Test and Evaluation of Autonomous Systems
In a Model Based Engineering Context

Michael Nolan

Raytheon

USAF AFRL

Aaron Fifarek
Jonathan Hoffman

3 March 2016

Convriaht © 2016. Unnublished Work. Raytheon Company.
I Approved for Public Release. Case Number: 88ABW-2015-5959 I

\
\"/ Agenda

« Motivation

 Trust and Certification Process
« Background

Formal Analysis

Requirements Analysis
Architecture

« Model Traceability

« SysML Representation of Autonomous System and
Autonomous System Development

« Basic example of Autonomous Systems T&E in MBE context
e« Summary

|| Approved for Public Release. Case Number: 88ABW-2015-5959 ||

A Yy
\/ Motivation

[)
W’
Introduction, Discovery, and Cost of Software Faults!2:3
Identified
Need
: 20.5% faults are
Requirement Verification found
Development 300-1000x estimated
] nominal
70% of faults are introduced Architecture N cost for fault removal
3.5% fau’ts al‘efound Development ANt
1x estimated nominal
cost for fault removal 10% of faults are introduced
Integration 59.5% faults are found
20-80x estimated nominal
cost for fault removal

Implementation

20% of faults are introduced
1. NIST Planning report 02-3, The Economic Impacts of 5x estimated nominal
Inadequate Infrastructure for Software Testing, May 2002. cost for fault removal

2. D. Galin, Software Quality Assurance: From Theory to
Implementation, Pearson/Addison-Wesley (2004)

3. B.W. Boehm, Software Engineering Economics, Prentice Hall
(1981)

AFRL

|| Approved for Public Release. Case Number: 88ABW-2015-5959 ||

//'
\.

Trust and Certification

Qo Products / Process

=
E rl Zlndr'viduat Certifications G
System of Systems Certification ﬁ

Compositionally Verified Systems of Systems <

Design
* Requirements
* Archite

-« Model New Autoy Ne

Validation
Simulation

ed

!

!

System Design and Safety Requirements
(ARP 4761, ARP 4754/A, MIL-HDBK-882E)

Testable Requirements & Verification Plans
(DO-178C/254, MIL-HDBK-516)

|| Approved for Public Release. Case Number: 88ABW-2015-5959 ||

i

Certified
Assurance

\ 72
\‘.'/ Formal Analysis
\ g

Formal Methods refers to mathematically rigorous techniques and tools for the

specification, design and verification of software and hardware systems.
- Langley Formal Methods (http://shemesh.larc.nasa.gov/fm/fm-what.html)

 What is Formal Analysis?

— Analysis performed on mathematically precise models utilizing elegant
Computer Science algorithms and tools

» Model-Checking
« Theorem Proving

 Why do we want to do it?

— We can exhaustively search the behavior of models to prove or disprove
desired properties

— Removal of ambiguity due to required mathematical rigor
— Can identify unintended and unspecified behaviors

|| Approved for Public Release. Case Number: 88ABW-2015-5959 || I !L

\/ Analysis

Qo Advantage of Model Checking

Testing Checks Only the Values We Select Model Checker Tries Every Possible Value!

[
- [=
e I — ~ ol =T s
= ‘?@ = 3
e _:tc ;.}:_.:_ _:tc f
Even Small Systems Have Trillions Finds every exception to the
(of Trillions) of Possible Tests! property being checked!

AR
|| Approved for Public Release. Case Number: 88ABW-2015-5959 || SR

REQUIREMENTS
DEV. AND ANALYSIS

Precise, structured
standards to automate
requirement evaluation
for testability, tractability,
and deconfliction

Precise, structured standards to automate requirement
evaluation for testability, traceability, and de-confliction

\ » Architecture
IJ

Outlining the

Understanding the
solution

problem

|| Approved for Public Release. Case Number: 88ABW-2015-5959 "

»

"

=

d

Demonstrating the
implementation of
the solution

\ /2
\‘.'/ Formal Requirements Analysis
\ 4

« Natural language requirements are difficult to process logically and
mathematically especially if they are not written with a formal basis
- “The flight control function that performs the automatic avoidance maneuver
shall be of a level of redundancy equivalent to the primary flight control system”

* What is the formal definition of this constraint on the system?
» Not a trivial definition on the system

Formal Methods refers to mathematically rigorous techniques and tools for the

specification, design and verification of software and hardware systems.
- Langley Formal Methods (http://shemesh.larc.nasa.gov/fm/fm-what.html)

Temporal logic definitions are not obvious to write for most individuals and takes years of
practice to master effectively

(- a) What does that mean?

There may be logical basis but
Up-0a) it’'s not accessible to others. g
Llp-> =bU @@V -p)V[]=b)

U@- (@- @U@nNp)U
(pV L@~ @U@nrp)))

|| Approved for Public Release. Case Number: 88ABW-2015-5959 ||

\ /2
\‘.'/ Formal Requirements Analysis
\ 4

* Our Approach — Pattern Implementation

— Constrain natural language to patterns which contain a scope and a predicate
— Enforces the formal basis necessary to ensure mathematical rigor

: : g » -p
« Can requirements be defined and verified compositionally?
: .. p/\a
while p :: always a (- a) p A —a
while p :: exists a (p-=0a)
while p :: aproceeds b [J@- ~bU(@V-p)V[]-b))) @
o p O~ @~ @uanp)u e~
while p 3 a responds to b ~pV [(b- @U@AP)))))) while p :: always a
Occurrence Absence
Universality
QNhiIe the pump is ONJEhe pump outflow shall be the maximum flow rate, Property Existence
Y Patterns Bounded Existence
Scope Predicate Order Precedence

Classes

Response
Chain Precedence

while (pump_state == ON) :: always (pump_flow == MAX_FLOW)

Chain Response

i

|| Approved for Public Release. Case Number: 88ABW-2015-5959 ||

EVIDENCE
GENERATION
DURING DESIGN

Guarantee appropriate
decisions with traceable
evidence

Architecture

Guarantee appropriate decisions with traceable evidence
during the system architectural design

e R e
J _

Understanding the Outlining the Demonstrating the
problem solution implementation of
the solution

Y 4

|| Approved for Public Release. Case Number: 88ABW-2015-5959 "

7,
K

A .
NZ Architecture: AADL and AGREE

* The Architecture Analysis & Design Language (AADL)

— Developed by SAE
— Architecture modeling notation with well-defined semantics

« Assume Guarantee REasoning Environment (AGREE)
plugins

— Developed by University of Minnesota and Rockwell Collins
— Part of the DARPA High-Assurance Cyber Military Systems (HACMS)

program?
Assumptions System Guarantees
. >
Assumption: something Implementation Guarantee: what you can
a system assumes about assume about the system
it’s environment (inputs) and the performance of

the system (outputs)

1. Kathleen Fisher, “Using Formal Methods to Enable More Secure Vehicles:
Tufts University”, 16 September, 2014 DARPA's HACMS Program, URL:
http://wp.doc.ic.ac.uk/riapav/wp-
content/uploads/sites/28/2014/05/HACMS-Fisher.pdf [cited 27 Jul. 2015].

|| Approved for Public Release. Case Number: 88ABW-2015-5959 ||

Fo
Reg
RESE“{G U

sﬂoq.
g0
f Al

11

\

$» Assume Guarantee REasoning Environment

AGREE

« Assume-Guarantee Contract - Verifiable set of Assumptions and Guarantees that

abstracts the behavior of a system component implementation

Assumptions

Constraints over what

a component expects to see

from its environment

Guarantees

Constraints over how a

component behaves in

Example (to prove)
As > Ay

As A Gy > Ag
A A Gy A Gy 2 AC
As A Gy A Gg A Ge 2 Gs

(Ag) Assumption: Input < 10
(Gs) Guarantee: Output < 50

(A4) Assumption: Input < 20
(G,) Guarantee: Output <
2*Input

(Ag) Assumption: Input < 20
(Gg) Guarantee: Output < Input + 15

(Ac) Assumption: none
(G) Guarantee: Output =
Inputl + Input2

© Copyright 2014 Rockwell Collins, Inc.

&l rights reserved.

response to its environment

|| Approved for Public Release. Case Number: 88ABW-2015-5959 ||

AFRL

12

\ 72
\‘.'/ Compositional Verification
<

Cross Sectional
Area

» A series of techniques to allow for systems |
to be decomposed into less complex PamP | ﬁ
. . unsafe
modules to be enforce a hierarchical "
structure that can be leveraged for - [|
valive
compositional techniques Tank2 l% “““““““
* | safe, less desirable Height
M ’ safe, desired 40m
. . . o unsafe
« Systems can be hierarchically organized* |
production U @ emergency
— Requirements vs. architectural design valve . =T, valve
must be a matter of perspective 20m?
— Need better support for N-level ‘ Controlled Tanks ’
System

decompositions for requirements |

. - I
and architectural design ‘ N ’

Tank2
Controller

Tank1

Tanks
Controller

Sensors Pump Valves

1. Whalen, Michael W., et al. “Your “What” Is My “How”: Iteration and Hierarchy in System Design.”
Software, IEEE 30.2 (2013): 54-60.

il

13

|| Approved for Public Release. Case Number: 88ABW-2015-5959 ||

Model Development

Cumulative Evidence Through Research,
Developmental, and Operational Test

»A

comnre - ¥
EVIDENCE THROUGH e
RDT&E, DT & OT Understanding the Outlining the Demonstrating the
problem solution implementation of
Progressive sequential the solution

modeling, simulation,
test and evaluation

Y 4

|| Approved for Public Release. Case Number: 88ABW-2015-5959 "

Simulink Design Verifier
Identify design errors, generate test cases, and verify designs against requirements

» Uses formal methods to find violations of
design properties and assumptions

* Formal Analysis techniques from:

— Prover Plug-In
— Polyspace formal analysis engine from MathWorks

FPREVER

engineering a safer world”

15

|| Approved for Public Release. Case Number: 88ABW-2015-5959 ||

/

[4
-

//'

SLDV Analysis

I-'I

Pumg fitste Datay

i

k.

Pumnip_Siste

4

Casmalied_ T |

pre_Viskw S

MATLAE Funoon

Property

Model

Winbe_Eime_Diarley

Property
Blocks

5

tankl_max_vel_m3

Constants

i
a1 Tark 1 isintialy empty”

orkt_max_volm3 O

tankl_cross_section_area_m2

Constantd

5

tankz_max_val_m3
Constant2

5

tank_cmss_section_area_rr2
Constant!
[t1_lh_m]

_eross_section_area_2

2

true
22 “Tank 2is inially empty”

ank2_max_vol_m3

rk2_eross_section_area_2
3

true
a3 [vacuous]: "No Sensorsfail’

<tank1_previous_height_m>
Fromb

_helght_tank1_m

[12_lh_m]
<Tank2_prevous_negh_m>
Froms

5

high_safety_margin_s
Constant3

low_safety_margin_s

_heigft tankzm

[T
g1: "Tank 1 shall not overflow”

Lo satety ghran_s

verification_condition

true
92 "Tank 2 shal not overflow”
Assumptions and Guarantees

02

|

Constant

L afety_mergn_s

tanki _safety_hi_ht_m

Constant?

5

tankd_safety_lo_ht_m
Constantd
Constant9
1234

1 _satety _hi_t_m

true.
g3: "The height of the tank 1 liquid shal not be over the tank 1 high safetylevel
for more than the specfied length of time”

03
arict _satety_lo_t_m

ark2_safety_hi_t_m

true
4 "The height of the tank 1 liqud shall not be lower than the tank 1 low safety evel
(once ithas already crossed &) for more than the specified length of ime"

o4

g

Digtal Clock
time_increment_s

i

_increment

Constart13

true
g5 "The height of the tark 2 liquid shal not be over the tank 2 high
safety level for more than the specfied length of time”

s

e

Property Model

ol

% Guarantees (Proof Objectives)

G0l: guarantee "The pump is initially off™

oo

gl = pump_initially off (pre Pump state, time);
function result = pump initially off (Pump State, time)
UnderThisCondition = (time == 0.0);
ResultShouldBe = (Pump State = 0);

result = implies (UnderThisCondition, ResultsShouldBe):

% G02: guarantee "The valve is initially closed"
g2 = valve_initially closed(pre Valve State, time);
function result = valve initially closed(Valve State, time)
UnderThisCondition = (time == 0.0);
ResultshouldBe = (Valve State == 0);
result = implies (UnderThisCondition, ResultshouldBe):;

$ G03: guarantee "After the initial time step, When SL Input is False,
the Pump shall be on and Valve shall be Closed"
g3 = 51 input false cond(SL Input, Pump State, Valve State, time);
function result = sl _input false cond(SL Input, Pump State, Valve State,
time)

UnderThisCondition = (SL Input == 0) && (time > 0);

ResultShouldBe = (Valve State == 0) && (Pump State == 1);

result = implies (UnderThisCondition, ResultsShouldBe):

$ G04: guarantee "When the SH Input is true, the Pump shall be off and
Valve shall be open™
g4 = sh_input true_ cond(SH Input, Pump_State, Valve_State):
function result = sh input true cond(SH Input, Pump State, Valve State)
UnderThisCondition = (SH _Input == 1);
ResultShouldBe = (Valve_State == 1) && (Pump_State == 0):
result = implies (UnderThisCondition, ResultShouldBe);

$ GO05: guarantee "When the SL Input is True and the SH Input is False,
the Pump and Valve stay in their previous state™
g5 = sl1_input true sh input false cond(SL_Input, SH Input, Pump State,
Valve_ state, pre Pump State, pre Valve state);
function result = sl input true sh input false cond(SL Input, SH Input,
Pump State, Valve State, pre Pump State, pre Valve State)
UnderThisCondition = (SL_Input == 1) && (SH Input == 0);
ResultShouldBe = (Pump State == pre Pump State) && (Valve State ==
pre Valve State);
result = implies (UnderThisCondition, ResultShouldBe):

|| Approved for Public Release. Case Number: 88ABW-2015-5959 ||

16

4
'/ Requirements Traceability

0‘//'

Requirement - SpeAR Property

g4 = while sensor_high
:: always not pump_state and valve_state;

Architecture - AGREE Guarantee

guarantee "G@4: After the initial time step,
When the SH_Input is true,
the Pump shall be off and Valve shall be open" :
true -> ((tankl_SH_value = 1.0) =>
((Valve_State = 1.0) and Pump_State = 0.0));

Modeling - Simulink Design Verifier Property

g4 = sh input true cond(SH Input, Pump State, Valve State):

function result = sh input true cond(SH Input, Pump State, Valve State)
UnderThisCondition = (SH Input == 1});
ResultShouldBe = (Valve State == 1) && (Pump State == 0);
result = implies(UnderThisCondition, ResultsShouldBe);

17

|| Approved for Public Release. Case Number: 88ABW-2015-5959 ||

Raytheon

Integrated Defense Systems

Model Lifecycle Management Perspective

MLM autonomy perspective
starts with MLM framework

h 4

aanalysis resuliss
rev j

Analysis Model

«analysis model»
revl

wanalysis models
revib

wanalysis models

rev2

wanalysis models
rev3

/

Change Data

Architecture Model

/ aarch mod; \
revl / \

/ warch modeln \
rev2

/

warch model» «variant»
revia
Whole T Y
« » . Change [warch models
S Stem N arch model _ -
Y revi | Request rev2
Iy - 'y

Model

Includes many
other kinds of
models and tools

ranchs aIarges
warch modals
revib

warch toolrs
revi

warch toolrs
revi

warch toolrs
rev2
/N\

Bob |

| Mary

«cad model»

A 4

revl

wcad models
rev2

CAD Model

wcad models
rev3

Produce part based on rev2

]

Retrofitymod based on rev3

SysML Representation of Autonomous System and naylhenn
Autonomous System Development Integrated Defense Systems

=] %5 Modell x | F5internal block diagram 0 in ...

Entire Model View ~

54 Simulink_Int91

(3 Block Definition Diagrams
%3 Modell

(J Components
7] DefaultComponent ~Block SceredSimuinkBocke

B cmtom == - Building on the MLM
=-f7 Default

5 S s framework

wlinkBlocks HMI

e Sy . - Nominal autonomous system
5 v e i o modeled in SysML (Rhapsody

bdd [Project] Simuiink_Int91 [Model 1]

[T PredefinedTypes (REF) Valvas vehicle
s Values sives
i o - example)
6§31 Simulink (RE " "
b Hmig S o
{5 TestingProfile (REF)
() Object Model Diagrams
Be TestingProfileStructure (RO) “Blocier «Block, SimulnkBlocks
(3 Packages Data Autonomous_Sys_Controller
&3 ATG (RO) Valves Vales
(3 Packages
3 Stereotypes Operstions Operstions &
£3 rTC (RO)
shwees Test Architecture
£1-C) Packages
=B TestArchitecture (RO)
E-E Stereatypes The automatically created test architecture is
= ;:lé'i?:pmm - completely represented in the browser and seamlessly
5> TestConfiguration (RO) | fito ik o ntﬁas Gl et
52 TestContext (RO) = 3 Teswackages ~ model besides the design model. After creation the
B' g“ie*‘a"t‘;" (RO) = r‘m&;m following elements are visible:
B ereatypes
% Stereotypes = The new configuration under the component
& Tags — ,_ @ B cTestngConfigurations CefaultConfig . TPkg_StopWatch_Comp* describes the
4 Sf;fﬁ collection of test components and SUT objects
= L4 TestPackages and their interconnections when a test case is
= [Py TCon_StopWatch_Architechure started.
- 1imi ili i — Atest component is a class of a test system.
UML Test Protocol or similar utility is used iond ol ool
Hp HH H i instances) realize partially the behavior of a test
- Enables efficient pairing of requirements, test N D
. . interfaces via which it might communicate via
straps, procedures, reports, and other artifacts with Connecions ih thr et component or vt
- objects.
. @ itsStopwatch
= #3 Test Context Di
eaCh mem ber Of a p rOd UCt fam | Iy "T ‘Svim:éoﬁgg: Stopwatch A test context describes the context in which
thhi H il e o test cases are executed. It is responsible for
= MOdels are eXeCUtable Wlthln mOdellng :::;E: “‘“.;.i‘%ﬁiil‘élh defining the structure of the test system. The test
% TestConfigratons components and SUT objects are normally parts

environment at chosen level of fidelity BT e of atestcontext.

3/7/2016 | 19

Basic example of Autonomous Systems T&E in nay“mnn

MBE context Integrated Defense Systems

» Basic Machine Learning algorithm hosted in Simulink

» Data sets for nominal autonomous system developed

» Simulink components integrated within Rhapsody (SysML)
* Model executed in the SysML environment

= SysML test utilities placed around test and test results
— IBM Test Conductor or potentially RQM wrapper
= Systems trained with different data sets behaved differently

= MBE considerations
— Configuration management, Data management
— Flexibility, product family architecture support
— Training Data is paired with the autonomous system
= Ability to trace system development back to the training data set used

Autonomous systems development requires
additional MBSE considerations

3/7/2016 | 20

\ .
\./ Summary
«Qr

» Discovery of critical flaws early in the design process can save time
and money

» Formal requirement traceability throughout design process
« Composability for reuse and modular verification

« Autonomous systems development requires additional MBSE
considerations

Identified
Need

1 DR:S:II:’EH;:‘I; Verification
Requirements Architecture m
b Architecture

. A
Understanding the Outlining the Demonstrating the Development

problem ‘ solution implementation of
‘ the solution

Transition

Validation

Detailed

. Integration
Design g

Implementation

AFR 21

|| Approved for Public Release. Case Number: 88ABW-2015-5959 ||

\ 72
\‘.'/ Future Directions of Work
<

« Continued research in the Development Process

— Requirements
» Realizability arguments could identify early conflicts
» Natural language masking of formal representations

— Architecture
» Abstraction of different compositional levels across different teams

— Modeling
* Bounding nonlinear behavior within discrete defined systems

 Assurance Case Construction

— Utilize the artifacts from the Development Process to provide evidence of behavior
* Move the formulation forward with these artifacts

* Implementing the Development Process on more complex systems
— Testing the scalability of the techniques
— Designing challenges that approach the complexity of Air Force domain systems
— Potentially build on MBSE — autonomy structure

* Run-time Assurance for nonlinear autonomy
— If we can’t formally prove or test can we bound?
— How can we safely bound a system?

|| Approved for Public Release. Case Number: 88ABW-2015-5959 ||

22

aaron.fifarek.ctr@us.af.mil
jonathan.hoffman.2@us.af.mil
mknolan@raytheon.com

Copyright © 2016. Unpublished Work. Raytheon Company.

I Approved for Public Release. Case Number: BEABW-2015-5959 I

