
TCN 5080 - Project 2

Description:

This project will give you hands-on experience with the Wireshark network protocol
analyzer, by investigating the behavior of SSL. Wireshack is a popular open-source tool
for network troubleshooting, analysis, and protocol development. You will need to
capture and analyze a trace of SSL packets, and answer a series of questions, to
demonstrate your understanding of the SSL protocol. Note that Wireshark has already
been installed in the graduate lab. You can also install Wireshark on your personal
computer.

You are provided with two PDF documents:

 "Wireshark Lab: SSL" is the manual for the SSL project. You need to follow the
instructions and answer the questions.

 "WiresharkLab: Getting Started" is an introduction to the tool. Follow the
exercises for practice.

Specifically, you need to:

 Submit your captured trace file from the SSL lab exercise (Section 1 describes
how this can be done).

 Use your captured trace file (not the one provided by the manual) to answer Q3-
5.

 Use the trace file provided by the manual (see the second paragraph of Section 1)
to answer the remaining questions.

 Please provide the Wireshark screenshots to support your answers. If you do not
provide the supporting information, you will receive only partial credit.

This is an independent project. You must work on your own.

Submission Guide:

Submit your trace file (not the trace file provided) and the word/pdf document through
Moodle.

Grading Criteria:

Captured trace 15%

Q1, Q5, Q10 10% each

Q2-4, Q6-9, Q11-14 5% each

Wireshark Lab:
Getting Started v6.0

Supplement to Computer Networking: A Top-Down
Approach, 6th ed., J.F. Kurose and K.W. Ross

“Tell me and I forget. Show me and I remember. Involve me and I
understand.” Chinese proverb

© 2005-21012, J.F Kurose and K.W. Ross, All Rights Reserved

One’s understanding of network protocols can often be greatly deepened by “seeing
protocols in action” and by “playing around with protocols” – observing the sequence of
messages exchanged between two protocol entities, delving down into the details of
protocol operation, and causing protocols to perform certain actions and then observing
these actions and their consequences. This can be done in simulated scenarios or in a
“real” network environment such as the Internet. In the Wireshark labs you’ll be doing in
this course, you’ll be running various network applications in different scenarios using
your own computer (or you can borrow a friends; let me know if you don’t have access to
a computer where you can install/run Wireshark). You’ll observe the network protocols
in your computer “in action,” interacting and exchanging messages with protocol entities
executing elsewhere in the Internet. Thus, you and your computer will be an integral
part of these “live” labs. You’ll observe, and you’ll learn, by doing.

In this first Wireshark lab, you’ll get acquainted with Wireshark, and make some simple
packet captures and observations.

The basic tool for observing the messages exchanged between executing protocol entities
is called a packet sniffer. As the name suggests, a packet sniffer captures (“sniffs”)
messages being sent/received from/by your computer; it will also typically store and/or
display the contents of the various protocol fields in these captured messages. A packet
sniffer itself is passive. It observes messages being sent and received by applications and
protocols running on your computer, but never sends packets itself. Similarly, received
packets are never explicitly addressed to the packet sniffer. Instead, a packet sniffer
receives a copy of packets that are sent/received from/by application and protocols
executing on your machine.

Figure 1 shows the structure of a packet sniffer. At the right of Figure 1 are the protocols
(in this case, Internet protocols) and applications (such as a web browser or ftp client)
that normally run on your computer. The packet sniffer, shown within the dashed
rectangle in Figure 1 is an addition to the usual software in your computer, and consists

of two parts. The packet capture library receives a copy of every link-layer frame that
is sent from or received by your computer. Recall from the discussion from section 1.5 in
the text (Figure 1.241) that messages exchanged by higher layer protocols such as HTTP,
FTP, TCP, UDP, DNS, or IP all are eventually encapsulated in link-layer frames that are
transmitted over physical media such as an Ethernet cable. In Figure 1, the assumed
physical media is an Ethernet, and so all upper-layer protocols are eventually
encapsulated within an Ethernet frame. Capturing all link-layer frames thus gives you all
messages sent/received from/by all protocols and applications executing in your
computer.

operating
system

application

 packet
capture
(pcap)

copy of all Ethernet
frames sent/received

application (e.g., www
browser, ftp client)

Transport (TCP/UDP)
Network (IP)

Link (Ethernet)
Physical

packet
analyzer

packet sniffer

Figure 1: Packet sniffer structure
to/from network to/from network

The second component of a packet sniffer is the packet analyzer, which displays the
contents of all fields within a protocol message. In order to do so, the packet analyzer
must “understand” the structure of all messages exchanged by protocols. For example,
suppose we are interested in displaying the various fields in messages exchanged by the
HTTP protocol in Figure 1. The packet analyzer understands the format of Ethernet
frames, and so can identify the IP datagram within an Ethernet frame. It also understands
the IP datagram format, so that it can extract the TCP segment within the IP datagram.
Finally, it understands the TCP segment structure, so it can extract the HTTP message
contained in the TCP segment. Finally, it understands the HTTP protocol and so, for
example, knows that the first bytes of an HTTP message will contain the string “GET,”
“POST,” or “HEAD,” as shown in Figure 2.8 in the text.

We will be using the Wireshark packet sniffer [http://www.wireshark.org/] for these labs,
allowing us to display the contents of messages being sent/received from/by protocols at
different levels of the protocol stack. (Technically speaking, Wireshark is a packet
analyzer that uses a packet capture library in your computer). Wireshark is a free network
protocol analyzer that runs on Windows, Linux/Unix, and Mac computers. It’s an ideal
packet analyzer for our labs – it is stable, has a large user base and well-documented
support that includes a user-guide (http://www.wireshark.org/docs/wsug_html_chunked/),

1 References to figures and sections are for the 6th edition of our text, Computer Networks, A Top-down
Approach, 6th ed., J.F. Kurose and K.W. Ross, Addison-Wesley/Pearson, 2012.

man pages (http://www.wireshark.org/docs/man-pages/), and a detailed FAQ
(http://www.wireshark.org/faq.html), rich functionality that includes the capability to
analyze hundreds of protocols, and a well-designed user interface. It operates in
computers using Ethernet, serial (PPP and SLIP), 802.11 wireless LANs, and many other
link-layer technologies (if the OS on which it's running allows Wireshark to do so).

Getting Wireshark

In order to run Wireshark, you will need to have access to a computer that supports both
Wireshark and the libpcap or WinPCap packet capture library. The libpcap software will
be installed for you, if it is not installed within your operating system, when you install
Wireshark. See http://www.wireshark.org/download.html for a list of supported
operating systems and download sites

Download and install the Wireshark software:

• Go to http://www.wireshark.org/download.html and download and install the
Wireshark binary for your computer.

The Wireshark FAQ has a number of helpful hints and interesting tidbits of information,
particularly if you have trouble installing or running Wireshark.

Running Wireshark

When you run the Wireshark program, you’ll get a startup screen, as shown below:

Figure 2: Initial Wireshark Screen

Take a look at the upper left hand side of the screen – you’ll see an “Interface list”. This
is the list of network interfaces on your computer. Once you choose an interface,
Wireshark will capture all packets on that interface. In the example above, there is an
Ethernet interface (Gigabit network Connection) and a wireless interface (“Microsoft”).

If you click on one of these interfaces to start packet capture (i.e., for Wireshark to begin
capturing all packets being sent to/from that interface), a screen like the one below will
be displayed, showing information about the packets being captured. Once you start
packet capture, you can stop it by using the Capture pull down menu and selecting Stop.

listing of
captured
packets

details of
selected

packet
header

packet content
in hexadecimal

and ASCII

display filter
specification

command
menus

Figure 3: Wireshark Graphical User Interface, during packet capture and analysis

The Wireshark interface has five major components:

• The command menus are standard pulldown menus located at the top of the
window. Of interest to us now are the File and Capture menus. The File menu
allows you to save captured packet data or open a file containing previously
captured packet data, and exit the Wireshark application. The Capture menu
allows you to begin packet capture.

• The packet-listing window displays a one-line summary for each packet
captured, including the packet number (assigned by Wireshark; this is not a
packet number contained in any protocol’s header), the time at which the packet
was captured, the packet’s source and destination addresses, the protocol type,
and protocol-specific information contained in the packet. The packet listing can
be sorted according to any of these categories by clicking on a column name. The
protocol type field lists the highest-level protocol that sent or received this packet,
i.e., the protocol that is the source or ultimate sink for this packet.

• The packet-header details window provides details about the packet selected
(highlighted) in the packet-listing window. (To select a packet in the packet-
listing window, place the cursor over the packet’s one-line summary in the
packet-listing window and click with the left mouse button.). These details
include information about the Ethernet frame (assuming the packet was
sent/received over an Ethernet interface) and IP datagram that contains this
packet. The amount of Ethernet and IP-layer detail displayed can be expanded or
minimized by clicking on the plus minus boxes to the left of the Ethernet frame or
IP datagram line in the packet details window. If the packet has been carried over
TCP or UDP, TCP or UDP details will also be displayed, which can similarly be
expanded or minimized. Finally, details about the highest-level protocol that sent
or received this packet are also provided.

• The packet-contents window displays the entire contents of the captured frame,
in both ASCII and hexadecimal format.

• Towards the top of the Wireshark graphical user interface, is the packet display
filter field, into which a protocol name or other information can be entered in
order to filter the information displayed in the packet-listing window (and hence
the packet-header and packet-contents windows). In the example below, we’ll
use the packet-display filter field to have Wireshark hide (not display) packets
except those that correspond to HTTP messages.

Taking Wireshark for a Test Run

The best way to learn about any new piece of software is to try it out! We’ll assume that
your computer is connected to the Internet via a wired Ethernet interface. Indeed, I
recommend that you do this first lab on a computer that has a wired Ethernet connection,
rather than just a wireless connection. Do the following

1. Start up your favorite web browser, which will display your selected homepage.

2. Start up the Wireshark software. You will initially see a window similar to that

shown in Figure 2. Wireshark has not yet begun capturing packets.

3. To begin packet capture, select the Capture pull down menu and select Interfaces.

This will cause the “Wireshark: Capture Interfaces” window to be displayed, as
shown in Figure 4.

 Figure 4: Wireshark Capture Interface Window

4. You’ll see a list of the interfaces on your computer as well as a count of the
packets that have been observed on that interface so far. Click on Start for the
interface on which you want to begin packet capture (in the case, the Gigabit
network Connection). Packet capture will now begin - Wireshark is now
capturing all packets being sent/received from/by your computer!

5. Once you begin packet capture, a window similar to that shown in Figure 3 will

appear. This window shows the packets being captured. By selecting Capture
pulldown menu and selecting Stop, you can stop packet capture. But don’t stop
packet capture yet. Let’s capture some interesting packets first. To do so, we’ll
need to generate some network traffic. Let’s do so using a web browser, which
will use the HTTP protocol that we will study in detail in class to download
content from a website.

6. While Wireshark is running, enter the URL:
http://gaia.cs.umass.edu/wireshark-labs/INTRO-wireshark-file1.html
and have that page displayed in your browser. In order to display this page, your
browser will contact the HTTP server at gaia.cs.umass.edu and exchange HTTP
messages with the server in order to download this page, as discussed in section
2.2 of the text. The Ethernet frames containing these HTTP messages (as well as
all other frames passing through your Ethernet adapter) will be captured by
Wireshark.

7. After your browser has displayed the INTRO-wireshark-file1.html page (it is a

simple one line of congratulations), stop Wireshark packet capture by selecting
stop in the Wireshark capture window. The main Wireshark window should now
look similar to Figure 3. You now have live packet data that contains all protocol
messages exchanged between your computer and other network entities! The
HTTP message exchanges with the gaia.cs.umass.edu web server should appear
somewhere in the listing of packets captured. But there will be many other types
of packets displayed as well (see, e.g., the many different protocol types shown in
the Protocol column in Figure 3). Even though the only action you took was to
download a web page, there were evidently many other protocols running on your
computer that are unseen by the user. We’ll learn much more about these
protocols as we progress through the text! For now, you should just be aware that
there is often much more going on than “meet’s the eye”!

8. Type in “http” (without the quotes, and in lower case – all protocol names are in

lower case in Wireshark) into the display filter specification window at the top of
the main Wireshark window. Then select Apply (to the right of where you entered
“http”). This will cause only HTTP message to be displayed in the packet-listing
window.

9. Find the HTTP GET message that was sent from your computer to the

gaia.cs.umass.edu HTTP server. (Look for an HTTP GET message in the “listing
of captured packets” portion of the Wireshark window (see Figure 3) that shows
“GET” followed by the gaia.cs.umass.edu URL that you entered. When you
select the HTTP GET message, the Ethernet frame, IP datagram, TCP segment,
and HTTP message header information will be displayed in the packet-header
window2. By clicking on ‘+’ and ‘-‘ right-pointing and down-pointing arrowheads
to the left side of the packet details window, minimize the amount of Frame,
Ethernet, Internet Protocol, and Transmission Control Protocol information
displayed. Maximize the amount information displayed about the HTTP protocol.
Your Wireshark display should now look roughly as shown in Figure 5. (Note, in
particular, the minimized amount of protocol information for all protocols except
HTTP, and the maximized amount of protocol information for HTTP in the
packet-header window).

10. Exit Wireshark

Congratulations! You’ve now completed the first lab.

2 Recall that the HTTP GET message that is sent to the gaia.cs.umass.edu web server is contained within a
TCP segment, which is contained (encapsulated) in an IP datagram, which is encapsulated in an Ethernet
frame. If this process of encapsulation isn’t quite clear yet, review section 1.5 in the text

Figure 5: Wireshark window after step 9

What to hand in

The goal of this first lab was primarily to introduce you to Wireshark. The following
questions will demonstrate that you’ve been able to get Wireshark up and running, and
have explored some of its capabilities. Answer the following questions, based on your
Wireshark experimentation:

1. List 3 different protocols that appear in the protocol column in the unfiltered
packet-listing window in step 7 above.

2. How long did it take from when the HTTP GET message was sent until the HTTP
OK reply was received? (By default, the value of the Time column in the packet-
listing window is the amount of time, in seconds, since Wireshark tracing began.
To display the Time field in time-of-day format, select the Wireshark View pull
down menu, then select Time Display Format, then select Time-of-day.)

3. What is the Internet address of the gaia.cs.umass.edu (also known as www-
net.cs.umass.edu)? What is the Internet address of your computer?

4. Print the two HTTP messages (GET and OK) referred to in question 2 above. To
do so, select Print from the Wireshark File command menu, and select the
“Selected Packet Only” and “Print as displayed” radial buttons, and then click
OK.

Wireshark Lab: NAT v6.0

Supplement to Computer Networking: A Top-Down
Approach, 6th ed., J.F. Kurose and K.W. Ross

“Tell me and I forget. Show me and I remember. Involve me and I
understand.” Chinese proverb

© 2005-21012, J.F Kurose and K.W. Ross, All Rights Reserved

In this lab, we’ll investigate the Secure Sockets Layer (SSL) protocol, focusing on the
SSL records sent over a TCP connection. We’ll do so by analyzing a trace of the SSL
records sent between your host and an e-commerce server. We’ll investigate the various
SSL record types as well as the fields in the SSL messages. You may want to review
Section 8.6 in the text1.

1 References to figures and sections are for the 6th edition of our text, Computer Networks, A Top-down
Approach, 6th ed., J.F. Kurose and K.W. Ross, Addison-Wesley/Pearson, 2012.

Deng Pan
Text Box
SSL

1. Capturing packets in an SSL session

The first step is to capture the packets in an SSL session. To do this, you should go to
your favorite e-commerce site and begin the process of purchasing an item (but
terminating before making the actual purpose!). After capturing the packets with
Wireshark, you should set the filter so that it displays only the Ethernet frames that
contain SSL records sent from and received by your host. (An SSL record is the same
thing as an SSL message.) You should obtain something like screenshot on the previous
page.

If you have difficulty creating a trace, you should download the zip file
http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip and extract the ssl-ethereal-
trace-1 packet trace.

2. A look at the captured trace

Your Wireshark GUI should be displaying only the Ethernet frames that have SSL
records. It is important to keep in mind that an Ethernet frame may contain one or more
SSL records. (This is very different from HTTP, for which each frame contains either one
complete HTTP message or a portion of a HTTP message.) Also, an SSL record may not

completely fit into an Ethernet frame, in which case multiple frames will be needed to
carry the record.
Whenever possible, when answering a question below, you should hand in a printout of
the packet(s) within the trace that you used to answer the question asked. Annotate the
printout2 to explain your answer. To print a packet, use File->Print, choose Selected
packet only, choose Packet summary line, and select the minimum amount of packet
detail that you need to answer the question

1. For each of the first 8 Ethernet frames, specify the source of the frame (client or
server), determine the number of SSL records that are included in the frame, and
list the SSL record types that are included in the frame. Draw a timing diagram
between client and server, with one arrow for each SSL record.

2. Each of the SSL records begins with the same three fields (with possibly different
values). One of these fields is “content type” and has length of one byte. List all
three fields and their lengths.

ClientHello Record:

3. Expand the ClientHello record. (If your trace contains multiple ClientHello
records, expand the frame that contains the first one.) What is the value of the
content type?

4. Does the ClientHello record contain a nonce (also known as a “challenge”)? If so,
what is the value of the challenge in hexadecimal notation?

5. Does the ClientHello record advertise the cyber suites it supports? If so, in the
first listed suite, what are the public-key algorithm, the symmetric-key algorithm,
and the hash algorithm?

ServerHello Record:

6. Locate the ServerHello SSL record. Does this record specify a chosen cipher
suite? What are the algorithms in the chosen cipher suite?

7. Does this record include a nonce? If so, how long is it? What is the purpose of the
client and server nonces in SSL?

8. Does this record include a session ID? What is the purpose of the session ID?
9. Does this record contain a certificate, or is the certificate included in a separate

record. Does the certificate fit into a single Ethernet frame?

Client Key Exchange Record:

2 What do we mean by “annotate”? If you hand in a paper copy, please highlight where in the printout
you’ve found the answer and add some text (preferably with a colored pen) noting what you found in what
you ‘ve highlight. If you hand in an electronic copy, it would be great if you could also highlight and
annotate.

10. Locate the client key exchange record. Does this record contain a pre-master
secret? What is this secret used for? Is the secret encrypted? If so, how? How long
is the encrypted secret?

Change Cipher Spec Record (sent by client) and Encrypted Handshake Record:

11. What is the purpose of the Change Cipher Spec record? How many bytes is the
record in your trace?

12. In the encrypted handshake record, what is being encrypted? How?
13. Does the server also send a change cipher record and an encrypted handshake

record to the client? How are those records different from those sent by the client?

Application Data

14. How is the application data being encrypted? Do the records containing
application data include a MAC? Does Wireshark distinguish between the
encrypted application data and the MAC?

15. Comment on and explain anything else that you found interesting in the trace.

