Jeffrey Aven

SamsTeach Yourself

Apache

FREE SAMPLE CHAPTER
SHARE WITH OTHERS

f ¥ 8 M W

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672338519
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672338519
https://plusone.google.com/share?url=http://www.informit.com/title/9780672338519
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672338519
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672338519/Free-Sample-Chapter

Jeffrey Aven

SamsTeachYourself

Apache Spark™

SAMS 800 East 96th Street, Indianapolis, Indiana, 46240 USA

Sams Teach Yourself Apache Spark™ in 24 Hours

Copyright © 2017 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.
ISBN-13: 978-0-672-33851-9

ISBN-10: 0-672-33851-3

Library of Congress Control Number: 2016946659

Printed in the United States of America

First Printing: August 2016

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark or
service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book.

Special Sales
For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,

training goals, marketing focus, or branding interests), please contact our corporate sales
department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
intics@pearsoned.com.

Editor in Chief
Greg Wiegand

Acquisitions Editor
Trina McDonald

Development Editor
Chris Zahn

Technical Editor
Cody Koeninger
Managing Editor
Sandra Schroeder

Project Editor
Lori Lyons

Project Manager
Ellora Sengupta

Copy Editor

Linda Morris
Indexer

Cheryl Lenser
Proofreader
Sudhakaran
Editorial Assistant
Olivia Basegio
Cover Designer
Chuti Prasertsith

Compositor
codeMantra

Contents at a Glance

Preface
About the Author

Part I: Getting Started with Apache Spark

HOUR 1
2
3
4
5

Introducing Apache Spark

Understanding Hadoop

Installing Spark

Understanding the Spark Application Architecture
Deploying Spark in the Cloud

Part 1I: Programming with Apache Spark

HOUR 6
7

8

9

10

11

12

Learning the Basics of Spark Programming with RDDs
Understanding MapReduce Concepts

Getting Started with Scala

Functional Programming with Python

Working with the Spark API (Transformations and Actions)
Using RDDs: Caching, Persistence, and Output

Advanced Spark Programming

Part lllI: Extensions to Spark

HOUR 13
14
15
16
17
18
19
20

Using SQL with Spark

Stream Processing with Spark

Getting Started with Spark and R

Machine Learning with Spark

Introducing Sparkling Water (H20 and Spark)
Graph Processing with Spark

Using Spark with NoSQL Systems

Using Spark with Messaging Systems

Xii

XV

11
27
45
61

91
115
137
165
197
235
259

283
323
343
363
381
399
417
433

iv Sams Teach Yourself Apache Spark in 24 Hours

Part IV: Managing Spark

HOUR 21 Administering Spark 453
22 Monitoring Spark 479
23 Extending and Securing Spark 501
24 Improving Spark Performance 519

Index 543

Table of Contents

Preface
About the Author

Part I: Getting Started with Apache Spark

HOUR 1: Introducing Apache Spark
What Is Spark?
What Sort of Applications Use Spark?
Programming Interfaces to Spark
Ways to Use Spark
Summary
Q&A
Workshop

HOUR 2: Understanding Hadoop
Hadoop and a Brief History of Big Data
Hadoop Explained
Introducing HDFS
Introducing YARN
Anatomy of a Hadoop Cluster
How Spark Works with Hadoop
Summary
Q&A
Workshop

HOUR 3: Installing Spark
Spark Deployment Modes
Preparing to Install Spark
Installing Spark in Standalone Mode
Exploring the Spark Install

xii
XV

0 00 N N W W Rk

11

12
13
19
22
24
24
25
25

27
27
28
29
38

Sams Teach Yourself Apache Spark in 24 Hours

Deploying Spark on Hadoop 39
Summary 42
Q&A 43
Workshop 43
Exercises 44
HOUR 4: Understanding the Spark Application Architecture 45
Anatomy of a Spark Application 45
Spark Driver 46
Spark Executors and Workers 48
Spark Master and Cluster Manager 49
Spark Applications Running on YARN 51
Local Mode 56
Summary 58
Q&A 59
Workshop 59
HOUR 5: Deploying Spark in the Cloud 61
Amazon Web Services Primer 61
Spark on EC2 64
Spark on EMR 73
Hosted Spark with Databricks 81
Summary 88
Q&A 89
Workshop 89

Part II: Programming with Apache Spark

HOUR 6: Learning the Basics of Spark Programming with RDDs 91
Introduction to RDDs 91
Loading Data into RDDs 93
Operations on RDDs 106
Types of RDDs 111
Summary 112
Q&A 113

Workshop 113

Table of Contents vii

HOUR 7: Understanding MapReduce Concepts 115
MapReduce History and Background 115
Records and Key Value Pairs 117
MapReduce Explained 118
Word Count: The “Hello, World” of MapReduce 126
Summary 135
Q&A 135
Workshop 136

HOUR 8: Getting Started with Scala 137
Scala History and Background 137
Scala Basics 138
Object-Oriented Programming in Scala 153
Functional Programming in Scala 157
Spark Programming in Scala 160
Summary 163
Q&A 163
Workshop 163

HOUR 9: Functional Programming with Python 165
Python Overview 165
Data Structures and Serialization in Python 170
Python Functional Programming Basics 178
Interactive Programming Using IPython 183
Summary 193
Q&A 194
Workshop 194

HOUR 10: Working with the Spark API (Transformations and Actions) 197
RDDs and Data Sampling 197
Spark Transformations 199
Spark Actions 206
Key Value Pair Operations 211
Join Functions 219

Numerical RDD Operations 229

viii

HOUR 11: Using RDDs: Caching, Persistence, and Output

Sams Teach Yourself Apache Spark in 24 Hours

Summary
Q&A
Workshop

RDD Storage Levels

Caching, Persistence, and Checkpointing
Saving RDD Output

Introduction to Alluxio (Tachyon)
Summary

Q&A

Workshop

HOUR 12: Advanced Spark Programming

Broadcast Variables

Accumulators

Partitioning and Repartitioning
Processing RDDs with External Programs
Summary

Q&A

Workshop

Part Ill: Extensions to Spark

HOUR 13: Using SQL with Spark

Introduction to Spark SQL

Getting Started with Spark SQL DataFrames
Using Spark SQL DataFrames

Accessing Spark SQL

Summary

Q&A

Workshop

HOUR 14: Stream Processing with Spark

Introduction to Spark Streaming

Using DStreams

232
232
233

235
235
239
247
254
257
257
258

259
259
265
270
278
279
280
280

283
283
294
305
316
321
321
322

323
323
326

Table of Contents ix

State Operations 335
Sliding Window Operations 337
Summary 339
Q&A 340
Workshop 340
HOUR 15: Getting Started with Spark and R 343
Introduction to R 343
Introducing SparkR 350
Using SparkR 355
Using SparkR with RStudio 358
Summary 360
Q&A 361
Workshop 361
HOUR 16: Machine Learning with Spark 363
Introduction to Machine Learning and MLlib 363
Classification Using Spark MLIib 367
Collaborative Filtering Using Spark MLIlib 373
Clustering Using Spark MLIib 375
Summary 378
Q&A 378
Workshop 379
HOUR 17: Introducing Sparkling Water (H20 and Spark) 381
Introduction to H20 381
Sparkling Water—H2O on Spark 387
Summary 396
Q&A 397
Workshop 397
HOUR 18: Graph Processing with Spark 399
Introduction to Graphs 399
Graph Processing in Spark 402

Introduction to GraphFrames 406

Sams Teach Yourself Apache Spark in 24 Hours

Summary
Q&A
Workshop

HOUR 19: Using Spark with NoSQL Systems
Introduction to NoSQL
Using Spark with HBase
Using Spark with Cassandra
Using Spark with DynamoDB and More
Summary
Q&A
Workshop

HOUR 20: Using Spark with Messaging Systems
Overview of Messaging Systems
Using Spark with Apache Kafka
Spark, MQTT, and the Internet of Things
Using Spark with Amazon Kinesis
Summary
Q&A
Workshop

Part IV: Managing Spark

HOUR 21: Administering Spark
Spark Configuration
Administering Spark Standalone
Administering Spark on YARN
Summary
Q&A
Workshop

HOUR 22: Monitoring Spark
Exploring the Spark Application Ul
Spark History Server
Spark Metrics

413
414
414

417
417
419
425
429
431
431
432

433
433
435
443
446
450
451
451

453
453
461
471
477
477
478

479
479
488
490

Logging in Spark
Summary

Q&A

Workshop

HOUR 23: Extending and Securing Spark

Isolating Spark

Securing Spark Communication
Securing Spark with Kerberos
Summary

Q&A

Workshop

HOUR 24: Improving Spark Performance

Index

Benchmarking Spark

Application Development Best Practices
Optimizing Partitions

Diagnosing Application Performance Issues
Summary

Q&A

Workshop

Table of Contents

492
498
499
499

501
501
504
512
516
517
517

519
519
526
534
536
540
540
541

543

Xi

Preface

This book assumes nothing, unlike many big data (Spark and Hadoop) books before it,
which are often shrouded in complexity and assume years of prior experience. I don't
assume that you are a seasoned software engineer with years of experience in Java,

I don’t assume that you are an experienced big data practitioner with extensive experience
in Hadoop and other related open source software projects, and I don’t assume that you are
an experienced data scientist.

By the same token, you will not find this book patronizing or an insult to your intelligence
either. The only prerequisite to this book is that you are “comfortable” with Python. Spark
includes several application programming interfaces (APIs). The Python API was selected as
the basis for this book as it is an intuitive, interpreted language that is widely known and
easily learned by those who haven't used it.

This book could have easily been titled Sams Teach Yourself Big Data Using Spark because

this is what I attempt to do, taking it from the beginning. I will introduce you to Hadoop,
MapReduce, cloud computing, SQL, NoSQL, real-time stream processing, machine learning,
and more, covering all topics in the context of how they pertain to Spark. I focus on core
Spark concepts such as the Resilient Distributed Dataset (RDD), interacting with Spark using
the shell, implementing common processing patterns, practical data engineering/analysis
approaches using Spark, and much more.

I was first introduced to Spark in early 2013, which seems like a short time ago but is

a lifetime ago in the context of the Hadoop ecosystem. Prior to this, I had been a Hadoop
consultant and instructor for several years. Before writing this book, I had implemented and
used Spark in several projects ranging in scale from small to medium business to enterprise
implementations. Even having substantial exposure to Spark, researching and writing this
book was a learning journey for myself, taking me further into areas of Spark that I had not
yet appreciated. I would like to take you on this journey as well as you read this book.

Spark and Hadoop are subject areas I have dedicated myself to and that I am passionate
about. The making of this book has been hard work but has truly been a labor of love.

I hope this book launches your career as a big data practitioner and inspires you to do
amazing things with Spark.

Preface xiii

Why Should | Learn Spark?

Spark is one of the most prominent big data processing platforms in use today and is one
of the most popular big data open source projects ever. Spark has risen from its roots in
academia to Silicon Valley start-ups to proliferation within traditional businesses such as
banking, retail, and telecommunications. Whether you are a data analyst, data engineer,
data scientist, or data steward, learning Spark will help you to advance your career or
embark on a new career in the booming area of big data.

How This Book Is Organized

This book starts by establishing some of the basic concepts behind Spark and Hadoop,
which are covered in Part I, “Getting Started with Apache Spark.” I also cover deployment of
Spark both locally and in the cloud in Part I.

Part II, “Programming with Apache Spark,” is focused on programming with Spark, which
includes an introduction to functional programming with both Python and Scala as well as
a detailed introduction to the Spark core API.

Part III, “Extensions to Spark,” covers extensions to Spark, which include Spark SQL, Spark
Streaming, machine learning, and graph processing with Spark. Other areas such as NoSQL
systems (such as Cassandra and HBase) and messaging systems (such as Kafka) are covered
here as well.

I wrap things up in Part IV, “Managing Spark,” by discussing Spark management,
administration, monitoring, and logging as well as securing Spark.

Data Used in the Exercises

Data for the Try It Yourself exercises can be downloaded from the book’s Amazon Web
Services (AWS) S3 bucket (if you are not familiar with AWS, don’t worry—I cover this topic
in the book as well). When running the exercises, you can use the data directly from the S3
bucket or you can download the data locally first (examples of both methods are shown).
If you choose to download the data first, you can do so from the book’s download page at
http://sty-spark.s3-website-us-east-1.amazonaws.com/.

Conventions Used in This Book

Each hour begins with “What You’ll Learn in This Hour,” which provides a list of bullet
points highlighting the topics covered in that hour. Each hour concludes with a “Summary”
page summarizing the main points covered in the hour as well as “Q&A” and “Quiz”
sections to help you consolidate your learning from that hour.

http://sty-spark.s3-website-us-east-1.amazonaws.com/

Xiv Sams Teach Yourself Apache Spark in 24 Hours

Key topics being introduced for the first time are typically italicized by convention. Most
hours also include programming examples in numbered code listings. Where functions,
commands, classes, or objects are referred to in text, they appear in monospace type.

Other asides in this book include the following:

NOTE

Content not integral to the subject matter but worth noting or being aware of.

TIP

TIP Subtitle
A hint or tip relating to the current topic that could be useful.

CAUTION

Caution Subtitle
Something related to the current topic that could lead to issues if not addressed.

V¥ TRY IT YOURSELF

Exercise Title

An exercise related to the current topic including a step-by-step guide and descriptions of
expected outputs.

About the Author

Jeffrey Aven is a big data consultant and instructor based in Melbourne, Australia. Jeff has
an extensive background in data management and several years of experience consulting and
teaching in the areas or Hadoop, HBase, Spark, and other big data ecosystem technologies.
Jeff has won accolades as a big data instructor and is also an accomplished consultant who
has been involved in several high-profile, enterprise-scale big data implementations across
different industries in the region.

Dedication

This book is dedicated to my wife and three children. I have been burning the
candle at both ends during the writing of this book and I appreciate
your patience and understanding...

Acknowledgments

Special thanks to Cody Koeninger and Chris Zahn for their input and feedback as editors.
Also thanks to Trina McDonald and all of the team at Pearson for keeping me in line during

the writing of this book!

We Want to Hear from You

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we're doing right, what we could do better, what areas
you'd like to see us publish in, and any other words of wisdom you're willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t
like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name
and email address. We will carefully review your comments and share them with the author
and editors who worked on the book.

E-mail: feedback@samspublishing.com

Mail: Sams Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

This page intentionally left blank

HOUR 3

Installing Spark

What You’ll Learn in This Hour:

» What the different Spark deployment modes are
» How to install Spark in Standalone mode
» How to install and use Spark on YARN

Now that you've gotten through the heavy stuff in the last two hours, you can dive headfirst into
Spark and get your hands dirty, so to speak.

This hour covers the basics about how Spark is deployed and how to install Spark. I will also
cover how to deploy Spark on Hadoop using the Hadoop scheduler, YARN, discussed in Hour 2.

By the end of this hour, you'll be up and running with an installation of Spark that you will use
in subsequent hours.

Spark Deployment Modes

There are three primary deployment modes for Spark:
» Spark Standalone
» Spark on YARN (Hadoop)

» Spark on Mesos

Spark Standalone refers to the built-in or “standalone” scheduler. The term can be confusing
because you can have a single machine or a multinode fully distributed cluster both running
in Spark Standalone mode. The term “standalone” simply means it does not need an external
scheduler.

With Spark Standalone, you can get up an running quickly with few dependencies or
environmental considerations. Spark Standalone includes everything you need to get started.

28 HOUR 3: Installing Spark

Spark on YARN and Spark on Mesos are deployment modes that use the resource schedulers
YARN and Mesos respectively. In each case, you would need to establish a working YARN or
Mesos cluster prior to installing and configuring Spark. In the case of Spark on YARN, this
typically involves deploying Spark to an existing Hadoop cluster.

I will cover Spark Standalone and Spark on YARN installation examples in this hour because
these are the most common deployment modes in use today.

Preparing to Install Spark

Spark is a cross-platform application that can be deployed on
» Linux (all distributions)
» Windows

» Mac OS X

Although there are no specific hardware requirements, general Spark instance hardware
recommendations are

» 8 GB or more memory
» Eight or more CPU cores
» 10 gigabit or greater network speed

» Four or more disks in JBOD configuration (JBOD stands for “Just a Bunch of Disks,”
referring to independent hard disks not in a RAID—or Redundant Array of Independent
Disks—configuration)

Spark is written in Scala with programming interfaces in Python (PySpark) and Scala. The
following are software prerequisites for installing and running Spark:

> Java

» Python (if you intend to use PySpark)

If you wish to use Spark with R (as I will discuss in Hour 15, “Getting Started with Spark
and R”), you will need to install R as well. Git, Maven, or SBT may be useful as well if you
intend on building Spark from source or compiling Spark programs.

If you are deploying Spark on YARN or Mesos, of course, you need to have a functioning YARN
or Mesos cluster before deploying and configuring Spark to work with these platforms.

I will cover installing Spark in Standalone mode on a single machine on each type of platform,
including satisfying all of the dependencies and prerequisites.

Installing Spark in Standalone Mode 29

Installing Spark in Standalone Mode

In this section I will cover deploying Spark in Standalone mode on a single machine using
various platforms. Feel free to choose the platform that is most relevant to you to install
Spark on.

Getting Spark

In the installation steps for Linux and Mac OS X, I will use pre-built releases of Spark. You could
also download the source code for Spark and build it yourself for your target platform using the
build instructions provided on the official Spark website. I will use the latest Spark binary release
in my examples. In either case, your first step, regardless of the intended installation platform, is
to download either the release or source from: http://spark.apache.org/downloads.html

This page will allow you to download the latest release of Spark. In this example, the latest
release is 1.5.2, your release will likely be greater than this (e.g. 1.6.x or 2.x.x).

T Downloads | Apache Spar =
€ 2 C | [1 sparkapache.org/downloads html % B fr=

Sp Qr K - Lightning-fast cluster computing

Download Libraries ~ Documentation - Examples Community ~ FAG

Latest News

CFP for Spark Summit East 2016 is closing soon! (Nov 19, 2015
Spark 1.5.2 released (Nov 09, 2015)

Submission is open for Spark Summit East 2016 (Oct 14, 2015
Spark 1.5.1 released (Oct 02, 2015)

Download Spark

The latest release of Spark is Spark 1.5.2, released on November 9, 2015 (re

Choose a Spark release: | 1.5.2 [N'nu 09 2015] i

r

Choose a package iype [Pre-bull for Hadoop 2.6 and fater_ 7] |

s

Choose a download lype. | Select Apache Mirror *

.

Download Spam{\:-:.._\. K-1.5.2-bin-hadoop2 6.19z

5. Vernfy this release using the 1.5

Note: Scala 211 users should download the Spark sowce package and buld will Scala 2 11 support,

FIGURE 3.1
The Apache Spark downloads page.

http://spark.apache.org/downloads.html

30

NOTE

HOUR 3: Installing Spark

The Spark releases do not actually include Hadoop as the names may imply. They simply include
libraries to integrate with the Hadoop clusters and distributions listed. Many of the Hadoop
classes are required regardless of whether you are using Hadoop. | will use the
spark-1.5.2-bin-hadoop2.6.tgz package for this installation.

CAUTION

Using the “Without Hadoop” Builds

You may be tempted to download the “without Hadoop” or spark-x.x.x-bin-without-hadoop.
tgz options if you are installing in Standalone mode and not using Hadoop.

The nomenclature can be confusing, but this build is expecting many of the required classes
that are implemented in Hadoop to be present on the system. Select this option only if you have
Hadoop installed on the system already. Otherwise, as | have done in my case, use one of the
spark-x.x.x-bin-hadoopx.x builds.

V¥ TRY IT YOURSELF

Install Spark on Red Hat/Centos

In this example, I'm installing Spark on a Red Hat Enterprise Linux 7.1 instance. However, the
same installation steps would apply to Centos distributions as well.

1.

As shown in Figure 3.1, download the spark-1.5.2-bin-hadoop2.6.tgz package from
your local mirror into your home directory using wget or curl.

If Java 1.7 or higher is not installed, install the Java 1.7 runtime and development
environments using the OpenJDK yum packages (alternatively, you could use the Oracle JDK
instead):

sudo yum install java-1.7.0-openjdk java-1.7.0-openjdk-devel

. Confirm Java was successfully installed:

$ java -version

java version "1.7.0_91"

OpenJDK Runtime Environment (rhel-2.6.2.3.el7-x86_64 u91-b00)
OpendDK 64-Bit Server VM (build 24.91-b01, mixed mode)

Extract the Spark package and create SPARK HOME:

tar -xzf spark-1.5.2-bin-hadoop2.6.tgz

sudo mv spark-1.5.2-bin-hadoop2.6 /opt/spark
export SPARK HOME=/opt/spark

export PATH=$SPARK_HOME/bin : SPATH

Installing Spark in Standalone Mode 31

The SPARK_HOME environment variable could also be set using the .bashrc file or similar n
user or system profile scripts. You need to do this if you wish to persist the SPARK HOME
variable beyond the current session.

5. Open the PySpark shell by running the pyspark command from any directory (as you've
added the Spark bin directory to the PATH). If Spark has been successfully installed, you
should see the following output (with informational logging messages omitted for brevity):

Welcome to

/ __ I/
/

NN)
I\ TN\ version 1.5.2
/_/

Using Python version 2.7.5 (default, Feb 11 2014 07:46:25)
SparkContext available as sc, HiveContext available as sglContext.

/
_\

>>>
6. You should see a similar result by running the spark-shell command from any directory.

7. Run the included Pi Estimator example by executing the following command:

spark-submit --class org.apache.spark.examples.SparkPi \
--master local \
SSPARK HOME/lib/spark-examples*.jar 10

8. If the installation was successful, you should see something similar to the following result
(omitting the informational log messages). Note, this is an estimator program, so the actual
result may vary:

Pi is roughly 3.140576

NOTE

Most of the popular Linux distributions include Python 2.x with the python binary in the system
path, so you normally don’t need to explicitly install Python; in fact, the yum program itself is
implemented in Python.

You may also have wondered why you did not have to install Scala as a prerequisite. The Scala
binaries are included in the assembly when you build or download a pre-built release of Spark.

32

HOUR 3: Installing Spark

V¥ TRY IT YOURSELF

Install Spark on Ubuntu/Debian Linux

In this example, I'm installing Spark on an Ubuntu 14.04 LTS Linux distribution.

As with the Red Hat example, Python 2. 7 is already installed with the operating system, so we do
not need to install Python.

1.

As shown in Figure 3.1, download the spark-1.5.2-bin-hadoop2.6.tgz package from
your local mirror into your home directory using wget or curl.

If Java 1.7 or higher is not installed, install the Java 1.7 runtime and development
environments using Ubuntu’s APT (Advanced Packaging Tool). Alternatively, you could use
the Oracle JDK instead:

sudo apt-get update
sudo apt-get install openjdk-7-jre
sudo apt-get install openjdk-7-jdk

Confirm Java was successfully installed:

$ java -version

java version "1.7.0_91"

OpendDK Runtime Environment (IcedTea 2.6.3) (7u91-2.6.3-0ubuntu0.14.04.1)
OpendDK 64-Bit Server VM (build 24.91-b01, mixed mode)

Extract the Spark package and create SPARK HOME:

tar -xzf spark-1.5.2-bin-hadoop2.6.tgz

sudo mv spark-1.5.2-bin-hadoop2.6 /opt/spark
export SPARK HOME=/opt/spark

export PATH=$SPARK_HOME/bin : SPATH

The SPARK HOME environment variable could also be set using the .bashrc file or
similar user or system profile scripts. You will need to do this if you wish to persist the
SPARK HOME variable beyond the current session.

Open the PySpark shell by running the pyspark command from any directory. If Spark has
been successfully installed, you should see the following output:

Welcome to

/_/ /Tl
\

\/ _\/ _) _/ "_/
/. IN_._/_/ /_/_\ version 1.5.2
/_/
Using Python version 2.7.6 (default, Mar 22 2014 22:59:56)

SparkContext available as sc, HiveContext available as sglContext.

/

>>>

Installing Spark in Standalone Mode 33

6. You should see a similar result by running the spark-shell command from any directory. n

7. Run the included Pi Estimator example by executing the following command:

spark-submit --class org.apache.spark.examples.SparkPi \
--master local \
$SPARK_HOME/lib/spark-examples*.jar 10

8. If the installation was successful, you should see something similar to the following
result (omitting the informational log messages). Note, this is an estimator program,
so the actual result may vary:

Pi is roughly 3.140576

TRY IT YOURSELF V¥

Install Spark on Mac 0S X
In this example, | install Spark on OS X Mavericks (10.9.5).

Mavericks includes installed versions of Python (2.7.5) and Java (1.8), so | don’t need to
install them.

1. As shown in Figure 3.1, download the spark-1.5.2-bin-hadoop2.6.tgz package from
your local mirror into your home directory using curl.

2. Extract the Spark package and create SPARK HOME:

tar -xzf spark-1.5.2-bin-hadoop2.6.tgz

sudo mv spark-1.5.2-bin-hadoop2.6 /opt/spark
export SPARK HOME=/opt/spark

export PATH=$SPARK_HOME/bin:$PATH

3. Open the PySpark shell by running the pyspark command in the Terminal from any
directory. If Spark has been successfully installed, you should see the following output:

Welcome to

;. /I
NN N
I/

I\, /_/ /_/\\ version 1.5.2
/

Using Python version 2.7.5 (default, Feb 11 2014 07:46:25)
SparkContext available as sc, HiveContext available as sglContext.

>>>

The SPARK HOME environment variable could also be set using the .profile file or similar
user or system profile scripts.

34

M .

HOUR 3: Installing Spark

You should see a similar result by running the spark-shell command in the terminal from
any directory.

Run the included Pi Estimator example by executing the following command:

spark-submit --class org.apache.spark.examples.SparkPi \
--master local \
$SPARK HOME/lib/spark-examples*.jar 10

If the installation was successful, you should see something similar to the following result
(omitting the informational log messages). Note, this is an estimator program, so the actual
result may vary:

Pi is roughly 3.140576

V¥ TRY IT YOURSELF

Install Spark on Microsoft Windows

Installing Spark on Windows can be more involved than installing it on Linux or Mac OS X because
many of the dependencies (such as Python and Java) need to be addressed first.

This example uses a Windows Server 2012, the server version of Windows 8.

1.

You will need a decompression utility capable of extracting .tar.gz and .gz archives
because Windows does not have native support for these archives. 7-zip is a suitable
program for this. You can obtain it from http://7-zip.org/download.html.

. As shown in Figure 3.1, download the spark-1.5.2-bin-hadoop2.6.tgz package

from your local mirror and extract the contents of this archive to a new directory called
C:\Spark.

Install Java using the Oracle JDK Version 1.7, which you can obtain from the Oracle website.
In this example, | download and install the jdk-7u79-windows-x64 .exe package.

Disable IPv6 for Java applications by running the following command as an administrator
from the Windows command prompt :

setx /M _JAVA OPTIONS "-Djava.net.preferIPv4Stack=true"
Python is not included with Windows, so you will need to download and install it. You can

obtain a Windows installer for Python from https://www.python.org/getit/. | use Python
2.7.10 in this example. Install Python into C:\Python27.

Download the Hadoop common binaries necessary to run Spark compiled for Windows x64
from hadoop-common-bin. Extract these files to a new directory called C: \Hadoop.

http://7-zip.org/download.html
https://www.python.org/getit/

10.

11.

12,

Installing Spark in Standalone Mode

Set an environment variable at the machine level for HADOOP HOME by running the
following command as an administrator from the Windows command prompt:

setx /M HADOOP_HOME C:\Hadoop

Update the system path by running the following command as an administrator from the

Windows command prompt:

setx /M path "$path%;C:\Python27;%PROGRAMFILES%\Java\jdkl.7.0 79\bin;C:\Hadoop"

Make a temporary directory, C: \tmp\hive, to enable the HiveContext in Spark. Set
permission to this file using the winutils.exe program included with the Hadoop

35

common binaries by running the following commands as an administrator from the Windows

command prompt:

mkdir C:\tmp\hive
C:\Hadoop\bin\winutils.exe chmod 777 /tmp/hive

Test the Spark interactive shell in Python by running the following command:

C:\Spark\bin\pyspark

You should see the output shown in Figure 3.2.

9 89
zome to

' on

port 464

FIGURE 3.2
The PySpark shell in Windows.

You should get a similar result by running the following command to open an interactive

Scala shell:

C:\Spark\bin\spark-shell

Run the included Pi Estimator example by executing the following command:

C:\Spark\bin\spark-submit --class org.apache.spark.examples.SparkPi --master

local C:\Spark\lib\spark-examples*.jar 10

36 Installing Spark

n 13. If the installation was successful, you should see something similar to the following result
shown in Figure 3.3. Note, this is an estimator program, so the actual result may vary:

= Administrator: C\Windows\system32\cmd.exe |;|£-—

9:4848

erEnd

opped
onte

ndpoint:

Admir
40

<lm

Administratord

FIGURE 3.3
The results of the SparkPi example program in Windows.

Installing a Multi-node Spark Standalone Cluster

Using the steps outlined in this section for your preferred target platform, you will have installed
a single node Spark Standalone cluster. I will discuss Spark’s cluster architecture in more detail
in Hour 4, “Understanding the Spark Runtime Architecture.” However, to create a multi-node
cluster from a single node system, you would need to do the following:

» Ensure all cluster nodes can resolve hostnames of other cluster members and are routable
to one another (typically, nodes are on the same private subnet).

» Enable passwordless SSH (Secure Shell) for the Spark master to the Spark slaves (this step is
only required to enable remote login for the slave daemon startup and shutdown actions).

» Configure the spark-defaults.conf file on all nodes with the URL of the Spark
master node.

» Configure the spark-env.sh file on all nodes with the hostname or IP address of the
Spark master node.

» Run the start-master. sh script from the sbin directory on the Spark master node.
» Run the start-slave.sh script from the sbin directory on all of the Spark slave nodes.
» Check the Spark master UI. You should see each slave node in the Workers section.

» Run a test Spark job.

Installing Spark in Standalone Mode 37

TRY IT YOURSELF V¥

Configuring and Testing a Multinode Spark Cluster

Take your single node Spark system and create a basic two-node Spark cluster with a master
node and a worker node.

In this example, | use two Linux instances with Spark installed in the same relative paths: one
with a hostname of sparkmaster, and the other with a hostname of sparkslave.

1. Ensure that each node can resolve the other. The ping command can be used for this.
For example, from sparkmaster:
ping sparkslave

2. Ensure the firewall rules of network ACLs will allow traffic on multiple ports between cluster

instances because cluster nodes will communicate using various TCP ports (normally not a
concern if all cluster nodes are on the same subnet).

3. Create and configure the spark-defaults.conf file on all nodes. Run the following
commands on the sparkmaster and sparkslave hosts:

cd $SPARK HOME/conf
sudo cp spark-defaults.conf.template spark-defaults.conf
sudo sed -i "\Saspark.master\tspark://sparkmaster:7077" spark-defaults.conf

4. Create and configure the spark-env. sh file on all nodes. Complete the following tasks on
the sparkmaster and sparkslave hosts:

cd $SPARK HOME/conf
sudo cp spark-env.sh.template spark-env.sh
sudo sed -i "\$aSPARK MASTER IP=sparkmaster" spark-env.sh

5. On the sparkmaster host, run the following command:

sudo $SPARK HOME/sbin/start-master.sh

6. On the sparkslave host, run the following command:

sudo $SPARK HOME/sbin/start-slave.sh spark://sparkmaster:7077
7. Check the Spark master web user interface (Ul) at http://sparkmaster:8080/.
8. Check the Spark worker web Ul at http://sparkslave:8081/.

9. Run the built-in Pi Estimator example from the terminal of either node:

spark-submit --class org.apache.spark.examples.SparkPi \
--master spark://sparkmaster:7077 \

--driver-memory 512m \

--executor-memory 512m \

--executor-cores 1 \

$SSPARK HOME/lib/spark-examples*.jar 10

38 HOUR 3: Installing Spark

n 10. If the application completes successfully, you should see something like the following (omit-
ting informational log messages). Note, this is an estimator program, so the actual result
may vary:

Pi is roughly 3.140576

This is a simple example. If it was a production cluster, | would set up passwordless
SSH to enable the start-all.sh and stop-all.sh shell scripts. | would also consider
modifying additional configuration parameters for optimization.

CAUTION

Spark Master Is a Single Point of Failure in Standalone Mode

Without implementing High Availability (HA), the Spark Master node is a single point of failure (SPOF)
for the Spark cluster. This means that if the Spark Master node goes down, the Spark cluster would
stop functioning, all currently submitted or running applications would fail, and no new applications
could be submitted.

High Availability can be configured using Apache Zookeeper, a highly reliable distributed coordination
service. You can also configure HA using the filesystem instead of Zookeeper; however, this is not
recommended for production systems.

Exploring the Spark Install

Now that you have Spark up and running, let’s take a closer look at the install and its
various components.

”

If you followed the instructions in the previous section, “Installing Spark in Standalone Mode,
you should be able to browse the contents of SSPARK HOME.

In Table 3.1, I describe each subdirectory of the Spark installation.

TABLE 3.1 Spark Installation Subdirectories

Directory Description

bin Contains all of the commands/scripts to run Spark applications interactively
through shell programs such as pyspark, spark-shell, spark-sqgl and
sparkR, or in batch mode using spark-submit.

conf Contains templates for Spark configuration files, which can be used to set Spark
environment variables (spark-env.sh) or set default master, slave, or client
configuration parameters (spark-defaults.conf). There are also configuration
templates to control logging (log4j .properties), metrics collection (metrics.
properties), as well as a template for the slaves file, which controls which
slave nodes can join the Spark cluster.

Directory

Deploying Spark on Hadoop 39

Description

ec2

1lib

licenses

python

sbin

data

examples

Contains scripts to deploy Spark nodes and clusters on Amazon Web Services
(AWS) Elastic Compute Cloud (EC2). | will cover deploying Spark in EC2 in
Hour 5, “Deploying Spark in the Cloud.”

Contains the main assemblies for Spark including the main library
(spark-assembly-x.x.x-hadoopx.x.x.jar) and included example programs
(spark-examples-x.x.x-hadoopx.x.x.jar), of which we have already run
one, SparkPi, to verify the installation in the previous section.

Includes license files covering other included projects such as Scala and JQuery.
These files are for legal compliance purposes only and are not required to
run Spark.

Contains all of the Python libraries required to run PySpark. You will generally not
need to access these files directly.

Contains administrative scripts to start and stop master and slave services
(locally or remotely) as well as start processes related to YARN and Mesos.

| used the start-master.sh and start-slave.sh scripts when | covered how
to install a multi-node cluster in the previous section.

Contains sample data sets used for testing mllib (which we will discuss in more
detail in Hour 16, “Machine Learning with Spark”).

Contains the source code for all of the examples included in
lib/spark-examples-x.x.x-hadoopx.x.x.jar. Example programs are
included in Java, Python, R, and Scala. You can also find the latest code for the
included examples at https://github.com/apache/spark/tree/master/examples.

Contains the SparkR package and associated libraries and documentation.
| will discuss SparkR in Hour 15, “Getting Started with Spark and R”

Deploying Spark on Hadoop

As discussed previously, deploying Spark with Hadoop is a popular option for many users

because Spark can read from and write to the data in Hadoop (in HDFS) and can leverage
Hadoop'’s process scheduling subsystem, YARN.

Using a Management Console or Interface

If you are using a commercial distribution of Hadoop such as Cloudera or Hortonworks, you can

often deploy Spark using the management console provided with each respective platform: for

example, Cloudera Manager for Cloudera or Ambari for Hortonworks.

https://github.com/apache/spark/tree/master/examples

40 HOUR 3: Installing Spark

If you are using the management facilities of a commercial distribution, the version of Spark
deployed may lag the latest stable Apache release because Hadoop vendors typically update
their software stacks with their respective major and minor release schedules.

Installing Manually

Installing Spark on a YARN cluster manually (that is, not using a management interface such as
Cloudera Manager or Ambari) is quite straightforward to do.

V¥ TRY IT YOURSELF

Installing Spark on Hadoop Manually

1. Follow the steps outlined for your target platform (for example, Red Hat Linux, Windows,
and so on) in the earlier section “Installing Spark in Standalone Mode.”

2. Ensure that the system you are installing on is a Hadoop client with configuration files
pointing to a Hadoop cluster. You can do this as shown:
hadoop fs -1s
This lists the contents of your user directory in HDFS. You could instead use the path in
HDFS where your input data resides, such as
hadoop fs -1ls /path/to/my/data

If you see an error such as hadoop: command not found, you need to make sure a
correctly configured Hadoop client is installed on the system before continuing.

3. Set either the HADOOP CONF_DIR or YARN CONF DIR environment variable as shown:

export HADOOP CONF DIR=/etc/hadoop/conf
or
export YARN CONF_DIR=/etc/hadoop/cont

As with SPARK HOME, these variables could be set using the .bashrc or similar profile
script sourced automatically.

4. Execute the following command to test Spark on YARN:

spark-submit --class org.apache.spark.examples.SparkPi \
--master yarn-cluster \
$SPARK HOME/lib/spark-examples*.jar 10

Deploying Spark on Hadoop 41

5. If you have access to the YARN Resource Manager Ul, you can see the Spark job running n
in YARN as shown in Figure 3.4:

-\'ﬁ'hadmmp RUNNING Applications Ry

i e ey
s
==
okt " v
iSciorn i ey

- 3
ey

™ o e ot ey ey mewy Wem T Lem ety
L T R = e e R R R =1 =R

Sty s) e 4, o e BT s
S 3 - e

e T maa Tupes wa
e T
b

S 1 ot

e

FIGURE 3.4
The YARN ResourceManager Ul showing the Spark application running.

6. Clicking the ApplicationsMaster link in the ResourceManager Ul will redirect you to the Spark
Ul for the application:

* C [resourcemanager 15050/ =

Spaiz i3y | e

Spark Jobs 17

Sehaduling Meds: FFD
Completed Jabs: |

Completed Jobs [1)
Jobdd Description Bubmitted Duration Stages: BuccesdedTotal Tasks (for all stages); Succesded Total

0 WSO 083w [L

Spark Pi (application_1848346304... spicabon Ll

FIGURE 3.5
The Spark Ul.

Submitting Spark applications using YARN can be done in two submission modes:

yarn-cluster or yarn-client.

Using the yarn-cluster option, the Spark Driver and Spark Context, ApplicationsMaster, and
all executors run on YARN NodeManagers. These are all concepts we will explore in detail in
Hour 4, “Understanding the Spark Runtime Architecture.” The yarn-cluster submission
mode is intended for production or non interactive/batch Spark applications. You cannot use

42 HOUR 3: Installing Spark

yarn-cluster as an option for any of the interactive Spark shells. For instance, running
the following command:

spark-shell --master yarn-cluster

will result in this error:

Error: Cluster deploy mode is not applicable to Spark shells.

Using the yarn-client option, the Spark Driver runs on the client (the host where you ran the
Spark application). All of the tasks and the ApplicationsMaster run on the YARN NodeManagers
however unlike yarn-cluster mode, the Driver does not run on the ApplicationsMaster.

The yarn-client submission mode is intended to run interactive applications such as
pyspark or spark-shell.

CAUTION

Running Incompatible Workloads Alongside Spark May Cause Issues

Spark is a memory-intensive processing engine. Using Spark on YARN will allocate containers,
associated CPU, and memory resources to applications such as Spark as required. If you have other
memory-intensive workloads, such as Impala, Presto, or HAWQ running on the cluster, you need

to ensure that these workloads can coexist with Spark and that neither compromises the other.
Generally, this can be accomplished through application, YARN cluster, scheduler, or application
queue configuration and, in extreme cases, operating system cgroups (on Linux, for instance).

Summary

In this hour, I have covered the different deployment modes for Spark: Spark Standalone, Spark
on Mesos, and Spark on YARN.

Spark Standalone refers to the built-in process scheduler it uses as opposed to using a preexisting
external scheduler such as Mesos or YARN. A Spark Standalone cluster could have any

number of nodes, so the term “Standalone” could be a misnomer if taken out of context. I have
showed you how to install Spark both in Standalone mode (as a single node or multi-node
cluster) and how to install Spark on an existing YARN (Hadoop) cluster.

I have also explored the components included with Spark, many of which you will have used by
the end of this book.

You're now up and running with Spark. You can use your Spark installation for most of the
exercises throughout this book.

Workshop 43

Q&A

Q. What are the factors involved in selecting a specific deployment mode for Spark?

A. The choice of deployment mode for Spark is primarily dependent upon the environment
you are running in and the availability of external scheduling frameworks such as YARN or
Mesos. For instance, if you are using Spark with Hadoop and you have an existing YARN
infrastructure, Spark on YARN is a logical deployment choice. However, if you are running
Spark independent of Hadoop (for instance sourcing data from S3 or a local filesystem),
Spark Standalone may be a better deployment method.

Q. What is the difference between the yarn-client and the yarn-cluster options
of the - -master argument using spark-submit?

A. Both the yarn-client and yarn-cluster options execute the program in the Hadoop
cluster using YARN as the scheduler; however, the yarn-client option uses the client host
as the driver for the program and is designed for testing as well as interactive shell usage.

Workshop

The workshop contains quiz questions and exercises to help you solidify your understanding of
the material covered. Try to answer all questions before looking at the “Answers” section that
follows.

Quiz
1. True or false: A Spark Standalone cluster consists of a single node.
2. Which component is not a prerequisite for installing Spark?
A. Scala
B. Python
C. Java

3. Which of the following subdirectories contained in the Spark installation contains scripts to
start and stop master and slave node Spark services?

A. bin
B. sbin
C. 1ib
4. Which of the following environment variables are required to run Spark on Hadoop/YARN?
A. HADOOP_ CONF_DIR
B. YARN CONF DIR

C. Either HADOOP CONF_DIR Or YARN CONF_DIR will work.

44 HOUR 3: Installing Spark

Answers

1. False. Standalone refers to the independent process scheduler for Spark, which could be
deployed on a cluster of one-to-many nodes.

2. A. The Scala assembly is included with Spark; however, Java and Python must exist on the
system prior to installation.

3. B. sbin contains administrative scripts to start and stop Spark services.

4. C. Either the HADOOP CONF_DIR or YARN CONF DIR environment variable must be set for
Spark to use YARN.

Exercises

1. Using your Spark Standalone installation, execute pyspark to open a PySpark interactive
shell.

2. Open a browser and navigate to the SparkUI at http://localhost:4040.

3. Click the Environment top menu link or navigate to Environment page directly using the url:
http://localhost:4040/environment/.

4. Note some of the various environment settings and configuration parameters set. | will
explain many of these in greater detail throughout the book.

Index

Symbols defined, 47, 206
first(), 208-209

<- (assignment operator) in R, 344 foreach(), 210-211

map() transformation
versus, 233

A lazy evaluation, 107-108
on RDDs, 92
saveAsHadoopFile(), 251-252

saveAsNewAPIHadoopFile(),
253

saveAsSequenceFile(), 250
saveAsTextFile(), 93, 248
spark-ec2 shell script, 65
take(), 207-208
takeSample(), 199
top(), 208

adjacency lists, 400-401

ABC programming language, 166
abstraction, Spark as, 2
access control lists (ACLs), 503
accumulator() method, 266
accumulators, 265-266
accumulator() method, 266
custom accumulators, 267
in DStreams, 331, 340
usage example, 268-270
value() method, 266

. adjacency matrix, 401-402
warning about, 268

aggregation, 209
fold() method, 210
foldByKey() method, 217
groupBy() method, 202,

ACLs (access control lists), 503
actions
aggregate actions, 209
fold(), 210

313-314
reduce(), 209
groupByKey() method,
collect(), 207 215-216, 233

count(), 206 reduce() method, 209

544 aggregation

reduceByKey() method,
216-217, 233

sortByKey() method,
217-218

subtractByKey() method,
218-219

Alluxio, 254, 258
architecture, 254-255
benefits of, 257
explained, 254
as filesystem, 255-256
off-heap persistence, 256

ALS (Alternating Least Squares),
373

Amazon DynamoDB, 429-430

Amazon Kinesis Streams. See
Kinesis Streams

Amazon Machine Image (AMI), 66

Amazon Software License (ASL),
448

Amazon Web Services (AWS),
61-62

EC2 (Elastic Compute Cloud),
62-63

Spark deployment on,
64-73

EMR (Elastic MapReduce),
63-64

Spark deployment on,
73-80

pricing, 64
S3 (Simple Storage Service),
63

AMI (Amazon Machine Image), 66
anonymous functions

in Python, 179-180

in Scala, 158

Apache Cassandra. See Cassandra

Apache Drill, 290
Apache HAWQ, 290
Apache Hive. See Hive
Apache Kafka. See Kafka
Apache Mahout, 367
Apache Parquet, 299

Apache Software Foundation
(ASF), 1

Apache Solr, 430

Apache Spark. See Spark

Apache Storm, 323

Apache Tez, 289

Apache Zeppelin, 75

Apache Zookeeper, 38, 436
installing, 441

API access to Spark History
Server, 489-490

appenders in Log4j framework,
493, 499

application support in Spark, 3
application Ul, 48, 479

diagnosing performance
problems, 536-539

Environment tab, 486
example Spark routine, 480
Executors tab, 486-487
Jobs tab, 481-482

in local mode, 57

security via Java Servlet
Filters, 510-512, 517

in Spark History Server,
488-489

Stages tab, 483-484
Storage tab, 484-485
tabs in, 499

applications

components of, 45-46
cluster managers, 49, 51
drivers, 46-48
executors, 48-49
masters, 49-50
workers, 48-49

defined, 21

deployment environment
variables, 457

external applications
accessing Spark SQL, 319

processing RDDs with,
278-279

managing

in Standalone mode,
466-469

on YARN, 473-475
Map-only applications,
124-125
optimizing
associative operations,
527-529
collecting data, 530

diagnosing problems,
536-539

dynamic allocation,
531-532

with filtering, 527

functions and closures,
529-530

serialization, 531
planning, 47
returning results, 48
running in local mode, 56-58

running on YARN, 20-22, 51,
472-473

application management,
473-475

ApplicationsMaster, 52-53
log file management, 56

ResourceManager, 51-52,
471-472

yarn-client submission
mode, 54-55

yarn-cluster submission
mode, 53-54

Scala
compiling, 140-141
packaging, 141
scheduling, 47

in Standalone mode,
469-471

on YARN, 475-476
setting logging within, 497-498
viewing status of all, 487

ApplicationsMaster, 20-21,
471-472

as Spark master, 52-53
arrays in R, 345

ASF (Apache Software
Foundation), 1

ASL (Amazon Software License),
448

assignment operator (<-) in R, 344
associative operations, 209
optimizing, 527-529
asymmetry, speculative execution
and, 124

attribute value pairs. See key
value pairs (KVP)

authentication, 503-504
encryption, 506-510

with Java Servlet Filters,
510-511

with Kerberos, 512-514, 517
client commands, 514
configuring, 515-516
with Hadoop, 514-515
terminology, 513

shared secrets, 504-506

authentication service (AS), 513
authorization, 503-504

with Java Servlet Filters,
511-512

AWS (Amazon Web Services).
See Amazon Web Services (AWS)

BackType, 323

Bagel, 403

Bayes’ Theorem, 372

Beeline, 287, 318-321

Beeswax, 287

benchmarks, 519-520
spark-perf, 521-525
Terasort, 520-521

TPC (Transaction Processing
Performance Council), 520

when to use, 540
big data, history of, 11-12
Bigtable, 417-418
bin directory, 38
block reports, 17
blocks
in HDFS, 14-16
replication, 25
bloom filters, 422
bound variables, 158

case statement in Scala

breaking for loops, 151
broadcast() method, 260-261
broadcast variables, 259-260
advantages of, 263-265, 280
broadcast() method, 260-261
configuration options, 262
in DStreams, 331
unpersist() method, 262
usage example, 268-270
value() method, 261-262
brokers in Kafka, 436
buckets, 63
buffering messages, 435

built-in functions for DataFrames,
310

bytecode, machine code versus,
168

C

c() method (combine), 346
cache() method, 108, 314
cacheTable() method, 314
caching
DataFrames, 314
DStreams, 331

RDDs, 108-109, 239-240,
243

callback functions, 180
canary queries, 525
CapacityScheduler, 52

capitalization. See naming
conventions

cartesian() method, 225-226

case statement in Scala, 152

545

546 Cassandra

Cassandra

accessing via Spark,
427-429

CQL (Cassandra Query
Language), 426-427

data model, 426
HBase versus, 425-426, 431

Cassandra Query Language (CQL),
426-427

Centos, installing Spark, 30-31
centroids in clustering, 366
character data type in R, 345
character functions in R, 349
checkpoint() method, 244-245
checkpointing

defined, 111

DStreams, 330-331, 340

RDDs, 244-247, 258
checksums, 17
child RDDs, 109
choosing. See selecting
classes in Scala, 153-155

classification in machine learning,
364, 367

decision trees, 368-372
Naive Bayes, 372-373
clearCache() method, 314

CLI (command line interface)
for Hive, 287

clients
in Kinesis Streams, 448
MQTT, 445
closures
optimizing applications,
529-530
in Python, 181-183
in Scala, 158-159

cloud deployment
on Databricks, 81-88
on EC2, 64-73
on EMR, 73-80
Cloudera Impala, 289

cluster architecture in Kafka,
436-437

cluster managers, 45, 49, 51

independent variables,
454-455

ResourceManager as, 51-52
cluster mode (EMR), 74

clustering in machine learning,
365-366, 375-377

clustering keys in Cassandra, 426
clusters

application deployment
environment variables, 457

defined, 13

EMR launch modes, 74
master Ul, 487

operational overview, 22-23

Spark Standalone mode.
See Spark Standalone
deployment mode

coalesce() method, 274-275, 314

coarse-grained transformations,
107

codecs, 94, 249
cogroup() method, 224-225
CoGroupedRDDs, 112

collaborative filtering in machine
learning, 365, 373-375

collect() method, 207, 306, 530
collections
in Cassandra, 426

diagnosing performance
problems, 538-539

in Scala, 144
lists, 145-146, 163
maps, 148-149
sets, 146-147, 163
tuples, 147-148
column families, 420

columnar storage formats,
253, 299

columns method, 305
Combiner functions, 122-123

command line interface (CLI)
for Hive, 287

commands, spark-submit, 7, 8

committers, 2

commutative operations, 209

comparing objects in Scala, 143

compiling Scala programs,
140-141

complex data types in Spark SQL,
302

components (in R vectors), 345
compression
external storage, 249-250
of files, 93-94
Parquet files, 300
conf directory, 38
configuring
Kerberos, 515-516
local mode options, 56-57
Log4j framework, 493-495
SASL, 509
Spark
broadcast variables, 262
configuration properties,
457-460, 477
environment variables,
454-457

managing configuration,
461

precedence, 460-461
Spark History Server, 488
SSL, 506-510

connected components algorithm,
405

consumers
defined, 434
in Kafka, 435
containers, 20-21
content filtering, 434-435, 451
contributors, 2
control structures in Scala, 149

do while and while loops,
151-152

for loops, 150-151

if expressions, 149-150
named functions, 153
pattern matching, 152

converting DataFrames to RDDs,
301

core nodes, task nodes versus, 89
Couchbase, 430

CouchDB, 430

count() method, 206, 306

counting words. See Word Count
algorithm (MapReduce example)

cPickle, 176
CPython, 167-169

CQL (Cassandra Query Language),
426-427

CRAN packages in R, 349

createDataFrame() method,
294-295

createDirectStream() method,
439-440

createStream() method
KafkaUtils package, 440

KinesisUtils package,
449-450

MQTTUtils package,
445-446

CSV files, creating SparkR data
frames from, 352-354

current directory in Hadoop, 18
Curry, Haskell, 159

currying in Scala, 159

custom accumulators, 267

Cutting, Doug, 11-12, 115

daemon logging, 495

DAG (directed acyclic graph), 47,
399

Data Definition Language (DDL) in
Hive, 288

data deluge
defined, 12
origin of, 117
data directory, 39
data distribution in HBase, 422
data frames
matrices versus, 361
in R, 345, 347-348
in SparkR
creating from CSV files,
352-354
creating from Hive tables,
354-355
creating from R data
frames, 351-352

data types 547

data locality
defined, 12, 25
in loading data, 113
with RDDs, 94-95
data mining, 355. See also
R programming language
data model
for Cassandra, 426
for DataFrames, 301-302
for DynamoDB, 429
for HBase, 420-422
data sampling, 198-199
sample() method, 198-199
takeSample() method, 199
data sources
creating

JDBC datasources,
100-103

relational databases, 100
for DStreams, 327-328
HDFS as, 24
data structures
in Python
dictionaries, 173-174
lists, 170, 194
sets, 170-171
tuples, 171-173, 194
in R, 345-347
in Scala, 144
immutability, 160
lists, 145-146, 163
maps, 148-149
sets, 146-147, 163
tuples, 147-148
data types
in Hive, 287-288
in R, 344-345

548 data types

in Scala, 142
in Spark SQL, 301-302

Databricks, Spark deployment on,
81-88

Databricks File System (DBFS), 81
Datadog, 525-526
data.frame() method, 347

DataFrameReader, creating
DataFrames with, 298-301

DataFrames, 102, 111, 294
built-in functions, 310

caching, persisting,
repartitioning, 314

converting to RDDs, 301
creating

with DataFrameReader,
298-301

from Hive tables, 295-296
from JSON files, 296-298
from RDDs, 294-295

data model, 301-302

functional operations,
306-310

GraphFrames. See
GraphFrames

metadata operations,
305-306

saving to external storage,
314-316

schemas
defining, 304
inferring, 302-304
set operations, 311-314

UDFs (user-defined functions),
310-311

DataNodes, 17
Dataset API, 118

datasets, defined, 92, 117.
See also RDDs (Resilient
Distributed Datasets)

datasets package, 351-352
DataStax, 425
DBFS (Databricks File System), 81
dbutils.fs, 89
DDL (Data Definition Language)
in Hive, 288
Debian Linux, installing Spark,
32-33
decision trees, 368-372

DecisionTree.trainClassifier
function, 371-372

deep learning, 381-382

defaults for environment
variables and configuration
properties, 460

defining DataFrame schemas, 304
degrees method, 408-409
deleting objects (HDFS), 19
deploying. See also installing

cluster applications,
environment variables for,
457

H20 on Hadoop, 384-386
Spark
on Databricks, 81-88
on EC2, 64-73
on EMR, 73-80
Spark History Server, 488

deployment modes for Spark.
See also Spark on YARN
deployment mode; Spark
Standalone deployment mode
list of, 27-28
selecting, 43
describe method, 392

design goals for MapReduce, 117
destructuring binds in Scala, 152

diagnosing performance problems,
536-539

dictionaries
keys() method, 212
in Python, 101, 173-174
values() method, 212

direct stream access in Kafka,
438, 451

directed acyclic graph (DAG),
47, 399

directory contents
listing, 19
subdirectories of Spark
installation, 38-39

discretized streams. See
DStreams

distinct() method, 203-204, 308
distributed, defined, 92

distributed systems, limitations of,
115-116

distribution of blocks, 15
do while loops in Scala, 151-152
docstrings, 310
document stores, 419
documentation for Spark SQL, 310
DoubleRDDs, 111
downloading
files, 18-19
Spark, 29-30
Drill, 290
drivers, 45, 46-48
application planning, 47
application scheduling, 47
application Ul, 48

masters versus, 50

returning results, 48
SparkContext, 46-47
drop() method, 307
DStream.checkpoint() method, 330

DStreams (discretized streams),
324, 326-327

broadcast variables and
accumulators, 331

caching and persistence, 331
checkpointing, 330-331, 340
data sources, 327-328
lineage, 330

output operations, 331-333

sliding window operations,
337-339, 340

state operations, 335-336,
340

transformations, 328-329
dtypes method, 305-306

Dynamic Resource Allocation,
476, 531-532

DynamoDB, 429-430

EBS (Elastic Block Store), 62, 89

EC2 (Elastic Compute Cloud),
62-63, 64-73

ec2 directory, 39

ecosystem projects, 13

edge nodes, 502

EdgeRDD objects, 404-405

edges
creating edge DataFrames, 407
in DAG, 47
defined, 399

edges method, 407-408

Elastic Block Store (EBS), 62, 89

Elastic Compute Cloud (EC2),
62-63, 64-73

Elastic MapReduce (EMR), 63-64,
73-80

ElasticSearch, 430

election analogy for MapReduce,
125-126

encryption, 506-510

Environment tab (application Ul),
486, 499

environment variables, 454

cluster application
deployment, 457

cluster manager independent
variables, 454-455

defaults, 460
Hadoop-related, 455

Spark on YARN environment
variables, 456-457

Spark Standalone daemon,
455-456

ephemeral storage, 62
ETags, 63
examples directory, 39

exchange patterns. See pub-sub
messaging model

executors, 45, 48-49
logging, 495-497
number of, 477
in Standalone mode, 463
workers versus, 59

Executors tab (application Ul),
486-487, 499

explain() method, 310
external applications
accessing Spark SQL, 319

processing RDDs with,
278-279

files 549

external storage for RDDs,
247-248

Alluxio, 254-257, 258
columnar formats, 253, 299
compressed options, 249-250

Hadoop input/output formats,
251-253

saveAsTextFile() method, 248

saving DataFrames to,
314-316

sequence files, 250

external tables (Hive), internal
tables versus, 289

F

FairScheduler, 52, 470-471, 477
fault tolerance

in MapReduce, 122

with RDDs, 111

fault-tolerant mode (Alluxio),
254-255

feature extraction, 366-367, 378

features in machine learning,
366-367

files
compression, 93-94

CSV files, creating SparkR
data frames from, 352-354

downloading, 18-19
in HDFS, 14-16

JSON files, creating RDDs
from, 103-105

object files, creating RDDs
from, 99

text files

creating DataFrames from,
298-299

550 files

creating RDDs from, 93-99

saving DStreams as,
332-333

uploading (ingesting), 18
filesystem, Alluxio as, 255-256
filter() method, 201-202, 307

in Python, 170
filtering

messages, 434-435, 451

optimizing applications, 527
find method, 409-410
fine-grained transformations, 107
first() method, 208-209

first-class functions in Scala,
157, 163

flags for RDD storage levels,
237-238

flatMap() method, 131, 200-201
in DataFrames, 308-309

map() method versus, 135,
232

flatMapValues() method, 213-214

fold() method, 210

foldByKey() method, 217

followers in Kafka, 436-437

foreach() method, 210-211, 306
map() method versus, 233

foreachPartition() method,
276-277

foreachRDD() method, 333

for loops in Scala, 150-151

free variables, 158

frozensets in Python, 171

full outer joins, 219
fullOuterJoin() method, 223-224
function literals, 163

function values, 163

functional programming
in Python, 178

anonymous functions,
179-180

closures, 181-183

higher-order functions,
180, 194

parallelization, 181
short-circuiting, 181
tail calls, 180-181

in Scala
anonymous functions, 158
closures, 158-159
currying, 159

first-class functions,
157, 163

function literals versus
function values, 163

higher-order functions, 158

immutable data structures,
160

lazy evaluation, 160
functional transformations, 199
filter() method, 201-202
flatMap() method, 200-201
map() method versus, 232

flatMapValues() method,
213-214

keyBy() method, 213
map() method, 199-200

flatMap() method versus,
232

foreach() method versus,
233

mapValues() method, 213
functions

optimizing applications,
529-530

passing to map
transformations, 540-541

in R, 348-349
Funnel project, 138
future of NoSQL, 430

G

garbage collection, 169

gateway services, 503
generalized linear model, 357
Generic Java (GJ), 137
getCheckpointFile() method, 245

getStorageLevel() method,
238-239

glm() method, 357
glom() method, 277
Google
graphs and, 402-403
in history of big data, 11-12
PageRank. See PageRank
graph stores, 419
GraphFrames, 406
accessing, 406
creating, 407
defined, 414
methods in, 407-409
motifs, 409-410, 414

PageRank implementation,
411-413

subgraphs, 410
GraphRDD objects, 405
graphs
adjacency lists, 400-401
adjacency matrix, 401-402

characteristics of, 399
defined, 399
Google and, 402-403
GraphFrames, 406
accessing, 406
creating, 407
defined, 414
methods in, 407-409
motifs, 409-410, 414

PageRank implementation,
411-413

subgraphs, 410
GraphX API, 403-404

EdgeRDD objects,
404-405

graphing algorithms in, 405

GraphRDD objects, 405
VertexRDD objects, 404
terminology, 399-402
GraphX API, 403-404
EdgeRDD objects, 404-405
graphing algorithms in, 405
GraphRDD objects, 405
VertexRDD objects, 404
groupBy() method, 202, 313-314

groupByKey() method, 215-216,
233, 527-529

grouping data, 202
distinct() method, 203-204
foldByKey() method, 217

groupBy() method, 202,
313-314

groupByKey() method,
215-216, 233

reduceByKey() method,
216-217, 233

sortBy() method, 202-203

HDFS (Hadoop Distributed File System)

sortByKey() method, 217-218

subtractByKey() method,
218-219

H20, 381
advantages of, 397
architecture, 383-384
deep learning, 381-382

deployment on Hadoop,
384-386

interfaces for, 397
saving models, 395-396
Sparkling Water, 387, 397
architecture, 387-388
example exercise, 393-395
H20Frames, 390-393
pysparkling shell, 388-390
web interface for, 382-383
H20 Flow, 382-383
H20Context, 388-390
H20Frames, 390-393
HA (High Availability),
implementing, 38
Hadoop, 115
clusters, 22-23
current directory in, 18
Elastic MapReduce (EMR),
63-64, 73-80
environment variables, 455
explained, 12-13
external storage, 251-253
H20 deployment, 384-386

HDFS. See HDFS (Hadoop
Distributed File System)

history of big data, 11-12
Kerberos with, 514-515
Spark and, 2, 8
deploying Spark, 39-42
downloading Spark, 30
HDFS as data source, 24

YARN as resource
scheduler, 24

SQL on Hadoop, 289-290

YARN. See YARN (Yet Another
Resource Negotiator)

Hadoop Distributed File System
(HDFS). See HDFS (Hadoop
Distributed File System)

hadoopFile() method, 99
HadoopRDDs, 111
hash partitioners, 121

Haskell programming language,
159

HAWQ, 290
HBase, 419

Cassandra versus, 425-426,
431

data distribution, 422

data model and shell,
420-422

reading and writing data with
Spark, 423-425
HCatalog, 286

HDFS (Hadoop Distributed File
System), 12

blocks, 14-16

DataNodes, 17

explained, 13

files, 14-16

interactions with, 18
deleting objects, 19
downloading files, 18-19

551

552 HDFS (Hadoop Distributed File System)

listing directory
contents, 19
uploading (ingesting)
files, 18
NameNode, 16-17
replication, 14-16
as Spark data source, 24
heap, 49
HFile objects, 422

High Availability (HA),
implementing, 38

higher-order functions
in Python, 180, 194
in Scala, 158
history
of big data, 11-12
of IPython, 183-184
of MapReduce, 115
of NoSQL, 417-418
of Python, 166
of Scala, 137-138
of Spark SQL, 283-284
of Spark Streaming, 323-324

History Server. See Spark
History Server

Hive
conventional databases
versus, 285-286
data types, 287-288

DDL (Data Definition
Language), 288

explained, 284-285
interfaces for, 287

internal versus external
tables, 289

metastore, 286
Spark SQL and, 291-292

tables

creating DataFrames from,
295-296

creating SparkR data
frames from, 354-355

writing DataFrame data
to, 315

Hive on Spark, 284
HiveContext, 292-293, 322
HiveQL, 284-285
HiveServer2, 287

IAM (Identity and Access
Management) user accounts, 65

if expressions in Scala, 149-150
immutability

of HDFS, 14

of RDDs, 92

immutable data structures in
Scala, 160

immutable sets in Python, 171
immutable variables in Scala, 144
Impala, 289

indegrees, 400

inDegrees method, 408-409

inferring DataFrame schemas,
302-304

ingesting files, 18
inheritance in Scala, 153-155
initializing RDDs, 93

from datasources, 100

from JDBC datasources,
100-103

from JSON files, 103-105

from object files, 99
programmatically, 105-106
from text files, 93-99
inner joins, 219
input formats
Hadoop, 251-253
for machine learning, 371
input split, 127
input/output types in Spark, 7
installing. See also deploying
IPython, 184-185
Jupyter, 189
Python, 31
R packages, 349
Scala, 31, 139-140
Spark
on Hadoop, 39-42
on Mac 0S X, 33-34

on Microsoft Windows,
34-36

as multi-node Standalone
cluster, 36-38

on Red Hat/Centos, 30-31
requirements for, 28

in Standalone mode,
29-36

subdirectories of
installation, 38-39

on Ubuntu/Debian Linux,
32-33

Zookeeper, 441
instance storage, 62

EBS versus, 89
Instance Type property (EC2), 62
instances (EC2), 62
int methods in Scala, 143-144
integer data type in R, 345

Interactive Computing Protocol,
189

Interactive Python. See IPython
(Interactive Python)

interactive use of Spark, 5-7, 8

internal tables (Hive), external
tables versus, 289

interpreted languages, Python as,
166-167

intersect() method, 313
intersection() method, 205
loT (Internet of Things)

defined, 443. See also MQTT
(MQ Telemetry Transport)

MQTT characteristics for, 451
IPython (Interactive Python), 183
history of, 183-184
Jupyter notebooks, 187-189
advantages of, 194
kernels and, 189
with PySpark, 189-193
Spark usage with, 184-187
IronPython, 169
isCheckpointed() method, 245

J

Java, word count in Spark
(listing 1.3), 4-5

Java Database Connectivity (JDBC)
datasources, creating RDDs
from, 100-103

Java Management Extensions
(JMX), 490

Java Servlet Filters, 510-512, 517

KDC (key distribution center)

Java virtual machines (JVMs), 139
defined, 46
heap, 49

javac compiler, 137

JavaScript Object Notation (JSON).
See JSON (JavaScript Object
Notation)

JDBC (Java Database Connectivity)
datasources, creating RDDs
from, 100-103

JDBC/ODBC interface, accessing
Spark SQL, 317-318, 319
JdbcRDDs, 112

JMX (Java Management
Extensions), 490

jobs
in Databricks, 81

diagnosing performance
problems, 536-538

scheduling, 470-471

Jobs tab (application Ul),
481-482, 499

join() method, 219-221, 312
joins, 219
cartesian() method, 225-226
cogroup() method, 224-225
example usage, 226-229

fullOuterJoin() method,
223-224

join() method, 219-221, 312

leftOuterJoin() method,
221-222

optimizing, 221
rightOuterJoin() method,
222-223

types of, 219

553

JSON (JavaScript Object Notation),
174-176

creating DataFrames from,
296-298

creating RDDs from, 103-105
json() method, 316
jsonFile() method, 104, 297
jsonRDD() method, 297-298
Jupyter notebooks, 187-189
advantages of, 194
kernels and, 189
with PySpark, 189-193
JVMs (Java virtual machines), 139
defined, 46
heap, 49
Jython, 169

K

Kafka, 435-436
cluster architecture, 436-437
Spark support, 437

direct stream access,
438, 451

KafkaUtils package,
439-443

receivers, 437-438, 451
KafkaUtils package, 439-443

createDirectStream() method,
439-440

createStream() method, 440
KCL (Kinesis Client Library), 448

KDC (key distribution center),
512-513

554 Kerberos

Kerberos, 512-514, 517
client commands, 514
configuring, 515-516
with Hadoop, 514-515
terminology, 513

kernels, 189

key distribution center (KDC),
512-513

key value pairs (KVP)
defined, 118
in Map phase, 120-121
pair RDDs, 211

flatMapValues() method,
213-214

foldByKey() method, 217

groupByKey() method,
215-216, 233

keyBy() method, 213
keys() method, 212
mapValues() method, 213

reduceByKey() method,
216-217, 233

sortByKey() method,
217-218

subtractByKey() method,
218-219

values() method, 212
key value stores, 419
keyBy() method, 213
keys, 118
keys() method, 212
keyspaces in Cassandra, 426
keytab files, 513
Kinesis Client Library (KCL), 448

Kinesis Producer Library (KPL),
448

Kinesis Streams, 446-447

KCL (Kinesis Client Library),
448

KPL (Kinesis Producer Library),
448

Spark support, 448-450
KinesisUtils package, 448-450
k-means clustering, 375-377

KPL (Kinesis Producer Library),
448

Kryo serialization, 531

KVP (key value pairs). See key
value pairs (KVP)

L

LabeledPoint objects, 370
lambda calculus, 119
lambda operator

in Java, 5

in Python, 4, 179-180
lazy evaluation, 107-108, 160
leaders in Kafka, 436-437
left outer joins, 219
leftOuterJoin() method, 221-222
lib directory, 39
libraries in R, 349
library() method, 349
licenses directory, 39
limit() method, 309
lineage

of DStreams, 330

of RDDs, 109-110, 235-237

linear regression, 357-358

lines. See edges
linked lists in Scala, 145
Lisp, 119
listing directory contents, 19
listings

accessing

Amazon DynamoDB from
Spark, 430

columns in SparkR data
frame, 355

data elements in R matrix,
347

elements in list, 145

History Server REST API,
489

and inspecting data in R
data frames, 348

struct values in motifs,
410

and using tuples, 148

Alluxio as off heap memory for
RDD persistence, 256

Alluxio filesystem access
using Spark, 256

anonymous functions in Scala,
158

appending and prepending to
lists, 146

associative operations in
Spark, 527

basic authentication for Spark
Ul using Java servlets, 510

broadcast method, 261

building generalized linear
model with SparkR, 357

caching RDDs, 240

cartesian transformation, 226

Cassandra insert results, 428
checkpointing

RDDs, 245

in Spark Streaming, 330

class and inheritance example
in Scala, 154-155

closures
in Python, 182
in Scala, 159

coalesce() method, 275
cogroup transformation, 225
collect action, 207

combine function to create R
vector, 346
configuring
pool for Spark application,
471

SASL encryption for block
transfer services, 509

connectedComponents
algorithm, 405

converting
DataFrame to RDD, 301

H20Frame to Spark SQL
DataFrame, 392

count action, 206
creating
and accessing
accumulators, 265
broadcast variable from
file, 261
DataFrame from Hive ORC
files, 300
DataFrame from JSON
document, 297
DataFrame from Parquet
file (or files), 300

DataFrame from plain text
file or file(s), 299

DataFrame from RDD, 295

DataFrame from RDD
containing JSON objects,
298

edge DataFrame, 407

GraphFrame, 407

H20Frame from file, 391

H20Frame from Python
object, 390

H20Frame from Spark
RDD, 391

keyspace and table in
Cassandra using cqlsh,
426-427

PySparkling H20Context
object, 389

R data frame from column
vectors, 347

R matrix, 347

RDD of LabeledPoint
objects, 370

RDDs from JDBC
datasource using load()
method, 101

RDDs from JDBC
datasource using read.
jdbc() method, 103

RDDs using parallelize()
method, 106

RDDs using range()
method, 106

RDDs using textFile()
method, 96

RDDs using wholeText-
Files() method, 97

SparkR data frame from
CSV file, 353

listings 555

SparkR data frame from
Hive table, 354

SparkR data frame from
R data frame, 352

StreamingContext, 326

subgraph, 410

table and inserting data in
HBase, 420

vertex DataFrame, 407

and working with RDDs
created from JSON files,
104-105

currying in Scala, 159
custom accumulators, 267

declaring lists and using
functions, 145

defining schema
for DataFrame explicitly,
304
for SparkR data frame, 353

degrees, inDegrees, and
outDegrees methods,
408-409

detailed H20Frame
information using describe
method, 393

dictionaries in Python,
173-174

dictionary object usage in
PySpark, 174

dropping columns from
DataFrame, 307

DStream transformations, 329

EdgeRDDs, 404

enabling Spark dynamic
allocation, 532

evaluating k-means clustering
model, 377

556

listings

external transformation
program sample, 279

filtering rows
from DataFrame, 307

duplicates using distinct,
308

final output (Map task), 129
first action, 209

first five lines of Shakespeare
file, 130

fold action, 210

compared with reduce,
210

foldByKey example to find
maximum value by key, 217

foreach action, 211
foreachPartition() method, 276
for loops

break, 151

with filters, 151

in Scala, 150

fullOuterJoin transformation,
224

getStoragelevel() method, 239

getting help for Python API
Spark SQL functions, 310

GLM usage to make prediction
on new data, 357

GraphFrames package, 406

GraphRDDs, 405

groupBy transformation, 215

grouping and aggregating data
in DataFrames, 314

H20Frame summary function,
392

higher-order functions
in Python, 180
in Scala, 158

Hive CREATE TABLE
statement, 288

human readable
representation of Python
bytecode, 168-169

if expressions in Scala,
149-150

immutable sets in Python and
PySpark, 171
implementing

implementing ACLs for
Spark Ul, 512

Naive Bayes classifier
using Spark MLIlib, 373

importing graphframe Python
module, 406

including Databricks Spark
CSV package in SparkR, 353

initializing SQLContext, 101
input to Map task, 127
int methods, 143-144

intermediate sent to Reducer,
128

intersection transformation,
205

join transformation, 221
joining DataFrames in Spark
SQL, 312
joining lookup data
using broadcast variable,
264

using driver variable,
263-264

using RDD join(), 263
JSON object usage

in PySpark, 176

in Python, 175

Jupyter notebook JSON
document, 188-189

KafkaUtils.createDirectStream
method, 440

KafkaUtils.createStream
(receiver) method, 440

keyBy transformation, 213
keys transformation, 212
Kryo serialization usage, 531

launching pyspark supplying
JDBC MySQL connector
JAR file, 101

lazy evaluation in Scala, 160

leftOuterJoin transformation,
222

listing
functions in H20 Python
module, 389

R packages installed and
available, 349

lists
with mixed types, 145
in Scala, 145
log events example, 494
log4j.properties file, 494
logging events within Spark
program, 498

map, flatMap, and filter
transformations in Spark,
201

map(), reduce(), and filter() in
Python and PySpark, 170

map functions with Spark SQL
DataFrames, 309

mapPartitions() method, 277
maps in Scala, 148

mapValues and flatMapValues
transformations, 214

max function, 230

max values for R integer and
numeric (double) types, 345

mean function, 230

min function, 230

mixin composition using traits,
155-156

motifs, 409-410

mtcars data frame in R, 352

mutable and immutable
variables in Scala, 144

mutable maps, 148-149
mutable sets, 147
named functions

and anonymous functions
in Python, 179

versus lambda functions in
Python, 179

in Scala, 153

non-interactive Spark job
submission, 7

object serialization using
Pickle in Python, 176-177

obtaining application logs
from command line, 56
ordering DataFrame, 313
output from Map task, 128
pageRank algorithm, 405
partitionBy() method, 273
passing
large amounts of data to
function, 530
Spark configuration
properties to
spark-submit, 459
pattern matching in Scala
using case, 152
performing functions in each
RDD in DStream, 333
persisting RDDs, 241-242
pickleFile() method usage in
PySpark, 178

pipe() method, 279
PyPy with PySpark, 532
pyspark command with

pyspark-cassandra package,
428

PySpark interactive shell in
local mode, 56

PySpark program to search for
errors in log files, 92

Python program sample, 168

RDD usage for multiple
actions

with persistence, 108
without persistence, 108

reading Cassandra data into
Spark RDD, 428

reduce action, 209

reduceByKey transformation to
average values by key, 216

reduceByKeyAndWindow
function, 339

repartition() method, 274

repartitionAndSortWithin-
Partitions() method, 275

returning

column names and data
types from DataFrame,
306

list of columns from
DataFrame, 305

rightOuterJoin transformation,
223

running SQL queries against
Spark DataFrames, 102

sample() usage, 198

saveAsHadoopFile action, 252

saveAsNewAPIHadoopFile
action, 253

listings 557

saveAsPickleFile() method
usage in PySpark, 178
saving

DataFrame to Hive table,
315

DataFrame to Parquet file
or files, 316

DStream output to files,
332

H20 models in POJO
format, 396

and loading H20 models in
native format, 395

RDDs as compressed text
files using GZip codec,
249

RDDs to sequence files,
250

and reloading clustering
model, 377

scanning HBase table, 421

scheduler XML file example,
470

schema for DataFrame
created from Hive table, 304

schema inference for
DataFrames

created from JSON, 303
created from RDD, 303

select method in Spark SQL,
309

set operations example, 146
sets in Scala, 146
setting
log levels within
application, 497
Spark configuration
properties
programmatically, 458

558

listings

spark.scheduler.allocation.
file property, 471
Shakespeare RDD, 130

short-circuit operators in
Python, 181

showing current Spark
configuration, 460

simple R vector, 346
singleton objects in Scala, 156

socketTextStream() method,
327

sortByKey transformation, 218

Spark configuration object
methods, 459

Spark configuration properties
in spark-defaults.conf file,
458

Spark environment variables
set in spark-env.sh file, 454

Spark HiveContext, 293
Spark KafkaUtils usage, 439

Spark MLlib decision tree
model to classify new data,
372

Spark pi estimator in local
mode, 56

Spark routine example, 480
Spark SQLContext, 292
Spark Streaming

using Amazon Kinesis,
449-450

using MQTTUtils, 446
Spark usage on Kerberized
Hadoop cluster, 515

spark-ec2 syntax, 65
spark-perf core tests, 521-522
specifying

local mode in code, 57

log4j.properties file using
JVM options, 495

splitting data into training and
test data sets, 370

sql method for creating
DataFrame from Hive table,
295-296

state DStreams, 336

stats function, 232

stdev function, 231
StorageClass constructor, 238
submitting

Spark application to YARN
cluster, 473

streaming application with
Kinesis support, 448

subtract transformation, 206

subtractByKey transformation,
218

sum function, 231

table method for creating
dataFrame from Hive table,
296

tail call recursion, 180-181
take action, 208
takeSample() usage, 199
textFileStream() method, 328
toDebugString() method, 236
top action, 208
training

decision tree model with

Spark MLlib, 371

k-means clustering model
using Spark MLIlib, 377

triangleCount algorithm, 405
tuples

in PySpark, 173

in Python, 172

in Scala, 147
union transformation, 205
unpersist() method, 262
updating
cells in HBase, 422
data in Cassandra table
using Spark, 428
user-defined functions in
Spark SQL, 311
values transformation, 212
variance function, 231
VertexRDDs, 404

vertices and edges methods,
408

viewing applications using
REST API, 467

web log schema sample,
203-204

while and do while loops in
Scala, 152

window function, 338
word count in Spark

using Java, 4-5

using Python, 4

using Scala, 4
yarn command usage, 475

to kill running Spark
application, 475

yield operator, 151
lists

in Python, 170, 194

in Scala, 145-146, 163
load() method, 101-102
load_model function, 395
loading data

data locality in, 113

into RDDs, 93

from datasources, 100

from JDBC datasources,
100-103

from JSON files, 103-105
from object files, 99

programmatically,
105-106

from text files, 93-99

local mode, running applications,
56-58
log aggregation, 56, 497
Log4j framework, 492-493
appenders, 493, 499
daemon logging, 495
executor logs, 495-497
log4j.properties file, 493-495
severity levels, 493
log4j.properties file, 493-495
loggers, 492
logging, 492
Log4j framework, 492-493
appenders, 493, 499
daemon logging, 495
executor logs, 495-497
log4j.properties file,
493-495
severity levels, 493

setting within applications,
497-498

in YARN, 56
logical data type in R, 345
logs in Kafka, 436
lookup() method, 277
loops in Scala

do while and while loops,
151-152

for loops, 150-151

Mac OS X, installing Spark, 33-34

machine code, bytecode versus,
168

machine learning
classification in, 364, 367
decision trees, 368-372
Naive Bayes, 372-373

clustering in, 365-366,
375-377

collaborative filtering in, 365,
373-375

defined, 363-364

features and feature
extraction, 366-367

H20. See H20

input formats, 371

in Spark, 367

Spark MLIlib. See Spark MLlib

splitting data sets, 369-370
Mahout, 367
managing

applications

in Standalone mode,
466-469

on YARN, 473-475
configuration, 461

performance. See
performance management

map() method, 120-121, 130,
199-200

in DataFrames, 308-309, 322

flatMap() method versus,
135, 232

foreach() method versus, 233

passing functions to, 540-541

MapReduce 559

in Python, 170

in Word Count algorithm,
129-132

Map phase, 119, 120-121
Map-only applications, 124-125
mapPartitions() method, 277-278
MapReduce, 115

asymmetry and speculative
execution, 124

Combiner functions, 122-123

design goals, 117

election analogy, 125-126

fault tolerance, 122

history of, 115

limitations of distributed
computing, 115-116

Map phase, 120-121

Map-only applications,
124-125

partitioning function in, 121

programming model versus
processing framework,
118-119

Reduce phase, 121-122
Shuffle phase, 121, 135
Spark versus, 2, 8
terminology, 117-118
whitepaper website, 117

Word Count algorithm
example, 126

map() and reduce()
methods, 129-132

operational overview,
127-129

in PySpark, 132-134
reasons for usage,
126-127
YARN versus, 19-20

560 maps in Scala

maps in Scala, 148-149

mapValues() method, 213

Marz, Nathan, 323

master nodes, 23

master Ul, 463-466, 487

masters, 45, 49-50
ApplicationsMaster as, 52-53
drivers versus, 50

starting in Standalone mode,
463

match case constructs in Scala,
152

Mathematica, 183
matrices
data frames versus, 361
in R, 345-347
matrix command, 347
matrix factorization, 373
max() method, 230
MBeans, 490
MccCarthy, John, 119
mean() method, 230
members, 111
Memcached, 430

memory-intensive workloads,
avoiding conflicts, 42

Mesos, 22

message oriented middleware
(MOM), 433

messaging systems, 433-434

buffering and queueing
messages, 435

filtering messages, 434-435
Kafka, 435-436

cluster architecture,
436-437

direct stream access, 438,
451

KafkaUtils package,
439-443

receivers, 437-438, 451
Spark support, 437
Kinesis Streams, 446-447

KCL (Kinesis Client
Library), 448

KPL (Kinesis Producer
Library), 448

Spark support, 448-450
MQTT, 443
characteristics for loT, 451
clients, 445
message structure, 445
Spark support, 445-446
as transport protocol, 444
pub-sub model, 434-435
metadata
for DataFrames, 305-306
in NameNode, 16-17
metastore (Hive), 286
metrics, collecting, 490-492
metrics sinks, 490, 499
Microsoft Windows, installing
Spark, 34-36
min() method, 229-230

mixin composition in Scala,
155-156

MLIib. See Spark MLIlib

MOM (message oriented
middleware), 433

MongoDB, 430

monitoring performance. See
performance management

motifs, 409-410, 414

Movielens dataset, 374

MQTT (MQ Telemetry Transport),
443

characteristics for loT, 451

clients, 445

message structure, 445

Spark support, 445-446

as transport protocol, 444
MQTTUtils package, 445-446

MR1 (MapReduce v1), YARN
versus, 19-20

multi-node Standalone clusters,
installing, 36-38

multiple concurrent applications,
scheduling, 469-470

multiple inheritance in Scala,
155-156

multiple jobs within applications,
scheduling, 470-471

mutable variables in Scala, 144

Naive Bayes, 372-373

NaiveBayes.train method,
372-373

name value pairs. See key value
pairs (KVP)
named functions
in Python, 179-180
in Scala, 153
NameNode, 16-17
DataNodes and, 17
naming conventions
in Scala, 142
for SparkContext, 47

narrow dependencies, 109

neural networks, 381

newAPIHadoopFile() method, 128

NewHadoopRDDs, 112
Nexus, 22
NodeManagers, 20-21
nodes. See also vertices
in clusters, 22-23
in DAG, 47
DataNodes, 17
in decision trees, 368
defined, 13
EMR types, 74
NameNode, 16-17

non-deterministic functions, fault
tolerance and, 111

non-interactive use of Spark, 7, 8

non-splittable compression
formats, 94, 113, 249

NoSQL
Cassandra

accessing via Spark,
427-429

CQL (Cassandra Query
Language), 426-427

data model, 426

HBase versus, 425-426,
431

characteristics of, 418-419,
431

DynamoDB, 429-430
future of, 430
HBase, 419
data distribution, 422
data model and shell,
420-422
reading and writing data
with Spark, 423-425

output operations for DStreams

history of, 417-418
implementations of, 430
system types, 419, 431
notebooks in IPython, 187-189
advantages of, 194
kernels and, 189
with PySpark, 189-193
numeric data type in R, 345
numeric functions
max(), 230
mean(), 230
min(), 229-230
in R, 349
stats(), 231-232
stdev(), 231
sum(), 230-231
variance(), 231
NumPy library, 377
Nutch, 11-12, 115

o

object comparison in Scala, 143
object files, creating RDDs from, 99
object serialization in Python, 174
JSON, 174-176
Pickle, 176-178
object stores, 63
objectFile() method, 99

object-oriented programming
in Scala

classes and inheritance,
153-155

mixin composition, 155-156
polymorphism, 157
singleton objects, 156-157

objects (HDFS), deleting, 19
observations in R, 352
Odersky, Martin, 137

off-heap persistence with Alluxio,
256

OOP. See object-oriented
programming in Scala

Optimized Row Columnar (ORC),
299

optimizing. See also performance
management

applications

associative operations,
527-529

collecting data, 530

diagnosing problems,
536-539

dynamic allocation,
531-532

with filtering, 527

functions and closures,
529-530

serialization, 531
joins, 221
parallelization, 531
partitions, 534-535

ORC (Optimized Row Columnar),
299

orc() method, 300-301, 316
orderBy() method, 313
outdegrees, 400

outDegrees method, 408-409
outer joins, 219

output formats in Hadoop,
251-253

output operations for DStreams,
331-333

561

562 packages

P

packages

GraphFrames.
See GraphFrames

in R, 348-349

datasets package,
351-352

Spark Packages, 406
packaging Scala programs, 141
Page, Larry, 402-403, 414
PageRank, 402-403, 405

defined, 414

implementing with

GraphFrames, 411-413
pair RDDs, 111, 211

flatMapValues() method,
213-214

foldByKey() method, 217

groupByKey() method,
215-216, 233

keyBy() method, 213
keys() method, 212
mapValues() method, 213

reduceByKey() method,
216-217, 233

sortByKey() method, 217-218

subtractByKey() method,
218-219

values() method, 212
parallelization

optimizing, 531

in Python, 181
parallelize() method, 105-106
parent RDDs, 109
Parquet, 299

writing DataFrame data to,
315-316

parquet() method, 299-300, 316
Partial DAG Execution (PDE), 321
partition keys

in Cassandra, 426

in Kinesis Streams, 446
partitionBy() method, 273-274
partitioning function in

MapReduce, 121

PartitionPruningRDDs, 112
partitions

default behavior, 271-272

foreachPartition() method,
276-277

glom() method, 277

in Kafka, 436

limitations on creating, 102
lookup() method, 277

mapPartitions() method,
277-278

optimal number of, 273, 536
repartitioning, 272-273

coalesce() method,
274-275

partitionBy() method,
273-274

repartition() method, 274

repartitionAndSort-
WithinPartitions()
method, 275-276

sizing, 272, 280, 534-535,
540

pattern matching in Scala, 152
PDE (Partial DAG Execution), 321
Pérez, Fernando, 183

performance management.
See also optimizing

benchmarks, 519-520
spark-perf, 521-525

Terasort, 520-521

TPC (Transaction
Processing Performance
Council), 520

when to use, 540
canary queries, 525
Datadog, 525-526

diagnosing problems,
536-539

Project Tungsten, 533
PyPy, 532-533
perimeter security, 502-503, 517

persist() method, 108-109,
241, 314

persistence
of DataFrames, 314
of DStreams, 331
of RDDs, 108-109, 240-243
off-heap persistence, 256
Pickle, 176-178
Pickle files, 99
pickleFile() method, 178
pipe() method, 278-279
Pivotal HAWQ, 290
Pizza, 137
planning applications, 47
POJO (Plain Old Java Object)
format, saving H20 models, 396

policies (security), 503
polymorphism in Scala, 157

POSIX (Portable Operating System
Interface), 18

Powered by Spark web page, 3
pprint() method, 331-332

precedence of configuration
properties, 460-461

predict function, 357

predictive analytics, 355-356

machine learning.
See machine learning

with SparkR. See SparkR
predictive models

building in SparkR, 355-358

steps in, 361
Pregel, 402-403
pricing

AWS (Amazon Web Services),

64

Databricks, 81
primary keys in Cassandra, 426
primitives

in Scala, 141

in Spark SQL, 301-302
principals

in authentication, 503

in Kerberos, 512, 513
printSchema method, 410
probability functions in R, 349
producers

defined, 434

in Kafka, 435

in Kinesis Streams, 448
profile startup files in IPython, 187
programming interfaces to Spark,

3-5

Project Tungsten, 533

properties, Spark configuration,
457-460, 477

managing, 461
precedence, 460-461
Psyco, 169
public data sets, 63

pub-sub messaging model,
434-435, 451

.py file extension, 167

Py4J), 170

PyPy, 169, 532-533

PySpark, 4, 170. See also Python
dictionaries, 174
higher-order functions, 194
JSON object usage, 176

Jupyter notebooks and,
189-193

pickleFile() method, 178

saveAsPickleFile() method,
178

shell, 6
tuples, 172

Word Count algorithm
(MapReduce example) in,
132-134

pysparkling shell, 388-390
Python, 165. See also PySpark
architecture, 166-167
CPython, 167-169
IronPython, 169
Jython, 169
Psyco, 169
PyPy, 169
PySpark, 170
Python.NET, 169
data structures
dictionaries, 173-174
lists, 170, 194
sets, 170-171
tuples, 171-173, 194

functional programming in,
178

anonymous functions,
179-180

closures, 181-183

R programming language 563

higher-order functions,
180, 194

parallelization, 181

short-circuiting, 181

tail calls, 180-181
history of, 166
installing, 31

IPython (Interactive Python),
183

advantages of, 194
history of, 183-184

Jupyter notebooks,
187-193

kernels, 189
Spark usage with, 184-187
object serialization, 174
JSON, 174-176
Pickle, 176-178
word count in Spark
(listing 1.1), 4
python directory, 39
Python.NET, 169

Q

queueing messages, 435

quorums in Kafka, 436-437

R directory, 39

R programming language,
343-344

assignment operator (<-), 344
data frames, 345, 347-348

564 R programming language

creating SparkR data
frames from, 351-352

matrices versus, 361
data structures, 345-347
data types, 344-345
datasets package, 351-352

functions and packages,
348-349

SparkR. See SparkR
randomSplit function, 369-370
range() method, 106

RBAC (role-based access control),
503

RDDs (Resilient Distributed
Datasets), 2, 8

actions, 206
collect(), 207
count(), 206
first(), 208-209
foreach(), 210-211, 233
take(), 207-208
top(), 208

aggregate actions, 209
fold(), 210
reduce(), 209

benefits of replication, 257

coarse-grained versus
fine-grained transformations,
107

converting DataFrames to,
301

creating DataFrames from,
294-295

data sampling, 198-199

sample() method,
198-199

takeSample() method, 199

default partition behavior,
271-272

in DStreams, 333

EdgeRDD objects, 404-405

explained, 91-93, 197-198

external storage, 247-248
Alluxio, 254-257, 258

columnar formats, 253,
299

compressed options,
249-250

Hadoop input/output
formats, 251-253

saveAsTextFile() method,
248

sequence files, 250
fault tolerance, 111

functional transformations,
199

filter() method, 201-202

flatMap() method,
200-201, 232

map() method, 199-200,

232,233
GraphRDD objects, 405

grouping and sorting data, 202

distinct() method,
203-204

groupBy() method, 202

sortBy() method, 202-203

joins, 219
cartesian() method,
225-226
cogroup() method,
224-225

example usage, 226-229

fullOuterJoin() method,
223-224

join() method, 219-221

leftOuterJoin() method,
221-222

rightOuterJoin() method,
222-223

types of, 219
key value pairs (KVP), 211

flatMapValues() method,
213-214

foldByKey() method, 217

groupByKey() method,
215-216, 233

keyBy() method, 213
keys() method, 212
mapValues() method, 213

reduceByKey() method,
216-217, 233

sortByKey() method,
217-218

subtractByKey() method,
218-219

values() method, 212
lazy evaluation, 107-108
lineage, 109-110, 235-237
loading data, 93

from datasources, 100

from JDBC datasources,
100-103

from JSON files, 103-105

from object files, 99

programmatically, 105-106

from text files, 93-99
numeric functions

max(), 230

mean(), 230

min(), 229-230

stats(), 231-232

stdev(), 231

sum(), 230-231

variance(), 231
off-heap persistence, 256
persistence, 108-109

processing with external
programs, 278-279

resilient, explained, 113
set operations, 204
intersection() method, 205

subtract() method,
205-206

union() method, 204-205
storage levels, 237

caching RDDs, 239-240,
243

checkpointing RDDs,
244-247, 258

flags, 237-238

getStoragelevel() method,
238-239

persisting RDDs, 240-243
selecting, 239

Storage tab (application Ul),
484-485

types of, 111-112

VertexRDD objects, 404
read command, 348
read.csv() method, 348
read.fwf() method, 348
reading HBase data, 423-425
read.jdbc() method, 102-103
read.json() method, 104
read.table() method, 348
realms, 513
receivers in Kafka, 437-438, 451

recommenders, implementing,
374-375

records
defined, 92, 117
key value pairs (KVP) and, 118

Red Hat Linux, installing Spark,
30-31

Redis, 430
reduce() method, 122, 209
in Python, 170

in Word Count algorithm,
129-132

Reduce phase, 119, 121-122

reduceByKey() method, 131, 132,
216-217, 233, 527-529

reduceByKeyAndWindow()
method, 339

reference counting, 169
reflection, 302

regions (AWS), 62
regions in HBase, 422

relational databases, creating
RDDs from, 100

repartition() method, 274, 314

repartitionAndSortWithin-
Partitions() method, 275-276

repartitioning, 272-273
coalesce() method, 274-275
DataFrames, 314
expense of, 215
partitionBy() method, 273-274
repartition() method, 274

repartitionAndSortWithin-
Partitions() method,
275-276

replication
benefits of, 257
of blocks, 15-16, 25
in HDFS, 14-16

replication factor, 15

running applications 565

requirements for Spark
installation, 28

resilient
defined, 92
RDDs as, 113

Resilient Distributed Datasets
(RDDs). See RDDs (Resilient
Distributed Datasets)

resource management

Dynamic Resource Allocation,
476, 531-532

list of alternatives, 22

with MapReduce.
See MapReduce

in Standalone mode, 463

with YARN. See YARN
(Yet Another Resource
Negotiator)

ResourceManager, 20-21,
471-472

as cluster manager, 51-52
Riak, 430
right outer joins, 219
rightOuterJoin() method, 222-223

role-based access control (RBAC),
503

roles (security), 503

RStudio, SparkR usage with,
358-360

running applications
in local mode, 56-58

on YARN, 20-22, 51,
472-473

application management,
473-475

ApplicationsMaster, 52-53,
471-472

log file management, 56

ResourceManager, 51-52

566 running applications

yarn-client submission
mode, 54-55

yarn-cluster submission
mode, 53-54

runtime architecture of Python,
166-167

CPython, 167-169
IronPython, 169
Jython, 169
Psyco, 169

PyPy, 169
PySpark, 170
Python.NET, 169

S

S3 (Simple Storage Service), 63
sample() method, 198-199, 309
sampleBy() method, 309
sampling data, 198-199
sample() method, 198-199
takeSample() method, 199

SASL (Simple Authentication and
Security Layer), 506, 509

save_model function, 395

saveAsHadoopFile() method,
251-252

saveAsNewAPIHadoopFile()
method, 253

saveAsPickleFile() method,
177-178

saveAsSequenceFile() method, 250

saveAsTable() method, 315

saveAsTextFile() method, 93, 248

saveAsTextFiles() method,
332-333

saving
DataFrames to external
storage, 314-316

H20 models, 395-396
shin directory, 39

sbt (Simple Build Tool for Scala
and Java), 139

Scala, 2, 137
architecture, 139
comparing objects, 143
compiling programs, 140-141
control structures, 149

do while and while loops,
151-152

for loops, 150-151

if expressions, 149-150

named functions, 153

pattern matching, 152
data structures, 144

lists, 145-146, 163

maps, 148-149

sets, 146-147, 163

tuples, 147-148
functional programming in

anonymous functions, 158

closures, 158-159

currying, 159

first-class functions, 157,
163

function literals versus
function values, 163

higher-order functions, 158

immutable data structures,
160

lazy evaluation, 160
history of, 137-138
installing, 31, 139-140

naming conventions, 142

object-oriented programming in

classes and inheritance,
153-155

mixin composition,
155-156

polymorphism, 157

singleton objects,
156-157

packaging programs, 141
primitives, 141

shell, 6

type inference, 144
value classes, 142-143
variables, 144

Word Count algorithm
example, 160-162

word count in Spark
(listing 1.2), 4
scalability of Spark, 2
scalac compiler, 139
scheduling
application tasks, 47
in Standalone mode, 469

multiple concurrent
applications, 469-470

multiple jobs within
applications, 470-471

with YARN. See YARN
(Yet Another Resource
Negotiator)

schema-on-read systems, 12
SchemaRDDs. See DataFrames
schemas for DataFrames
defining, 304
inferring, 302-304

schemes in URIs, 95

Secure Sockets Layer (SSL),
506-510

security, 501-502
authentication, 503-504
encryption, 506-510
shared secrets, 504-506
authorization, 503-504
gateway services, 503

Java Servlet Filters, 510-512,
517

Kerberos, 512-514, 517
client commands, 514
configuring, 515-516
with Hadoop, 514-515
terminology, 513

perimeter security, 502-503,
517

security groups, 62
select() method, 309, 322
selecting
Spark deployment modes, 43
storage levels for RDDs, 239
sequence files
creating RDDs from, 99
external storage, 250
sequenceFile() method, 99
SequenceFileRDDs, 111
serialization
optimizing applications, 531
in Python, 174
JSON, 174-176
Pickle, 176-178
service ticket, 513
set operations, 204
for DataFrames, 311-314
intersection() method, 205
subtract() method, 205-206
union() method, 204-205

setCheckpointDir() method, 244
sets

in Python, 170-171

in Scala, 146-147, 163

severity levels in Log4j framework,
493

shards in Kinesis Streams, 446
shared nothing, 15, 92
shared secrets, 504-506

shared variables.
See accumulators; broadcast
variables

Shark, 283-284
shells
Cassandra, 426-427
HBase, 420-422
interactive Spark usage, 5-7, 8
pysparkling, 388-390
SparkR, 350-351
short-circuiting in Python, 181
show() method, 306
shuffle, 108

diagnosing performance
problems, 536-538

expense of, 215
Shuffle phase, 119, 121, 135
ShuffledRDDs, 112
side effects of functions, 181

Simple Authentication and
Security Layer (SASL), 506, 509

Simple Storage Service (S3), 63
SIMR (Spark In MapReduce), 22

single master mode (Alluxio),
254-255

single point of failure (SPOF), 38

singleton objects in Scala,
156-157

sizing partitions, 272, 280,
534-535, 540

Spark 567
slave nodes
defined, 23
starting in Standalone mode,
463

worker Uls, 463-466

sliding window operations with
DStreams, 337-339, 340

slots (MapReduce), 20
Snappy, 94

socketTextStream() method,
327-328

Solr, 430
sortBy() method, 202-203
sortByKey() method, 217-218
sorting data, 202
distinct() method, 203-204
foldByKey() method, 217
groupBy() method, 202

groupByKey() method,
215-216, 233

orderBy() method, 313

reduceByKey() method,
216-217, 233

sortBy() method, 202-203
sortByKey() method, 217-218

subtractByKey() method,
218-219

sources. See data sources
Spark
as abstraction, 2
application support, 3

application Ul. See
application Ul

Cassandra access, 427-429
configuring
broadcast variables, 262

configuration properties,
457-460, 477

Spark

environment variables,
454-457

managing configuration,
461

precedence, 460-461
defined, 1-2
deploying
on Databricks, 81-88
on EC2, 64-73
on EMR, 73-80

deployment modes. See also
Spark on YARN deployment
mode; Spark Standalone
deployment mode

list of, 27-28

selecting, 43
downloading, 29-30
Hadoop and, 2, 8

HDFS as data source, 24

YARN as resource
scheduler, 24

input/output types, 7
installing
on Hadoop, 39-42
on Mac OS X, 33-34
on Microsoft Windows,
34-36
as multi-node Standalone
cluster, 36-38
on Red Hat/Centos, 30-31
requirements for, 28
in Standalone mode,
29-36
subdirectories of
installation, 38-39
on Ubuntu/Debian Linux,
32-33

interactive use, 5-7, 8

IPython usage, 184-187
Kafka support, 437

direct stream access, 438,
451

KafkaUtils package,
439-443

receivers, 437-438, 451
Kinesis Streams support,
448-450
logging. See logging
machine learning in, 367
MapReduce versus, 2, 8
master Ul, 487
metrics, collecting, 490-492
MQTT support, 445-446
non-interactive use, 7, 8
programming interfaces to,
3-5
scalability of, 2
security. See security

Spark applications. See
applications

Spark History Server, 488
APl access, 489-490
configuring, 488
deploying, 488
diagnosing performance

problems, 539

Ul (user interface) for,
488-489

Spark In MapReduce (SIMR), 22
Spark ML, 367
Spark MLIib versus, 378
Spark MLlib, 367
classification in, 367
decision trees, 368-372
Naive Bayes, 372-373

clustering in, 375-377

collaborative filtering in,
373-375

Spark ML versus, 378
Spark on YARN deployment mode,
27-28, 39-42,471-473
application management,
473-475

environment variables,
456-457

scheduling, 475-476
Spark Packages, 406
Spark SQL, 283
accessing
via Beeline, 318-321

via external applications,
319

via JDBC/ODBC interface,
317-318

via spark-sql shell,
316-317

architecture, 290-292
DataFrames, 294
built-in functions, 310
converting to RDDs, 301

creating from Hive tables,
295-296

creating from JSON
objects, 296-298

creating from RDDs,
294-295

creating with
DataFrameReader,
298-301

data model, 301-302
defining schemas, 304

functional operations,
306-310

inferring schemas,
302-304

metadata operations,
305-306

saving to external storage,
314-316

set operations, 311-314

UDFs (user-defined
functions), 310-311

history of, 283-284
Hive and, 291-292
HiveContext, 292-293, 322
SQLContext, 292-293, 322

Spark SQL DataFrames
caching, persisting,
repartitioning, 314

Spark Standalone deployment
mode, 27-28, 29-36, 461-462
application management,
466-469

daemon environment
variables, 455-456

on Mac OS X, 33-34

master and worker Uls,
463-466

on Microsoft Windows, 34-36

as multi-node Standalone
cluster, 36-38

on Red Hat/Centos, 30-31
resource allocation, 463
scheduling, 469

multiple concurrent
applications, 469-470
multiple jobs within
applications, 470-471
starting masters/slaves, 463

on Ubuntu/Debian Linux,
32-33

starting masters/slaves in Standalone mode

Spark Streaming
architecture, 324-325
DStreams, 326-327

broadcast variables and
accumulators, 331

caching and persistence,
331

checkpointing, 330-331,
340

data sources, 327-328
lineage, 330

output operations,
331-333

sliding window operations,
337-339, 340

state operations,
335-336, 340

transformations, 328-329
history of, 323-324
StreamingContext, 325-326
word count example, 334-335

SPARK_HOME variable, 454
SparkContext, 46-47
spark-ec2 shell script, 65
actions, 65
options, 66
syntax, 65
spark-env.sh script, 454
Sparkling Water, 387, 397
architecture, 387-388
example exercise, 393-395
H20Frames, 390-393
pysparkling shell, 388-390
spark-perf, 521-525
SparkR

building predictive models,
355-358

creating data frames
from CSV files, 352-354
from Hive tables, 354-355

from R data frames,
351-352

documentation, 350
RStudio usage with, 358-360
shell, 350-351
spark-sql shell, 316-317
spark-submit command, 7, 8
--master local argument, 59
sparsity, 421
speculative execution, 135, 280
defined, 21
in MapReduce, 124

splittable compression formats,
94,113, 249

SPOF (single point of failure), 38
spot instances, 62

SQL (Structured Query Language),
283. See also Hive; Spark SQL

sql() method, 295-296
SQL on Hadoop, 289-290
SQLContext, 100, 292-293, 322

SSL (Secure Sockets Layer),
506-510

stages
in DAG, 47

diagnosing performance
problems, 536-538

tasks and, 59
Stages tab (application Ul),
483-484, 499
Standalone mode. See Spark
Standalone deployment mode
starting masters/slaves in
Standalone mode, 463

569

570 state operations with DStreams

state operations with DStreams,
335-336, 340

statistical functions

max(), 230

mean(), 230

min(), 229-230

in R, 349

stats(), 231-232

stdev(), 231

sum(), 230-231

variance(), 231
stats() method, 231-232
stdev() method, 231
stemming, 128
step execution mode (EMR), 74
stopwords, 128
storage levels for RDDs, 237

caching RDDs, 239-240, 243

checkpointing RDDs,
244-247, 258

external storage, 247-248
Alluxio, 254-257, 258

columnar formats, 253,
299

compressed options,
249-250

Hadoop input/output
formats, 251-253

saveAsTextFile() method,
248

sequence files, 250
flags, 237-238

getStoragelevel() method,
238-239

persisting RDDs, 240-243
selecting, 239

Storage tab (application Ul),
484-485, 499

StorageClass constructor, 238
Storm, 323
stream processing. See also
messaging systems
DStreams, 326-327

broadcast variables and
accumulators, 331

caching and persistence,
331

checkpointing, 330-331,
340

data sources, 327-328
lineage, 330

output operations,
331-333

sliding window operations,
337-339, 340

state operations,
335-336, 340

transformations, 328-329
Spark Streaming

architecture, 324-325

history of, 323-324

StreamingContext,
325-326

word count example,
334-335

StreamingContext, 325-326

StreamingContext.checkpoint()
method, 330

streams in Kinesis, 446-447
strict evaluation, 160

Structured Query Language (SQL),
283. See also Hive; Spark SQL

subdirectories of Spark
installation, 38-39

subgraphs, 410
subtract() method, 205-206, 313

subtractByKey() method, 218-219
sum() method, 230-231
summary function, 357, 392

supervised learning, 355

T

table() method, 296
tables
in Cassandra, 426
in Databricks, 81
in Hive

creating DataFrames from,
295-296

creating SparkR data
frames from, 354-355

internal versus external,
289

writing DataFrame data
to, 315

tablets (Bigtable), 422
Tachyon. See Alluxio

tail call recursion in Python,
180-181

tail calls in Python, 180-181
take() method, 207-208, 306, 530
takeSample() method, 199
task attempts, 21
task nodes, core nodes versus, 89
tasks

in DAG, 47

defined, 20-21

diagnosing performance
problems, 536-538

scheduling, 47
stages and, 59

Terasort, 520-521

Term Frequency-Inverse Document
Frequency (TF-IDF), 367

test data sets, 369-370
text files

creating DataFrames from,
298-299

creating RDDs from, 93-99
saving DStreams as, 332-333
text input format, 127
text() method, 298-299
textFile() method, 95-96
text input format, 128

wholeTextFiles() method
versus, 97-99

textFileStream() method, 328
Tez, 289

TF-IDF (Term Frequency-Inverse
Document Frequency), 367

Thrift JDBC/ODBC server,
accessing Spark SQL, 317-318

ticket granting service (TGS), 513
ticket granting ticket (TGT), 513
tokenization, 127

top() method, 208

topic filtering, 434-435, 451

TPC (Transaction Processing
Performance Council), 520

training data sets, 369-370
traits in Scala, 155-156

Transaction Processing
Performance Council (TPC), 520

transformations
cartesian(), 225-226

coarse-grained versus
fine-grained, 107

cogroup(), 224-225

URIs (Uniform Resource Identifiers), schemes in 571

defined, 47

distinct(), 203-204

for DStreams, 328-329

filter(), 201-202

flatMap(), 131, 200-201
map() versus, 135, 232

flatMapValues(), 213-214

foldByKey(), 217

fullOuterJoin(), 223-224

groupBy(), 202

groupByKey(), 215-216, 233

intersection(), 205

join(), 219-221

keyBy(), 213

keys(), 212

lazy evaluation, 107-108

leftOuterJoin(), 221-222

lineage, 109-110, 235-237

map(), 130, 199-200
flatMap() versus, 135, 232

foreach() action versus,
233

passing functions to,
540-541

mapValues(), 213
of RDDs, 92

reduceByKey(), 131, 132,
216-217, 233

rightOuterJoin(), 222-223
sample(), 198-199
sortBy(), 202-203
sortByKey(), 217-218
subtract(), 205-206
subtractByKey(), 218-219
union(), 204-205
values(), 212

transport protocol, MQTT as, 444
Trash settings in HDFS, 19
triangle count algorithm, 405
triplets, 402
tuple extraction in Scala, 152
tuples, 132

in Python, 171-173, 194

in Scala, 147-148
type inference in Scala, 144

Typesafe, Inc., 138

U

Ubuntu Linux, installing Spark,
32-33

udf() method, 311

UDFs (user-defined functions) for
DataFrames, 310-311

Ul (user interface).
See application Ul

Uniform Resource Identifiers
(URIs), schemes in, 95

union() method, 204-205
unionAll() method, 313
UnionRDDs, 112
unnamed functions
in Python, 179-180
in Scala, 158

unpersist() method, 241, 262,
314

unsupervised learning, 355

updateStateByKey() method,
335-336

uploading (ingesting) files, 18
URIs (Uniform Resource
Identifiers), schemes in, 95

572 user interface (Ul)

user interface (Ul).
See application Ul

user-defined functions (UDFs) for
DataFrames, 310-311

'/

value classes in Scala, 142-143
value() method
accumulators, 266
broadcast variables, 261-262
values, 118
values() method, 212
van Rossum, Guido, 166
variables
accumulators, 265-266
accumulator() method, 266
custom accumulators, 267
usage example, 268-270
value() method, 266
warning about, 268
bound variables, 158
broadcast variables, 259-260

advantages of, 263-265,
280

broadcast() method,
260-261

configuration options, 262
unpersist() method, 262
usage example, 268-270
value() method, 261-262
environment variables, 454

cluster application
deployment, 457
cluster manager

independent variables,
454-455

Hadoop-related, 455

Spark on YARN
environment variables,
456-457

Spark Standalone daemon,
455-456

free variables, 158

in R, 352

in Scala, 144
variance() method, 231
vectors in R, 345-347
VertexRDD objects, 404
vertices

creating vertex DataFrames,
407

in DAG, 47
defined, 399
indegrees, 400
outdegrees, 400
vertices method, 407-408
VPC (Virtual Private Cloud), 62

w

WAL (write ahead log), 435
weather dataset, 368

web interface for H20,
382-383

websites, Powered by Spark, 3
WEKA machine learning software
package, 368

while loops in Scala, 151-152

wholeTextFiles() method, 97
textFile() method versus,

97-99
wide dependencies, 110
window() method, 337-338

windowed DStreams, 337-339,
340

Windows, installing Spark, 34-36

Word Count algorithm
(MapReduce example), 126

map() and reduce() methods,
129-132

operational overview,
127-129

in PySpark, 132-134
reasons for usage, 126-127
in Scala, 160-162
word count in Spark
using Java (listing 1.3), 4-5
using Python (listing 1.1), 4
using Scala (listing 1.2), 4
workers, 45, 48-49
executors versus, 59
worker Uls, 463-466

WORM (Write Once Read Many),
14

write ahead log (WAL), 435
writing HBase data, 423-425

Y

Yahoo! in history of big data,
11-12

YARN (Yet Another Resource
Negotiator), 12

executor logs, 497
explained, 19-20
reasons for development, 25

running applications, 20-22,
51

ApplicationsMaster, 52-53

log file management, 56

ResourceManager, 51-52
yarn-client submission
mode, 54-55
yarn-cluster submission
mode, 53-54
running H20 with, 384-386
Spark on YARN deployment
mode, 27-28, 39-42,
471-473
application management,
473-475
environment variables,
456-457

scheduling, 475-476

as Spark resource scheduler,

24
YARN Timeline Server Ul, 56
yarn-client submission mode,
42,43, 54-55

yarn-cluster submission mode,
41-42, 43, 53-54

Yet Another Resource Negotiator
(YARN). See YARN (Yet Another

Resource Negotiator)

yield operator in Scala, 151

Zookeeper

y 4

Zeppelin, 75

Zharia, Matei, 1

Zookeeper, 38, 436
installing, 441

573

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	About the Author
	Part I: Getting Started with Apache Spark
	HOUR 3: Installing Spark
	Spark Deployment Modes
	Preparing to Install Spark
	Installing Spark in Standalone Mode
	Exploring the Spark Install
	Deploying Spark on Hadoop
	Summary
	Q&A
	Workshop
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

