SYMMETRY IN CHEMISTRY

Professor MANOJ K. MISHRA

CHEMISTRY DEPARTMENT

IIT BOMBAY

ACKNOWLEGDEMENT:

Professor David A. Micha
Professor F. A. Cotton

WHY SYMMETRY?

$$
\boldsymbol{H} \psi=\boldsymbol{E} \psi
$$

$$
\begin{gathered}
\text { For } \begin{array}{c}
\mathbf{H} \text { - atom: } \quad H \overrightarrow{(r)} \psi_{n, l, m, m_{s}} \overrightarrow{(r)}=E_{n} \psi_{n, l, m, m_{s}} \overrightarrow{(r)} \\
\boldsymbol{C S C O}=\left[\boldsymbol{H}, \boldsymbol{l}^{2} \boldsymbol{l z}_{\mathrm{z}} \mathrm{~s}^{2} \mathrm{~s}_{z}\right] \text { i.e }\left[\boldsymbol{H}, \boldsymbol{l}^{2}\right]=\mathbf{0}, \quad \text { etc } \\
{\left[\boldsymbol{H}, \boldsymbol{l}^{2}\right]=\mathbf{0} \Rightarrow \boldsymbol{H} \boldsymbol{l}^{2}=\boldsymbol{l}^{2} \boldsymbol{H}}
\end{array}
\end{gathered}
$$

Each member of the CSCO labels, ψ
$H \rightarrow n, \quad l^{2} \rightarrow l, \quad l_{z} \rightarrow m, \quad s^{2} \rightarrow s=\frac{1}{2}, \quad s_{z}=m_{s}= \pm \frac{1}{2} \alpha / \beta$
and $\int \psi_{n^{\prime} I^{\prime} m^{\prime} m s^{\prime}} \psi_{n l m m s} d \tau=\delta_{n n^{\prime}} \delta_{l l^{\prime}} \delta_{m m^{\prime}} \delta_{m s m s^{\prime}}$
For molecules: Symmetry operation $\mathbf{R} \in \mathbf{C S C O}$
$[H, R]=0 \Rightarrow H R=R H$ or $R^{-1} H R=H$
\boldsymbol{H} is INVARIANT under \boldsymbol{R} (by definition too)
$H \psi=\mathbf{E} \psi$ gives $\boldsymbol{\psi}^{\Gamma}$ where Γ incorporates the effect of $\forall R \in \operatorname{CSCO}$
$\int \psi^{\Gamma_{\alpha}} \psi^{\Gamma_{\beta}} d \tau=\delta_{\alpha \beta}$
e.g.for $\mathrm{NH}_{3}: \boldsymbol{C}_{3 V}\left\{\boldsymbol{A}_{1} \boldsymbol{A}_{2} E\right\}$
$\psi_{N H 3}^{\text {electronic }}=\psi_{N H 3}^{A 1}, \psi_{N H 3}^{A 2}, \psi_{N H 3}^{E}$,
NH_{3} normal modes $=\boldsymbol{A}_{\mathbf{1}} \oplus \boldsymbol{A}_{\mathbf{2}} \oplus \boldsymbol{E}$
NH_{3} rotation or translation MUST be A_{1}, A_{2} or E !
NO ESCAPING SYMMETRY!

Molecular Symmetry

(Ref.: Inorganic chemistry by Shirver, Atkins \& Longford, ELBS)
One aspect of the shape of a molecule is its symmetry (we define technical meaning of this term in a moment) and the systematic treatment and symmetry uses group theory. This is a rich and powerful subject, by will confine our use of it at this stage to classifying molecules and draw some general conclusions about their properties.

* An introduction to symmetry analysis

* Our initial aim is to define the symmetry of molecules much more precisely than we have done so far, and to provide a notational scheme that confirms their symmetry. In subsequent chapters we extend the material present here to applications in bonding and spectroscopy, and it will become that symmetry analysis is one of the most pervasive techniques in inorganic chemistry.

* Symmetry operations and elements

A fundamental concept of group theory is the symmetry operation. It is an action, such as a rotation through a certain angle, that leave molecules apparently unchanged. An example is the rotation of $\mathrm{H}_{2} \mathrm{O}$ molecule by 180 - (but not any smaller angle) around the bisector of HOH angle. Associated with each symmetry operation there is a symmetry element; this is a point, a line, or a plane with respect to which symmetry operation is performed. The most important symmetry operation and their corresponding elements are listed in table 2.6.
All operations leaves at least one point of the molecule unmoved, just as rotation of a sphere leaves its center unmoved. Hence they are operations of point-group symmetry. The identity operation E leaves whole molecule unchanged.

Fig.2.5. An $\mathrm{H}_{2} \mathrm{O}$ molecule may be rotated through any angle about the bisector of the HOH bond angle, but only a rotation of $180^{\circ}, \mathrm{C}_{2}$, leaves it apparently unchanged.

The rotation of an $\mathrm{H}_{2} \mathrm{O}$ molecule by $180^{\circ}(n=2)$ around a line bisect the HOH angle is a symmetry operation, so the $\mathrm{H}_{2} \mathrm{O}$ molecule possess two-fold rotation axis C_{2} (fig. 2.5). In general, an \mathbf{n}-fold rotation symmetry operation if the molecule appears unchanged after rotation $360^{\circ} / \mathbf{n}$. The corresponding symmetry element is a line, the \mathbf{n}-fold rotational axis $\mathbf{C n}$, about which the rotation is performed. The triangular pyramid $\mathbf{N H}_{3}$ molecule has a threefold rotation axes, denoted C_{3}, but there are operations associated with it, one a rotation by 120° and the other a rotation through twice this angle (Fig. 2.6). The two operations are denoted C_{3} and C_{3}^{2}. We do not need to consider C_{3}^{3}, a rotation through $3 \times 120^{\circ}=360^{\circ}$, since it is equivalent to the identity.

Table 2.6. Important symmetry operations and symmetry elements

Symmetry element	Symmetry operation	Symbol
	Identity*	E
N-fold symmetry axis	Rotation by $2 \pi / \mathrm{n}$	C_{n}
Mirror plane	Reflection	σ
Center of inversion	Inversion	i
N-fold axis of improper rotation \ddagger	Rotation by $2 \pi / \mathrm{n}$ followed by reflection perpendicular to rotation axis	S_{n}
*The symmetry element can be thought of as the molecule as a whole.		
\ddagger Note the equivalences $S_{I}=\boldsymbol{\sigma}$ and $S_{2}=\mathbf{i}$.		

Fig. 2.6. A three-fold rotation and the corresponding C_{3} axis in NH_{3}. There are two rotations associated with this axis. One through $120{ }^{\circ}\left(\mathrm{C}_{3}\right)$ and the other through $240^{\circ}\left(\mathrm{C}_{3}{ }^{2}\right)$.

The reflection of an $\mathrm{H}_{2} \mathrm{O}$ molecule in either of the two planes shown in Fig. 2.7 is a symmetry operation: corresponding symmetry element is a mirror plane σ. The $\mathrm{H}_{2} \mathrm{O}$ molecule has two mirror planes which intersect at the bisector of the $\mathbf{H O H}$ angle. Because the planes are vertical (in the sense of being parallel to the rotational axis of the molecule), they are labeled σ_{v} and $\sigma_{\mathrm{v}}{ }^{\prime}$. The $\mathrm{C}_{6} \mathrm{H}_{6}$ molecule has a mirror plane $\sigma \mathrm{h}$ in the plane of the molecule.

Fig. 2.7. The two vertical mirror planes σ_{v} and $\sigma_{\underline{v}}$ in $\mathrm{H}_{2} \mathrm{O}$ and the corresponding operations. Both planes cut through the C_{2} axis.

The ' h ' signifies that the plane is horizontal in the sense that the principal rotational axis of the molecule is perpendicular to it. This molecule also has two more sets of three mirror planes that intersect the six-fold axis (Fig. 2.8). In such cases, the members of one set are called vertical and the members of the other are called dihedral. The symmetry elements (and the associated operations) are denoted σ_{v} and σ_{d} respectively.

Fig. 2.8. Some of the symmetry elements of the benzene ring. There is one horizontal reflection plane ($\sigma \mathrm{h}$) and two sets of vertical reflection plane ($\sigma \mathrm{v}$ and σd); one example of each is shown.

Fig. 2.9. The inversion operation and the center of inversion (i) in SF_{6}

The inversion operation consists of imagining that each point of the molecules is taken through a single center and projected an equal distance on the other side (Fig. 2.9). The symmetry element is the center of inversion (i), the point through which projection is made. An N_{2} molecule has a center of inversion midway between the two nitrogen nuclei. The $\mathrm{H}_{2} \mathrm{O}$ molecule does not possess this element, but a benzene molecule and a sulfur hexafluoride molecule both do. In due coarse we shall see the importance of recognizing that an octahedron has a center of inversion but that a tetrahedron does not.

Fig. 2.10 A four fold axis of improper rotation S 4 in the CH 4 molecule $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \& \mathrm{D}=4$.

The operation of improper rotation is composite: it consist of a rotation followed by a reflection in the plane perpendicular to the axis of rotation. Fig. 2.10 shows a fourfold improper rotation of a tetrahedral CH_{4} molecule: in this case, the operation consists of a 90° rotation about an axis bisecting two HCH bond angles followed by a reflection through a plane perpendicular to the rotation axis.

Neither the operation C_{4} nor the reflection σ_{h} alone is a symmetry operation for CH_{4}, but their products $\mathrm{C}_{4} \times \sigma_{\mathrm{h}}$ is a symmetry operation, the improper rotation S_{4}. The symmetry element, the improper rotation axis $\mathrm{S}_{\mathrm{n}}\left(\mathrm{S}_{4}\right.$ in the example), is the corresponding combination of an n -fold rotational axis and a perpendicular to the mirror plane. The only Sn axes that exist are those for $\mathrm{n}=1$ and $\mathrm{n}=2,4,6, \ldots$. Moreover, S_{1} is equivalent to a horizontal reflection σ_{h} and S_{2} is equivalent to the inversion (i) (Fig. 2.11).

Fig. 2.11 (a) An S_{1} axis is equivalent to a mirror plane and (b) an S_{2} axis is equivalent to a center of inversion.

Example 2.6: Identifying a symmetry element
Q. Which conformation of $\mathrm{CH}_{3} \mathbf{C H}_{3}$ molecule has an S_{6} axis ?

Answer: We need to find a conformation that leaves the molecule looking the same after a 60% rotation followed by a reflection in a plane perpendicular to that axis. The conformation and axis are shown in (5); this is the staggered conformation of the molecule, and also the one of lowest energy.
Exercise: Identity a C_{3} axis of an $\mathrm{NH}_{4}{ }^{+}$ion. How many of these axes are there in the ion?

The point groups of molecules

The symmetry elements possessed by molecules determine the point group to which they belong. Assigning a molecule to a particular group depends on making a list of symmetry elements it possesses and then comparing it with the list that is characteristic of each point group.

For example, if a molecule has only the identity element (CHBrCIF is an example), we list its elements as E and look for the group that has only this one. In fact, the group called C_{1} is the group with only the element E , so the CHBrClF (6) molecule belongs to that group. The molecule $\mathbf{C H}_{2} \mathbf{B r C l}$ belongs to a slightly richer group: it has the elements \mathbf{E} (all groups have that element) and a mirror plane. The group of elements E, σ is called C_{S}, so the $\mathbf{C H}_{2} \mathbf{B r C l}$ molecule belongs to that group. This process can be continued, with molecules being assigned to the group that matches the symmetry elements they possess. Some of the more common groups and their names are listed in Table 2.7. Assigning a molecule to its group depends on listing the symmetry elements it possesses and then referring to the table. However, it is often easier to work through the tree in Fig. 2.12 and to arrive at the correct point group by answering the questions at each decision point on the correct point on the chart. (Note that we need to be careful to distinguish the names of the groups, C_{2}, and so on. From the symbols for the symmetry elements, such as C_{2}, and the corresponding operations, also C_{2}. The context will always make it clear what interpretation is intended.

Table 2.7: The composition of some common groups

Point group	Symmetry elements	Examples
C_{1}	E	SiBrClFl
C_{2}	E, C2	$\mathrm{H}_{2} \mathrm{O}_{2}$
C_{8}	E, σ	NHF_{2}
$\mathrm{C}_{2 \mathrm{v}}$	E, $C_{2}, 2 \sigma_{v}$	$\mathrm{H}_{2} \mathrm{O}, \mathrm{SO}_{2} \mathrm{Cl}_{2}$
$\mathrm{C}_{3 \mathrm{v}}$	E, $\mathrm{C}_{2}, 3 \sigma_{v}$	$\mathrm{NH}_{3}, \mathrm{PCl}_{3}, \mathrm{POCl}_{3}$
$\mathrm{C}_{\text {cov }}$	E, C ${ }_{\infty}$	$\mathrm{CO}, \mathrm{HCl}, \mathrm{OCS}$
$\mathrm{D}_{2 \mathrm{~h}}$	E, $3 C_{2}, 2 \sigma_{v}, \sigma_{h}, i$	$\mathrm{N}_{2} \mathrm{O}_{4}, \mathrm{~B}_{2} \mathrm{H}_{6}$
$\mathrm{D}_{3 \mathrm{~h}}$	$E, C_{3}, 3 C_{2}, 3 \sigma_{v}, \sigma_{h}$	$\mathrm{BF}_{3}, \mathrm{PCl}_{5}$
$\mathrm{D}_{4 \mathrm{~h}}$	$E, C_{4}, C_{2}, i, S_{4}, \sigma_{h}, \ldots .$.	XeF ${ }_{4}$, trans $-\mathrm{MA}_{4} \mathrm{~B}_{2}$
$\mathrm{D}_{\text {oh }}$	E, $C_{\infty}, \infty \sigma_{v-}, \ldots .$.	$\mathrm{H}_{2}, \mathrm{CO}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}$
T	E, $3 C_{2}, 4 C_{3}, 6 \sigma, 3 S_{4}$	$\mathrm{CH}_{4}, \mathrm{SiCl}_{4}$
O_{h}	$\mathrm{E}, 6 \mathrm{C}_{2}, 4 \mathrm{C}_{3}, 4 \mathrm{~S}_{6}, 3 \mathrm{~S}_{4}, \mathrm{i}, \ldots .$.	SF_{6}

Fig. 2.12: The decision tree for identifying a molecular point group. After passing through part (a), go to part (b) if necessary.

Example 2.7: Identifying the point group of a molecule

To what point groups do $\mathrm{H}_{2} \mathrm{O}$ and NH_{3} belong?

Answer: The symmetry elements are shown in Fig. 2.13.
(a) $\mathrm{H}_{2} \mathrm{O}$ possesses the identity (E), a two fold rotation axis $\left(C_{2}\right)$, and two vertical mirror planes $\left(2 \sigma_{V}\right)$. The set of elements $\quad\left(E, C 2,2 \sigma_{V}\right)$ corresponds to the group $C_{2 V}$.
(b) NH_{3} possesses the identity (E), a three fold rotation axes $\left(C_{3}\right)$, and three vertical mirror planes $\left(3 \sigma_{V}\right)$. The set of elements ($E, C_{3}, 3 \sigma_{V}$) corresponds to the group $C_{3 V}$.

Exercise: Identity the point groups of (a) BF_{3}, a trigonal planar molecule and $D_{3 h}$ (b) the tetrahedral $\mathrm{SO}_{4}{ }^{2-}$ ion $\left(T_{d}\right)$.

Fig. 2.13: The symmetry elements of (a) $\mathrm{H}_{2} \mathrm{O}$ and (b) NH_{3}. The diagrams on the right are views from above and summarize the diagrams to their left.

Linear molecules with a center of symmetry $\left(\mathrm{H}_{2}, \mathrm{CO}_{2}, \mathrm{C}_{2} \mathrm{H}_{2},\right)(7)$ belong to the point group $D_{\infty h}$. A molecule that is linear but has no center of symmetry ($\mathrm{HCl}, \mathrm{OCS}, \mathrm{NNO}$,) (8) belongs to the point group $C_{\text {oov }}$.
$\mathrm{H}_{2}, \mathrm{CO}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}$
$\mathrm{HCl}, \mathrm{OCS}, \mathrm{NNO}$

Fig. 2.14: shapes with the symmetries of the groups (a) Td (b) Oh and (c) Ih. They are all closely related to the symmetries of a cube.

Tetrahedral $\left(T_{d}\right)$ and octahedral $\left(O_{h}\right)$ molecules (Fig. 2.14), which are of great importance in coordination chemistry, have more than one principal axis of symmetry: a tetrahedral CH_{4} molecule, for instance, has four C_{3} axes, one along each C-H bond. A closely related group, the icosahedral group $\left(I_{h}\right)$ characteristic of the icosahedron (Fig. 2.14c), is important for boron compounds. The three groups are quite easy to recognize: a regular tetrahedron has four equilateral triangles for its faces, an octahedron has eight, and an icosahedrons has 20.

For our present purposes, the most important groups are $C_{2 v}$ and $C_{3 v}$ and the tetrahedral and octahedral groups. We shall also sometimes encounter $C \infty v$ and D_{∞} for linear molecules, $\boldsymbol{D}_{3 h}$ for trigonal planar molecules (such as $\mathbf{B F}_{3}$, 9) and trigonal bipyramidal molecules such as $\mathbf{P C l}_{5}, \mathbf{1 0}$), and $D_{4 h}$ for square-planar molecules (11) and octahedral
 molecules with two substituents opposite to each other, as in (12). This last example shows that the point group classification of molecule is more precise than the casual use of the term octahedral or tetrahedral. For instance, a molecule may loosely be called octahedral even if it has six different groups attached to the central atom. However, it only belongs to the octahedral point group O_{h}, if all six groups are identical (13)

GROUP

I Consider a set $S=\{A, B, C, D, E, F\}$
 The set S is classified as a GROUP

ientity element E is in this set i.e. $\exists \mathrm{E} \ni \mathrm{E} A=\mathrm{AE}=\mathrm{A} \forall \mathrm{A} \in \mathrm{S}$

Order: The member of elements in a group (G) is called the ORDER of the group.
e.g., if S is a Group, its order $h=6$
12. $\forall A \in S \exists A^{-1} \ni A A^{-1}=A^{-1} A=E \& A^{-1} \in S$
3. If $\mathrm{A} \& \mathrm{~B} \in S \quad \& A B=C \quad \& B A=D$
then C \& D must also be $\in S$
i.e S is CLOSED under multiplication

Subgroup: If a smaller sub set of elements of a Group fulfills all the group requirement (1-4 above), then, this subset is called a SUBGROUP of that Group.
4. Association Law holds, i.e. $A(B C)=(A B) C$

CLASS: For $A \& B \in G$, if $\exists X \in \mathrm{G}$

$$
\ni A=X^{-1} B X
$$

Then A \& B are said to belong to the same CLASS

GROUP MULTIPLICATION TABLE

Operation A

$C_{2 v}$	E	C_{2}	σ_{v}	$\sigma_{v}{ }^{\prime}$
E	E	C_{2}	σ_{v}	$\sigma_{v}{ }^{\prime}$
C_{2}	C_{2}	E	$\sigma_{v}{ }^{\prime}$	σ_{v}
σ_{v}	σ_{v}	$\sigma_{v}{ }^{\prime}$	E	C_{2}
$\sigma_{v}{ }^{\prime}$	$\sigma_{v}{ }^{\prime}$	σ_{v}	C_{2}	E

$$
\begin{aligned}
& E(x, y, z)=(x, y, z) \\
& C_{p}(r, \theta, z)=\left(r, \theta+\frac{2 \pi}{p}, z\right) \\
& \sigma_{x z}(x, y, z)=(x,-y, z) \\
& i(x, y, z)=(-x,-y,-z) \\
& \text { (i) } C_{2 v} \text { is ABELIAN } \\
& \text { (ii) } 4 \text { classes } \\
& \text { (iii) } 4 \text { irreps } \\
& \text { (iv) Subgroups } \\
& \left\{\mathrm{EC}_{2}\right\}\left\{\mathrm{E}^{\prime}, \sigma_{v}\right\} \\
& \&\left\{\mathrm{E}, \sigma_{v}\right\}
\end{aligned}
$$

$\begin{gathered} C_{3} \sigma_{1} \# \sigma_{1} C_{3} \end{gathered}$							
$C_{3 v}$	E	C_{3}	C_{3}^{2}	1 1 1σ_{1}	σ_{2}	σ_{3}	
E	E	C_{3}	C_{3}^{2}	$\begin{array}{ll}1 & \\ 1 & \sigma_{1}\end{array}$	σ_{2}	σ_{3}	(i) $C_{3 v}$ is not abelian
C_{3}	C_{3}	C_{3}^{2}	E	σ_{3}	σ_{1}	σ_{2}	
C_{3}^{2}	C_{3}^{2}	E	C_{3}	σ_{2}	σ_{3}	σ_{1}	(iii) 3 irreps
σ_{1}	σ_{1}	σ_{2}	σ_{3}	E	C_{3}	C_{3}^{2}	(iv) 4 subgroups $\left\{\mathrm{E}, \mathrm{C}_{3}, \boldsymbol{C}_{3}^{2}\right\},\left\{\mathrm{E}, \sigma_{1}\right\}\left\{\mathrm{E}, \sigma_{2}\right\}$ \& $\left\{\mathrm{E}, \sigma_{3}\right\}$
σ_{2}	σ_{2}	σ_{3}	σ_{1}	C_{3}^{2}	E	C_{3}	\# of irreps
σ_{3}	σ_{3}	σ_{1}	σ_{2}	C_{3}	C_{3}^{2}	E	$\sum l_{i}^{2}=h$

Each irreps furnishes l_{i}^{2} vectors

ABELIAN GROUP

If $\forall A, B \in G: A B=B A$ then G is Abelian.
For an Abelian group EACH element is in a CLASS by ITSELF.
Proof: $\quad X^{-1} A X=X^{-1} X A=A$
$\therefore \mathrm{A}$ is in a class by itself
Illustration: $\mathrm{C}_{2 \mathrm{v}}\left\{\mathrm{E}, \mathrm{C}_{2}, \sigma_{v}(x z), \sigma_{v}{ }^{1}(\mathrm{y}, \mathrm{z})\right\}$
$E(x, y, z)=(x, y, z)$

$$
\begin{aligned}
\mathrm{C}_{2}(x, y, z) & =(-x,-y, z) \\
\sigma_{v}(x, y, z) & =(x,-y, z) \\
\sigma_{v}{ }^{1}(x, y, z) & =(-x, y, z) \\
C_{2} \sigma_{v}(x, y, z) & =C_{2}\left\{\sigma_{v}(x, y, z)\right\} \\
& =C_{2}(x,-y, z) \\
& =(-x, y, z) \\
& =\sigma_{v}{ }^{1}(x, y, z)
\end{aligned}
$$

$\therefore \mathrm{C}_{2} \sigma_{\mathrm{v}}=\sigma_{\mathrm{v}}{ }^{1}$

Similarly, $\sigma_{V} C_{2}(x, y, z)=\sigma_{v}(-x,-y, z)=(-x, y, z)=\sigma_{v}{ }^{1}(x, y, z)$
or $\sigma_{V} C_{2}=\sigma_{v}{ }^{1}=C_{2} \sigma_{v}$
$\therefore \sigma_{V} C_{2}=C_{2} \sigma_{v}$
Similarly, $\mathrm{C}_{2} \sigma_{v}{ }^{1}=\sigma_{v}{ }^{1} \mathrm{C}_{2}=\sigma_{\mathrm{v}}$ and $\sigma_{\mathrm{v}} \sigma_{\mathrm{v}}{ }^{1}=\sigma_{\mathrm{v}}{ }^{1} \sigma_{\mathrm{v}}=\mathrm{C}_{2}$
$\rightarrow($ SHOW $) \leftarrow$
$\therefore \mathrm{C}_{2 \mathrm{v}}$ is ABELIAN. Is every element in a class by itself?
$C_{2}^{2}(x, y, z)=C_{2} C_{2}(x, y, z)=C_{2}(-x,-y, z)=(x, y, z)=E(x, y, z)$
$\therefore \mathrm{C}_{2} \mathrm{C}_{2}=\mathrm{E} \Rightarrow \mathrm{C}_{2}^{-1}=\mathrm{C}_{2}$
SIMILARLY $\sigma_{v}{ }^{-1}=\sigma_{v} \&\left(\sigma_{v}\right)^{-1}=\sigma_{v}{ }^{1}$

Symmetry Point Group
Symmetry Operation

$\mathrm{NH}_{3}: \mathrm{C}_{3 \mathrm{v}}\left\{\mathrm{E}, \mathrm{C}_{3}, \mathrm{C}_{3}{ }^{2}, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$

$$
\Rightarrow \quad \begin{aligned}
& \sigma_{1} C_{3}=\sigma_{2} \\
& C_{3} \sigma_{1}=\sigma_{3}
\end{aligned} \Rightarrow \quad C_{3 v} \text { is not abelian. }
$$

Representation:

Consider the following set of simultaneous equation.

$$
\begin{align*}
& C_{1}=a_{11} b_{1}+a_{12} b_{2}+a_{13} b_{3}+ \tag{1}\\
& C_{2}=a_{21} b_{1}+a_{22} b_{2}+a_{23} b_{3}+ \tag{2}\\
& C_{3}=a_{31} b_{1}+a_{32} b_{2}+a_{33} b_{3}+ \tag{3}
\end{align*}
$$

Using matrix notation

$$
\begin{aligned}
& {\left[\begin{array}{l}
C_{1} \\
C_{2} \\
C_{3}
\end{array}\right] }=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \\
& \text { or } \mathbb{C}=\mathbb{A} \boldsymbol{b} \\
& \text { or in operative form } \\
& \vec{C}=A \vec{b}
\end{aligned}
$$

Or the matrix representation of any operator A can be constructed by examining its effect on a vector and using equation (1)...(3) e.g.,

$$
\begin{aligned}
& C_{2}(x, y, z)=(-x,-y,+z) \\
& -x=(-1) x+0 y+0 z \\
& -y=0 x+(-1) y+0 z \quad \text { or } \quad \mathbb{C}_{2}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right] \\
& +z=0 x+0 y+1 z \\
& {\left[\begin{array}{l}
-x \\
-y \\
+z
\end{array}\right] \quad=\mathbb{C}_{2}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad \& \operatorname{Tr}\left(\mathbb{C}_{2}\right)=(-1)+(-1)+1=-1}
\end{aligned}
$$

Representation of Rotation Operation

$x^{1}=r \operatorname{Cos}(\theta+\Psi)=r \operatorname{Cos} \theta \operatorname{Cos} \Psi-r \operatorname{Sin} \theta \operatorname{Sin} \Psi$

or $x^{1}=\operatorname{Cos} \Psi x-\operatorname{Sin} \Psi y$, Similarly,
$y^{1}=r \operatorname{Sin}(\theta+\Psi)=r \operatorname{Sin} \theta \operatorname{Cos} \Psi+r \operatorname{Cos} \theta \operatorname{Sin} \Psi$

or, $\quad y^{1}=\operatorname{Sin} \Psi x+\operatorname{Cos} \Psi y$
or, $\left[\begin{array}{l}x^{1} \\ y^{1}\end{array}\right]=\left[\begin{array}{cc}\operatorname{Cos} \Psi & -\operatorname{Sin} \Psi \\ \operatorname{Sin} \Psi & \operatorname{Cos} \Psi\end{array}\right] \quad\left[\begin{array}{l}x \\ y\end{array}\right]$
$\&$ Since $\left[\begin{array}{l}x^{1} \\ y^{1}\end{array}\right]=R_{2}(\Psi)\left[\begin{array}{l}x \\ y\end{array}\right]$
$\mathrm{R}_{2}(\Psi)=\left[\begin{array}{ll}\operatorname{Cos} \Psi & -\operatorname{Sin} \Psi \\ \operatorname{Sin} \Psi & \operatorname{Cos} \Psi\end{array}\right]$

$$
\mathrm{C}_{2}=\mathrm{R}_{\mathrm{z}}\left(180^{\circ}\right)=\left[\begin{array}{ll}
\operatorname{Cos} 180^{\circ} & -\operatorname{Sin} 180^{\circ} \\
\operatorname{Sin} 180^{\circ} & \operatorname{Cos} 180^{\circ}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$$
C_{3}=R_{2}\left(120^{\circ}\right)=\left[\begin{array}{cc}
-Y_{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -Y_{2}
\end{array}\right]
$$

GROUP REPRESENTATION

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	σ_{v}	$\sigma_{v}{ }^{1}$	
$\mathrm{~A}_{1}$	1	1	1	1	$\mathrm{z}, \mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	-1	$\mathrm{R}_{2}, \mathrm{xy}$
B_{1}	1	-1	1	-1	$\mathrm{X}, \mathrm{R}_{\mathrm{y}}, \mathrm{xz}$
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}, \mathrm{yz}$

$\mathbf{C}_{\mathbf{3}}=\hat{\operatorname{Rz}}\left(120^{\circ}\right)=\left[\begin{array}{c}\operatorname{Cos} 120^{\circ}-\operatorname{Sin} 120^{\circ} \\ \operatorname{Sin} 120^{\circ} \\ \operatorname{Cos} 120^{\circ}\end{array}\right]$
$\mathbf{C}_{3}{ }^{\mathbf{t}}=\left[\begin{array}{c}\operatorname{Cos} 120^{\circ} \operatorname{Sin} 120^{\circ} \\ -\operatorname{Sin} 120^{\circ} \operatorname{Cos} 120^{\circ}\end{array}\right] \quad \mathbf{C}_{3} \mathbf{C}_{3}{ }^{\boldsymbol{t}}=\mathbf{C}_{3}{ }^{\mathbf{t}} \mathbf{C}_{3}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

$\mathrm{C}_{3 \mathrm{v}}$	E	C_{3}	C_{3}	σ_{1}	σ_{2}	σ_{3}	
A_{1}	1	1	1	1	1	1	
A_{2}	1	1	1	-1	-1	-1	
E	$\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{cc} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array}$	$\mathbb{C}_{3}{ }^{\text {t }}$	$\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}$	$\mathbb{C}_{3} \sigma_{1}$	$\mathbb{C}_{3}{ }^{2} \sigma_{1}$	
χ (E)	2	-1	-1	0	0	0	

REPRESENTATIONS ARE NOT UNIQUE
If $\Gamma(R)$ is a representation $\forall R \in G$, so is
$\mathbb{T}^{\beta}(R)=\beta^{-1} \mathbb{\Gamma}(R) \beta \forall R \in G$ since
$\mathbb{T}^{\beta}(\mathrm{R}) \mathbb{T}^{\beta}(\mathrm{S})=\mathbb{\Gamma}(\mathrm{R}) \beta \beta^{-1} \mathbb{\Gamma}(\mathrm{~S}) \beta$
$=\beta^{-1} \mathbb{T}(\mathrm{R}) \mathbb{\Gamma}(\mathrm{S}) \beta=\beta^{-1} \mathbb{\Gamma}(\mathrm{RS}) \quad=\mathbb{\Gamma}^{\beta}(\mathrm{RS})$
Representations are NOT UNIQUE indeed! VARI! With β !!

However, Trace or character of a matrix A,

$$
\mathrm{T}_{\mathrm{r}}(\mathbb{A})=\sum_{i} \cdot \mathrm{~A}_{\mathrm{ii}}
$$

is invariant i.e.

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{r}}\left(\beta^{-1} A \mathcal{A}\right)=\sum_{i}\left(\beta^{-1} A \beta\right)_{\mathrm{ii}}=\sum_{i} \sum_{k} \sum_{i} \beta_{i k}^{-1} \mathbb{A}_{\mathrm{kl}} \beta_{\mathrm{ki}} \\
& =\sum_{k} \sum_{l} \mathbb{A}_{k l} \sum_{i} \beta_{l i} \beta_{i k}^{-1} \\
& =\sum_{k} \sum_{l} \mathbb{A}_{k l}\left(\beta \beta^{-1}\right)=\sum_{k} \sum_{l} \mathbb{A}_{k 1} \bar{\eta}_{\boldsymbol{l} k} \\
& =\sum_{k} \sum_{l} \mathbb{A}_{k l} \delta_{l k} \\
& =\sum_{\boldsymbol{k}} \mathbb{A}_{\mathrm{kk}}=\sum_{i} A_{i n}
\end{aligned}
$$

i.e. CHARACTER of representations is invariant and we should be decline with character tables and not Representation Tables.

Let us collect the character for each representation in a six dimensional (component) vector for $\mathrm{C}_{3 \mathrm{v}}$ i.e.

$$
\begin{array}{ll}
& \chi\left(\mathbb{A}_{1}\right)=(1,1,1,1,1,1,1) \\
& \chi\left(\mathbb{A}_{2}\right)=(1,1,1,-1,-1,-1) \\
\& \quad & \chi(\mathbb{E})=(2,-1,-1,0,0,0)
\end{array}
$$

Notice that $\chi^{\mathrm{E}}\left(\mathrm{C}_{3}\right)=\chi^{\mathrm{E}}\left(\mathrm{C}_{3}{ }^{2}\right)$ same for $\mathrm{A}_{1} \& \mathrm{~A}_{2}$.
i.e. $\chi^{i}\left(\mathrm{C}_{3}\right)=\chi^{i}\left(\chi^{-1} \mathrm{C}_{3} \chi\right)$ i.e. character is a Class property.

Similarly, $\chi^{i}\left(\sigma_{1}\right)=\chi^{i}\left(\sigma_{2}\right)=\chi^{i}\left(\sigma_{3}\right)$ for all imeps, can be easily verified that

$$
\sum_{R \in C_{3 v}} \chi^{i}(R) \chi^{j}(R)=h \delta_{i \bar{y}}
$$

where i \& j are irrep labels and h is the order of the group for $\mathrm{C}_{3 \mathrm{v}}, \mathrm{h}=6$.

Since reduction of a matrix is through similarity transform which presents character

$$
\begin{aligned}
-\chi^{\text {red }}(R) & =\sum_{j}^{i r r e p s} a_{j} \chi^{j}(R) \\
\Rightarrow \sum_{R} \chi^{\text {red }}(R) \chi^{i}(R) & =\sum_{R} \sum_{j} a_{j} \chi^{j}(R) \chi^{i}(R) \\
& =\sum_{j} a_{j} \sum_{R} \chi^{j}(R) \chi^{i \cdot}(R) \\
& =\sum_{i} a_{j} \delta_{i j h} \\
a_{i} & =\frac{1}{h} \sum_{R} \chi^{\text {red }}(R) * \chi^{-i}(R)
\end{aligned}
$$

Labels for IRREPS:

1.

An One-dimensional irrep is given the symbol A or B.
2.

A if $\chi\left(C_{x}\right)=+1$
B if $\chi\left(C_{x}\right)=-1$
3. Subscripts may be applied as follows:
(i) There are σ_{v} or σ_{x} plane then

$$
\begin{aligned}
& 1 \text { if } \chi(\sigma)=+1 \\
& 2 \text { if } \chi(\sigma)=-1
\end{aligned}
$$

(ii) If there is i then
g if χ (i) $=+1$
u if χ (i) $=-1$
4. Superscripts ' when $\sigma_{h} \in$ symmetry point group

$$
\begin{align*}
& \text { if } \chi\left(\sigma_{h}\right)=+1 \tag{i}\\
& \text { if } \chi\left(\sigma_{h}\right)=-1 \tag{ii}
\end{align*}
$$

5. Two-dimensional irrep is given the symbol E .
6. Three-dimensional irrep is qiven the symbol T, etc.
$\int^{\lambda} f_{i}^{*} f_{j}^{\sigma} d \tau=0$ unless $\lambda \otimes \sigma=A_{1}$ or $A_{1} \in \lambda \otimes \sigma$
Where $\lambda \& \sigma$ are the irrep labels for $f_{i} \& f_{j}$ respectively.

Proof:

Let $\lambda \& \sigma$ be irreps of dimension 1
i.e. $\chi^{\lambda}(R)= \pm 1 \forall R \in G$
$\& \chi \tau(R)= \pm 1 \forall R \in G$

$$
\begin{aligned}
S_{i j}=\int^{\imath} f_{i}^{*} f_{j}^{\sigma} d \tau & =\text { a number } \\
& =\text { Totally symmetric }
\end{aligned}
$$

i.e. $R S_{i j}=+1 S_{i j} \forall R \in G$ but,

$$
\begin{aligned}
R S_{i j} & =\int R^{\lambda} f_{i}^{*} R f_{j}^{\sigma} d \tau=\chi^{\lambda}(R) * \chi^{\sigma}(R) S_{i j} \\
& =-S_{i j} \text { for some } \text { Runless } \lambda=\sigma
\end{aligned}
$$

i.e. if $\lambda \neq \sigma$
$R S_{i j}=-S_{i j}=S_{i j}=0$
\therefore for $\mathrm{S}_{\mathrm{ij}} \neq 0 \quad \lambda=\sigma \& \lambda \otimes \sigma=\mathrm{A}_{1}$ is required.
In general,

$$
\int \phi_{i}^{*} \hat{O} \phi_{j} d \tau \neq O
$$

Iff

$$
\mathrm{A}_{1} \in \Gamma_{\mathrm{i}} \otimes \Gamma_{\mathrm{o}} \otimes \Gamma_{\mathrm{j}}
$$

i.e. if $\Gamma_{o}=A_{1}$ then,

$$
\mathrm{A}_{1} \in \Gamma_{1} \otimes \Gamma_{\mathrm{j}}
$$

Vibrational Modes of $\mathrm{H}_{2} \mathrm{O}$

$C_{2 v}$	E	C_{2}	$\sigma_{v}(x z)$	$\sigma_{v}{ }^{1}(y z)$	
A_{1}	1	1	1	1	Z
A_{2}	1	1	-1	-1	R_{z}
B_{1}	1	-1	1	-1	x, R_{y}
B_{2}	1	-1	-1	1	y, R_{x}

CONSTRUCT A REPRESENTATION IN THE BASIS OF CARTESIAN DISPLACEMENTS $(\stackrel{\hookrightarrow}{\longrightarrow})$ FOR EACH ATOM.

$\chi(\mathrm{E})=$	9	
$\chi\left(\mathrm{C}_{-2}\right)=$	-1	$a_{i}=\frac{1}{h} \sum_{R \in C_{2 v}} \chi(R) * \chi(R)$
$\chi\left(\sigma_{\mathrm{xz}}\right)=$	1	$a_{A_{1}}=\frac{1}{4} *[9-1+1+3]=3$
$\chi\left(\sigma_{\mathrm{yz}}\right)=$	3	$a_{A_{2}}=1, a_{B_{1}}=2, a_{B_{2}}=3$

$\therefore \quad$ Total Modes $(T+R+V)$	$=$	$3 A_{1}+3 B_{2}+2 B_{1}+1 A_{2}$	
Translational Modes	$:$	$x \rightarrow B_{1}, y \rightarrow B_{2}, z \rightarrow A_{1}$	
Rotational Modes	$:$	$R_{x} \rightarrow B_{2}, R_{y} \rightarrow B_{1}, R_{z} \rightarrow A_{2}$	
	Vibrational Modes	$=$	Total - Rot - Trans

$$
\begin{aligned}
& =\left(3 A_{1}+3 B_{2}+2 B_{1}+1 A_{2}\right)-\left(2 B_{1}+2 B_{2}+1 A_{1}+1 A_{2}\right) \\
& =\quad 1 B_{2}+2 A_{1}
\end{aligned}
$$

i.e. $\mathrm{H}_{2} \mathrm{O}$ has $2 a_{1}$, type and $1 b_{2}$ type

NORMAL MODES OF VIBRATION.

$$
\Theta \in \mathrm{A}_{1}
$$

representation using r_{1} and r_{2},

$\chi(E)$	$=$	$a_{\mathrm{A} 1}$	$=$	1	$\left(r_{1}+r_{-2}\right)$
$\chi\left(C_{2}\right)$	$=$	0	$a_{A 2}$	$=$	0
$\chi\left(\sigma_{v}\right)$	$=$	0	$a_{B 1}$	$=$	0
$\chi\left(\sigma_{v}{ }^{1}\right)=$	2	$a_{B 2}$	$=$	1	$\left(r_{1}-r_{-2}\right)$

\therefore	1 Symmetric $\left(r_{1}+r_{2}\right)$
	1 Antisymmetric $\left(r_{1}-r_{2}\right)$
and,	1 Symmetric (θ)

STRETCH
STRETCH
BEND

$\mathrm{V}_{\mathrm{B}_{2}}{ }^{\mathrm{s}} \quad>\quad \mathrm{V}_{\mathrm{A}_{1}}{ }^{\mathrm{s}} \quad>\quad \mathrm{V}_{\mathrm{A}_{1}}{ }^{\mathrm{b}}$

WHICH OF THESE MODES ARE IR/RAMAN ACTIVE?

Raman:

$$
\int \psi_{o}^{A_{1}}\left(q_{j}\right) x y \text { (or other tensor products } x z, y z, x^{2}, y^{2}, z^{2} \text { etc.) } \psi_{1}\left(q_{j}\right) d \tau \neq 0
$$

$\therefore \quad$ ALL THREE MODES ARE IR ACTIVE

 and, also ALL THREE MODES ARE RAMAN ACTIVE.$\mathrm{H}_{2} \mathrm{O}$: Is transition from $\Psi \mathrm{a}_{1} \rightarrow \Psi \mathrm{~b}_{2}$ allowed?

WHAT is the polarization of the emitted light?

$$
\begin{array}{ll}
\mu_{z}: & \int \psi_{a_{1}} z \psi_{b_{2}} d \tau \\
\mu_{x}: \quad \int \psi_{a_{1}} x \psi_{b_{2}} d \tau \\
\mu_{y}: \quad \int \psi_{a_{1}} y \psi_{b_{2}} d \tau \\
z \rightarrow A_{1} \quad \mu_{z}=0 \\
x \rightarrow B_{1} \quad \mu_{x}=0 \\
y \rightarrow B_{2} & \mu y \neq 0
\end{array}
$$

\therefore TRANSITION $\Psi \mathrm{a}_{1} \rightarrow \Psi \mathrm{~b}_{2}$ is ALLOWED
and will be

SYMMETRY IN QUANTUM CHEMISTRY

$$
H \psi=E \psi ; \psi=\sum_{i=1}^{N} C_{i} \phi_{i} L C A O-M O
$$

Leads to $\mathrm{HC}=\$ \mathbb{C} \in$ e.g. HF or Huckel etc.

$$
\begin{aligned}
& \left.H=\left\{H_{i j}=\left\langle\phi_{i}\right| \text { H| } \phi_{\mathrm{j}}\right\rangle\right\} N \times N \\
& \$=\left\{S_{i j}=\left\langle\phi_{i} / \phi_{j}\right\rangle\right\} N \times N
\end{aligned}
$$

$$
S A L C \chi^{p}=\sum_{j} C_{j}^{p} \phi_{j} ;\left\langle\chi^{p} / \chi^{q}\right\rangle=\delta_{p q} ;\left\langle\chi_{p}\right| \mathbb{H}\left|\chi_{\mathrm{q}}\right\rangle=\delta_{p q}
$$

$\therefore \quad \mathrm{NXNH}$ gets block diagonalised e.g., for $\mathrm{C}_{10} \mathrm{H}_{8}$.

Naphthalene:

$D_{2 h}\left\{E, C_{2}(x), C_{2}(y), C_{2}(z), i, \sigma(x y), \sigma(x z), \sigma(y z)\right\}$ $10 \mathrm{P}_{\text {П }}$

H \& $\$$ are 10×10 UNDOABLE by HAND.

$$
\begin{array}{ll}
\Phi_{1}, \Phi_{4}, \Phi_{5}, \Phi_{8} & \mathrm{~A}_{\mathrm{u}}, \mathrm{~B}_{1 \mathrm{u}}, \mathrm{~B}_{2 \mathrm{~g}}, \mathrm{~B}_{3 \mathrm{~g}} \\
\Phi_{2}, \Phi_{3}, \Phi_{6}, \Phi_{7} & \mathrm{~A}_{\mathrm{u}}, \mathrm{~B}_{1 \mathrm{u}}, \mathrm{~B}_{2 \mathrm{~g}}, \mathrm{~B}_{3 \mathrm{~g}} \\
\Phi_{9}, \Phi_{10} & \mathrm{~B}_{1 \mathrm{u}}, \mathrm{~B}_{3 \mathrm{~g}}
\end{array}
$$

SALC: $A_{u} \quad 2 \times 2$
$\mathrm{B}_{1 \mathrm{u}} \quad 3 \times 3$
$\mathrm{B}_{2 \mathrm{~g}} \quad 2 \times 2$
$B_{3 g} \quad 3 \times 3$

EACH BLOCK CAN BE SOLVED SEPARATELY BY HAND.

QUALITATIVE MO THEORY

BENZENE

$D_{6 h}$

$$
\begin{aligned}
& \hat{P}^{\mu}=\frac{l_{\mu}}{h} \sum_{R \in D_{6 h}} \chi^{\mu}(R) \hat{R} \\
& \text { on } \quad 6 p_{\pi} \text { AOs as basis }-A_{2} \oplus B_{2} \oplus E_{1} \oplus E_{2}
\end{aligned}
$$

Set up Huckel Hamiltonian Matrix

$$
\begin{align*}
& x^{x+2} \\
& \text { (1) } \\
& \\
& \\
& \\
& \\
& x+1 \tag{1}\\
& x-1 \\
& x+1
\end{align*} \quad \text { (1) } \quad x=0, \quad x-\frac{\alpha-E}{\beta}
$$

SYMMETRY OF ENERGY LEVELS IN HMO THEORY

$$
\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{C}_{6} \mathrm{H}_{6}^{+}
$$

$\mathrm{C}_{5} \mathrm{H}_{5}, \mathrm{C}_{5} \mathrm{H}_{5}, \mathrm{C}_{5} \mathrm{H}_{5}{ }^{+}$
$\mathrm{C}_{4} \mathrm{H}_{4}, \mathrm{C}_{4} \mathrm{H}_{4}^{-}, \mathrm{C}_{4} \mathrm{H}_{4}{ }^{+}$

CONSERVATION OF ORBITAL SYMMETRY WOODWARD-HOFFMANN RULES

APPLICATION TO CYCLIZATION OF 1-3 CIS BUTADIENE TO CYCLOBUTENE

C_{2}, σ_{V} containing C_{2}
$\sigma_{v}{ }^{1}$ (plane of molecule)

R

R
-8+ -
 $\pi 3$

π_{1}

Butadiene

Cyclobutene

MATRICES

$$
M=\left(\begin{array}{cccc}
M_{11} & M_{12} & \ldots- & M_{1 n} \\
M_{21} & M_{22} & \ldots & M_{2 n} \\
\ldots \ldots \ldots & \ldots \ldots \ldots & \ldots \ldots \ldots \\
M_{n 1} & M_{n 2} & \ldots & M_{n n}
\end{array}\right)
$$

Square M contains n^{2} elements

$$
\begin{aligned}
& \mathrm{M}+\mathrm{N}=\mathbb{P} \\
\Rightarrow & P_{\mathrm{ij}}=M_{\mathrm{ij}}+\mathrm{N}_{\mathrm{ij}} \\
\mathrm{M}= & \mathrm{N}=\mathbb{P} \\
\Rightarrow & \mathrm{P}_{\mathrm{ij}}=\sum_{k} M_{\mathrm{ik}} \mathrm{~N}_{\mathrm{kj}}
\end{aligned}
$$

$$
\begin{aligned}
\text { Let } M & =\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \quad \text { and, } N=\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right] \\
M+N & =\left[\begin{array}{ll}
6 & 8 \\
10 & 12
\end{array}\right] \\
M N=P & =\left[\begin{array}{ll}
19 & 22 \\
43 & 50
\end{array}\right]
\end{aligned}
$$

$$
\mathrm{NM} \neq \mathbf{M N}
$$

$N M=\left[\begin{array}{ll}23 & 34 \\ 31 & 46\end{array}\right]$

Matrices are the operators.

SPECIAL NAME MATRICES

(i) DIAGONAL MATRIX: -

$$
\begin{aligned}
& M_{i j}=0 \text { if } i \neq j \\
& \text { i.e. } M=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \quad \text { is diagonal but }
\end{aligned}
$$

(ii) THE UNIT MATRIX IS A DIAGONAL MATRIX

$$
\mathbb{Q} \text { or } \mathbb{\square}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\mathbb{M}=M
$$

(iii) THE TRANSPOSE OF A MATRIX $M=M^{+}$or \tilde{M}

$$
\widetilde{M}_{i j}=M_{j i}
$$

Thus if

$$
M=\left[\begin{array}{ll}
1 & 2 \\
3
\end{array}\right] \quad ; \quad M^{t}=\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right]
$$

If $M=M^{\dagger}$ then M is symmetric.
(iv) THE INVERSE OF A MATRIX in IS WRITTEN AS \mathbb{M}^{-1}

$$
\begin{aligned}
& \mathbb{M}^{-1}=\mathbb{M}^{-1} \mathbb{M}=\mathbb{D} \\
& \mathbb{M}^{-1}=\widetilde{M}^{\prime} \cdot / \operatorname{det} \mathbb{M}\left({ }^{\prime}\right. \text { for co-factor) } \\
& \text { i.e. for inverse to } \exists \operatorname{det}(\mathbb{M}) \neq 0 .
\end{aligned}
$$

THANK YOU FOR YOUR PATIENCE

