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Abstract  

A s  the c o m p l e x i t y  and var ie ty  o f  c o m p u t e r  sys tem 
ha rdware  increases ,  its su i tab i l i ty  as a p e d a g o g i c a l  tool  in 
c o m p u t e r  o rgan iza t ion /a rch i tec tu re  courses  d iminishes .  As  
a consequence ,  m a n y  ins t ructors  are tu rn ing  to s imula tors  
as t each ing  aids, of ten us ing  va luab le  t each ing / resea rch  
t ime  to cons t ruc t  them.  M a n y  o f  these  s imula tors  have  
been  m a d e  f ree ly  ava i l ab le  on  the Interact ,  p rov id ing  a 
useful  and  t ime - sav ing  resource  for  o ther  instructors .  
H o w e v e r ,  f ind ing  the f ight  s imula to r  for  a par t icu la r  course  
or  topic  can  i t se l f  he  a t i m e - c o n s u m i n g  process .  The  goal  
o f  this  p a p e r  is to p rov ide  an easy - to -use  su rvey  o f  free and 
In te rne t -access ib le  c o m p u t e r  sys t em s imula tors  as a 
resource  for  all ins t ructors  o f  c o m p u t e r  o rgan iza t ion  and 
c o m p u t e r  archi tec ture  courses .  

1 Introduction 

The  amoun t  o f  ma te r i a l  c o m p r i s i n g  the f ie ld  o f  c o m p u t e r  
archi tec ture  is con t inuous ly  expand ing ;  hence,  the mate r ia l  
can on ly  be  pa r t i a l ly  cove red  in a typ ica l  un ive r s i ty  course.  
A c o m m o n  re sponse  to this  p r o b l e m  is an ana log  o f  
M o o r e ' s  L a w  for  educators :  instructors  have  p rog re s s ive ly  
r ev i sed  thei r  courses  to use  inc reas ing ly  h ighe r  levels  o f  
abs t rac t ion  [4]. F o r  (genera l i zed)  example ,  s tudents  
l ea rn ing  h o w  compute r s  opera ted :  

• in the 1950s studied the physics of vacuum tubes 

• in the 1960s studied transistor circuits 

• in the 1970s studied digital logic gates 

• in the  1 9 8 0 s  studied integrnted circuits 

• in the 1990s studied networked computer systems. 
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W h i l e  the  p rocess  o f  abs t rac t ion  is a natura l  p rogress ion ,  
s tudents  mus t  still  be  e x p o s e d  to a cer ta in  leve l  o f  detai l .  

Co inc iden t  w i th  this g rowth  o f  k n o w l e d g e  in the f ie ld  is the  
increas ing  conten t ion  for  l imi ted  t each ing  resources .  This  
appl ies  not  on ly  to l abora to ry  faci l i t ies  but  also to factors  
such as exper t i se ,  p r epa ra t i on  t ime,  and  the need  to p rov ide  
resource  ava i l ab i l i ty  to non- t rad i t iona l  s tudents .  
M a i n t a i n i n g  an  up- to -da te  l abo ra to ry  inf ras t ructure  is an 
ongo ing  and expens ive  process ;  m a k i n g  it access ib le  to 
g e o g r a p h i c a l l y  d i spe r sed  and e m p l o y e d  s tudents  is ano ther  
p r o b l e m  al together .  L ikewise ,  instructors  m a y  have  a w ide  
range  o f  b a c k g r o u n d s  f rom nov ice  to exper t  d e p e n d i n g  on  
the topic ,  but  it is a c o m m o n  cha l l enge  to r ema in  current.  

The  mos t  impor t an t  d e v e l o p m e n t  addres s ing  both  o f  these  
t rends  ( e v e r - e x p a n d i n g  mater ia l ,  l imi t ed  resources )  is the  
advent  o f  the C P U  s imula to r  [4]. A s  s tudents  in the  
1970s/g0s used  p a p e r  and penc i l  to des ign  C P U  
componen t s  us ing  Boo le a n  a lgebra  and K a r n a u g h  maps ,  
s tudents  t oday  can  use  a C P U  s imu la to r  to s tudy  c o m p u t e r  
opera t ion  b y  v i sua l i z ing  the in ter re la ted ,  s imul taneous  
events  that  occur  dur ing  p r o g r a m  execut ion .  In terac t ive  
C P U  s imula tors  enable  ac t ive  l ea rn ing  b y  a l lowing  s tudents  
to des ign  the i r  o w n  hypo the t i ca l  mach ines ,  to p rog ram,  
execute  and debug  sys t em software,  and  to use  s imula t ion  
to under s t and  the opera t ion  o f  real  machines .  

T w o  c o m m o n  p r o b l e m s  were  iden t i f i ed  dur ing  a recen t  
su rvey  [3] o f  ins t ructors  o f  c o m p u t e r  o rgan iza t ion  and 
archi tec ture  courses :  (1) ins t ructors  are no t  aware  that  
capab le  C P U  s imula tors  ex is t  and  (2) i f  aware  o f  C P U  
s imula tors  in general ,  ins t ructors  are no t  aware  o f  par t i cu la r  
s imula tors  that  mee t  the i r  p e d a g o g i c a l  needs .  The  goal  o f  
this  pape r  is to p rov ide  an easy- to -use  su rvey  of free and  
Internet-accessible c o m p u t e r  sy s t em s imula to r s  as a 
resource  for  all  ins t ructors  o f  c o m p u t e r  o rgan iza t ion  and 
c o m p u t e r  archi tecture  courses .  W e  are aware  o f  on ly  two 
l imi t ed  p r io r  a t tempts  to p rov ide  such a se rv ice  [15,17].  To 
our  knowledge ,  this  w o r k  represents  the mos t  
c o m p r e h e n s i v e  effor t  to d o c u m e n t  C P U  s imula tors  across  
the  wide  ranges  o f  topic  areas  and in tended  audiences .  
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The remainder of  this paper is organized as follows: 
Section 2 provides a context by briefly describing the 
benefits of  CPU simulation. In Section 3 we present the 
rationale used for grouping the CPU simulators. Sections 4 
through 9 describe different categories of  CPU simulators. 
To round out the presentation we include in Section 10 
examples of  simulators that have been developed for 
memory subsystem visualization and analysis. We close 
with a summary and ideas for future work in Section 11. 

2 Educational Benefits of Simulation 

Recent papers [1,9] have documented the value o f  using 
simulation as a tool for teaching computer architecture. As 
a support tool, simulators are attractive in the following 
ways: (1) students learn the underlying details of  computer 
operation at multiple levels of  abstraction; (2) students 
have pervasive access to content when and where they want 
it, significantly increasing availability to non-traditional 
students utilizing asynchronous learning; (3) state-of-the- 
art content is available for many, if  not all, topics; (4) many 
simulators are closely linked with textbooks; and (5) little 
or no infrastructure cost is incurred. 

Many CS programs with limited resources are unable to 
provide dedicated laboratories with examples of  computer 
architecture; the simulators documented here are free and 
available for a variety of  platforms. Internet-accessible 
simulators allow student experiments ranging from 
programming historical machines to creating their own new 
architectures. The interplay o f  performance tradeoffs and 
design constraints becomes real when students attempt to 
simulate a novel computer system. Lastly, creating a 
computer system simulation in software is a cathartic 
educational experience similar to building a real computer 
in hardware - but less expensive, more flexible in allowing 
students to make mistakes and recover, and more extensible 
in building additional functionality upon a core design [16]. 

3 Categorization of Simulation Tools 

The focus o f  this paper is exclusively on free and Interact- 
accessible computer system simulators that can be easily 
integrated into computer organization/architecture courses. 
Early simulators were all text-based. Current computer 
system simulators have graphical interfaces that make it 
possible to provide visual metaphors representing the 
internal operation o f  a computer. 

We divide these free and Internet-accessible computer 
system simulators into seven different categories 
summarized in the accompanying tables. Unless otherwise 
noted all listed URLs are websites (http://). For each 
specific type of  system we give only one representative 
simulator. Some systems have multiple simulators; the 
complete list can be found on the maintained webpage 
whose URL is given at the end o f  this paper. 

The historical machine simulators and digital logic 
simulators fill distinct educational voids and automate 
concepts once explored exclusively by hand on paper. The 
simple / intermediate / advanced categories generally match 
the introductory, computer organization, and computer 
architecture courses found in many CS curricula. Multi- 
processor simulators extend the advanced microarchitecture 
category by focusing on parallel architectures with multiple 
CPUs. The memory subsystem category includes 
simulators that focus on interactions between the CPU and 
cache memory. 

4 Historical Machine Simulators 

The study of  computer operation can often be enhanced by 
using examples of  machines that either no longer 
physically exist (other than in a museum), or if they do 
exist, are too expensive to justify solely for educational 
purposes [15]. The use of  simulation allows an educator to 
teach concepts on any machine for which a simulator has 
been constructed. Ot~entimes a machine of  historical 
interest is the best example of  an architectural concept, or it 
may have the best available tutorials and documentation. 

Using simulation renders obsolescence less of  a factor 
since machines can be virtually recreated and indefinitely 
maintained. However, in some cases the substitution o f  a 
simulator for a real machine may require careful analysis 
and simulation modeling expertise. For example, it has 
been found that non-validated simulators o f  real machines 
axe likely to underestimate performance [6]. 

TABLE l : HISTORICAL MACHINE SIMULATORS 

Analytical Engine Babbage's machine. 

www.fourmilab.ch]babbage/applet.html Web-based Java applet 

Apple lie Classic 65C02. 

quark.netfront.neI:6502/ Unix w/X Windows 

Atafi ST MC68000 and chipsets_ 
www.complang.tuwien.ac.at/nino/stonx.html Unix/X, MSDOS, Win 95 

Commodore Amiga MC680x0 and chipsets. 

www.fTeiburg.linux.de/-uae/ Unix, DOS, Win32, Mac 

Commodore 64 (www.uni- Popular game system. 
mainz.de/-bauec002/FRM ain.html) Multiple platforms 

DEC PDP-8 First retail computer. 

www.cs.uiowa.edu/-jones/pdp8/ Unix w/X Windows 

DEC PDP-11 Influential CPU family. 
flp://flp.upd ate_uu.se/pub/ibmpc/emul ators/ DOS 

EDSAC 1 ~t stored-program service 

http://www.dcs.warwick.ac.uk/~edsac/ Win32, Mac 

Enigma ( www.ugrad.cs.jhu.edu/ Nazi encryption machine. 

-russell/classes/enigma/) Web-based Java applet 

Sinclair QL (www.geocities.cnm/ 1984 MC68008 machine. 

SiliconValley/Heights/1296/q-emulator.html Windows NT/95, MacOS 

Turing Machine (www.cs.brandeis.edu/ Finite state machine. 

--'paulq[Turing/TuringAppletMae.html) Web-based Java applet 
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5 Digital Logic Simulators 

Modem computers consist of  an extremely large number of  
very simple structures. Whether an instructor chooses to 
begin with MOS transistors, boolean logic gates or 
combinational logic circuits, the goal is the same: a bottom- 
up learning foundation. 

The digital logic simulators in this category depict the 
operation of  the following hardware features: basic logic 
elements with switching theory; circuit analysis 
(implementation, minimization); timing systems 
(propagation delays, hazards); flip-flops/latches/registers; 
logic structures (multiplexers, decoders, comparators, 
adders); and storage elements (ROM, PROM, RAM). 

TABLE 2: DIGITAL LOGIC SIMULATORS 

6.111 Digital Simulator Set o f  macros and C libraries that 
can be used to create a program 

(www.mit.edu/people/ that simulates a circuit. 
eichin/thes is/usrdoc.html) 

Digital Logic Simulator Web-based point-click-drag logic 
(www.cs.gordon.cdu/courses/ gate simulator illustrating the 
module7/Iogic-simlexamplel.html) operation of simple circuits. 

Digital Workshop Displays execution of pre-built 
and customizable logic circuits. (www.cise.ufl.edu/-fishwick/ 

dig/DigSim.html) Web-based Java applet. 

esim Simulator Advanced tool to build 
(www.cse.ucsc.edu/-elm/Software/ arbitrarily complex digital logic 
Esim/index.htrnl) designs using hierarchical design 

techniques. Unix with Tcl/Tk 

Interactive Full-Adder Interactive and intuitive 
(www.acs. ilstu.edu/faculty/javila/ demonstration of the 
acs254/fullAdder/FullAdder.html) implementation of full adder with 

logic gates. Web-based. 

Iowa Logic Simulator Simulator based on specification 
www.cs.uiowa.edu/-jones//Iogicsim/ language for digital systems from 

TTL/gates to large CPUs. Pascal 

MIT Digital Logic Simulator  Point-and-click simulator with 
web.mit.edu/ara/www/ds.html gates, flip-flops, & logic analyzer. 

Win NT/95/3.1 

Multimedia Logic Kits Visual design system for design 
and testing of simple circuits. www.sottronix.com/Iogic.html Win32 

Simcir- the circuit simulator Intuitive point-and-click digital 
www.tt.rim.or.jp/-kazz/simcir/ logic gate simulator, Web-based 

Java applet or executable. 

6 Simple Hypothetical Machine Simulators 
The authors agree with critics' claims that learning via a 
simulator is not the same as experience with a real machine 
- simulators can be even better! As real machines become 
more complex, they become less suitable for teaching the 
concepts typically found in introductory computer  
organization courses. Simple hypothetical machine 
simulators can serve an important role by giving students 
access to the intemal operation o f  a system (which is not 
possible with real CPUs). When properly designed, 
hypothetical machine simulators excel at illustrating core 
concepts such as: the yon Neumann architecture; the stored 
program concept; the pnneiple of  sequential execution; the 

intricacies of  data representation; the set o f  essential 
instructions; the process o f  instruction translation; the 
fetch-execute cycle; and the use of  registers. In short, 
hypothetical simulators allow educators to selectively focus 
attention on important concepts without getting lost in 
complex machine-dependent details. 

Because o f  the simplicity of  the machines they simulate, 
the tools in this category are particularly well-suited for 
adaptation to the Web. An example is that most  enduring 
simple hypothetical machine: the Little Man Computer  
(LMC) that dates back to MIT in the 1960s. A recent paper 
[16] describes the evolution of  five different LMC 
simulators from their text-based origins to the current 
graphical and Web-based versions. 

TAB LE 3:  S[MPLE HYPOTHETICAL MACHINE S[MULATORS 

CASLE HTML forms tool. Experiments 
shay.ecn.putdue.¢duI-casle/ with registers, instruction 

latencies and optimization. 

CPU Sire Emulator for building at the 
www.cs.colby.eduJ-djskrien/ register-transfer level. MacOS 

EasyCPU (www.cteh.ac.il/ Animated basic and advanced 
departments/education/cpu,htm) Intel 80x86 operation. 

Little Man Computer Visualization of  LMC paradigm 
described in [7]. www.acs.ilstu.eduffaculty/j avila/Imc/ Web-based Java applet 

PIPPIN Binary and symbolic mode CPU 
(www.cs.gordon.edu/courses/cs I l I/ simulator highlighting data paths. 
module6/cpu-sim/cpusim.html) • Web-based applet 

oisc & urisc (www.pdc.kth.se/-jas Extreme RISC - a computer with 
/retro/retromuseum.html) a single instruction. 

Simple Computer Emulator I Machine emulator with memory 
cells and I/O cards. Javascdpt Beachstudios.com/sc/ 

7 Intermediate Instruction Set Simulators 
The machine simulators described above are designed to 
use only simple addressing, a limited instruction set, and a 
very simple memory  model. Intermediate simulators, in 
contrast, tend to include a more realistic set o f  addressing 
modes, a more complete instruction set, a more realistic 
memory  hierarchy, and sometimes an interrupt mechanism. 
As a result o f  this attention to completeness, much more 
realistic programming application is possible. 

A secondary benefit o f  using a simulator with a fairly 
complete instruction set is the opportunity it provides to 
explore computer  science concepts that are important 
throughout the broader curriculum [5]. Many students 
understand high-level concepts better after studying the 
low-level mechanisms upon which they are based. For 
example, understanding register transfer language indirect 
addressing clarifies the concept o f  using pointers in C, 
studying the cache protocols used to hide memory  transfer 
latencies helps explain the operation o f  web/browser cache 
management  protocols, and examining CPU architectural 
support for high-level languages reinforces language and 
compiler concepts. 

178 



TABLE 4: INTERMEDIATE INSTRUCTION SET SIMULATORS 

LC2 Described in [I 1]. 

www.mhhe.com/patrt/ Unix & Windows 

Relatively Simple Computer Described in [2], dual-mode control 
System Simulator unit. Web-based or downloadable. 
www.awl.com/carpinelli 

SIMHCI2 (www.aracnet.com/ Simulator for the MC68HC812A4 
-tomalmy/6ghc 12.html) microcontroller. Java 

AMD SimNow! Intel x86 simulator. 

www.x86-64.org/dawnloads GNU/Linux 

SPIM (www.cs.wisc.edu/ Used with [12], MIPS simulator with 
-larus/spim.html) visual GUI. Unix/Linux/DOS/Win 

SPIMSAL (www_cs.wisc.edu/ Described in [8l; uses SAL - extended 
-larus/spim.html) instruction set. Win3.1 & MacOS 

8 Advanced Microarchitecture Simulators 

The microarchitecturc simulators are designed to allow the 
observation o f  machine language execution at the 
microcode level (e.g. data paths, control units). Advanced 
simulators can be used to investigate the advantages and 
disadvantages (e.g. efficiency, complexity) o f  performance- 
enhancing techniques such as pipelining, branch prediction 
and instruction-level parallelism. Some o f  these simulators 
are microprogrammable,  allowing students to experiment 
with the design o f  instruction sets. 

Most  o f  the simulators included in this category are 
associated with a textbook and would be appropriate for an 
advanced course in computer architecture. Note that there 
is often supplemental material available (e.g. compilers, 
execution traces, instruction set handbooks). 

TABLE 5: ADVANCED MICROARCHITECTURE SIMULATORS 

DLX Bundled with [ I 0], implements the 
(ftp://max.stanford.edu/pub/max/ DLX CPU. Unix 
pub/hennessy-patterson.soflware) 

DLXview (yara.ecn.purdue.edu/ Interactive graphical extension of 
-teamaaa/dlxview) DLXsim. Unix 

Mic-I Simulator Described in [14] (earlier 1988 
www.ontko.com/micl/ edition). Java, Unix, Win 

Micro Architecture Simulator Microprogrammed processor 
similar to that in [14]. MacOS www.kagi.com/fab/msim.html 

MipSim (mouse.vlsivie.tuwien. C++ source code for a simulator 
ac.at/lehre/rechnerarchitekturen/ emulating a pipelined processor 

based on [10]. 
download/Simulatoren) 

SimpleScalar Described in [13], toolset for 
www.simplescalar.org instruction-level parallelism & 

branch prediction. Unix 

SuperScalar DLX (www.rs.e- Pipelined superscalar mixed 
Iechnik.tu-darmstadt.de/TUD/res/ behavior/RTL model of the DLX 
dhdocu/SuperscalarDLX.html) processor. 

WinDLX Windows front-end for DLX 
ttp://Rp.mkp.com/pub/dl~ simulator. DOS 3.3+, Win3.0+ 

9 Multi-Processor Simulators 

Simulators o f  multiprocessors are significantly different 
from uniprocessor simulators. One difference is that 
multiprocessor simulation requires the emulation o f  
features that do not exist in uniprocessors (e.g. shared 
interconnection networks and shared memory).  Another 
difference is the result o f  simultaneous execution; a correct 
simulation must reflect the fact that instructions on 
different processors are occurring at the same time. A third 
difference is in the amount o f  time required to complete a 
simulation - this is technically challenging since simulation 
time tends to grow at least proportionally to the number  o f  
processors being simulated. 

Consequently, developing accurate multiprocessor 
simulators with good performance is a research area unto 
itself. The multiprocessor simulators that are useful 
instructional aids are also ones that are actively used in 
computer architecture research. Using these simulators can 
be more complex than using the uniprocessor simulators in 
the other categories, so they are most  appropriate for 
advanced computer architecture courses. Note that the last 
link listed for this category is actually a link to a web page 
listing many o f  the multiprocessor simulators currently 
used in research. 

TABLE 6: MULTI-PROCESSOR SIMULATORS 

A B S S  (arithmetic.Stanford.edu/ SPARC-based multiprocessors 
-lemon/abss.html) 

MINT M I PS-based shared-memory 
www.cs.rochester/u/veenstra/ multiprocessors 

P r o t e u s  (www.ee.lsu.edu/ Both shared-memory and 
koppel/proteus.html) message-passing multiprocessors 

RSIM Shared-memory multiprocessors 
rsim.cs.uiuc.edu/rsim/ using processors with 

instmction-level parallelism 
SimOS MIPS and Alpha-based 
simos.stanford.edu/intmduction.html uni/multiprocessors; US boot 

Wisconsin Simulator Page Has links to many multiprocessm 
www.cs.wisc.edu/arch/www/tools.html simulators used for research 

10 Memory Subsystem Simulators 
The simulators most  appropriate for introductory courses 
tend to be descriptive, illustrating concepts by depicting 
computer operation. But advanced students arc prepared 
for detailed performance statistics that allow meaningful 
analysis, evaluation and comparison. A n  early lesson these 
students learn is that factors other than the CPU (e.g. cache 
hit ratio) affect performance. Our final category includes 
examples o f  simulators that arc used to model  and analyze 
various memory  hierarchies and cache configurations. 

The simulators listed in the table below encourage 
experimentation with different cache memory  levels, sizes 
and degrees o f  associativity. Several o f  them operate by 
"executing" memory  reference trace tapes and reporting 
cumulative memory  access metrics. 
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TABLE 7: MEMORY SUBSYSTEM SIMULATORS 

Cacheprof Tool to quantify cache 
behavior. Linux on x86 

www.cacheprof.org 

Cache Simulator (www.ece.gatech.edu/ Specify a cache configuration; 
research/labs/reveng/cachesim/) analyze results. Web-based 

CACTI (www.research.compaq.com/ Model cache access and cycle 
times for different memories, wrl/people/j ouppi/CACTI.html) 

Dinero IV Cache hierarchy simulator for 
www.cs.wisc.edul-markhill/DinerolV/ memory reference traces. Unix 

PRIMA (www.dsi.unimo.it/ Trace-driven cache simulator. 

staff/st36/imagelab/prima.html) Unix 

Xcache Cache performance profiling. 
Unix w/X Windows www.prism, uvsq.frlarchilsofts/X Caehel 

11 S u m m a r y  

The availability of free and Internet-accessible simulators 
provides instructors with a means of effectively and 
efficiently presenting the expanding field of computer 
organization/architecture, despite limited resources. In this 
paper, we have surveyed and characterized simulator 
teaching tools that can be easily integrated into a wide 
range of courses. They represent a conceptual breadth and 
level of interactivity that is difficult to achieve with other 
teaching techniques. 

One idea for future work in this area involves researching 
the potential for interoperability between simulators. A 
related idea is identifying individual simulators that can be 
gracefully extended through the different categories we 
have identified. These options would aid instructors by 
broadening the areas in which simulation could be 
employed and by reducing the learning curve. See the 
following URL for future contributions and for a 
maintained set of the links reported in this paper: 
<http : / / w w w .  acs. ilstu, edu/faculty/dldoss/yurcik/ 
caale/caales imul ators, html >. 
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