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Abstract: Most of the published papers on parallel cascade control strategies present im-
provement of dynamic performance of stable processes. In this paper, a new parallel cascade
control scheme is proposed for controlling stable and unstable processes with time delay. The
two main features of the proposed scheme are: the primary process output completely tracks
the primary setpoint and the servo response decouples the regulatory response in the nominal
system. The proposed structure has only two controllers. The inner loop controller is designed
based on IMC approach. The outer loop controller is a PID controller in series with lead/lag
filter which is designed based on the desired complementary sensitivity function. Significant
improvement in the load disturbance rejection performances are obtained when compared to
some recent methods in the literature. Simulation results show the superiority and usefulness
of the proposed control method over the existing ones.
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1. INTRODUCTION

In process industries, parallel cascade control (which was
first proposed by Luyben (1973)) is widely used to reduce
the effects of possible disturbances and to improve the
dynamic performance of the closed-loop system. A parallel
cascade system is one in which both the manipulated
variable and the disturbance affect the primary and the
secondary output through the parallel actions while in a
series cascade both actions on the primary output take
place through secondary one. The conventional parallel
cascade control structure proposed by Luyben (1973) is
shown in Fig. 1. The parallel cascade control structure
consists of two loops: primary (outer) loop and secondary
(inner) loop. In parallel cascade control, the secondary
loop dynamics should be much faster than the primary
loop because the disturbances entering in to the secondary
loop should be rejected immediately so that it reduces
steady state error in the primary loop. The design of par-
allel cascade control for regulatory response and a method
for selection of secondary measurement under different
disturbances were addressed by Yu (1988) and Shen and
Yu (1990), respectively. Semino and Brambilla (1996) used
a conventional feedback controller in the secondary loop
and an IMC controller in the primary loop. Lee et al.
(2006) proposed an analytical method of PID controller
design for parallel cascade control taking into account the
interaction between primary and secondary control loops.
The design of parallel cascade control systems has at-
tracted relatively less attention despite the clear benefits of
the parallel cascade control and its wide range applications
in process industries. If a long time delay exists in the
outer loop, the cascade control may not give satisfactory
closed-loop responses to setpoint changes. To overcome
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Fig. 1. Conventional parallel cascade control structure

this problem, many researchers (Kaya (2001), Kaya and
Atherton (2008), Uma et al. (2009), Padhan and Majhi
(2012)) use a dead time compensator scheme in the outer
loop of the series cascade control system.

Recently, Rao et al. (2009) proposed a parallel cascade
control structure (consists of three controllers and a filter)
in which they have used a dead time compensator in the
outer loop. The structure proposed by Lee et al. (2006)
consists of two controllers and two filters. Till date, most of
the published papers on parallel cascade control strategies
are for control of stable processes. In this paper, further
results are presented for a new parallel cascade control
structure and controller design for controlling unstable
process with time delay. For easy in plant operation, a sim-
ple structure with less number of controllers is desirable.
This paper shows how effective control can be achieved for
both long time delay and unstable processes with only two
controllers.
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For clear interpretation, the proposed cascade control
structure has been addressed in section 2. The controller
design procedures are explained in section 3. The simu-
lation results are provided in section 4 followed by the
conclusions in the end.

2. A NEW PARALLEL CASCADE CONTROL
STRUCTURE

The proposed parallel cascade control structure (shown
in Fig. 2) has two controllers, namely, Gc1 and Gc2. Gc2

in the inner loop stabilizes the process by rejecting the
disturbances entering the inner loop. Unlike the conven-
tional parallel cascade control structure, the proposed
structure uses the outer loop controller Gc1 in the feed-
back path. Although, Gc1 is primarily meant for load
disturbance rejection, it also takes part in stabilizing the
unstable process in the outer loop. Gp1 = G̃p1e

−θ1s and

Gp2 = G̃p2e
−θ2s are the transfer functions of the primary

and secondary processes respectively. Gm1 = G̃m1e
−θm1s

and Gm2 = G̃m2e
−θm2s are the transfer functions of the

primary and secondary process models respectively. Gd1

and Gd2 are the transfer functions of the disturbances
for primary and secondary loops respectively. The overall
outer loop process transfer function is

Gp = G̃pe
−θps = Gc2Gp1 = Gc2G̃p1e

−θ1s (1)

and

Gm = G̃me−θms (2)

is the transfer function of the overall outer loop process
model. The closed-loop transfer function relating the pri-
mary process response (y1) to the reference (r1) can be
written as

y1

r1
=

Gc2Gp1

(

1 + Gc1G̃me−θms
)

G̃m (1 + Gc1Gc2Gp1 + Gc2Gp2 − Gc2Gm2)
(3)

where G̃me−θms = Gm is the transfer function model of
the overall process dynamics. Similarly, the closed-loop
transfer function relating the primary process output (y1)
to the disturbance input d is given by

y1

d
=

Gd1 (1 + Gc2Gp2 − Gc2Gm2) − Gd2Gc2Gp1

1 + Gc1Gc2Gp1 + Gc2Gp2 − Gc2Gm2
(4)

Based on the assumption that the model used perfectly
matches the process dynamics, (3) and (4) reduce to

y1

r1
= e−θms (5)

and
y1

d
=

Gd1 − Gd2Gc2Gp1

1 + Gc1Gc2Gp1
(6)

respectively. It concludes from (5) that the primary pro-
cess output follows the setpoint input and the closed-loop
system is always stable under the nominal condition. Also,
from (5) and (6), it is evident that the new structure
decouples the servo response from the regulatory response
for the nominal system. (Note: In order to avoid com-
plexity the transfer functions Gc1(s), Gc2(s), Gp1(s) ...etc
have been represented as Gc1, Gc2, Gp1 ...etc respectively,
throughout the paper)
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Fig. 2. Proposed parallel cascade control structure

2.1 Process models

In practice, in the case of parallel cascade control, the inner
loop process has no or a negligible time delay while the
outer loop process has a large time delay compared to the
inner loop. Generally, in the industrial applications, the
dynamics of secondary process is stable and that of the
primary process is stable or unstable. Therefore, the inner
loop process transfer function is assumed to be a first order
plus time delay(FOPTD):

Gp2 =
k2e

−θ2s

τ2s + 1
(7)

The outer loop process transfer functions are assumed in
the following form

Gp1 =
k1e

−θ1s

τ1s + 1
(8)

for a FOPTD process and

Gp1 =
k1e

−θ1s

τ1s − 1
(9)

for an unstable first order plus time delay (UFOPTD)
process.

3. CONTROLLER DESIGN PROCEDURES

The design methods for the controllers (Gc1 and Gc2) are
explained in this section in details.

3.1 Design of the inner loop controller Gc2

The secondary loop controller is designed based on inter-
nal model control (IMC) principles (Morari and Zafiriou
(1989)). The design procedure given in Padhan and Majhi
(2011) is reproduced below for the controller Gc2. The
inner loop is referred to as IMC since the plant model Gm2

appears in the control structure. The inner loop process
model Gm2 is given by

Gm2 =
km2e

−θm2s

τm2s + 1
(10)
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According to the IMC controller design, decomposing the
process model into two parts results in

Gm2(s) = Gm2M (s)Gm2A(s) (11)

where Gm2M contains the invertible portion of the model
and Gm2A contains all the non-invertible portion. The
invertible portions are the part of the model with stable
poles. The non-invertible portions are the portion of model
with right half plane zeros and time delays.

The ideal IMC controller is the inverse of the invertible
portion of the process model i.e.

Gc2i = G−1
m2M (12)

In order to make the IMC controller proper, it is necessary
to introduce a low-pass filter (fc2 = 1

(λ2s+1)n ) with a

steady state gain of 1. Where λ2 is the filter time constant
and the index n should be selected to make the IMC
controller realizable.

Now, the secondary loop controller Gc2 is given by

Gc2 = Gc2ifc2 =
τm2s + 1

km2 (λ2s + 1)
(13)

where λ2 is the adjustable tuning parameter. The response
speed is determined by the parameter λ2. In order to
achieve good control performance, the inner loop should
be faster than the outer loop. The smaller the value of
λ2 the better the performance of the parallel cascade
control system. The value of λ2 should be selected such
that satisfactory closed-loop responses can be achieved.
On the basis of extensive simulation studies based on the
MATLAB toolbox, the suggested range for λ2 are 0.1θm−
0.8θm for small time delay processes, 0.001θm−0.09θm for
large time delay and unstable processes.

3.2 Design of the outer loop controller Gc1

Based on the nature of the primary process and load dis-
turbance transfer functions, the desired closed-loop com-
plementary sensitivity function is chosen and correspond-
ingly the controller is designed. In fact, for all the cases
PID controller in series with lead/lag compensator is ob-
tained. The detailed design procedure is explained below.
The loop transfer function for the outer loop is given by

L1(s) = Gc1Gc2Gp1 (14)

The nominal complementary sensitivity function of the
outer loop for disturbance rejection is

Td1
=

L1(s)

1 + L1(s)
=

Gc1Gc2Gp1

1 + Gc1Gc2Gp1
(15)

By following a simple calculation, we get

Gc1 =
Td1

1 − Td1

×
1

Gc2Gp1
(16)

(i)For FOPTD primary process: If the primary process
dynamics is Gp1 = k1e

−θ1s
/

(τ1s + 1), in order to get the
desired closed-loop performances, the closed-loop comple-
mentary sensitivity function is written as

Td1
=

1

(λ1s + 1)
2 e−θms (17)

From (8), (13), (16) and (17), we get

Gc1 =
k2 (λ2s + 1) (τ1s + 1)

k1 (τ2s + 1)
[

(λ1s + 1)2 − e−θms
] (18)

The second order Padé approximation for the time delay
(i.e. e−θms = (6 − 2sθm)

/(

6 + 4sθm + s2θ2
m

)

) reduces (18)
as

Gc1 =
k2 (λ2s + 1) (τ1s + 1)

(

6 + 4θms + s2θ2
m

)

k1 (τ2s + 1)

[

(λ1s + 1)
2 (

6 + 4θms + s2θ2
m

)

− (6 − 2θms)

] (19)

After following a simple calculation, we get

Gc1 =
k2 (λ2s + 1) (τ1s + 1)

(

6 + 4θms + s2θ2
m

)

k1s [x4s4 + x3s3 + x2s2 + x1s + x0]
(20)

where x4 = τ2λ
2
1θ

2
m, x3 = λ2

1θ
2
m + 2τ2λ1θ

2
m + 4τ2λ

2
1θm,

x2 = 4λ2
1θm +6τ2λ

2
1+2λ1θ

2
m +τ2θ

2
m +8τ2λ1θm, x1 = 6λ2

1+
θ2

m + 8λ1θm + 6τ2θm + 12τ2λ1 and x0 = 6θm + 12λ1.
(20) can be approximated as a PID controller in series with
lead/lag compensator in the form of

Gc1 = Kc

(

1 +
1

Tis
+ Tds

)









a2s
2 + a1s + 1

(

b4s
4 + b3s

3 + b2s
2

+b1s + 1

)









(21)

where






















Kc =
6k2 (τ1 + λ2)

k1x0
, Ti = τ1 + λ2, Td =

τ1λ2

τ1 + λ2

a2 =
θ2

m

6
, a1 =

2θm

3
b4 =

x4

x0
, b3 =

x3

x0
, b2 =

x2

x0
, b1 =

x1

x0

(22)

(ii) For UFOPTD primary process: In order to reject
the step load disturbances injected into the primary loop
process, an asymptotic constraint

lim
s→1/τ1

(1 − Td1
) = 0 (23)

should be satisfied so that the closed-loop internal stability
can be achieved. The desired closed-loop complementary
sensitivity function is proposed as

Td1
=

β1s + 1

(λ1s + 1)3
e−θms (24)

where β1 is a positive number and λ1 is a tuning parameter
for obtaining the desirable closed-loop performances of the
outer loop. Substitution of (24) in (23) results in

β1 = τ1

[

(

λ1

τ1
+ 1

)3

e
θm/τ1 − 1

]

(25)

From (9), (13), (16) and (24), we get

Gc1 =
k2 (λ2s + 1) (τ1s − 1) (β1s + 1)

k1 (τ2s + 1)
[

(λ1s + 1)
3
− (β1s + 1) e−θms

] (26)

Using Padé approximation for the time delay term of (26)
gives
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Gc1 =

(

k2 (λ2s + 1) (τ1s − 1) (β1s + 1)
(

6 + 4θms + θ2
ms2

)

)

k1 (τ2s + 1)

[

(λ1s + 1)
3 (

6 + 4θms + θ2
ms2

)

− (β1s + 1) (6 − 2θms)

] (27)

After following a simple calculation, we get

Gc1 = −
6k2

k1m0

(

λ2 + β1 +
1

s
+ λ2β1s

)

×
1 + 2θms/3 + θ2

ms2
/

6
((

1 + x1s + x2s
2 + x3s

3+
x4s

4 + x5s
5

)/

(−τ1s + 1)

)

(28)

where x1 = m1/m0, x2 = m2/m0, x3 = m3/m0, x4 =
m4/m0, x5 = m5/m0, m0 = 18λ1 + 6θm − 6β1, m1 =
θ2

m + 12λ1θm + 2β1θm − 6τ2β1 + 6τ2θm + 18τ2λ1 + 18λ2
1,

m2 = 3λ1θ
2
m + 6λ3

1 + 12τ2λ1θm + 12λ2
1θm + 2τ2β1θm +

τ2θ
2
m +18τ2λ

2
1, m3 = 4λ3

1θm +3τ2λ1θ
2
m +3λ2

1θ
2
m +6τ2λ

3
1 +

12τ2λ
2
1θm, m4 = 4τ2λ

3
1θm + λ3

1θ
2
m + 3τ2λ

2
1θ

2
m and m5 =

τ2λ
3
1θ

2
m.

(28) can be expressed in the form of a PID controller in
series with lead/lag compensator as

Gc1 = Kc

(

1 +
1

Tis
+ Tds

) (

a2s
2 + a1s + 1

b3s3 + b2s2 + b1s + 1

)

(29)

where


















Kc = −
6k2 (β1 + λ2)

k1m0
, Ti = β1 + λ2, Td =

β1λ2

β1 + λ2

a1 =
2θm

3
, a2 =

θ2
m

6
b1 = x1 + τ1, b2 = x2 + b1τ1, b3 = x3 + b2τ1

(30)

The filter parameters b1, b2 and b3 are obtained by the
following method. The parameter b1 is obtained by taking
first derivative of the term
(

1 + x1s + x2s
2 + x3s

3 + x4s
4 + x5s

5
)/

(−τ1s + 1) and sub-
stituting s = 0. Similarly, the second derivative of the said
term and substition of s = 0 gives the expression for b2

and so on(Padhan and Majhi (2012)).
The tuning of the control parameter λ1 aims at the best
trade-off between nominal performance of the closed loop
and its robust stability. That is, decreasing λ1 improves
the disturbance rejection performance of the closed loop
but degrades its robust stability in the presence of process
uncertainty. In contrast, increasing λ1 tends to strengthen
the robust stability of the closed loop but degrades its
disturbance rejection performance. On the basis of exten-
sive simulation studies based on the MATLAB toolbox,
it is observed that the initial value of λ1 is equal to
overall process time delay. The suggested range of the
tuning parameter is λ1 = 0.09θm−θm for FOPTD process,
λ1 = 0.5θm − 1.2θm for the UFOPTD process.
Remark: From the following block diagram (see Fig. 3),
the closed-loop transfer function V (s) can be obtained as

V (s) =
1

G̃m

=
1

Gc2G̃p1

(31)

Gc2 is a function of the tuning parameter λ2 in turn V (s) is
also a function of λ2. It is to be noted that V (s) primarily
helps in improving the overall servo tracking performance
of the closed-loop system.

1mG   

_

+

V(s)

Fig. 3. Block diagram for V (s)
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Fig. 4. Nominal responses for example 1: (a) Proposed, (b)
Lee et al. (2006)

3.3 Performance

To evaluate the closed-loop performance, we consider two
popular performance specifications based on integral error
(e(t) = r(t) − y(t)) such as the integral absolute error

(IAE=
∞
∫

0

|e(t)| dt) and the integral square error (ISE=

∞
∫

0

e(t)2dt) criteria.

To evaluate the manipulated input, we compute the total

variation (TV) of the input u(t) i.e.TV=
∞
∑

i=1

|ui+1 − ui|,

which should be as small as possible. The TV is a good
measure of smoothness of a signal (Skogestad (2003)).

4. SIMULATION RESULTS

In this section, to illustrate the usefulness of the proposed
cascade control structure and design procedure, three
typical simulation examples are presented.

4.1 Example-1

Consider the process and disturbance transfer function
models (Lee et al. (2006)) given by Gp1 = Gd1 =
e−4s

/

(20s + 1) and Gp2 = Gd2 = 1/(10s + 1). Taking
λ2 = 0.5, the inner loop controller is obtained as Gc2 =
(10s + 1)/(0.5s + 1). Choosing the primary controller pa-
rameter as λ1 = 0.5θm and using the design formulae
(22), the parameters of Gc1 are obtained as Kc = 2.5625,
Ti = 20.5, Td = 0.4878, a2 = 2.6667, a1 = 2.6667,
b4 = 13.3333, b3 = 28, b2 = 24.3333 and b1 = 12.1667.
With these controller settings, the performances of the
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Fig. 5. Perturbed responses for example 1: (a) Proposed,
(b) Lee et al. (2006)

closed loop system is evaluated by introducing a unit
step load disturbance at time t = 0. For comparison, the
method proposed by Lee et al. (2006) is considered. The
closed-loop primary responses for these controllers setting
are shown in Fig. 4. In the present work, a +40% pertur-
bation in the primary process time delay and −40% in the
primary and secondary process time constants have been
considered and the corresponding responses are shown in
Fig. 5. The control efforts(u) are also shown in Fig. 4
and Fig. 5. As the proposed method gives low TV (see
Table 1), the control action variation is comparatively
smooth . For quantitative comparison, IAE and ISE (for
regulatory responses) performance indices are considered
here. It is observed from the Table 1 that the proposed
method gives low IAE and ISE values. It is evident from
the simulation results that the proposed method yields
robust and superior control performances.

4.2 Example-2

Consider the following liquefied petroleum gas (GPL)
splitter model studied by Rao et al. (2009)

Gp1 =
−0.0067e−300s

105.8s + 1
, Gd1 =

0.05843e−300s

115.5s + 1

Gp2 =
−5.217

101.6s + 1
, Gd2 =

44.15

109.5s + 1

Taking λ2 = 0.5 results in
Gc2 = (101.6s + 1)/(−2.608s− 5.217). By choosing λ1 =
0.1θm, the parameters of Gc1 are obtained as Kc = 229.92,
Ti = 106.3, Td = 0.4976, a2 = 15000, a1 = 200, b4 =
3810000, b3 = 342300, b2 = 10874 and b1 = 179.1. With
these controller settings a step load input of magnitude
100 at t = 0 is introduced and the corresponding closed-
loop responses are shown in Fig. 6. To investigate the
robustness of the proposed controller, a perturbation of
+30% in the primary process and load disturbance time
delays is considered and the closed-loop performances
are given in Fig. 7. From the simulation results, it is
seen that Lee et al. (2006) method produces spikes in a
regular interval (see Fig. 6 and Fig. 7). It can be observed
(see Table 1) that the proposed method gives smaller
performance indices compared to that of Rao et al. (2009)
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Fig. 6. Nominal responses for example 2: (a) Proposed, (b)
Lee et al. (2006), (c) Rao et al. (2009)
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Fig. 7. Perturbed responses for example 2: (a) Proposed,
(b) Lee et al. (2006), (c) Rao et al. (2009)

Table 1. Performance specifications for regula-
tory responses

Scheme Nominal System Perturbed system

IAE ISE TV IAE ISE TV

Example-1
(a) 0.28 0.003 1.17 0.35 0.005 1.13
(b) 0.53 0.01 1.28 0.65 0.016 1.24

Example-2
(a) 63.86 6.16 894.84 94.47 9.05 911.12
(b) 70.39 7.07 1.49E4 105.8 10.04 1.08E4
(c) 108 10.9 1.071E3 116.3 13.12 1.07E3

Example-3
(a) 1.61 0.11 2.44 1.62* 0.12* 2.59*

1.63† 0.11† 2.33†
2.16‡ 0.19‡ 3.26‡

(a)Proposed, (b) Lee et al. (2006), (c) Rao et al. (2009)
(*)−10% change in θ1 and τ1, (†)+10% change in θ1 and τ1 and
(‡)+10% change in θ1 and −10% in τ1

and Lee et al. (2006). Also, it gives better performances
for disturbance rejection.
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Fig. 8. Regulatory responses for example 3: (a) Nominal,
(b) perturbation of −10% in θ1 and τ1, (c) pertur-
bation of +10% in θ1 and τ1 and (d)perturbation of
+10% in θ1 and −10% in τ1

4.3 Example-3

Consider a chemical CSTR (Lee et al. (2002)) of which
the primary and secondary process and load disturbance
transfer functions Gp1 = Gd1 = e−4s

/

(20s − 1) and Gp2 =

Gd2 = 2e−2s
/

(20s + 1), respectively. By choosing λ1 = θm

and using the design formulae (30), the parameters of Gc1

are obtained as Kc = 7.1580, Ti = 22.2317, Td = 0.02,
a2 = 2.6667, a1 = 2.6667, b3 = 48.6843, b2 = 40.8994
and b1 = 21.9240. The inner loop controller is obtained
as Gc2 = (20s + 1)/(0.04s + 2). With these controller
settings a unit step load disturbance is introduced at
time t = 0. The corresponding closed-loop responses are
shown in Fig. 8. To illustrate the robustness to parameter
variations, perturbations of +10% in the primary process
time delay and −10% in the primary process time constant
and again ±10% in the primary process time delay and in
the primary process time constant have been considered
and the corresponding closed-loop responses and control
efforts are shown in Fig. 8. The servo responses for perfect
and perturbed systems are shown in Fig. 9. It is evident
from the simulation results that the proposed cascade
scheme gives robust closed-loop performances in terms of
the servo tracking and the load disturbance rejection.

5. CONCLUSIONS

The problem of controlling stable and unstable time de-
layed processes has been tackled by proposing a new paral-
lel cascade control structure. One of the important features
of the proposed structure is that it decouples the servo
response from the regulatory response in the nominal case.
The comparative analysis shows that with less number of
controllers, the proposed scheme gives improved closed-
loop performances. It is shown that both nominal and ro-
bust control performances are obtained with the designed
controllers.
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