
TestPoint

QuickStart

Program and documentation copyright (C) 2001 by Capital Equipment Corporation. No parts of this book may be reproduced or
transmitted in any form or by any means, electronic, optical, or mechanical, including photocopying and recording, or by any
information storage and retrieval system, without permission in writing from Capital Equipment Corporation.

The software accompanying this manual is licensed to the user by Capital Equipment Corporation. The software is copyrighted
(C) 2001 by Capital Equipment Corporation. Details of the license agreement appear on the software media packaging.

Limited Warranty

Capital Equipment Corporation (CEC) warrants the physical diskettes and documentation enclosed herein to be free of defects in
materials and workmanship for a period of sixty days from the purchase date. The entire and exclusive liability and remedy for
breach of this Limited Warranty shall be limited to replacement of defective diskettes or documentation, and shall not include or
extend to any claim for or right to recover any other damages, including but not limited to, loss of profit, data, or use of the
software, or special, incidental, or consequential damages or other similar claims. In no event shall CEC's liability exceed the
purchase price of the product.

TestPoint is a trademark of Capital Equipment Corporation.
Windows, Excel, and Microsoft are trademarks of Microsoft Corporation.
Quattro and Quattro Pro are trademarks of Novell, Inc.
Turbo Pascal is a trademark of Borland International.
123 is a trademark of Lotus Development Corporation.

TestPoint QuickStart Capital Equipment Corporation
Part number 04000-90100, vol. 1 900 Middlesex Turnpike Building 2.
Fourth edition Billerica, Massachusetts 01821
02 01 00 99 (978) 663-2002
10 9 8 7 6 5 4 3 2 1

Installation

Setup
• Insert TestPoint CDROM.

• In the Windows Program Manager, choose File, Run from the
menu.

• Enter "D:SETUP" (use appropriate drive letter or Browse)

• Follow the directions on the screen. You will need to choose a
hard disk directory for TestPoint. The default is "C:\TESTPT".

The SETUP program copies in the TestPoint files and adds new
icons to the Windows Program Manager.

Library Installation

GPIB and other libraries are optional. They are installed by running
SETUP from the first library diskette, just as for the main TestPoint
installation. You can choose to install any or all of the libraries.

i

System Requirements
• Microsoft Windows 95 or later
• A PC-compatible computer with at least an 80386 processor
• At least 8 megabytes of system RAM (16 recommended)
• At least 8 megabytes of available disk space
• A mouse for editing (not required for TestPoint runtimes)

Removing TestPoint (Uninstall)

To reverse the installation process, and remove the TestPoint files
from your system:

First, go to the Windows Program Manager and minimize the
TestPoint group window (use the down arrow button near the upper
right corner of the group window). Then, select the TestPoint group
icon, and use the Del key. Click OK to confirm that you want to
delete the entire program group.

Next, go to DOS and run the batch file UNINSTALL:

C:\TESTPT> UNINSTALL

This will delete all files and directories for TestPoint.

Working Model Demo version

If you have the free working model demo version of TestPoint,
certain features of the full product are not available:

You cannot save application files.
You cannot control actual measurement hardware
(GPIB,A/D,etc.).
You cannot use Dynamic Data Exchange.
You cannot call external code with the Code object.

ii

Installation.. i

Introduction .. 1

What TestPoint Is .. 2

What TestPoint Can Do... 3

How You Work With TestPoint.. 4

How TestPoint Works For You... 7

Tutorial ... 9

Run some sample applications .. 10

Event-Driven Programming .. 12

Choose a tutorial path.. 14

Automated Test Tutorial ... 17

Data Acquisition Tutorial .. 35

Analysis Tutorial ... 57

Review - TestPoint Concepts ... 73

Objects... 74

Action Lists ... 76

Data ... 77

Execution... 78

More Examples... 79

Frequency Response Example... 80

Calculus Example.. 83

For more detailed information... 86

Introduction

1

What TestPoint Is
TestPoint is a tool for creating custom test, measurement, and data
acquisition applications.

TestPoint includes features for controlling external hardware,
creating user interfaces, processing and displaying data, creating
report files, and exchanging information with other Windows
programs.

TestPoint is a new and unique alternative to conventional
programming languages. In TestPoint, you select objects that model
the components of your application, then combine the actions they
make available using drag-and-drop mouse operations to create a
custom solution.

TestPoint has all the power and flexibility of a programming
language. There are none of the limitations associated with "choose
from a menu" programs, because TestPoint has a full set of features
for controlling program flow, accessing custom hardware, and
extending the basic package with external code, add-ons, and data
exchange links with other programs.

2

What TestPoint Can Do
Instrument Control

• Instrument libraries for hundreds of popular devices
• Support for GPIB (IEEE-488), RS232, and RS485 devices.
• Support for VXI devices, through a GPIB controller.

Data Acquisition
• Support for analog input and output (A/D, D/A), digital I/O, and

custom I/O port devices.
• High-speed background A/D.
• Strip charts, bar indicators, numeric displays.
• Alarm limits.
• Disk logging.

Analysis
• FFT, digital filtering, waveform smoothing.
• Curve fitting, polynomials, interpolation.
• Statistics, including mean, deviation, median, histograms, ...
• Vector and array math, including inverse, determinant, ...

Presentation and Reports
• Line/symbol graphs, XY graphs, strip charts, bar graphs.
• Numeric and analog bar displays.
• Indicators and bitmapped pictures.
• Printed report generation

User Interface
• Pushbuttons, switches, selectors, sliders, entry fields.
• Multiple panels.
• Works with industry-standard custom controls (ActiveX).

Dynamic Data Exchange / Object Linking & Embedding
• Send/receive numbers, text, and charts to spreadsheets, word

processors, databases, and math programs.
• Display graphs and pictures processed by other applications.

3

How You Work With TestPoint
You begin by simply dragging TestPoint objects like buttons,
displays, graphs, GPIB devices, A/D boards, math formulas, and disk
files from a stock window into your application:

4

Then, you drag the objects to an action list:

and choose actions from a menu, to tell TestPoint the steps involved
in carrying out your application's task:

TestPoint creates action lines, in a clear, readable format, which
describe the actions you've chosen:

1) Setup K195A Multimeter Function="DCV"
2) Read value K195A Multimeter
3) Set Display1 to K195A Multimeter

5

There's none of the extra work associated with conventional
programming languages. You don't have to declare variables, type
long statements, carefully spell out language keywords, and follow
syntax rules about semicolons and "end" statements. Instead of
making you do the tedious work to meet the computer's needs,
TestPoint lets you concentrate on choosing the objects and actions
that make up your application.

While making application authoring easy, TestPoint doesn't give up
any of the power or flexibility of a programming language. TestPoint
matches and exceeds the capabilities of tools like C, Pascal, or
Visual BASIC, as well as "wiring-diagram" style tools.

TestPoint uses the latest approach to program structuring by
grouping actions and data into objects. Objects support all types of
data: numbers, strings, vectors, arrays, and lists. But data types don't
get in your way. Automatic data typing and conversion handle most
cases, and manual data formatting and conversion are available when
needed by clicking the mouse.

TestPoint action lists support sequential execution, loops, and
conditionals, as well as the ability to respond to events and interrupts
and to support multitasking. TestPoint action lists can activate other
action lists, to give fully modular programming.

6

How TestPoint Works For You
When you've built your application, TestPoint packages it as a
runtime, by just choosing a menu command.

A TestPoint runtime is an independent, executable Windows
application, complete with professional installation program.

You can use it, give it to colleagues or your production line, or sell it
as a commercial product. Your users don't need TestPoint to run the
application, and there are no runtime fees or license restrictions.

7

Tutorial

9

Run some sample applications
If you haven't installed TestPoint yet, do so now. Instructions are at
the front of this book.

Double-click the mouse on the "Curve Fit" icon in the Windows
Program Manager:

Now, click on the "Run" button:

10

This sample application fits a polynomial equation to a set of data
points and graphs the result. You can choose the order of the
polynomial by entering a number in the "Order" field.

Now, try the "A/D demo" application, and click on its "Start"
button to see analog input and strip charting:

Double-click the "Freq. Response" icon. Note that this
application starts automatically and steps through a set of
frequencies, then graphs the measured voltage responses:

These examples show a few of the capabilities of TestPoint. They
also show you how a TestPoint application will look when it is
complete.

11

Event-Driven Programming
TestPoint applications run in Microsoft Windows, and they respond
to the mouse or keyboard. The user of an application can enter values
into TestPoint panels in any order desired. TestPoint responds to the
inputs based on the instructions given when the application was
built.

This is known as event-driven programming, because the program
responds to events from the user, rather than asking the user for lines
of input text. There is no "main" program in TestPoint. Whichever
event occurs first determines the TestPoint action list that is
executed.

Do pushbutton actions,
such as start a measurement.

Do switch actions

Do slider actions
when slider is moved.

when switch changes.

Event-driven programming is one of the few concepts you need to
master to use TestPoint, so it's worth taking a few moments to follow
what goes on when a TestPoint application is running.

TestPoint, like most other Windows programs, spends most of its
time idle, waiting for an event to occur. An event may be a key press,
a mouse movement or click, a timer interval, or some type of
hardware signal such as an A/D board sampling clock.

12

Each TestPoint object has an event it responds to, often by changing
a data value and by executing a series of action steps specified by
you, the application designer.

For example, the Data-Entry object responds to entry of a new value.
The Slider object responds to movement of the slider using the
mouse or the keyboard. The A/D object responds to analog input
samples arriving in the computer.

The steps that are executed when an event occurs are completely up
to you. Each TestPoint object makes a selection of actions available,
to provide control of hardware, math processing, graphing, and so
forth. The order in which you combine these actions, triggered by
events, determines the task carried out by your application.

13

Choose a tutorial path
If you have TestPoint applications running, exit them now by
double-clicking on the close box at the upper left corner of each
application's window.

Now, start the TestPoint development environment by double-
clicking on the "TestPoint" icon:

(You need to have closed the TestPoint applications, and you should
install your execution control key on a printer port before starting
TestPoint. If you have the free working model demo version of
TestPoint, no key is used.)

14

The tutorial is divided into three paths. Each will teach you the
fundamentals of building applications in TestPoint. Choose the
application area which best fits your interests:

• Automated Test see page 17

• Data Acquisition see page 35

• Analysis see page 55

and skip ahead to the appropriate section...

15

Automated Test Tutorial
When you start the TestPoint development environment, the editor
window will appear, with a new, blank panel for you to fill in:

There are four areas in the TestPoint editor: the panel, the stock
window, the object list window, and individual object windows
which appear as you add objects. The use of these windows will be
explained in more detail in the sections that follow. First, though,
we'll run once through the steps of creating a new application.

The application we create will read a voltmeter when a pushbutton is
clicked and display the result.

17

Add a pushbutton

Drag a pushbutton from the stock window to the panel.

(dragging means to place the mouse pointer over the source, push the
left mouse button down and hold it, then move the mouse to the
destination and release the button).

☞ New objects are added to TestPoint applications by dragging and
dropping from the stock.

18

When you release the mouse button, the pushbutton object will
appear on the panel. A window titled "Object Pushbutton1" will also
appear, to let you enter information about the new object.

The name of the new object starts out highlighted and ready to be
replaced.

Type in a new name for the object: "Run Test".

The default values for the other settings are OK. You can click on
any other window or on the "Actions" tab to dismiss the settings
window.

☞ You can double-click the object or its icon in the object window
to re-open its settings window.

Note that the new object appears not only on the panel, but also in
the object window, and that its action list appears automatically.

19

Add the GPIB voltmeter

Drag a GPIB object from the stock to the panel.

In the settings window, enter the name "Voltmeter",
and also click the checkbox for "demo mode".

Demo mode is available as a setting on objects which access
hardware I/O devices. It allows you to run your application without
the hardware actually being present, for testing purposes.

20

Add a numeric display

Drag a display object from the stock to the panel.

Enter a new name: "Result". Use defaults for the other settings.

The screen should now look like this:

21

Create the action list

The action list window should be displaying the list for the "Run
Test" pushbutton object, which is currently a blank list.

☞ The action list for any object may be seen by clicking on the
object in the object window with the right mouse button.

An action list is a sequence of actions to be executed when an object
receives an event. In the case of the pushbutton object, the activating
event is the pushing of the button by the user (or by an action in
another action list). For our example application, we need to carry
out two steps when the user pushes the button: read the instrument,
and display the result.

Read the voltmeter Drag the Voltmeter object from the object window to the action
list.

☞ Action lines are created by dragging objects to the action list.

22

When the mouse button is released, you will see a popup list of
action choices because the GPIB object has more than one action
available.

Choose the "Enter from" action, which reads the device.

A text action line appears automatically, describing the action to be
executed. Note that it has parameters which affect the action. In this
case, the GPIB Enter From action, the parameters describe the
maximum number of bytes to read, and the terminating EOS, or end-
of-string, character.

Click on the first parameter (256), and type in 80.

Action Line

Parameters

Action

Object

☞ Constants may be entered by clicking on the desired parameter
and typing on the keyboard.

23

Display the result Drag the display object from the panel to the action list.

Note that you can drag from either the panel or the object window to
create actions - there's no difference.

The new line has a blank parameter for the value to be put in the
display. In this example, we want to display the value entered from
the voltmeter. This value is stored as the data value of the voltmeter
object.

☞ Data values of objects may changed as the result of executing
actions.

24

So, to set the display to the voltmeter value, we just drag the
voltmeter object to the blank, shaded parameter area on action line 2.

Drag the Voltmeter object's name from line 1 to the blank on
line 2.

Note that you can drag a reference to the voltmeter's data from the
icon in the object window or the object name in a previous action
line.

☞ Objects can act like variables - they contain data values.
You can use object data values in actions by dragging the object
to a blank in an action line.

25

Run it

Use the Mode menu command to switch to Run mode.

Run mode changes the behavior of the panel. In Edit mode, using the
mouse on panel objects selects them for moving, resizing, etc. In Run
mode, the mouse acts as it will in the final application - it activates
the object with an event.

Push the "Run Test" button.

A value will appear in the numeric display. Because demo mode was
selected in the Voltmeter object settings, no actual GPIB read
operation occurs. Instead, a random value is generated. You may
push the button repeatedly to get new values.

Use the Mode menu command to switch back to Edit mode.

This example is also provided, already built for you, in the file
TUTORIAL\TEST1.TST

26

Add Pass/Fail Range Checking

Once a measurement has been made, a common test requirement is
checking the result against an allowed range and indicating a pass or
fail. For this task, we need an indicator on the panel, and a way of
calculating whether the value is in range.

Indicator Drag an indicator from stock to the panel.
Name it "OK?", and select "Backlit text" as a style.

27

Data-Entry Drag a data-entry object from stock to the panel.
Name it "High limit",
and set its initial value setting to 3.3.

Math Drag a math object from stock to the object window.
Name it "In range", and enter:

(x > 3) and (x < limit)
as the formula.

A math object can calculate any desired function of any number of
variables, using a wide variety of built-in operations. In this example,
we just want to compare a single value against a min and max
constant range, and get a logical (true/false) result.

28

Now add the new steps to the action list for the test.

Click on the "Run Test" button with the right-hand mouse
button, to view its action list.
Drag the "In range" math object to the list.
Choose the "Calculate" action.

Note that the action line, created automatically for you, has
parameter blanks for the values of "x" and "limit" in the formula.

Drag the Voltmeter object from the object window to the "x="
blank in the action list.
Drag the "High Limit" data-entry object from the panel to the
"limit=" blank in the action list.

This new action line will calculate whether the data value of the
Voltmeter object (which is the value read in from the instrument) is
within range. The result of the calculation becomes the data value for
the "In range" object.

29

Drag the "OK?" indicator object to the action list.
Choose the "Set" action.
Drag the "In range" math object to the blank on the new action
line.

30

Try running the application. Use the Mode menu command to select
Run mode. Push the "Run Test" button. Try it multiple times.
Depending on the value, the indicator will show Pass or Fail.

Try changing the limit value by typing into the data-entry field, and
then pushing the button again.

Set the mode back to Edit.

This example is also provided, already built for you, in the file
TUTORIAL\TEST2.TST

31

Add Another Control and Action List

So far, the application consists of a single action list, which runs in
sequence. Let's add a control for selecting the type of component
being tested and also add a second device: a voltage source which
provides an input to the unit under test.

Selector Drag a selector object from the stock to the panel.

A selector object lets the user choose among a set of alternatives.
The settings for the selector include the number of choices, the
labels, and the values that correspond to those labels.

Enter "Component type" for the object name.
Enter 3 for number of values.
Enter "A,B,C" for the labels.
Enter "4,6,5.5" for the values.
Check the "Exec. actions at initialize" option.
Enter "A" for the initial value.

Drag another GPIB object from the stock to the panel,
and name it "Source".
Set its "Demo mode" setting on.

32

Now, we want to set the voltage source's output whenever the
component type is changed. Changing the component type selector
causes its action list to be executed.

Click on the "Component type" selector with the right mouse
button to view its action list.

☞ There can be many separate action lists in an application.
Each is executed when its associated object receives an event.

Note that this action list is empty. The action list for the "Run Test"
pushbutton and the action list for the "Component Test" selector are
independent.

Drag the "Source" object to the action list.
Choose the "Output to" action.
Drag the "Component Type" selector to the first shaded
parameter blank on the new action line.

33

The value of the "Component Type" selector is 4, 6, or 5.5 - the
desired voltage, which is sent out to the voltage source device.

This example is also provided, already built for you, in the file
TUTORIAL\TEST3.TST

34

Data Acquisition Tutorial
When you start the TestPoint development environment, the editor
window will appear, with a new, blank panel for you to fill in:

There are four areas in the TestPoint editor: the panel, the stock
window, the object list window, and individual object windows
which appear as you add objects. The use of these windows will be
explained in more detail in the sections that follow. First, though,
we'll run once through the steps of creating a new application.

The first application we create will take some analog samples from
an A/D board and graph them, when a button is pushed.

35

Add a pushbutton

Drag a pushbutton from the stock window to the panel.

(dragging means to place the mouse pointer over the source, push the
left mouse button down and hold it, then move the mouse to the
destination and release the button).

☞ New objects are added to TestPoint applications by dragging and
dropping from the stock.

36

When you release the mouse button, the pushbutton object will
appear on the panel. A window titled "Object Pushbutton1" will also
appear, to let you enter information about the new object.

The name of the new object starts out highlighted and ready to be
replaced.

Type in a new name for the object: "Acquire".

The default values for the other settings are OK. You can click on
any other window or on the "Actions" tab to dismiss the settings
window.

☞ You can double-click the object or its icon in the object window
to re-open its settings window.

Note that the new object appears not only on the panel, but also in
the object window, and that its action list appears automatically.

37

Add the A/D board

Drag an A/D object from the stock to the panel.

In the settings window, click the checkbox for "demo mode".

Demo mode is available as a setting on objects which access
hardware I/O devices. It allows you to run your application without
the hardware actually being present, for testing purposes.

38

Add a graph

Drag a Graph object from the stock to the panel.

Use defaults for the settings.

The screen should now look like this:

39

Create the action list

The action list window should be displaying the list for the
"Acquire" pushbutton object, which is currently a blank list.

☞ The action list for any object may be seen by clicking on the
object in the object window with the right mouse button.

An action list is a sequence of actions to be executed when an object
receives an event. In the case of the pushbutton object, the activating
event is the pushing of the button by the user (or by an action in
another action list). For our example application, we need to carry
out two steps when the user pushes the button: acquire the data, and
graph it.

Acquire the data Drag the A/D object from the object window to the action list.

☞ Action lines are created by dragging objects to the action list.

40

When the mouse button is released, you will see a popup list of
action choices because the A/D object has more than one action
available.

Choose the "Acquire A/D" action, which reads voltage samples.

A text action line appears automatically, describing the action to be
executed. In this case, the Acquire A/D action has parameters that
describe the number of samples desired, the rate at which the
samples are to be taken, and the input channels to be sampled.

Click on the first blank (after #samples=).
Type in 100 from the keyboard.
Use the TAB key to get to the next parameter,
and enter 10000 for the rate.

Action Line

Parameters

Action

Object

☞ Constants may be entered by clicking on the desired parameter
and typing on the keyboard.

41

Graph the data Drag the graph object from the panel to the action list.
Choose the "Draw graph" action.

Note that you can drag from either the panel or the object window to
create actions - there's no difference.

The new line has a blank parameter for the data to be graphed. In this
example, we want to graph the data we just acquired from the A/D
board. This data is stored as the data value of the A/D object.

☞ Data values of objects may changed as the result of executing
actions.

42

So, to graph the data, we just drag the A/D object to the blank,
shaded parameter area on action line 2.

Drag the A/D object's name from line 1 to the blank on line 2.

A second blank appears on the action line because the Draw graph
action is able to accept multiple data items to be graphed in a single
action step. For this example, only one vector of data samples is
being graphed.

Note that you can drag a reference to the object's data from the icon
in the object window or the object name in a previous action line.

☞ Objects can act like variables - they contain data values.
You can use object data values in actions by dragging the object
to a blank in an action line.

43

Run it

Use the Mode menu command to switch to Run mode.

Run mode changes the behavior of the panel. In Edit mode, using the
mouse on panel objects selects them for moving, resizing, etc. In Run
mode, the mouse acts as it will in the final application - it activates
the object with an event.

Push the "Acquire" button.

Data will appear in the graph. Because demo mode was selected in
the A/D object settings, no actual data sampling operation occurs.
Instead, simulated data is generated.

Use the Mode menu command to switch back to Edit mode.

This example is also provided, already built for you, in the file
TUTORIAL\DATAACQ1.TST

44

Change to Strip Chart

The first example we've built acquires the data and then graphs it.
That's OK when the number of samples is small and the data rate
high, but many data acquisition applications require slower sampling
over a long period of time, with continuous monitoring of the results.
For that purpose, we need to use background sampling and a strip
chart.

Set the graph to strip chart Double-click the graph object icon in the Objects window, to
open its settings.
Change the "Mode" setting to "Strip Chart".

Use background sampling Click on the words "Acquire A/D" in line 1 of the action list.
Use the Del key to delete this action line.

☞ You can select action lines by clicking on the action words at the
beginning of the lines.
After selection, action lines may be copied, cut, pasted, or
deleted.

Drag the A/D object in again, and drop it above line 1.
Choose the "Start A/D" action.

☞ Objects can be dropped anywhere in an action list to insert lines
at a desired location.

45

Enter "continuous" for # samples, 1.01 for the rate, and leave
the other parameters at their default values.

(Note: we use 1.01 Hz because the simulated demo data source is a
1000 Hz sine wave, and we don't want to sample it at exactly the
same point in every cycle and get a flat line.)

The "Start A/D" action begins sampling, but does not wait until data
arrives to continue executing the action list. So, we can no longer
graph the data in line 2.

46

Graph in A/D action list Click on the words "Draw graph" in line 2.
Use the Del key to delete this line.
Click on the A/D object icon with the right mouse button, to
view its action list (which should be blank).

☞ There can be many separate action lists in an application.
Each is executed when its associated object receives an event.

Drag the Graph object to the A/D action list.
Choose the "Add point(s) to" action.

Drag the A/D object icon to the blank in line 1.

The A/D object runs its action list whenever samples taken by the
"Start A/D" action arrive. Each time a sample arrives, we want to add
that point to the graph.

You should now have two action lists: the button, which starts the
A/D sampling, and the A/D's list, which adds points to the graph as
they arrive.

47

Run the application Switch to "Mode=Run" with the Mode menu command.
Push the "Acquire" button.

Watch as samples arrive, and the graph begins to scroll.

If you wish, you can use the "Inspect" button on the graph to make a
copy of the strip chart data and review the data which has scrolled
off the left side. Note that the graph itself continues to update while
you review historical data.

This example is also provided, already built for you, in the file
TUTORIAL\DATAACQ2.TST

48

If you want a bar graph indicator

Drag a Bar object from the stock to the panel.
Name it "Current value".
Drag it to the A/D action list.
Drag the A/D object to the new parameter blank.

Run it.

Use the Mode menu command to switch back to Edit mode.

49

Add Analog Output (D/A)

Next, let's add an analog output channel, controlled by a slider on the
panel.

Add a D/A object Drag a D/A object from the stock to the Objects window.
Set "Demo mode" on.

Add a slider control Drag a Slider object from the stock to the panel.
Name it "Output".

50

Build the action list Click on the "Output" slider's icon with the right mouse button,
to view its action list.
Drag the D/A object to the action list.
Choose the "Output D/A" action.
Drag the slider object to the "value" parameter.

The slider's action list executes whenever the slider value is changed,
and sets the D/A output value to the slider.

Try running the application.
Push "Acquire".
Move the "Output" slider by dragging it.
Switch back to Edit mode.

☞ Multitasking: you can use the "Acquire" button to start the strip
chart, and use the "Output" slider to change the D/A output
while the strip chart continues to run.

This example is also provided, already built for you, in the file
TUTORIAL\DATAACQ3.TST

51

Add alarm limits

A common data acquisition application is the indication of alarms
when a sampled value goes out of an allowed range.

To check the data value and display an alarm, we need a Math object
and an Indicator object.

Add an indicator Drag an indicator object from stock to the panel.
Name it "Alarm".
Set its style to "Backlit Text",
and Label 0 to "High", Label 1 to "OK".

52

Add Data-Entry Drag a data-entry object from stock to the panel.
Name it "Limit",
and set its initial value setting to 4.

Add Math Drag a math object from stock to the Objects window.
Name it "In range?"
Set its formula to:

value < high

A math object can calculate any desired function of any number of
variables, using a wide variety of built-in operations. In this example,
we just want to compare a single value against a max range, and get
a logical (true/false) result.

53

Add actions Click on the A/D object icon with the right mouse button to view
its action list.

Drag the "In range?" object to the action list.
Choose the "Calculate" action.
Drag the A/D object to the "value=" parameter, and
the "Limit" object to the "high=" parameter.

Drag the "Alarm" object to the action list.
Choose the "Set" action.
Drag the "In range?" object to the parameter.

Whenever a sample arrives, the A/D action list executes. In addition
to adding the point to the strip chart, the action list now checks if the
value is less than the limit and sets the alarm indicator appropriately.

Try running the application.
Push "Acquire".

Watch as the alarm turns on and off as the input value changes. Try
changing the limit value by typing into the data-entry field.

Switch back to Edit mode.

This example is also provided, already built for you, in the file
TUTORIAL\DATACQ4.TST

54

Analysis Tutorial
When you start the TestPoint development environment, the editor
window will appear, with a new, blank panel for you to fill in:

There are four areas in the TestPoint editor: the panel, the stock
window, the object list window, and individual object windows
which appear as you add objects. The use of these windows will be
explained in more detail in the sections that follow. First, though,
we'll run once through the steps of creating a new application.

The first application we create will read a data file containing
numbers and graph the data in it.

55

Add a File object

Drag a File object from the stock window to the panel.

(dragging means to place the mouse pointer over the source, push the
left mouse button down and hold it, then move the mouse to the
destination and release the button).

☞ New objects are added to TestPoint applications by dragging and
dropping from the stock.

56

When you release the mouse button, the pushbutton object will
appear on the panel. A window titled "Object File1" will also appear,
to let you enter information about the new object.

The name of the new object starts out highlighted and ready to be
replaced.

Type in a new name for the object: "Data file".
Enter this string into the File name filter setting:

Data files|*.DAT|
(using the vertical bar character as a separator).

The default values for the other settings are OK for now. You can
click on any other window or on the "Actions" tab to dismiss the
settings window.

☞ You can double-click the object or its icon in the object window
to re-open its settings window.

Note that the new object appears not only on the panel, but also in
the object window, and that its action list appears automatically.

57

Add the graph

Drag a Graph object from the stock to the panel.
Use its default settings.

The screen should now look like this:

58

Create the action list

The action list window should be displaying the list for the "Data
file" file object, which is currently a blank list.

☞ The action list for any object may be seen by clicking on the
object in the object window with the right mouse button.

An action list is a sequence of actions to be executed when an object
receives an event. In the case of the File object, the activating event
is the selection of a new file by the user (or by an action in another
action list). For our example application, we need to carry out two
steps when the user pushes the button: read the file, and graph the
data.

Read the file Drag the "Data file" object from the object window to the action
list.

☞ Action lines are created by dragging objects to the action list.

59

When the mouse button is released, you will see a popup list of
action choices because the File object has more than one action
available.

Choose the "Input from" action, which reads data from the file.

A text action line appears automatically, describing the action to be
executed. Note that it has parameters which affect the action. In this
case, the file "Input from" action, the parameters describe the
maximum number of bytes to read, and an optional terminating
character to stop the input.

Click on the first parameter (32768), and type in 10000.

Action Line

Parameters

Action

Object

☞ Constants may be entered by clicking on the desired parameter
and typing on the keyboard.

60

Graph the data Drag the graph object from the panel to the action list.
Choose the "Draw graph" action.

Note that you can drag from either the panel or the object window to
create actions - there's no difference.

The new line has a blank parameter for the data to be graphed. In this
example, we want to graph the data we just read from the file. This
data is stored as the data value of the file object.

☞ Data values of objects may changed as the result of executing
actions.

61

So, to graph the data, we just drag the file object to the blank, shaded
parameter area on action line 2.

Drag the File object's name from line 1 to the blank on line 2.

A second blank appears on the action line because the Draw graph
action is able to accept multiple data items to be graphed in a single
action step. For this example, only one data item is being graphed.

Note that you can drag a reference to the file's data from the icon in
the object window or the object name in a previous action line.

☞ Objects can act like variables - they contain data values.
You can use object data values in actions by dragging the object
to a blank in an action line.

62

Run it

Use the Mode menu command to switch to Run mode.

Run mode changes the behavior of the panel. In Edit mode, using the
mouse on panel objects selects them for moving, resizing, etc. In Run
mode, the mouse acts as it will in the final application - it activates
the object with an event.

Push the "File" button in the "Data file" object.
Choose the "example.dat" file in the tutorial directory.

Use the Mode menu command to switch back to Edit mode.

This example is also provided, already built for you, in the file
TUTORIAL\ANALYZE1.TST

63

Filter the data

The example data in the file is typical of real-world acquired data. It
contains noise which obscures the information. TestPoint includes
digital filtering functions for this situation.

Add a data-entry field Drag a Data-Entry object from stock to the panel.
Name it "Cutoff",
and set its initial value setting to 70.

Add a Math object Drag a Math object from stock to the Objects window.
Set its name to "Filtered",
and its formula to:

lowpass(wave,1000,cut)

The lowpass filter function is one of the many math functions
included in TestPoint for data analysis. The parameters give the

64

waveform to be filtered, the sampling frequency, and the cutoff
frequency.

Modify the action list Drag the Math object to the action list,
and drop it between line 1 and line 2.
Choose the "Calculate" action.
Drag the File object to the "wave=" parameter,
and the "Cutoff" data-entry object to the "cut=" parameter.
Drag the Math object to the second (blank) parameter in the
"Draw graph action line.

☞ Objects can be dropped anywhere in an action list to insert lines
at a desired location.

Line 3 now provides two data items to the graph, which are drawn as
two traces.

65

Run the application, and choose the "example.dat" file again.

If you want to see just the filtered data on the graph, click on the
"Data file" parameter in line 3 and use the Del key to delete it, then
select the file again.

Switch back to Edit mode.

This example is also provided, already built for you, in the file
TUTORIAL\ANALYZE2.TST

66

Find the frequency

The data is expected to be an exponentially decaying sine wave. To
determine its frequency, we can use a Fourier Transform and find the
highest point in the frequency spectrum.

Add more math Drag in another Math object.
Name it "Freq".
Set its formula to:

maxindex(select(FFT(1000,wave),1)) * 1000/dim(wave)

The FFT function does a Fast Fourier Transform, given the wave
and sampling frequency, and returns a list of 3 items: the frequency
components, the magnitudes, and the phases. The select function
picks out the magnitude part, and the maxindex function finds the
index of the largest value. Scaling this based on the 1000 Hz
sampling frequency gives the waveform's base frequency.

Add a display Drag a Display object from the stock to the panel.
Name it "Frequency".

Drag the "Freq" math object to the action list.
Choose the "Calculate" action.
Drag the "Filtered" math object to the "wave" parameter.

Drag the "Frequency" display to the action list.
Drag the "Freq" object to this parameter.

67

Run the application again,
and select the "example.dat" file again.

Switch back to Edit mode.

This example is also provided, already built for you, in the file
TUTORIAL\ANALYZE3.TST

68

Review - TestPoint Concepts

69

Objects
An object in TestPoint represents a component of your application,
such as a user interface item, an external measurement device, a disk
data file, or a calculation. A single object incorporates, in one place,
the actions and information (data) for such a component.

Objects have a number of characteristics:

TestPoint
Object

Name
& Icon

Actions

Action List

Data

User
Interface

Actions Every TestPoint object has one or more actions which it can execute.
For example, display objects can do a "set to" action, which changes
the value displayed. The file object has actions for writing to the file,
reading the file, erasing the file, etc.

Data Every TestPoint object also has a data value. This data value may be
changed as the result of an action of the object. For example,
executing the "read sample" action of the analog/digital input object
sets the object's data to the result of the sampling operation. Object
data values may be used in math calculations and as parameters in
actions for any other object.

70

Name & Icon Every object has a name, which is a text label for your convenience
as application author. In some cases, the name is also used as a
caption for the object on the application panel. Objects also have
small graphic icons which indicate the object category. For example,

pushbutton objects all use this icon: .

User Interface Some object categories also have a user interface. The pushbutton,
switch, data entry, display, indicator, and graph objects are all
examples of objects which have a user interface and appear on the
panel. Some objects, like the pushbutton and switch, react to user
input through the mouse or keyboard. User interface objects which
accept input change their data values when the user interacts with
them. For example, the data entry object takes on a new value when
the user types into it and then hits Enter or Tab.

Action List Many object categories have an action list associated with them. The
action list specifies a sequence of actions to be carried out by the
application's objects when the associated object gets an event. For
example, the pushbutton object gets an event when the user clicks on
it with the mouse or activates it from the keyboard. The file object
gets an event when the user selects a new filename. Analog input
objects can get events when sampled data becomes available.

"Child" objects The panel object is special in that it can contain other objects as
"children". A top-level panel always exists for each application, and
is the main user interface for that application. Objects added to the
application become child objects of the main panel. In addition, an
application can contain panel objects, to allow multiple windows to
be displayed. These panel objects can also have child objects.

71

Action Lists
Action lists in TestPoint are the means for specifying what the
application does.

Object whose action list is being viewed

Action
Lines

Object executing this action

Action to be executed

Data to be
used in
carrying out
the action

Action lists are built by choosing objects you want to interact with
and dragging them to the action list window. TestPoint responds by
creating a textual action line describing back to you the action you
have chosen.

An action list is shown as a numbered series of actions. New actions
may be added by dragging in objects. Actions may be deleted and
their order may be rearranged. Action lists can also include repeating
loops and conditionally executed sections (using the Loop and
Conditional objects).

72

Data
Each TestPoint object has a data value, which can be modified as the
result of its actions. These data values, in turn, can be used as
parameters in another action.

For example, in this action list:

1) Enter from Voltmeter up to 256 bytes, stop on EOS=LF
2) Set Result to Voltmeter

line 2 sets the value of object "Result" to the current value of object
"Voltmeter" (which was modified in the action in line 1).

Actions which modify object data generally replace the old data
value with a new value. For example, in this action list:

1) Enter from Voltmeter up to 256 bytes, stop on EOS=LF
2) Enter from Voltmeter up to 256 bytes, stop on EOS=LF
3) Set Result to Voltmeter

"Result" gets set to the second value read from the meter. The first
value is lost, because line 2 replaces it with the new value. Normally,
actions to process or store the data should follow an action which
results in reading new data.

73

Execution
TestPoint executes action lists when events occur. Events can be:

• user input (mouse and keyboard)

• timers

• interrupts from hardware interfaces such as GPIB or A/D

• dynamic data exchange messages from other Windows
applications

or, as an important special case:

• the result of an action executed in another action list

For example, if a data-entry object named "Amplitude" has the
action list:

1) Calculate Formula with x=Amplitude
2) Set Result to Formula

and a pushbutton named "Preset" has this action list:

1) Set Amplitude to 2.5

then clicking on "Preset" will not only put a new value into the
"Amplitude" field on the panel, but also execute "Amplitude"'s
action list, displaying a new result, just as if a the new value had
been typed in directly.

New events can even be defined by external code added to TestPoint
(using the Code object).

Each class of object defines the event it responds to, and provides an
action list that may be filled in. Some object types, being purely for
data processing or output, have no event or action list.

74

More Examples
This section contains selected example applications which are
included with your copy of TestPoint, along with detailed
explanations of how they work.

You may want to run these examples, or load them into the TestPoint
editor to follow along as you read the explanation.

If you use the Debug menu to turn on the Single Step mode, you can
execute the applications one action line at a time.

The View/Data menu command lets you see the data types and
values of the objects as the application executes.

75

Frequency Response Example
This application can be found in the file
EXAMPLES\FREQRESP.TST within your TestPoint directory.

This example uses a function generator to send waveforms of various
frequencies to a unit under test, and a voltmeter to read the amplitude
of an output. The resulting frequency response curve is graphed on a
semi-log scale.

76

1) Clear Results
2) Clear Graph Curve
3) Decade Series Current Frequency from 10^1 to 10^3,in 1,2,5

sequence
4) Set Frequency to Current Frequency
5) Output to Fn. Gen. with ":FREQ ", Current

Frequency, term.=LF, send
EOI?=1

6) Enter from DMM up to 256 bytes, stop on
EOS=LF or EOI

7) Set Response to DMM
8) Append to Results from Current Frequency, DMM
9) End Current Frequency
10) Draw Graph Curve with Results

When the "Run" button is clicked, the action list executes. Note that,
in this example, the action list also executes once automatically when
the application is started (placed in Mode=Run). This is because of
the "Exec. actions at initialize" setting of the pushbutton.

First, lines 1 and 2 initialize the application. The object "Results" is a
Container, in which the frequencies and response voltages will be
accumulated.

77

Line 3 is the beginning of the main loop. It uses the Loop object
"Current Frequency" and the "Decade Series" action, which steps
through the values 10,20,50,100,200,500,1000,2000, and 5000. The
body of the loop, lines 4 to 8, are executed 9 times, with the value of
the "Current Frequency" object equal to each of these numbers.

Line 4 puts the current frequency value into the Display object
"Frequency", so the user can monitor the progress of the application.

Line 5 sends a command to the function generator, which is an
external GPIB instrument. The "Output to" action is used to send the
constant string ":FREQ " followed by the current frequency value. In
this example, we assume the instrument model being used accepts
commands in this format.

Line 6 reads a voltage response value from the DMM (digital
multimeter), which is also a GPIB instrument. The "Enter from"
action reads characters from the device, and then automatically
converts the result to a number. After line 6 executes, the data value
of object "DMM" is the measured voltage.

Line 7 sets Display object "Response" to the measured voltage.

Line 8 accumulates the results of the test by appending the current
frequency and response voltage to the container "Results".

After the loop is complete, line 10 draws a graph using the values in
the container. The graph object settings have been configured for
semi-log plotting with the desired grid and trace color options.

Note that this example uses the "Demo Mode" setting on the GPIB
objects, so they do not attempt to access actual external devices.
Instead, they read data from the file DEMO.DAT.

78

Calculus Example
This example may be found in the file EXAMPLES\CALCULUS.TST
within your TestPoint directory.

This example generates a chosen type of waveform and then
computes the derivative and integral of that function, and graphs all
three.

79

Formulae for the math objects:

Offsets:
vector (0, 0, -0.499, -0.499, -0.499)

wave data:
generate (50,25,fn) + offset[fn]

dy/dx:
derivative2 (wave, pi()/12.5)

integral(wave):
integrate (wave, pi()/12.5)

Action list for Wave type:

1) Calculate Offsets
2) Calculate wave data with fn=Wave type

offset=Offsets
3) Draw graph Wave with wave data
4) Calculate dy/dx with wave=wave data
5) Draw graph Derivative with dy/dx
6) Calculate integral(wave) with wave=wave data
7) Draw graph Integral with integral(wave)

80

Every time a new choice is made by clicking the "Wave type"
Selector object, the action list executes.

Line 2 generates the waveform, using the math function generate(),
which takes arguments for number of points, waveform period, and
waveform type. The waveform type argument fn comes from the
value of the selector object. An offset is added to the waveform,
depending on the chosen function, so that the waveform is centered
around zero. Note that the offset comes from indexing a constant
vector created in the "Offsets" math object in line 1.

Line 3 draws the waveform graph.

Lines 4 and 5 calculate the derivative and graph it. The math
funciton derivative2() is used, given the waveform and the delta x
value as parameters. TestPoint includes two functions: derivative()
and derivative2(). Derivative2() is much faster, because it fits
second-order curves to each set of three data values in the input
waveform, while derivative() fits 4th-order curves to each set of five
values.

Lines 6 and 7 calculate and graph the integral of the waveform.

81

For more detailed information
You can see a detailed description of each TestPoint object by
choosing Help, Index from within the TestPoint editor. If you have
the full (non-demo) version of TestPoint, the "Techniques and
Reference" manual has complete information.

82

