
2/29/2016

1

TCL and GNU Readline

Christos P. Sotiriou

29/2/2016CE439 - CAD Algorithms II1

Contents

 TCL Library and C API

 https://www.tcl.tk/

 https://www.tcl.tk/man/tcl8.5/TclLib/contents.htm

 GNU Readline API

 http://www.gnu.org/software/readline/

29/2/2016CE439 - CAD Algorithms II2

https://www.tcl.tk/

2/29/2016

2

About TCL/TK

 TCL (Toolkit Command Language)

 Web and desktop applications, network programming,

embedded development, testing, general purpose programming,

system administration, database work, and many, many more

 Dynamic, String-oriented Language

 Tk Graphical Toolkit

 GUIs that are incredibly simple yet remarkably powerful

 Tk canvas widget makes it easy to create displays with graphics,

 Including powerful facilities such as bindings and tags

 text widget provides sophisticated hypertext capabilities and

more.

 Rapid Software Development

29/2/2016CE439 - CAD Algorithms II3

TCL Basics - 1

 Commands separated by semicolons or newlines

 expr 20 + 10

 tclsh is a basic TCL Shell

 Variables

 set x 32

 expr $x*3

 Command Substitution

 set cmd expr

 set x 11

 $cmd $x*$x

 set a 44

 set b [expr $a*4]

29/2/2016CE439 - CAD Algorithms II4

2/29/2016

3

TCL Basics - 2
 Quotes and Braces

 Double-quotes allow you to specify words that contain spaces

 set x 24

 set y 18

 set z "$x + $y is [expr $x + $y]“

 z will have the value 24 + 18 is 42

 Quotes and Braces
 (a) command and variable substitutions are performed on the text

between the quotes

 (b) the quotes themselves are not passed to the command

 Curly Braces
 no substitutions are performed on the text between the curly braces

 set z {$x + $y is [expr $x + $y]}

 This command sets variable z to the value
"$x + $y is [expr $x + $y]"

29/2/2016CE439 - CAD Algorithms II5

TCL Basics - 3

 Control Structures

 Tcl provides a complete set of control structures including
commands for conditional execution, looping, and procedures

 Tcl control structures are just commands that take Tcl scripts as
arguments

 The example below creates a Tcl procedure called power, which
raises a base to an integer power:

 proc power {base p} {
set result 1
while {$p > 0} {

set result [expr $result * $base]
set p [expr $p - 1]

}
return $result

}

29/2/2016CE439 - CAD Algorithms II6

2/29/2016

4

TCL Basics – 4
 Examples of using proc

 power 2 6

 power 1.15 5

 Tcl commands are created in three ways
 One group of commands is provided by the Tcl interpreter itself

 These commands are called builtin commands

 The builtin commands are present in all Tcl applications

 The second group of commands is created using the Tcl extension
mechanism
 Tcl provides APIs that allow you to create a new command by writing a

command procedure in C or C++ that implements the command

 You then register the command procedure with the Tcl interpreter by
telling Tcl the name of the command that the procedure implements

 In the future, whenever that particular name is used for a Tcl command,
Tcl will call your command procedure to execute the command

 The third group of commands are those defined in TCL
 By the proc command

29/2/2016CE439 - CAD Algorithms II7

TCL Basics – 5
 Other Features

 More control structures, such as if, for, foreach, and switch

 String manipulation, including a powerful regular expression matching facility.

 Arbitrary-length strings can be passed around and manipulated just as easily as
numbers.

 I/O, including files on disk, network sockets, and devices such as serial ports

 Tcl provides particularly simple facilities for socket communication over the
Internet

 File management: Tcl provides several commands for manipulating file names,
reading and writing file attributes, copying files, deleting files, creating directories,
and so on.

 Subprocess invocation: you can run other applications with the exec command
and communicate with them while they run.

 Lists: Tcl makes it easy to create collections of values (lists) and manipulate them
in a variety of ways.

 Arrays: you can create structured values consisting of name-value pairs with
arbitrary string values for the names and values.

 Time and date manipulation.

 Events: Tcl allows scripts to wait for certain events to occur, such as an elapsed
time or the availability of input data on a network socket.

29/2/2016CE439 - CAD Algorithms II8

2/29/2016

5

TCL C API

 http://www.tcl.tk/man/tcl8.5/TclLib/contents.htm

 Tcl_FindExecutable()

 Tcl_CreateInterp()

 Tcl_CreateObjCommand()

 Tcl_Eval()

29/2/2016CE439 - CAD Algorithms II9

GNU Readline

 The GNU Readline Library

 Two Interfaces

 Standard Interface – Control passed to readline()

 char *line = readline ("Enter a line: ");

 Alternative Interface – Event-based

 The GNU History Library

 Command History Management

 add_history (line);

 The GNU Readline User Interface

29/2/2016CE439 - CAD Algorithms II10

http://www.tcl.tk/man/tcl8.5/TclLib/contents.htm
https://cnswww.cns.cwru.edu/php/chet/readline/readline.html
https://cnswww.cns.cwru.edu/php/chet/readline/history.html
https://cnswww.cns.cwru.edu/php/chet/readline/rluserman.html

2/29/2016

6

GNU Readline Standard Interface Example

29/2/2016CE439 - CAD Algorithms II11

GNU Readline Standard Interface Example – page 1

int main()

{

char *text = NULL; // readline result //

char *textexpansion; // readline result history expanded //

int expansionresult;

HIST_ENTRY **the_history_list; // readline commands history list - NULL terminated //

char command[LINE_MAX]; // current command //

unsigned long i;

// Readline Initialisation //

rl_completion_entry_function = NULL; // use rl_filename_completion_function(), the default filename completer //

rl_attempted_completion_function = custom_completer;

rl_completion_append_character = '\0';

using_history(); // initialise history functions //

while (1)

{

text = readline("PR> ");

if (text != NULL)

{

expansionresult = history_expand(text, &textexpansion);

if ((expansionresult == 0) || // no expansion //

(expansionresult == 2)) // do not execute //

{

add_history(text);

strcpy(command, text); // store command //

}

else

{

add_history(textexpansion);

strcpy(command, textexpansion); // store command //

}

free(textexpansion);

free(text);

}

GNU Readline Standard Interface Example

29/2/2016CE439 - CAD Algorithms II12

GNU Readline Standard Interface Example – page 2

...

// handle two basic commands: history and quit //

if (strcmp(command, "quit") == 0)

{

return EXIT_SUCCESS;

}

else if (strcmp(command, "history") == 0)

{

the_history_list = history_list(); // get history list //

if (the_history_list != NULL)

{

i = 0;

while (*(the_history_list + i) != NULL) // history list - NULL terminated //

{

printf("%d: %s\n", (i + history_base), (*(the_history_list + i))->line);

i++;

}

}

}

}

}

