TCL and GNU Readline

Christos P. Sotiriou

1 CE439 - CAD Algorithms Il 29/2/2016

Contents
» TCL Library and C API

https://www.tcl.tk/man/tcl8.5/TclLib/contents.htm
» GNU Readline API

http://www.gnu.org/software/readline/

2 CE439 - CAD Algorithms I 29/2/2016

2/29/2016

https://www.tcl.tk/

About TCL/TK
» TCL (Toolkit Command Language)

Web and desktop applications, network programming,
embedded development, testing, general purpose programming,
system administration, database work, and many, many more

» Dynamic, String-oriented Language

» Tk Graphical Toolkit
GUIs that are incredibly simple yet remarkably powerful
Tk canvas widget makes it easy to create displays with graphics,
Including powerful facilities such as bindings and tags
text widget provides sophisticated hypertext capabilities and
more.

» Rapid Software Development

3 CE439 - CAD Algorithms I 29/2/2016

TCL Basics - 1

» Commands separated by semicolons or newlines
expr 20 + 10
tclsh is a basic TCL Shell
» Variables
set x 32
expr $x*3
» Command Substitution
set cmd expr
set x ||
$cmd $x*FPx
set a 44
set b [expr $a*4]

4 CE439 - CAD Algorithms I 29/2/2016

2/29/2016

TCL Basics - 2

» Quotes and Braces
Double-quotes allow you to specify words that contain spaces
set x 24
sety I8
set z "$x + $y is [expr $x + $y]“
z will have the value 24 + 18 is 42
» Quotes and Braces

(a) command and variable substitutions are performed on the text
between the quotes

(b) the quotes themselves are not passed to the command
» Curly Braces
no substitutions are performed on the text between the curly braces
set z {$x + Py is [expr $x + $y]}
This command sets variable z to the value
"$x + $y is [expr $x + $y]"

5 CE439 - CAD Algorithms I 29/2/2016

TCL Basics - 3

» Control Structures
Tcl provides a complete set of control structures including
commands for conditional execution, looping, and procedures

Tcl control structures are just commands that take Tcl scripts as
arguments

The example below creates a Tcl procedure called power, which
raises a base to an integer power:

proc power {base p} {
set result |
while {$p > 0} {
set result [expr $result * $base]
set p [expr $p - 1]

return $result

}

6 CE439 - CAD Algorithms I 29/2/2016

2/29/2016

TCL Basics — 4

» Examples of using proc
power 2 6
power [.155
» Tcl commands are created in three ways
One group of commands is provided by the Tcl interpreter itself
These commands are called builtin commands
The builtin commands are present in all Tcl applications

The second group of commands is created using the Tcl extension
mechanism

Tcl provides APIs that allow you to create a new command by writing a
command procedure in C or C++ that implements the command

You then register the command procedure with the Tcl interpreter by
telling Tcl the name of the command that the procedure implements

In the future, whenever that particular name is used for a Tcl command,
Tcl will call your command procedure to execute the command

The third group of commands are those defined in TCL
By the proc command

7 CE439 - CAD Algorithms I 29/2/2016

TCL Basics — 5

» Other Features
More control structures, such as if, for, foreach, and switch
String manipulation, including a powerful regular expression matching facility.

Arbitrary-length strings can be passed around and manipulated just as easily as
numbers.

I/O, including files on disk, network sockets, and devices such as serial ports

Tcl provides particularly simple facilities for socket communication over the
Internet

File management:Tcl provides several commands for manipulating file names,
reading and writing file attributes, copying files, deleting files, creating directories,
and so on.

Subprocess invocation: you can run other applications with the exec command
and communicate with them while they run.

Lists: Tcl makes it easy to create collections of values (lists) and manipulate them
in a variety of ways.

Arrays: you can create structured values consisting of name-value pairs with
arbitrary string values for the names and values.

Time and date manipulation.
Events:Tcl allows scripts to wait for certain events to occur, such as an elapsed
time or the availability of input data on a network socket.

8 CE439 - CAD Algorithms I 29/2/2016

2/29/2016

TCL C API

3

» Tcl_FindExecutable()

» Tcl_Createlnterp()

» Tcl_CreateObjCommand()
» Tcl_Eval()

9 CE439 - CAD Algorithms I 29/2/2016

GNU Readline

»
Two Interfaces
Standard Interface — Control passed to readline()
char *line = readline ("Enter a line:");
Alternative Interface — Event-based
4
Command History Management
add_history (line);
4
10 CE439 - CAD Algorithms Il 29/2/2016

2/29/2016

http://www.tcl.tk/man/tcl8.5/TclLib/contents.htm
https://cnswww.cns.cwru.edu/php/chet/readline/readline.html
https://cnswww.cns.cwru.edu/php/chet/readline/history.html
https://cnswww.cns.cwru.edu/php/chet/readline/rluserman.html

GNU Readline Standard Interface Example

GNU Readline Standard Interface Example - page |

int main()
{
char *text = NULL; // readline result //
char *textexpansion; // readline result history expanded //
int expansionresult;
HIST_ENTRY **the history list; // readline commands history list - NULL terminated //
char command[LINE MAX]; // current command //
unsigned long i;

// Readline Initialisation //
rl_completion entry function = NULL; // use rl_filename_completion_function(), the default filename completer //
rl_attempted completion function = custom_completer;

rl_completion_append character = '\0';
using_history(); // initialise history functions //
while (1)

(
text = readline ("PR> ");
if (text != NULL)
(
expansionresult = history expand (text, &textexpansion);
if ((expansionresult == 0) || // no expansion //
(expansionresult == 2)) // do not execute //

{
add_history(text);
strcpy (command, text); // store command //

else
(
add_history (textexpansion);
strcpy (command, textexpansion); // store command //
)
free (textexpansion) ;
free (text);

11 CE439 - CAD Algorithms I 29/2/2016

GNU Readline Standard Interface Example

GNU Readline Standard Interface Example - page 2

// handle two basic commands: history and quit //
if (stremp(command, "quit") 0
{

return EXIT_SUCCESS;

else if (strcmp(command, "history"”) == 0)
{
the history list = history list(); // get history list //
if (the_history_list != NULL)
{

i=0;
while (*(the history list + i) != NULL) // history list - NULL terminated //
{
printf("%d: %s\n", (i + history base), (*(the history list + i))->line);
itt;
}
}
}
b
}
12 CE439 - CAD Algorithms I 29/2/2016

2/29/2016

