparse.

 What is a better representations?

 We only record the 1s.

15

Introduction to Information Retrieval

16

Inverted Index

For each term t, we store a list of all documents that contain t.

16

dictionary postings

Introduction to Information Retrieval

17

Inverted Index

For each term t, we store a list of all documents that contain t.

17

dictionary postings

Introduction to Information Retrieval

18

Inverted Index

For each term t, we store a list of all documents that contain t.

18

dictionary postings

Introduction to Information Retrieval

Inverted index construction

❶ Collect the documents to be indexed:

❷ Tokenize the text, turning each document into a list of tokens:

❸ Do linguistic preprocessing, producing a list of normalized
tokens, which are the indexing terms:

❹ Index the documents that each term occurs in by creating an
inverted index, consisting of a dictionary and postings.

19

Introduction to Information Retrieval

20

Tokenizing and preprocessing

20

Introduction to Information Retrieval

21

Generate posting

21

Introduction to Information Retrieval

22

Sort postings

22

Introduction to Information Retrieval

23

Create postings lists, determine document frequency

23

Introduction to Information Retrieval

24

Split the result into dictionary and postings file

24

dictionary postings

Introduction to Information Retrieval

25

Positional indexes

25

 Postings lists in a nonpositional index: each posting is just a
docID

 Postings lists in a positional index: each posting is a docID and
a list of positions

 Example query: “to1 be2 or3 not4 to5 be6”
TO, 993427:

‹ 1: ‹7, 18, 33, 72, 86, 231›;
2: ‹1, 17, 74, 222, 255›;
4: ‹8, 16, 190, 429, 433›;
5: ‹363, 367›;
7: ‹13, 23, 191›; . . . ›

BE, 178239:
‹ 1: ‹17, 25›;

4: ‹17, 191, 291, 430, 434›;
5: ‹14, 19, 101›; . . . › Document 4 is a match!

Introduction to Information Retrieval

26

Positional indexes

 With a positional index, we can answer phrase queries.

 With a positional index, we can answer proximity queries.

26

Introduction to Information Retrieval

27

Outline

 Information Retrieval

 Definition and Motivation

 Inverted Index

 A simple Boolean information retrieval system

 Term vocabulary and postings list

 Dictionaries and tolerant retrieval

 Index construction and storage

 Scoring, term weighting and vector-space model (exercise)

 Ranking and Cosine Similarity

 Information Extraction

 Entity Extraction & Relation Extraction
27

Introduction to Information Retrieval

28

Simple conjunctive query (two terms)

 Consider the query: BRUTUS AND CALPURNIA

 To find all matching documents using inverted index:

❶ Locate BRUTUS in the dictionary

❷ Retrieve its postings list from the postings file

❸ Locate CALPURNIA in the dictionary

❹ Retrieve its postings list from the postings file

❺ Intersect the two postings lists

❻ Return intersection to user

28

Introduction to Information Retrieval

29

Intersecting two posting lists

 This is linear in the length of the postings lists.

 Note: This only works if postings lists are sorted.

29

Introduction to Information Retrieval

30

Intersecting two posting lists

30

Introduction to Information Retrieval

Query processing with skip pointers

1282 4 8 41 48 64

311 2 3 8 11 17 21

3111

41 128

Suppose we’ve stepped through the lists until we process 8

on each list. We match it and advance.

We then have 41 and 11 on the lower. 11 is smaller.

But the skip successor of 11 on the lower list is 31, so

we can skip ahead past the intervening postings.

Sec. 2.3

Introduction to Information Retrieval

32

Boolean queries

 The Boolean retrieval model can answer any query that is a
Boolean expression.

 Boolean queries are queries that use AND, OR and NOT to join

 query terms.

 Views each document as a set of terms.

 Is precise: Document matches condition or not.

 Primary commercial retrieval tool for 3 decades

 Many professional searchers (e.g., lawyers) still like Boolean
queries.

 You know exactly what you are getting.

 Many search systems you use are also Boolean: spotlight,
email, intranet etc.

32

Introduction to Information Retrieval

33

Outline

 Information Retrieval

 Definition and Motivation

 Inverted Index

 A simple Boolean information retrieval system

 Term vocabulary and postings list

 Dictionaries and tolerant retrieval

 Index construction and storage

 Scoring, term weighting and vector-space model (exercise)

 Ranking and Cosine Similarity

 Information Extraction

 Entity Extraction & Relation Extraction
33

Introduction to Information Retrieval

The basic indexing pipeline

Tokenizer

Token stream Friends Romans Countrymen

Linguistic modules

Modified tokens friend roman countryman

Indexer

Inverted index

friend

roman

countryman

2 4

2

13 16

1

Documents to

be indexed
Friends, Romans, countrymen.

Introduction to Information Retrieval

Parsing a document

• What format is it in?

– pdf/word/excel/html?

• What language is it in?

• What character set is in use?

– (CP1252, UTF-8, …)

Each of these is a classification problem.

But these tasks are often done heuristically …

Sec. 2.1

Tokenizer

Linguistic

modules

Indexer

Introduction to Information Retrieval

Complications: What is a document?

We return from our query “documents” but there are
often interesting questions of grain size:

What is a unit document?
 A file?

 An email? (Perhaps one of many in a single mbox file)
 What about an email with 5 attachments?

 A group of files (e.g., PPT or LaTeX split over HTML pages)

Sec. 2.1

Introduction to Information Retrieval

Tokenization

 Input: “Friends, Romans and Countrymen”

 Output: Tokens

 Friends

 Romans

 Countrymen

 A token is an instance of a sequence of characters

 Each such token is now a candidate for an index
entry, after further processing

 Described below

 But what are valid tokens to emit?

Sec. 2.2.1

Tokenizer

Linguistic

modules

Indexer

Introduction to Information Retrieval

Challenges :Tokenization

• Issues in tokenization:

– Finland’s capital

Finland AND s? Finlands? Finland’s?

– Hewlett-Packard Hewlett and Packard as two
tokens?

• state-of-the-art: break up hyphenated sequence.

• co-education

• lowercase, lower-case, lower case ?

• It can be effective to get the user to put in possible hyphens

– San Francisco: one token or two?
• How do you decide it is one token?

Sec. 2.2.1

Introduction to Information Retrieval

Tokenization Challenges: Numbers

• 3/20/91 Mar. 12, 1991 20/3/91

• 55 B.C.

• B-52

• My PGP key is 324a3df234cb23e

• (800) 234-2333

– Often have embedded spaces

– Older IR systems may not index numbers

• But often very useful: think about things like looking up error
codes/stacktraces on the web

• (One answer is using n-grams: IIR ch. 3)

– Will often index “meta-data” separately
• Creation date, format, etc.

Sec. 2.2.1

Introduction to Information Retrieval

Tokenization: language issues

• Agglutination in Dravidian languages
– “ ഞാനറിഞ്ഞില്ല “ one sentence or one word or one

token?

• जाइए जाईए जाइये जययये
– Should be equivalent

• German noun compounds are not segmented
– Lebensversicherungsgesellschaftsangestellter

– ‘life insurance company employee’

– German retrieval systems benefit greatly from a compound splitter
module

– Can give a 15% performance boost for German

Sec. 2.2.1

Introduction to Information Retrieval

Stop words

• With a stop list, you exclude from the dictionary
entirely the commonest words. Intuition:
– They have little semantic content: the, a, and, to, be

– There are a lot of them: ~30% of postings for top 30 words

• But the trend is away from doing this:
– Good compression techniques (IIR 5) means the space for including

stop words in a system is very small

– Good query optimization techniques (IIR 7) mean you pay little at
query time for including stop words.

– You need them for:

• Phrase queries: “King of Denmark”

• Various song titles, etc.: “Let it be”, “To be or not to be”

• “Relational” queries: “flights to London”

Sec. 2.2.2

Introduction to Information Retrieval

Normalization to terms

• We may need to “normalize” words in indexed text
as well as query words into the same form

– We want to match U.S.A. and USA

• Result is terms: a term is a (normalized) word type,
which is an entry in our IR system dictionary

• We most commonly implicitly define equivalence
classes of terms by, e.g.,

– deleting periods to form a term
• U.S.A., USA USA

– deleting hyphens to form a term
• anti-discriminatory, antidiscriminatory antidiscriminatory

Sec. 2.2.3

Introduction to Information Retrieval

Normalization: other languages

• Accents and Umlaut

• Most important criterion:

– How are your users like to write their queries for these
words?

• Even in languages that standardly have accents,
users often may not type them

– Often best to normalize to a de-accented term

Sec. 2.2.3

Introduction to Information Retrieval

Case folding

• Reduce all letters to lower case

– exception: upper case in mid-sentence?

• e.g., General Motors

• Fed vs. fed

• SAIL vs. sail

– Often best to lower case everything, since users will use
lowercase regardless of ‘correct’ capitalization…

• Longstanding Google example: [fixed in 2011…]

– Query C.A.T.

– #1 result is for “cats” (well, Lolcats) not Caterpillar Inc.

Sec. 2.2.3

Introduction to Information Retrieval

Normalization to terms

• An alternative to equivalence classing is to do
asymmetric expansion

• An example of where this may be useful
– Enter: window Search: window, windows

– Enter: windows Search: Windows, windows, window

– Enter: Windows Search: Windows

• Potentially more powerful, but less efficient

Sec. 2.2.3

Introduction to Information Retrieval

Thesauri and soundex

• Do we handle synonyms and homonyms?
– E.g., by hand-constructed equivalence classes

• car = automobile color = colour

– We can rewrite to form equivalence-class terms
• When the document contains automobile, index it under car-

automobile (and vice-versa)

– Or we can expand a query
• When the query contains automobile, look under car as well

• What about spelling mistakes?
– One approach is Soundex, which forms equivalence classes

of words based on phonetic heuristics

Introduction to Information Retrieval

Lemmatization

• Reduce inflectional/variant forms to base form

• E.g.,

– am, are, is be

– car, cars, car's, cars' car

• the boy's cars are different colors the boy car be
different color

• Lemmatization implies doing “proper” reduction to
dictionary headword form

Sec. 2.2.4

Tokenizer

Linguistic

modules

Indexer

Introduction to Information Retrieval

Stemming

• Reduce terms to their “roots” before indexing

• “Stemming” suggests crude affix chopping

– language dependent

– e.g., automate(s), automatic, automation all reduced to
automat.

for example compressed

and compression are both

accepted as equivalent to

compress.

for exampl compress and

compress ar both accept

as equival to compress

Sec. 2.2.4

Introduction to Information Retrieval

Porter’s algorithm

• Commonest algorithm for stemming English

– Results suggest it’s at least as good as other stemming
options

• Conventions + 5 phases of reductions

– phases applied sequentially

– each phase consists of a set of commands

– sample convention: Of the rules in a compound command,
select the one that applies to the longest suffix.

Sec. 2.2.4

Introduction to Information Retrieval

Other stemmers

• Other stemmers exist:

– Lovins stemmer
• http://www.comp.lancs.ac.uk/computing/research/stemming/general/lovins.htm

• Single-pass, longest suffix removal (about 250 rules)

– Paice/Husk stemmer

– Snowball

• Full morphological analysis (lemmatization)
– At most modest benefits for retrieval

Sec. 2.2.4

Introduction to Information Retrieval

Language-specificity

• The above methods embody transformations that
are

– Language-specific, and often

– Application-specific

• These are “plug-in” addenda to the indexing process

• Both open source and commercial plug-ins are
available for handling these

Sec. 2.2.4

Introduction to Information Retrieval

Does stemming help?

• English: very mixed results. Helps recall for some
queries but harms precision on others

– E.g., operative (dentistry) ⇒ oper

• Definitely useful for Spanish, German, Finnish, …

– 30% performance gains for Finnish!

Sec. 2.2.4

Introduction to Information Retrieval

53

Outline

 Information Retrieval

 Definition and Motivation

 Inverted Index

 A simple Boolean information retrieval system

 Term vocabulary and postings list

 Dictionaries and tolerant retrieval

 Index construction and storage

 Scoring, term weighting and vector-space model (exercise)

 Ranking and Cosine Similarity

 Information Extraction

 Entity Extraction & Relation Extraction
53

Introduction to Information Retrieval

54

Dictionaries

 Term vocabulary: the data

 Dictionary: the data structure for storing the term

vocabulary

 For each term, we need to store a couple of items:

 document frequency

 pointer to postings list

 . . .

 Assume for the time being that we can store this information
in a fixed-length entry.

 Assume that we store these entries in an array.

54

Introduction to Information Retrieval

55

Dictionary as array of fixed-width entries

space needed: 20 bytes 4 bytes 4 bytes
How do we look up a query term qi in this array at query time?
That is: which data structure do we use to locate the entry (row)
in the array where qi is stored?

55

Introduction to Information Retrieval

56

Data structures for looking up term

 Two main classes of data structures: hashes and trees

 Some IR systems use hashes, some use trees.

 Criteria for when to use hashes vs. trees:

 Is there a fixed number of terms or will it keep growing?

 What are the relative frequencies with which various keys will
be accessed?

 How many terms are we likely to have?

56

Introduction to Information Retrieval

57

Hashes

 Each vocabulary term is hashed into an integer.

 Try to avoid collisions

 At query time, do the following: hash query term, resolve
collisions, locate entry in fixed-width array

 Pros: Lookup in a hash is faster than lookup in a tree.

 Lookup time is constant.

 Cons

 no way to find minor variants (resume vs. résumé)

 no prefix search (all terms starting with automat)

 need to rehash everything periodically if vocabulary keeps
growing

57

Introduction to Information Retrieval

58

Trees

 Trees solve the prefix problem (find all terms starting with
automat).

 Simplest tree: binary tree

 Search is slightly slower than in hashes: O(logM), where M is
the size of the vocabulary.

 O(logM) only holds for balanced trees.

 Rebalancing binary trees is expensive.

 B-trees mitigate the rebalancing problem.

 B-tree definition: every internal node has a number of
children in the interval [a, b] where a, b are appropriate
positive integers, e.g., [2, 4].

58

Introduction to Information Retrieval

59

Binary tree

59

Introduction to Information Retrieval

60

B-tree

60

Introduction to Information Retrieval

61

Tolerant Retrieval

 Tolerant retrieval: What to do if there is no exact match
between query term and document term

 Wildcard queries

 Spelling correction

61

Introduction to Information Retrieval

62

Wildcard queries

 hyd*: find all docs containing any term beginning with mon

 Easy with B-tree dictionary: retrieve all terms t in the range:
hyd ≤ t < hye

 *bad: find all docs containing any term ending with bad

 Maintain an additional tree for terms backwards

 Then retrieve all terms t in the range: dab ≤ t < dac

 Result: A set of terms that are matches for wildcard query

 Then retrieve documents that contain any of these terms

62

Introduction to Information Retrieval

63

How to handle * in the middle of a term

 Example: hyd*bad

 We could look up hyd* and *bad in the B-tree and intersect
the two term sets.

 Expensive

 Alternative: permuterm index

 Basic idea: Rotate every wildcard query, so that the * occurs
at the end.

 Store each of these rotations in the dictionary, say, in a B-tree

63

Introduction to Information Retrieval

64

Permuterm index

 For term HELLO: add hello$, ello$h, llohe, lohel, and o$hell
to the B-tree where $ is a special symbol

64

Introduction to Information Retrieval

65

Permuterm → term mapping

65

Introduction to Information Retrieval

66

k-gram indexes

 More space-efficient than permuterm index

 Enumerate all character k-grams (sequence of k characters)
occurring in a term

 2-grams are called bigrams.

 Example :

 re*ve -> $re AND ve$

 Look up a 2-gram list. Yields a list of matching terms like
relive, remove, retrieve, revive. Look up these terms in the
inverted index.

66

Introduction to Information Retrieval

67

Processing wildcard queries in the term-
document index

 Problem 1: we must potentially execute a large number of
Boolean queries.

 Most straightforward semantics: Conjunction of disjunctions
 For [gen* universit*]: geneva university OR geneva université

OR genève university OR genève université OR general
universities OR . . .

 Very expensive
 Problem 2: Users hate to type.
 If abbreviated queries like [pyth* theo*] for [pythagoras’

theorem] are allowed, users will use them a lot.
 This would significantly increase the cost of answering

queries.
 Somewhat alleviated by Google Suggest

67

Introduction to Information Retrieval

68

Spelling correction

 Two principal uses

 Correcting documents being indexed

 Correcting user queries

 Two different methods for spelling correction

 Isolated word spelling correction

 Check each word on its own for misspelling

 Will not catch typos resulting in correctly spelled words, e.g., an
asteroid that fell form the sky

 Context-sensitive spelling correction

 Look at surrounding words

 Can correct form/from error above

68

Introduction to Information Retrieval

69

Distance between misspelled word and
“correct” word

 We will study several alternatives.

 Edit distance and Levenshtein distance

 Weighted edit distance

 k-gram overlap

69

Introduction to Information Retrieval

70

Edit distance

 The edit distance between string s1 and string s2 is the
minimum number of basic operations that convert s1 to s2.

 Levenshtein distance: The admissible basic operations are
insert, delete, and replace

 Levenshtein distance dog-do: 1

 Levenshtein distance cat-cart: 1

 Levenshtein distance cat-cut: 1

 Levenshtein distance cat-act: 2

 Damerau-Levenshtein distance cat-act: 1

 Damerau-Levenshtein includes transposition as a fourth
possible operation.

70

Introduction to Information Retrieval

71

Levenshtein distance: Algorithm

71

Introduction to Information Retrieval

72

Weighted edit distance

 As above, but weight of an operation depends on the
characters involved.

 Meant to capture keyboard errors, e.g., m more likely to be
mistyped as n than as q.

 Therefore, replacing m by n is a smaller edit distance than by
q.

 We now require a weight matrix as input.

 Modify dynamic programming to handle weights

72

Introduction to Information Retrieval

73

Using edit distance for spelling correction

 Given query, first enumerate all character sequences within a
preset (possibly weighted) edit distance

 Intersect this set with our list of “correct” words

 Then suggest terms in the intersection to the user.

73

Introduction to Information Retrieval

74

Context-sensitive spelling correction

 Our example was: an asteroid that fell form the sky
 How can we correct form here?
 One idea: hit-based spelling correction

 Retrieve “correct” terms close to each query term
 for flew form munich: flea for flew, from for form, munch for
 munich
 Now try all possible resulting phrases as queries with one word

“fixed” at a time
 Try query “flea form munich”
 Try query “flew from munich”
 Try query “flew form munch”
 The correct query “flew from munich” has the most hits.

 Suppose we have 7 alternatives for flew, 20 for form and 3 for
munich, how many “corrected” phrases will we enumerate?

74

Introduction to Information Retrieval

75

General issues in spelling correction

 User interface

 automatic vs. suggested correction

 Did you mean only works for one suggestion.

 What about multiple possible corrections?

 Tradeoff: simple vs. powerful UI

 Cost

 Spelling correction is potentially expensive.

 Avoid running on every query?

 Maybe just on queries that match few documents.

 Guess: Spelling correction of major search engines is efficient
enough to be run on every query.

75

Introduction to Information Retrieval

76

Soundex

 Soundex is the basis for finding phonetic (as opposed to
orthographic) alternatives.

 Example: chebyshev / tchebyscheff

 Algorithm:

 Turn every token to be indexed into a 4-character reduced form

 Do the same with query terms

 Build and search an index on the reduced forms

76

Introduction to Information Retrieval

77

Outline

 Information Retrieval

 Definition and Motivation

 Inverted Index

 A simple Boolean information retrieval system

 Term vocabulary and postings list

 Dictionaries and tolerant retrieval

 Index construction and storage

 Scoring, term weighting and vector-space model (exercise)

 Ranking and Cosine Similarity

 Information Extraction

 Entity Extraction & Relation Extraction
77

Introduction to Information Retrieval

78

Index Construction & Storage

 Two index construction algorithms: BSBI (simple) and SPIMI
(more realistic)

 Distributed index construction: MapReduce

 Dynamic index construction: how to keep the index up-to-date
as the collection changes

78

Introduction to Information Retrieval

79

RCV1 collection

 Shakespeare’s collected works are not large enough for
demonstrating many of the points in this course.

 As an example for applying scalable index construction
algorithms, we will use the Reuters RCV1 collection.

 English newswire articles sent over the wire in 1995 and 1996
(one year).

79

Introduction to Information Retrieval

80

A Reuters RCV1 document

80

Introduction to Information Retrieval

81

Reuters RCV1 statistics

Exercise: Average frequency of a term (how many tokens)? 4.5

bytes per word token vs. 7.5 bytes per word type: why the
difference? How many positional postings?

81

N
L
M

T

documents
tokens per document
terms (= word types)
bytes per token (incl. spaces/punct.)
bytes per token (without spaces/punct.)
bytes per term (= word type)
non-positional postings

800,000
200
400,000
6
4.5
7.5
100,000,000

Introduction to Information Retrieval

82

BSBI Algorithm
Goal: construct the inverted Index

82

dictonary postings

Introduction to Information Retrieval

83

Sort-based index construction
 As we build index, we parse docs one at a time.

 The final postings for any term are incomplete until the end.

 Can we keep all postings in memory and then do the sort in-
memory at the end?

 No, not for large collections

 At 10–12 bytes per postings entry, we need a lot of space for
large collections.

 T = 100,000,000 in the case of RCV1: we can do this in
memory on a typical machine in 2010.

 But in-memory index construction does not scale for large
collections.

 Thus: We need to store intermediate results on disk.
83

Introduction to Information Retrieval

84

Same algorithm for disk?

 Can we use the same index construction algorithm for larger
collections, but by using disk instead of memory?

 No: Sorting T = 100,000,000 records on disk is too slow – too
many disk seeks.

 We need an external sorting algorithm.

84

Introduction to Information Retrieval

85

“External” sorting algorithm
(using few disk seeks)

 We must sort T = 100,000,000 non-positional postings.

 Each posting has size 12 bytes (4+4+4: termID, docID, document
frequency).

 Define a block to consist of 10,000,000 such postings

 We can easily fit that many postings into memory.

 We will have 10 such blocks for RCV1.

 Basic idea of algorithm:

 For each block: (i) accumulate postings, (ii) sort in memory, (iii)
write to disk

 Then merge the blocks into one long sorted order.

85

Introduction to Information Retrieval

86

Merging two blocks

86

Introduction to Information Retrieval

87

Blocked Sort-Based Indexing (BSBI)

 Key decision: What is the size of one block?

87

Introduction to Information Retrieval

88

Problem with sort-based algorithm

 Our assumption was: we can keep the dictionary in memory.

 We need the dictionary (which grows dynamically) in order to
implement a term to termID mapping.

 Actually, we could work with term,docID postings instead of
termID,docID postings . . .

 . . . but then intermediate files become very large. (We would
end up with a scalable, but very slow index construction
method.)

88

Introduction to Information Retrieval

89

Single-pass in-memory indexing(SPIMI)

 Abbreviation: SPIMI

 Key idea 1: Generate separate dictionaries for each block – no
need to maintain term-termID mapping across blocks.

 Key idea 2: Don’t sort. Accumulate postings in postings lists as
they occur.

 With these two ideas we can generate a complete inverted
index for each block.

 These separate indexes can then be merged into one big
index.

89

Introduction to Information Retrieval

90

SPIMI-Invert

90

Introduction to Information Retrieval

91

Distributed indexing

 For web-scale indexing (don’t try this at home!): must use a
distributed computer cluster

 Individual machines are fault-prone.

 Can unpredictably slow down or fail.

 How do we exploit such a pool of machines?

91

Introduction to Information Retrieval

92

Distributed indexing

 Maintain a master machine directing the indexing job –
considered “safe”

 Break up indexing into sets of parallel tasks

 Master machine assigns each task to an idle machine from a
pool.

92

Introduction to Information Retrieval

93

MapReduce

 The index construction algorithm can be implemented with
MapReduce.

 MapReduce is a robust and conceptually simple framework for
distributed computing . . .

 . . .without having to write code for the distribution part.

 The Google indexing system (ca. 2002) consisted of a number
of phases, each implemented in MapReduce.

 Index construction was just one phase.

 Another phase: transform term-partitioned into document-
partitioned index.

93

Introduction to Information Retrieval

94

Dynamic indexing

 Up to now, we have assumed that collections are static.

 They rarely are: Documents are inserted, deleted and modified.

 This means that the dictionary and postings lists have to be
dynamically modified.

94

Introduction to Information Retrieval

95

Dynamic indexing: Simplest approach

 Maintain big main index on disk

 New docs go into small auxiliary index in memory.

 Search across both, merge results

 Periodically, merge auxiliary index into big index

 Deletions:

 Invalidation bit-vector for deleted docs

 Filter docs returned by index using this bit-vector

95

Introduction to Information Retrieval

96

Issue with auxiliary and main index

 Frequent merges

 Poor search performance during index merge

 Actually:

 Merging of the auxiliary index into the main index is not that
costly if we keep a separate file for each postings list.

 Merge is the same as a simple append.

 But then we would need a lot of files – inefficient.

 Assumption for the rest of the lecture: The index is one big file.

 In reality: Use a scheme somewhere in between (e.g., split very
large postings lists into several files, collect small postings lists
in one file etc.)

96

Introduction to Information Retrieval

97

Logarithmic merge

 Logarithmic merging amortizes the cost of merging indexes
over time.

 → Users see smaller effect on response times.

 Maintain a series of indexes, each twice as large as the
previous one.

 Keep smallest (Z0) in memory

 Larger ones (I0, I1, . . .) on disk

 If Z0 gets too big (> n), write to disk as I0

 . . . or merge with I0 (if I0 already exists) and write merger to I1

etc.

97

Introduction to Information Retrieval

98

Why compression

 An index compression ratio of 1:4 cuts cost of storage by75%

 Increased use of cache

 Faster transfer of data from disk to memory

98

Introduction to Information Retrieval

99

Outline

 Information Retrieval

 Definition and Motivation

 Inverted Index

 A simple Boolean information retrieval system

 Term vocabulary and postings list

 Dictionaries and tolerant retrieval

 Index construction and storage

 Scoring, term weighting and vector-space model (exercise)

 Ranking and Cosine Similarity

 Information Extraction

 Entity Extraction

 Relation Extraction
99

Introduction to Information Retrieval

100

Problem with Boolean search: Feast or famine

 Boolean queries often result in either too few (=0) or too
many (1000s) results.

 Query 1 (boolean conjunction): [standard user dlink 650]

 → 200,000 hits – feast

 Query 2 (boolean conjunction): [standard user dlink 650 no
card found]

 → 0 hits – famine

 In Boolean retrieval, it takes a lot of skill to come up with a
query that produces a manageable number of hits.

100

Introduction to Information Retrieval

101

Feast or famine: No problem in ranked retrieval

 With ranking, large result sets are not an issue.

 Just show the top 10 results

 Doesn’t overwhelm the user

 Premise: the ranking algorithm works: More relevant results
are ranked higher than less relevant results.

101

Introduction to Information Retrieval

102

Scoring as the basis of ranked retrieval

 We wish to rank documents that are more relevant higher
than documents that are less relevant.

 How can we accomplish such a ranking of the documents in
the collection with respect to a query?

 Assign a score to each query-document pair, say in [0, 1].

 This score measures how well document and query “match”.

102

Introduction to Information Retrieval

103

Take 1: Jaccard coefficient

 A commonly used measure of overlap of two sets

 Let A and B be two sets

 Jaccard coefficient:

 JACCARD (A, A) = 1

 JACCARD (A, B) = 0 if A ∩ B = 0

 A and B don’t have to be the same size.

 Always assigns a number between 0 and 1.

103

Introduction to Information Retrieval

104

Jaccard coefficient: Example

 What is the query-document match score that the Jaccard
coefficient computes for:

 Query: “ides of March”

 Document “Caesar died in March”

 JACCARD(q, d) = 1/6

104

Introduction to Information Retrieval

105

What’s wrong with Jaccard?

 It doesn’t consider term frequency (how many occurrences a
term has).

 Rare terms are more informative than frequent terms.
Jaccard does not consider this information.

 We need a more sophisticated way of normalizing for the
length of a document.

 Later in this lecture, we’ll use (cosine) . . .

 . . . instead of |A ∩ B|/|A ∪ B| (Jaccard) for length
normalization.

105

Introduction to Information Retrieval

106

See for yourself

 Compute the Jaccard matching score and the tf matching
score for the following query-document pairs.

 q: [information on cars] d: “all you’ve ever wanted to know
about cars”

 q: [information on cars] d: “information on trucks,
information on planes, information on trains”

 q: [red cars and red trucks] d: “cops stop red cars more
often”

106

Introduction to Information Retrieval

107

Term frequency tf

 The term frequency tft,d of term t in document d is defined
as the number of times that t occurs in d.

 We want to use tf when computing query-document match
scores.

107

Introduction to Information Retrieval

108

Binary incidence matrix

Each document is represented as a binary vector ∈ {0, 1}|V|.

108

Anthony
and
Cleopatra

Julius
Caesar

The
Tempest

Hamlet Othello Macbeth
. . .

ANTHONY
BRUTUS
CAESAR
CALPURNIA
CLEOPATRA
MERCY
WORSER
. . .

1
1
1
0
1
1
1

1
1
1
1
0
0
0

0
0
0
0
0
1
1

0
1
1
0
0
1
1

0
0
1
0
0
1
1

1
0
1
0
0
1
0

Introduction to Information Retrieval

109

Binary incidence matrix

Each document is now represented as a count vector ∈ N|V|.

109

Anthony
and
Cleopatra

Julius
Caesar

The
Tempest

Hamlet Othello Macbeth
. . .

ANTHONY
BRUTUS
CAESAR
CALPURNIA
CLEOPATRA
MERCY
WORSER
. . .

157
4

232
0

57
2
2

73
157
227

10
0
0
0

0
0
0
0
0
3
1

0
2
2
0
0
8
1

0
0
1
0
0
5
1

1
0
0
0
0
8
5

Introduction to Information Retrieval

110

Not raw Term frequency

 A document with tf = 10 occurrences of the term is more
relevant than a document with tf = 1 occurrence of the
term.

 But not 10 times more relevant.

 Relevance does not increase proportionally with term
frequency.

110

Introduction to Information Retrieval

111

Instead of raw frequency: Log frequency
weighting

 The log frequency weight of term t in d is defined as follows

 tft,d → wt,d :
0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.

 Score for a document-query pair: sum over terms t in both q
and d:
tf-matching-score(q, d) = t∈q∩d (1 + log tft,d)

 The score is 0 if none of the query terms is present in the
document.

111

Introduction to Information Retrieval

112

Desired weight for rare terms

 Rare terms are more informative than frequent terms.

 Consider a term in the query that is rare in the collection
(e.g., ARACHNOCENTRIC).

 A document containing this term is very likely to be
relevant.

 → We want high weights for rare terms like
ARACHNOCENTRIC.

112

Introduction to Information Retrieval

113

Desired weight for frequent terms

 Frequent terms are less informative than rare terms.

 Consider a term in the query that is frequent in the
collection (e.g., GOOD, INCREASE, LINE).

 A document containing this term is more likely to be
relevant than a document that doesn’t . . .

 . . . but words like GOOD, INCREASE and LINE are not sure
indicators of relevance.

 → For frequent terms like GOOD, INCREASE and LINE, we
want positive weights . . .

 . . . but lower weights than for rare terms.

113

Introduction to Information Retrieval

114

Document frequency

 We want high weights for rare terms like ARACHNOCENTRIC.

 We want low (positive) weights for frequent words like

GOOD, INCREASE and LINE.

 We will use document frequency to factor this into
computing the matching score.

 The document frequency is the number of documents in
the collection that the term occurs in.

114

Introduction to Information Retrieval

115

idf weight

 dft is the document frequency, the number of documents
that t occurs in.

 dft is an inverse measure of the informativeness of term t.

 We define the idf weight of term t as follows:

(N is the number of documents in the collection.)

 idft is a measure of the informativeness of the term.

 [log N/dft] instead of [N/dft] to “dampen” the effect of idf

 Note that we use the log transformation for both term
frequency and document frequency.

115

Introduction to Information Retrieval

116

Examples for idf

 Compute idft using the formula:

116

term dft idft

calpurnia
animal
sunday
fly
under
the

1
100

1000
10,000

100,000
1,000,000

6
4
3
2
1
0

Introduction to Information Retrieval

117

Effect of idf on ranking

 idf affects the ranking of documents for queries with at
least two terms.

 For example, in the query “arachnocentric line”, idf
weighting increases the relative weight of ARACHNOCENTRIC

and decreases the relative weight of LINE.

 idf has little effect on ranking for one-term queries.

117

Introduction to Information Retrieval

118

Collection frequency vs. Document frequency

 Collection frequency of t: number of tokens of t in the
collection

 Document frequency of t: number of documents t occurs in

 Why these numbers?

 Which word is a better search term (and should get a
higher weight)?

 This example suggests that df (and idf) is better for
weighting than cf (and “icf”).

118

word collection frequency document frequency

INSURANCE
TRY

10440
10422

3997
8760

Introduction to Information Retrieval

119

tf-idf weighting

 The tf-idf weight of a term is the product of its tf weight
and its idf weight.

 tf-weight

 idf-weight

 Best known weighting scheme in information retrieval

 Note: the “-” in tf-idf is a hyphen, not a minus sign!

 Alternative names: tf.idf, tf x idf

119

Introduction to Information Retrieval

120

Summary: tf-idf

 Assign a tf-idf weight for each term t in each document d:

 The tf-idf weight . . .

 . . . increases with the number of occurrences within a
document. (term frequency)

 . . . increases with the rarity of the term in the collection.
(inverse document frequency)

120

Introduction to Information Retrieval

121

The vector space model :
Binary incidence matrix

Each document is represented as a binary vector ∈ {0, 1}|V|.

121

Anthony
and
Cleopatra

Julius
Caesar

The
Tempest

Hamlet Othello Macbeth
. . .

ANTHONY
BRUTUS
CAESAR
CALPURNIA
CLEOPATRA
MERCY
WORSER
. . .

1
1
1
0
1
1
1

1
1
1
1
0
0
0

0
0
0
0
0
1
1

0
1
1
0
0
1
1

0
0
1
0
0
1
1

1
0
1
0
0
1
0

Introduction to Information Retrieval

122

Count matrix

Each document is now represented as a count vector ∈ N|V|.

122

Anthony
and
Cleopatra

Julius
Caesar

The
Tempest

Hamlet Othello Macbeth
. . .

ANTHONY
BRUTUS
CAESAR
CALPURNIA
CLEOPATRA
MERCY
WORSER
. . .

157
4

232
0

57
2
2

73
157
227

10
0
0
0

0
0
0
0
0
3
1

0
2
2
0
0
8
1

0
0
1
0
0
5
1

1
0
0
0
0
8
5

Introduction to Information Retrieval

123

Binary → count → weight matrix

Each document is now represented as a real-valued vector of tf
idf weights ∈ R|V|.

123

Anthony
and
Cleopatra

Julius
Caesar

The
Tempest

Hamlet Othello Macbeth
. . .

ANTHONY
BRUTUS
CAESAR
CALPURNIA
CLEOPATRA
MERCY
WORSER
. . .

5.25
1.21
8.59

0.0
2.85
1.51
1.37

3.18
6.10
2.54
1.54

0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0

1.90
0.11

0.0
1.0

1.51
0.0
0.0

0.12
4.15

0.0
0.0

0.25
0.0
0.0

5.25
0.25

0.35
0.0
0.0
0.0
0.0

0.88
1.95

Introduction to Information Retrieval

124

Documents as vectors

 Each document is now represented as a real-valued vector
of tf-idf weights ∈ R|V|.

 So we have a |V|-dimensional real-valued vector space.

 Terms are axes of the space.

 Documents are points or vectors in this space.

 Very high-dimensional: tens of millions of dimensions when
you apply this to web search engines

 Each vector is very sparse - most entries are zero.

124

Introduction to Information Retrieval

125

Queries as vectors

 Key idea 1: do the same for queries:
represent them as vectors in the high-
dimensional space

 Key idea 2: Rank documents according to
their proximity to the query

 proximity = similarity

 proximity ≈ negative distance

125

Introduction to Information Retrieval

126

Euclidean distance : a bad idea?

The Euclidean distance of and is large although the distribution
of terms in the query q
and the distribution of terms in the document d2 are very similar.
Questions about basic vector space setup?

126

Introduction to Information Retrieval

127

Use angle instead of distance

 Rank documents according to angle with query

 Thought experiment: take a document d and append it to
itself. Call this document d′. d′ is twice as long as d.

 “Semantically” d and d′ have the same content.

 The angle between the two documents is 0, corresponding
to maximal similarity . . .

 . . . even though the Euclidean distance between the two
documents can be quite large.

127

Introduction to Information Retrieval

128

From angles to cosines

 The following two notions are equivalent.

 Rank documents according to the angle between query and
document in decreasing order

 Rank documents according to cosine(query,document) in
increasing order

 Cosine is a monotonically decreasing function of the angle
for the interval [0◦, 180◦]

128

Introduction to Information Retrieval

129

Cosine

129

Introduction to Information Retrieval

130

Length normalization

 How do we compute the cosine?

 A vector can be (length-) normalized by dividing each of its
components by its length – here we use the L2 norm:

 This maps vectors onto the unit sphere . . .

 . . . since after normalization:

 As a result, longer documents and shorter documents have
weights of the same order of magnitude.

 Effect on the two documents d and d′ (d appended to itself)
from earlier slide: they have identical vectors after length-
normalization.

130

Introduction to Information Retrieval

131

Cosine similarity between query and
document

 qi is the tf-idf weight of term i in the query.

 di is the tf-idf weight of term i in the document.

 | | and | | are the lengths of and

 This is the cosine similarity of and or,
equivalently, the cosine of the angle between and

131

Introduction to Information Retrieval

132

Cosine for normalized vectors

 For normalized vectors, the cosine is equivalent to the dot
product or scalar product.

 (if and are length-normalized).

132

Introduction to Information Retrieval

133

Cosine similarity illustrated

133

Introduction to Information Retrieval

134

Cosine: Example

term frequencies (counts)

How similar are these novels?
SaS: Sense and Sensibility
PaP: Pride and Prejudice
WH: Wuthering Heights

134

term SaS PaP WH

AFFECTION
JEALOUS
GOSSIP
WUTHERING

115
10

2
0

58
7
0
0

20
11

6
38

Introduction to Information Retrieval

135

Cosine: Example

term frequencies (counts) log frequency weighting

(To simplify this example, we don't do idf weighting.)

135

term SaS PaP WH

AFFECTION
JEALOUS
GOSSIP
WUTHERING

3.06
2.0

1.30
0

2.76
1.85

0
0

2.30
2.04
1.78
2.58

term SaS PaP WH

AFFECTION
JEALOUS
GOSSIP
WUTHERING

115
10

2
0

58
7
0
0

20
11

6
38

Introduction to Information Retrieval

136

Cosine: Example

log frequency weighting log frequency weighting &
cosine normalization

136

term SaS PaP WH

AFFECTION
JEALOUS
GOSSIP
WUTHERING

3.06
2.0

1.30
0

2.76
1.85

0
0

2.30
2.04
1.78
2.58

term SaS PaP WH

AFFECTION
JEALOUS
GOSSIP
WUTHERING

0.789
0.515
0.335

0.0

0.832
0.555
0.0
0.0

0.524
0.465
0.405
0.588

 cos(SaS,PaP) ≈
0.789 ∗ 0.832 + 0.515 ∗ 0.555 + 0.335 ∗ 0.0 + 0.0 ∗ 0.0 ≈ 0.94.

 cos(SaS,WH) ≈ 0.79
 cos(PaP,WH) ≈ 0.69
 Why do we have cos(SaS,PaP) > cos(SAS,WH)?

Introduction to Information Retrieval

137

Summary: Ranked retrieval in the vector space
model

 Represent the query as a weighted tf-idf vector

 Represent each document as a weighted tf-idf vector

 Compute the cosine similarity between the query vector and
each document vector

 Rank documents with respect to the query

 Return the top K (e.g., K = 10) to the user

137

Introduction to Information Retrieval

138

Outline

 Information Retrieval

 Definition and Motivation

 Inverted Index

 A simple Boolean information retrieval system

 Term vocabulary and postings list

 Dictionaries and tolerant retrieval

 Index construction and storage

 Scoring, term weighting and vector-space model

 Ranking and Cosine Similarity

 Information Extraction

 Entity Extraction & Relation Extraction
138

Introduction to Information Retrieval

139139

Introduction to Information Retrieval

140140

Introduction to Information Retrieval

141141

Introduction to Information Retrieval

142

Importance of ranking: Summary

 Viewing abstracts: Users are a lot more likely to read the
abstracts of the top-ranked pages (1, 2, 3, 4) than the abstracts
of the lower ranked pages (7, 8, 9, 10).

 Clicking: Distribution is even more skewed for clicking

 In 1 out of 2 cases, users click on the top-ranked page.

 Even if the top-ranked page is not relevant, 30% of users will
click on it.

 → Getting the ranking right is very important.

 → Getting the top-ranked page right is most important.

142

Introduction to Information Retrieval

143

Ranking Implementation:
How do we compute the top k in ranking?

 In many applications, we don’t need a complete ranking.
 We just need the top k for a small k (e.g., k = 100).
 If we don’t need a complete ranking, is there an efficient way

of computing just the top k?
 Naive:

 Compute scores for all N documents
 Sort
 Return the top k

 What’s bad about this?
 Alternative?

143

Introduction to Information Retrieval

144

Use min heap for selecting top k out of N

 Use a binary min heap

 A binary min heap is a binary tree in which each node’s value is
less than the values of its children.

 Takes O(N log k) operations to construct (where N is the
number of documents) . . .

 . . . then read off k winners in O(k log k) steps

144

Introduction to Information Retrieval

145

Binary min heap

145

Introduction to Information Retrieval

146

Even more efficient computation of top k?

 Ranking has time complexity O(N) where N is the number of
documents.

 Optimizations reduce the constant factor, but they are still
O(N), N > 1010

 Are there sublinear algorithms?

 What we’re doing in effect: solving the k-nearest neighbor
(kNN) problem for the query vector (= query point).

 There are no general solutions to this problem that are
sublinear.

146

Introduction to Information Retrieval

147

More efficient computation of top k: Heuristics

 Idea 1: Reorder postings lists

 Instead of ordering according to docID . . .

 . . . order according to some measure of “expected relevance”.

 Idea 2: Heuristics to prune the search space

 Not guaranteed to be correct . . .

 . . . but fails rarely.

 In practice, close to constant time.

 For this, we’ll need the concepts of document-at-a-time
processing and term-at-a-time processing.

147

Introduction to Information Retrieval

148

Non-docID ordering of postings lists

 So far: postings lists have been ordered according to docID.

 Alternative: a query-independent measure of “goodness” of a
page

 Example: PageRank g(d) of page d, a measure of how many
“good” pages hyperlink to d (chapter 21)

 Order documents in postings lists according to PageRank:
g(d1) > g(d2) > g(d3) > . . .

 Define composite score of a document:
net-score(q, d) = g(d) + cos(q, d)

 This scheme supports early termination: We do not have to
process postings lists in their entirety to find top k.

148

Introduction to Information Retrieval

149

Document-at-a-time processing

 Both docID-ordering and PageRank-ordering impose a
consistent ordering on documents in postings lists.

 Computing cosines in this scheme is document-at-a-time.

 We complete computation of the query-document similarity
score of document di before starting to compute the query-
document similarity score of di+1.

 Alternative: term-at-a-time processing

149

Introduction to Information Retrieval

150

Weight-sorted postings lists

 Idea: don’t process postings that contribute little to final score
 Order documents in postings list according to weight
 Simplest case: normalized tf-idf weight (rarely done: hard to

compress)
 Documents in the top k are likely to occur early in these

ordered lists.
 → Early termination while processing postings lists is unlikely to

change the top k.
 But:

 We no longer have a consistent ordering of documents in
postings lists.

 We no longer can employ document-at-a-time processing.

150

Introduction to Information Retrieval

151

Term-at-a-time processing

 Simplest case: completely process the postings list of the first
query term

 Create an accumulator for each docID you encounter

 Then completely process the postings list of the second query
term

 . . . and so forth

151

Introduction to Information Retrieval

152

Term-at-a-time processing

152

Introduction to Information Retrieval

153

Computing cosine scores

 For the web (20 billion documents), an array of accumulators A
in memory is infeasible.

 Thus: Only create accumulators for docs occurring in postings
lists

 This is equivalent to: Do not create accumulators for docs with
zero scores (i.e., docs that do not contain any of the query
terms)

153

Introduction to Information Retrieval

154

Accumulators: Example

 For query: [Brutus Caesar]:

 Only need accumulators for 1, 5, 7, 13, 17, 83, 87

 Don’t need accumulators for 8, 40, 85

154

Introduction to Information Retrieval

155

Complete search system

155

Introduction to Information Retrieval

156

Outline

 Information Retrieval

 Definition and Motivation

 Inverted Index

 A simple Boolean information retrieval system

 Term vocabulary and postings list

 Dictionaries and tolerant retrieval

 Index construction and storage

 Scoring, term weighting and vector-space model

 Ranking and Cosine Similarity

 Information Extraction

 Entity Extraction & Relation Extraction
156

Introduction to Information Retrieval

A problem

Genomics job

Mt. Baker, the school district

Baker Hostetler, the company

Baker, a job opening

Slide from Cohen/Mccallum

157

Introduction to Information Retrieval

Job Openings:
Category = Food Services

Keyword = Baker

Location = Continental U.S.

Slide from Cohen/McCallum

158

Introduction to Information Retrieval

Extracting Job Openings from the Web

Title: Ice Cream Guru

Description: If you dream of cold creamy…

Contact: susan@foodscience.com

Category: Travel/Hospitality

Function: Food Services

Slide from Cohen/McCallum

159

mailto:susan@foodscience.com

Introduction to Information Retrieval

Definition of IE

Information Extraction (IE) is the process

of extracting structured information (e.g., database tables)

from unstructured machine-readable documents

(e.g., Web documents).

GName FName Occupation

Elvis Presley singer

Elvis Hunter painter

... ...

Elvis Presley was a famous rock
singer.
...

Mary once remarked that the
only attractive thing about the
painter Elvis Hunter was his first
name.

Information

Extraction

“Seeing the Web as a table”

Slide from Suchanek

160

Introduction to Information Retrieval

Information Extraction

Source

Selection

Tokenization&

Normalization

Named Entity

Recognition

Instance

Extraction

Fact

Extraction

Ontological

Information

Extraction

?
05/01/67

1967-05-01

and beyond

...married Elvis
on 1967-05-01

Elvis Presley singer

Angela Merkel politician

Information Extraction (IE) is the process

of extracting structured information

from unstructured machine-readable documents

161
Slide from Suchanek

Introduction to Information Retrieval

Information Extraction

Traditional definition: Recovering structured data from text

What are some of the sub-problems/challenges?

Slide from Nigam/Cohen/McCallum

162

Introduction to Information Retrieval

Information Extraction?

• Recovering structured data from text

– Identifying fields (e.g. named entity recognition)

Slide from Nigam/Cohen/McCallum

163

Introduction to Information Retrieval

Information Extraction?

• Recovering structured data from text

– Identifying fields (e.g. named entity recognition)

– Understanding relations between fields (e.g. record association)

Slide from Nigam/Cohen/McCallum

164

Introduction to Information Retrieval

Information Extraction?

• Recovering structured data from text

– Identifying fields (e.g. named entity recognition)

– Understanding relations between fields (e.g. record association)

– Normalization and deduplication

Slide from Nigam/Cohen/McCallum

165

Introduction to Information Retrieval

Information extraction

• Input: Text Document

– Various sources: web, e-mail, journals, …

• Output: Relevant fragments of text and relations possibly
to be processed later in some automated way

IE

User

Queries Slide from McCallum

166

Introduction to Information Retrieval

Not all documents are
created equal…

• Varying regularity in document collections

• Natural or unstructured
– Little obvious structural information

• Partially structured
– Contain some canonical formatting

• Highly structured
– Often, automatically generated

Slide from McCallum

167

Introduction to Information Retrieval

Natural Text: MEDLINE
Journal Abstracts

BACKGROUND: The most challenging aspect of revision hip surgery is the management of bone

loss. A reliable and valid measure of bone loss is important since it will aid in future studies of hip

revisions and in preoperative planning. We developed a measure of femoral and acetabular bone

loss associated with failed total hip arthroplasty. The purpose of the present study was to

measure the reliability and the intraoperative validity of this measure and to determine how it may

be useful in preoperative planning. METHODS: From July 1997 to December 1998, forty-five

consecutive patients with a failed hip prosthesis in need of revision surgery were prospectively

followed. Three general orthopaedic surgeons were taught the radiographic classification system,

and two of them classified standardized preoperative anteroposterior and lateral hip radiographs

with use of the system. Interobserver testing was carried out in a blinded fashion. These results

were then compared with the intraoperative findings of the third surgeon, who was blinded to the

preoperative ratings. Kappa statistics (unweighted and weighted) were used to assess correlation.

Interobserver reliability was assessed by examining the agreement between the two preoperative

raters. Prognostic validity was assessed by examining the agreement between the assessment by

either Rater 1 or Rater 2 and the intraoperative assessment (reference standard). RESULTS: With

regard to the assessments of both the femur and the acetabulum, there was significant agreement

(p < 0.0001) between the preoperative raters (reliability), with weighted kappa values of >0.75.

There was also significant agreement (p < 0.0001) between each rater's assessment and the

intraoperative assessment (validity) of both the femur and the acetabulum, with weighted kappa

values of >0.75. CONCLUSIONS: With use of the newly developed classification system,

preoperative radiographs are reliable and valid for assessment of the severity of bone loss that

will be found intraoperatively.

Extract number of subjects, type of study, conditions, etc.

Slide from Kauchak

168

Introduction to Information Retrieval

Partially Structured:
Seminar Announcements

Extract time, location, speaker, etc.

Slide from Kauchak

169

Introduction to Information Retrieval

Highly Structured:
Zagat’s Reviews

Extract restaurant, location, cost, etc.

Slide from Kauchak

170

Introduction to Information Retrieval

Information extraction pipeline

For years, Microsoft

Corporation CEO Bill Gates

was against open source.

But today he appears to

have changed his mind. "We

can be open source. We love

the concept of shared

source," said Bill Veghte, a

Microsoft VP. "That's a

super-important shift for us

in terms of code access.“

Richard Stallman, founder of

the Free Software

Foundation, countered

saying…

Name Title Organization

Bill Gates CEO Microsoft

Bill Veghte VP Microsoft

Richard Stallman Founder Free Soft..

Slide from McCallum

171

Introduction to Information Retrieval

The Full Task of Information Extraction

Information Extraction =
segmentation + classification + association + clustering

As a family of techniques:

For years, Microsoft Corporation CEO Bill

Gates railed against the economic philosophy

of open-source software with Orwellian fervor,

denouncing its communal licensing as a

"cancer" that stifled technological innovation.

Now Gates himself says Microsoft will gladly

disclose its crown jewels--the coveted code

behind the Windows operating system--to

select customers.

"We can be open source. We love the concept

of shared source," said Bill Veghte, a

Microsoft VP. "That's a super-important shift

for us in terms of code access.“

Richard Stallman, founder of the Free

Software Foundation, countered saying…

Microsoft Corporation
CEO
Bill Gates
Gates
Microsoft
Bill Veghte
Microsoft
VP
Richard Stallman
founder
Free Software Foundation

Slide from McCallum

172

Introduction to Information Retrieval

An Even Broader View

Create ontology

Segment

Classify

Associate

Cluster
Load DB

Spider

Query,

Search

Data mine

IE

Document

collection

Database

Filter by relevance

Label training data

Train extraction models

Slide from McCallum

173

Introduction to Information Retrieval

Landscape of IE Tasks:
Document Formatting

Text paragraphs

without formatting

Grammatical sentences

and some formatting & links

Non-grammatical snippets,

rich formatting & links

Tables

Astro Teller is the CEO and co-founder of

BodyMedia. Astro holds a Ph.D. in Artificial

Intelligence from Carnegie Mellon University,

where he was inducted as a national Hertz

fellow. His M.S. in symbolic and heuristic

computation and B.S. in computer science are

from Stanford University.

Slide from McCallum

174

Introduction to Information Retrieval

Landscape of IE Tasks
Intended Breadth of Coverage

Web site specific Genre specific Wide, non-specific

Amazon.com Book Pages Resumes University Names

Formatting Layout Language

Slide from McCallum

175

Introduction to Information Retrieval

Landscape of IE Tasks :
Complexity of entities/relations

Closed set

He was born in Alabama…

Regular set

Phone: (413) 545-1323

Complex pattern

University of Arkansas

P.O. Box 140

Hope, AR 71802

…was among the six houses

sold by Hope Feldman that year.

Ambiguous patterns, needing context

and many sources of evidence

The CALD main office is 412-268-1299The big Wyoming sky…

U.S. states U.S. phone numbers

U.S. postal addresses
Person names

Headquarters:

1128 Main Street, 4th Floor

Cincinnati, Ohio 45210

Pawel Opalinski, Software

Engineer at WhizBang Labs.

Slide from McCallum

176

Introduction to Information Retrieval

Landscape of IE Tasks:
Arity of relation

Single entity

Person: Jack Welch

Binary relationship

Relation: Person-Title

Person: Jack Welch

Title: CEO

N-ary record

"Named entity" extraction

Jack Welch will retire as CEO of General Electric tomorrow. The top role

at the Connecticut company will be filled by Jeffrey Immelt.

Relation: Company-Location

Company: General Electric

Location: Connecticut

Relation: Succession

Company: General Electric

Title: CEO

Out: Jack Welsh

In: Jeffrey Immelt

Person: Jeffrey Immelt

Location: Connecticut

Slide from McCallum

177

Introduction to Information Retrieval

Resolving coreference
(both within and across documents)

John Fitzgerald Kennedy was born at 83 Beals Street in Brookline, Massachusetts on Tuesday, May
29, 1917, at 3:00 pm,[7] the second son of Joseph P. Kennedy, Sr., and Rose Fitzgerald; Rose, in
turn, was the eldest child of John "Honey Fitz" Fitzgerald, a prominent Boston political figure who
was the city's mayor and a three-term member of Congress. Kennedy lived in Brookline for ten
years and attended Edward Devotion School, Noble and Greenough Lower School, and the Dexter
School, through 4th grade. In 1927, the family moved to 5040 Independence Avenue in Riverdale,
Bronx, New York City; two years later, they moved to 294 Pondfield Road in Bronxville, New York,
where Kennedy was a member of Scout Troop 2 (and was the first Boy Scout to become
President).[8] Kennedy spent summers with his family at their home in Hyannisport,
Massachusetts, and Christmas and Easter holidays with his family at their winter home in Palm
Beach, Florida. For the 5th through 7th grade, Kennedy attended Riverdale Country School, a
private school for boys. For 8th grade in September 1930, the 13-year old Kennedy attended
Canterbury School in New Milford, Connecticut.

Slide from Manning

178

Introduction to Information Retrieval

Association task = Relation Extraction

• Checking if groupings of entities are instances of a
relation

1. Manually engineered rules

– Rules defined over words/entities: “<company> located in
<location>”

– Rules defined over parsed text:

• “((Obj <company>) (Verb located) (*) (Subj <location>))”

2. Machine Learning-based

– Supervised: Learn relation classifier from examples

– Partially-supervised: bootstrap rules/patterns from “seed”
examples

Slide from Manning

179

Introduction to Information Retrieval

Rough Accuracy of Information
Extraction

• Errors cascade (error in entity tag error in relation
extraction)

• These are very rough, actually optimistic, numbers

– Hold for well-established tasks, but lower for many
specific/novel IE tasks

Information type Accuracy

Entities 90-98%

Attributes 80%

Relations 60-70%

Events 50-60%

Slide from Manning

180

Introduction to Information Retrieval

TEXT BOOKS

1. Christopher D. Manning, Prabhakar Raghavan &
Hinrich Schütze. Introduction to Information
Retrieval, Cambridge University Press, 2008

2. Sunita Sarawagi. Information Extraction.
Foundations and Trends in Databases, 1(3):261–
377, 2008

181

Introduction to Information Retrieval

THANKYOU

Slides of this presentation is available at
http://priyaradhakrishnan.weebly.com/

182

