
Teaching Computer Organization/Architecture With Limited
Resources Using Simulators*

Gregory S. Wolffe
Comp. Sci & Info. Sys.
Grand Valley St. Univ.
Allendale, MI USA
wolffe@csis.gvsu.edu

William Yurcik
Applied C. Sci.
Illinois St. Univ.
Normal, IL USA
wjyurci@ilstu.edu

Hugh Osborne
Sch. Of C. & Math.
U. of Huddersfield
W. Yorkshire U.K.
h.r.osborne@hud.ac.uk

Mark A. Holliday
Math. & Comp. Sci.
W. Carolina Univ.
CuIIowhee, NC USA
holliday@cs.wcu.edu

Abstract

A s the c o m p l e x i t y and var ie ty o f c o m p u t e r sys tem
ha rdware increases , its su i tab i l i ty as a p e d a g o g i c a l tool in
c o m p u t e r o rgan iza t ion /a rch i tec tu re courses d iminishes . As
a consequence , m a n y ins t ructors are tu rn ing to s imula tors
as t each ing aids, of ten us ing va luab le t each ing / resea rch
t ime to cons t ruc t them. M a n y o f these s imula tors have
been m a d e f ree ly ava i l ab le on the Interact , p rov id ing a
useful and t ime - sav ing resource for o ther instructors .
H o w e v e r , f ind ing the f ight s imula to r for a par t icu la r course
or topic can i t se l f he a t i m e - c o n s u m i n g process . The goal
o f this p a p e r is to p rov ide an easy - to -use su rvey o f free and
In te rne t -access ib le c o m p u t e r sys t em s imula tors as a
resource for all ins t ructors o f c o m p u t e r o rgan iza t ion and
c o m p u t e r archi tec ture courses .

1 Introduction

The amoun t o f ma te r i a l c o m p r i s i n g the f ie ld o f c o m p u t e r
archi tec ture is con t inuous ly expand ing ; hence, the mate r ia l
can on ly be pa r t i a l ly cove red in a typ ica l un ive r s i ty course.
A c o m m o n re sponse to this p r o b l e m is an ana log o f
M o o r e ' s L a w for educators : instructors have p rog re s s ive ly
r ev i sed thei r courses to use inc reas ing ly h ighe r levels o f
abs t rac t ion [4]. F o r (genera l i zed) example , s tudents
l ea rn ing h o w compute r s opera ted :

• in the 1950s studied the physics of vacuum tubes

• in the 1960s studied transistor circuits

• in the 1970s studied digital logic gates

• in the 1 9 8 0 s studied integrnted circuits

• in the 1990s studied networked computer systems.

*Some of the work presented here was supported by the National
Science Foundation under grant DUE-9850534.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
n o t made or distributed for profit or commercial advantage and that
copies bear this notice and the frith citation on the first page. To copy
otherwise, or republish, to post on screw's or to rcdisstdbu~ to lists,
requires prior specific permission and/or a fee.
SIGCSE"02, February 27- March 3, 2002, Covington, Kentucky, USA.
Copyright 2002 ACM 1-58113-473-8/02/0002...$5.00.

W h i l e the p rocess o f abs t rac t ion is a natura l p rogress ion ,
s tudents mus t still be e x p o s e d to a cer ta in leve l o f detai l .

Co inc iden t w i th this g rowth o f k n o w l e d g e in the f ie ld is the
increas ing conten t ion for l imi ted t each ing resources . This
appl ies not on ly to l abora to ry faci l i t ies but also to factors
such as exper t i se , p r epa ra t i on t ime, and the need to p rov ide
resource ava i l ab i l i ty to non- t rad i t iona l s tudents .
M a i n t a i n i n g an up- to -da te l abo ra to ry inf ras t ructure is an
ongo ing and expens ive process ; m a k i n g it access ib le to
g e o g r a p h i c a l l y d i spe r sed and e m p l o y e d s tudents is ano ther
p r o b l e m al together . L ikewise , instructors m a y have a w ide
range o f b a c k g r o u n d s f rom nov ice to exper t d e p e n d i n g on
the topic , but it is a c o m m o n cha l l enge to r ema in current.

The mos t impor t an t d e v e l o p m e n t addres s ing both o f these
t rends (e v e r - e x p a n d i n g mater ia l , l imi t ed resources) is the
advent o f the C P U s imula to r [4]. A s s tudents in the
1970s/g0s used p a p e r and penc i l to des ign C P U
componen t s us ing Boo le a n a lgebra and K a r n a u g h maps ,
s tudents t oday can use a C P U s imu la to r to s tudy c o m p u t e r
opera t ion b y v i sua l i z ing the in ter re la ted , s imul taneous
events that occur dur ing p r o g r a m execut ion . In terac t ive
C P U s imula tors enable ac t ive l ea rn ing b y a l lowing s tudents
to des ign the i r o w n hypo the t i ca l mach ines , to p rog ram,
execute and debug sys t em software, and to use s imula t ion
to under s t and the opera t ion o f real machines .

T w o c o m m o n p r o b l e m s were iden t i f i ed dur ing a recen t
su rvey [3] o f ins t ructors o f c o m p u t e r o rgan iza t ion and
archi tec ture courses : (1) ins t ructors are no t aware that
capab le C P U s imula tors ex is t and (2) i f aware o f C P U
s imula tors in general , ins t ructors are no t aware o f par t i cu la r
s imula tors that mee t the i r p e d a g o g i c a l needs . The goal o f
this pape r is to p rov ide an easy- to -use su rvey of free and
Internet-accessible c o m p u t e r sy s t em s imula to r s as a
resource for all ins t ructors o f c o m p u t e r o rgan iza t ion and
c o m p u t e r archi tecture courses . W e are aware o f on ly two
l imi t ed p r io r a t tempts to p rov ide such a se rv ice [15,17]. To
our knowledge , this w o r k represents the mos t
c o m p r e h e n s i v e effor t to d o c u m e n t C P U s imula tors across
the wide ranges o f topic areas and in tended audiences .

176

The remainder of this paper is organized as follows:
Section 2 provides a context by briefly describing the
benefits of CPU simulation. In Section 3 we present the
rationale used for grouping the CPU simulators. Sections 4
through 9 describe different categories of CPU simulators.
To round out the presentation we include in Section 10
examples of simulators that have been developed for
memory subsystem visualization and analysis. We close
with a summary and ideas for future work in Section 11.

2 Educational Benefits of Simulation

Recent papers [1,9] have documented the value o f using
simulation as a tool for teaching computer architecture. As
a support tool, simulators are attractive in the following
ways: (1) students learn the underlying details of computer
operation at multiple levels of abstraction; (2) students
have pervasive access to content when and where they want
it, significantly increasing availability to non-traditional
students utilizing asynchronous learning; (3) state-of-the-
art content is available for many, if not all, topics; (4) many
simulators are closely linked with textbooks; and (5) little
or no infrastructure cost is incurred.

Many CS programs with limited resources are unable to
provide dedicated laboratories with examples of computer
architecture; the simulators documented here are free and
available for a variety of platforms. Internet-accessible
simulators allow student experiments ranging from
programming historical machines to creating their own new
architectures. The interplay o f performance tradeoffs and
design constraints becomes real when students attempt to
simulate a novel computer system. Lastly, creating a
computer system simulation in software is a cathartic
educational experience similar to building a real computer
in hardware - but less expensive, more flexible in allowing
students to make mistakes and recover, and more extensible
in building additional functionality upon a core design [16].

3 Categorization of Simulation Tools

The focus o f this paper is exclusively on free and Interact-
accessible computer system simulators that can be easily
integrated into computer organization/architecture courses.
Early simulators were all text-based. Current computer
system simulators have graphical interfaces that make it
possible to provide visual metaphors representing the
internal operation o f a computer.

We divide these free and Internet-accessible computer
system simulators into seven different categories
summarized in the accompanying tables. Unless otherwise
noted all listed URLs are websites (http://). For each
specific type of system we give only one representative
simulator. Some systems have multiple simulators; the
complete list can be found on the maintained webpage
whose URL is given at the end o f this paper.

The historical machine simulators and digital logic
simulators fill distinct educational voids and automate
concepts once explored exclusively by hand on paper. The
simple / intermediate / advanced categories generally match
the introductory, computer organization, and computer
architecture courses found in many CS curricula. Multi-
processor simulators extend the advanced microarchitecture
category by focusing on parallel architectures with multiple
CPUs. The memory subsystem category includes
simulators that focus on interactions between the CPU and
cache memory.

4 Historical Machine Simulators

The study of computer operation can often be enhanced by
using examples of machines that either no longer
physically exist (other than in a museum), or if they do
exist, are too expensive to justify solely for educational
purposes [15]. The use of simulation allows an educator to
teach concepts on any machine for which a simulator has
been constructed. Ot~entimes a machine of historical
interest is the best example of an architectural concept, or it
may have the best available tutorials and documentation.

Using simulation renders obsolescence less of a factor
since machines can be virtually recreated and indefinitely
maintained. However, in some cases the substitution o f a
simulator for a real machine may require careful analysis
and simulation modeling expertise. For example, it has
been found that non-validated simulators o f real machines
axe likely to underestimate performance [6].

TABLE l : HISTORICAL MACHINE SIMULATORS

Analytical Engine Babbage's machine.

www.fourmilab.ch]babbage/applet.html Web-based Java applet

Apple lie Classic 65C02.

quark.netfront.neI:6502/ Unix w/X Windows

Atafi ST MC68000 and chipsets_
www.complang.tuwien.ac.at/nino/stonx.html Unix/X, MSDOS, Win 95

Commodore Amiga MC680x0 and chipsets.

www.fTeiburg.linux.de/-uae/ Unix, DOS, Win32, Mac

Commodore 64 (www.uni- Popular game system.
mainz.de/-bauec002/FRM ain.html) Multiple platforms

DEC PDP-8 First retail computer.

www.cs.uiowa.edu/-jones/pdp8/ Unix w/X Windows

DEC PDP-11 Influential CPU family.
flp://flp.upd ate_uu.se/pub/ibmpc/emul ators/ DOS

EDSAC 1 ~t stored-program service

http://www.dcs.warwick.ac.uk/~edsac/ Win32, Mac

Enigma (www.ugrad.cs.jhu.edu/ Nazi encryption machine.

-russell/classes/enigma/) Web-based Java applet

Sinclair QL (www.geocities.cnm/ 1984 MC68008 machine.

SiliconValley/Heights/1296/q-emulator.html Windows NT/95, MacOS

Turing Machine (www.cs.brandeis.edu/ Finite state machine.

--'paulq[Turing/TuringAppletMae.html) Web-based Java applet

177

5 Digital Logic Simulators

Modem computers consist of an extremely large number of
very simple structures. Whether an instructor chooses to
begin with MOS transistors, boolean logic gates or
combinational logic circuits, the goal is the same: a bottom-
up learning foundation.

The digital logic simulators in this category depict the
operation of the following hardware features: basic logic
elements with switching theory; circuit analysis
(implementation, minimization); timing systems
(propagation delays, hazards); flip-flops/latches/registers;
logic structures (multiplexers, decoders, comparators,
adders); and storage elements (ROM, PROM, RAM).

TABLE 2: DIGITAL LOGIC SIMULATORS

6.111 Digital Simulator Set o f macros and C libraries that
can be used to create a program

(www.mit.edu/people/ that simulates a circuit.
eichin/thes is/usrdoc.html)

Digital Logic Simulator Web-based point-click-drag logic
(www.cs.gordon.cdu/courses/ gate simulator illustrating the
module7/Iogic-simlexamplel.html) operation of simple circuits.

Digital Workshop Displays execution of pre-built
and customizable logic circuits. (www.cise.ufl.edu/-fishwick/

dig/DigSim.html) Web-based Java applet.

esim Simulator Advanced tool to build
(www.cse.ucsc.edu/-elm/Software/ arbitrarily complex digital logic
Esim/index.htrnl) designs using hierarchical design

techniques. Unix with Tcl/Tk

Interactive Full-Adder Interactive and intuitive
(www.acs. ilstu.edu/faculty/javila/ demonstration of the
acs254/fullAdder/FullAdder.html) implementation of full adder with

logic gates. Web-based.

Iowa Logic Simulator Simulator based on specification
www.cs.uiowa.edu/-jones//Iogicsim/ language for digital systems from

TTL/gates to large CPUs. Pascal

MIT Digital Logic Simulator Point-and-click simulator with
web.mit.edu/ara/www/ds.html gates, flip-flops, & logic analyzer.

Win NT/95/3.1

Multimedia Logic Kits Visual design system for design
and testing of simple circuits. www.sottronix.com/Iogic.html Win32

Simcir- the circuit simulator Intuitive point-and-click digital
www.tt.rim.or.jp/-kazz/simcir/ logic gate simulator, Web-based

Java applet or executable.

6 Simple Hypothetical Machine Simulators
The authors agree with critics' claims that learning via a
simulator is not the same as experience with a real machine
- simulators can be even better! As real machines become
more complex, they become less suitable for teaching the
concepts typically found in introductory computer
organization courses. Simple hypothetical machine
simulators can serve an important role by giving students
access to the intemal operation o f a system (which is not
possible with real CPUs). When properly designed,
hypothetical machine simulators excel at illustrating core
concepts such as: the yon Neumann architecture; the stored
program concept; the pnneiple of sequential execution; the

intricacies of data representation; the set o f essential
instructions; the process o f instruction translation; the
fetch-execute cycle; and the use of registers. In short,
hypothetical simulators allow educators to selectively focus
attention on important concepts without getting lost in
complex machine-dependent details.

Because o f the simplicity of the machines they simulate,
the tools in this category are particularly well-suited for
adaptation to the Web. An example is that most enduring
simple hypothetical machine: the Little Man Computer
(LMC) that dates back to MIT in the 1960s. A recent paper
[16] describes the evolution of five different LMC
simulators from their text-based origins to the current
graphical and Web-based versions.

TAB LE 3: S[MPLE HYPOTHETICAL MACHINE S[MULATORS

CASLE HTML forms tool. Experiments
shay.ecn.putdue.¢duI-casle/ with registers, instruction

latencies and optimization.

CPU Sire Emulator for building at the
www.cs.colby.eduJ-djskrien/ register-transfer level. MacOS

EasyCPU (www.cteh.ac.il/ Animated basic and advanced
departments/education/cpu,htm) Intel 80x86 operation.

Little Man Computer Visualization of LMC paradigm
described in [7]. www.acs.ilstu.eduffaculty/j avila/Imc/ Web-based Java applet

PIPPIN Binary and symbolic mode CPU
(www.cs.gordon.edu/courses/cs I l I/ simulator highlighting data paths.
module6/cpu-sim/cpusim.html) • Web-based applet

oisc & urisc (www.pdc.kth.se/-jas Extreme RISC - a computer with
/retro/retromuseum.html) a single instruction.

Simple Computer Emulator I Machine emulator with memory
cells and I/O cards. Javascdpt Beachstudios.com/sc/

7 Intermediate Instruction Set Simulators
The machine simulators described above are designed to
use only simple addressing, a limited instruction set, and a
very simple memory model. Intermediate simulators, in
contrast, tend to include a more realistic set o f addressing
modes, a more complete instruction set, a more realistic
memory hierarchy, and sometimes an interrupt mechanism.
As a result o f this attention to completeness, much more
realistic programming application is possible.

A secondary benefit o f using a simulator with a fairly
complete instruction set is the opportunity it provides to
explore computer science concepts that are important
throughout the broader curriculum [5]. Many students
understand high-level concepts better after studying the
low-level mechanisms upon which they are based. For
example, understanding register transfer language indirect
addressing clarifies the concept o f using pointers in C,
studying the cache protocols used to hide memory transfer
latencies helps explain the operation o f web/browser cache
management protocols, and examining CPU architectural
support for high-level languages reinforces language and
compiler concepts.

178

TABLE 4: INTERMEDIATE INSTRUCTION SET SIMULATORS

LC2 Described in [I 1].

www.mhhe.com/patrt/ Unix & Windows

Relatively Simple Computer Described in [2], dual-mode control
System Simulator unit. Web-based or downloadable.
www.awl.com/carpinelli

SIMHCI2 (www.aracnet.com/ Simulator for the MC68HC812A4
-tomalmy/6ghc 12.html) microcontroller. Java

AMD SimNow! Intel x86 simulator.

www.x86-64.org/dawnloads GNU/Linux

SPIM (www.cs.wisc.edu/ Used with [12], MIPS simulator with
-larus/spim.html) visual GUI. Unix/Linux/DOS/Win

SPIMSAL (www_cs.wisc.edu/ Described in [8l; uses SAL - extended
-larus/spim.html) instruction set. Win3.1 & MacOS

8 Advanced Microarchitecture Simulators

The microarchitecturc simulators are designed to allow the
observation o f machine language execution at the
microcode level (e.g. data paths, control units). Advanced
simulators can be used to investigate the advantages and
disadvantages (e.g. efficiency, complexity) o f performance-
enhancing techniques such as pipelining, branch prediction
and instruction-level parallelism. Some o f these simulators
are microprogrammable, allowing students to experiment
with the design o f instruction sets.

Most o f the simulators included in this category are
associated with a textbook and would be appropriate for an
advanced course in computer architecture. Note that there
is often supplemental material available (e.g. compilers,
execution traces, instruction set handbooks).

TABLE 5: ADVANCED MICROARCHITECTURE SIMULATORS

DLX Bundled with [I 0], implements the
(ftp://max.stanford.edu/pub/max/ DLX CPU. Unix
pub/hennessy-patterson.soflware)

DLXview (yara.ecn.purdue.edu/ Interactive graphical extension of
-teamaaa/dlxview) DLXsim. Unix

Mic-I Simulator Described in [14] (earlier 1988
www.ontko.com/micl/ edition). Java, Unix, Win

Micro Architecture Simulator Microprogrammed processor
similar to that in [14]. MacOS www.kagi.com/fab/msim.html

MipSim (mouse.vlsivie.tuwien. C++ source code for a simulator
ac.at/lehre/rechnerarchitekturen/ emulating a pipelined processor

based on [10].
download/Simulatoren)

SimpleScalar Described in [13], toolset for
www.simplescalar.org instruction-level parallelism &

branch prediction. Unix

SuperScalar DLX (www.rs.e- Pipelined superscalar mixed
Iechnik.tu-darmstadt.de/TUD/res/ behavior/RTL model of the DLX
dhdocu/SuperscalarDLX.html) processor.

WinDLX Windows front-end for DLX
ttp://Rp.mkp.com/pub/dl~ simulator. DOS 3.3+, Win3.0+

9 Multi-Processor Simulators

Simulators o f multiprocessors are significantly different
from uniprocessor simulators. One difference is that
multiprocessor simulation requires the emulation o f
features that do not exist in uniprocessors (e.g. shared
interconnection networks and shared memory). Another
difference is the result o f simultaneous execution; a correct
simulation must reflect the fact that instructions on
different processors are occurring at the same time. A third
difference is in the amount o f time required to complete a
simulation - this is technically challenging since simulation
time tends to grow at least proportionally to the number o f
processors being simulated.

Consequently, developing accurate multiprocessor
simulators with good performance is a research area unto
itself. The multiprocessor simulators that are useful
instructional aids are also ones that are actively used in
computer architecture research. Using these simulators can
be more complex than using the uniprocessor simulators in
the other categories, so they are most appropriate for
advanced computer architecture courses. Note that the last
link listed for this category is actually a link to a web page
listing many o f the multiprocessor simulators currently
used in research.

TABLE 6: MULTI-PROCESSOR SIMULATORS

A B S S (arithmetic.Stanford.edu/ SPARC-based multiprocessors
-lemon/abss.html)

MINT M I PS-based shared-memory
www.cs.rochester/u/veenstra/ multiprocessors

P r o t e u s (www.ee.lsu.edu/ Both shared-memory and
koppel/proteus.html) message-passing multiprocessors

RSIM Shared-memory multiprocessors
rsim.cs.uiuc.edu/rsim/ using processors with

instmction-level parallelism
SimOS MIPS and Alpha-based
simos.stanford.edu/intmduction.html uni/multiprocessors; US boot

Wisconsin Simulator Page Has links to many multiprocessm
www.cs.wisc.edu/arch/www/tools.html simulators used for research

10 Memory Subsystem Simulators
The simulators most appropriate for introductory courses
tend to be descriptive, illustrating concepts by depicting
computer operation. But advanced students arc prepared
for detailed performance statistics that allow meaningful
analysis, evaluation and comparison. A n early lesson these
students learn is that factors other than the CPU (e.g. cache
hit ratio) affect performance. Our final category includes
examples o f simulators that arc used to model and analyze
various memory hierarchies and cache configurations.

The simulators listed in the table below encourage
experimentation with different cache memory levels, sizes
and degrees o f associativity. Several o f them operate by
"executing" memory reference trace tapes and reporting
cumulative memory access metrics.

179

TABLE 7: MEMORY SUBSYSTEM SIMULATORS

Cacheprof Tool to quantify cache
behavior. Linux on x86

www.cacheprof.org

Cache Simulator (www.ece.gatech.edu/ Specify a cache configuration;
research/labs/reveng/cachesim/) analyze results. Web-based

CACTI (www.research.compaq.com/ Model cache access and cycle
times for different memories, wrl/people/j ouppi/CACTI.html)

Dinero IV Cache hierarchy simulator for
www.cs.wisc.edul-markhill/DinerolV/ memory reference traces. Unix

PRIMA (www.dsi.unimo.it/ Trace-driven cache simulator.

staff/st36/imagelab/prima.html) Unix

Xcache Cache performance profiling.
Unix w/X Windows www.prism, uvsq.frlarchilsofts/X Caehel

11 S u m m a r y

The availability of free and Internet-accessible simulators
provides instructors with a means of effectively and
efficiently presenting the expanding field of computer
organization/architecture, despite limited resources. In this
paper, we have surveyed and characterized simulator
teaching tools that can be easily integrated into a wide
range of courses. They represent a conceptual breadth and
level of interactivity that is difficult to achieve with other
teaching techniques.

One idea for future work in this area involves researching
the potential for interoperability between simulators. A
related idea is identifying individual simulators that can be
gracefully extended through the different categories we
have identified. These options would aid instructors by
broadening the areas in which simulation could be
employed and by reducing the learning curve. See the
following URL for future contributions and for a
maintained set of the links reported in this paper:
<http : / / w w w . acs. ilstu, edu/faculty/dldoss/yurcik/
caale/caales imul ators, html >.

12 Acknowledgments
The authors would like to thank the fol lowing members o f
the ITiCSE 2000 working group for helping to motivate
this work: (in alphabetical order) Kevin Boulding/Seattle
Pacific Univ., Co-Chair Boots Cassel/Villanova Univ., Jim
Davies/Univ. of Oxford, John Impagliazzo/Hofstra Univ.,
Co-Chair Deepak Kumar/Bryn Mawr Univ. and Murray
Pearson/Univ. of Waikato. We would also like to
acknowledge intellectual contributions from Cecile
Yehezkel/Weizmann Institute and Ed Gehringer/N.C. State
(creator of the Computer Architecture Course Database
<hi tp : //wwwassign .physics. ncsu. edu/comparch/>).

References
[1] Bruschi, S. M. et. al., Simulation as a Tool for

Computer Architecture Teaching, Summer Computer
Simulation Conference (SCSC), Society for Computer

Simulation (SCS), 1999.

[2] Carpinelli, J.D. Computer Systems Organization &
Architecture, Addison Wesley, 2001.

[3] Cassel, L., Kumar, D. et. al., Distributed Expertise for
Teaching Computer Organization & Architecture,
ACM SIGCSE Bulletin, Vol. 33, No. 2, June 2001, pp.
111-126.

[4] Clements, A. Guest Editor's Introduction: Computer
Architecture Education, IEEE Micro, Vol. 20. No. 3,
May/June 2000, pp. 10-12.

[5] Clements, A. The Undergraduate Curriculum in
Computer Architecture, IEEE Micro, Vol. 20. No. 3,
May/June 2000, pp. 13-22.

[6] Desikan, R., Burger D. and S.W. Keckler. Measuring
Experimental Error in Microprocessor Simulation, Intl.
Symp. on Computer Architecture (ISCA), 2001.

[7] Englander, I. The Architecture o f Hardware and
Systems Software 2 nd edition, Wiley, 2000.

[8] Goodman, J. and K. Miller, A Programmer's View o f
Computer Architecture, Oxford U. Press, 1993.

[9] Grunbacher, H. Teaching Computer Architecture/
Organisation Using Simulators, IEEE Frontiers in
Education Conference (FIE), 1998, pp. 1107-1112.

[10] Hennessy, J. and D. Patterson, Computer Architecture:
A Quantitative Approach 2 "d edition, Morgan
Kaufrnann, 1996_

[ll]Patt, Y. and S. Patel. Introduction to Computing
Systems, McGraw-Hill, 2001.

[12] Patterson, D. and J. Hennessy, Computer Organization
and Design 2 "d edition, Morgan Kaufmann, 1998.

[13] Stallings, W. Computer Organization and Architecture
5 th edition, Prentice Hall, 2000.

[14] Tanenbaum, A. Structured Computer Organization 4 Ih
edition, Prentice Hall, 1999.

[15]Yehezkel, C., Yurcik W., and M. Pearson, Teaching
Computer Architecture with a Computer-Aided
Learning Environment: State of the Art Simulators,
Intl. Conf. on Simulation and Multimedia in
Engineering Education (ICSEE), Society for Computer
Simulation (SCS), 2001

[16] Yurcik, W. and H. Osborne. A Crowd of Little Man
Computers: Visual Computer Simulator Teaching
Tools, Winter Simulation Conference (WSC), 2001.

[17] Yureik, W., Wolffe, G. S., and M. A. Holliday. A
Survey of Simulators Used in Computer
Organization/Architecture Courses, Summer Computer
Simulation Conference (SCSC), Society for Computer
Simulation (SCS), 2001.

180

