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 Hψ = Eψ 
 

For H – atom:  

Each member of the CSCO labels,  

 H is INVARIANT under R ( by definition too) 

An introduction to symmetry analysis 

For molecules: Symmetry operation R     CSCO  
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Hψ = Eψ  gives 

An introduction to symmetry analysis 

NH3 rotation or translation MUST be A1, A2 or E !  

NO ESCAPING SYMMETRY!  

NH3 normal modes =  
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Molecular Symmetry 
(Ref.: Inorganic chemistry by Shirver, Atkins & Longford, ELBS) 

One aspect of the shape of a molecule is its symmetry (we define technical meaning of this term in a 
moment) and the systematic treatment and symmetry uses group theory. This is a rich and powerful 
subject, by will confine our use of it at this stage to classifying molecules and draw some general 
conclusions about their properties. 
 

 An introduction to symmetry analysis 
 

Our initial aim is to define the symmetry of molecules much more precisely than we have done so far, 
and to provide a notational scheme that confirms their symmetry. In subsequent chapters we extend 
the material present here to applications in bonding and spectroscopy, and it will become that 
symmetry analysis is one of the most pervasive techniques in inorganic chemistry. 

Fig.2.5. An H2O molecule may be rotated through any angle about the 
bisector of the HOH bond angle, but only a rotation of 180°, C2, leaves it 
apparently unchanged. 

Symmetry operations and elements   

A fundamental concept of group theory is the symmetry operation. It is an 
action, such as a rotation through a certain angle, that leave molecules 
apparently unchanged. An example is the rotation of H2O molecule by 180 
° (but not any smaller angle) around the bisector of HOH angle. 
Associated with each symmetry operation there is a symmetry element; 
this is a point, a line, or a plane with respect to which symmetry operation 
is performed. The most important symmetry operation and their 
corresponding elements are listed in table 2.6. 
All operations leaves at least one point of the molecule unmoved, just as 
rotation of a sphere leaves its center unmoved. Hence they are operations 
of point-group symmetry. The identity operation E leaves whole molecule 
unchanged. 

An introduction to symmetry analysis 
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The rotation of an H2O molecule by 180 ° (n = 2) around a line bisect the HOH angle is a 
symmetry operation, so the H2O molecule possess two-fold rotation axis C2 (fig. 2.5). In 
general, an n-fold rotation symmetry operation if the molecule appears unchanged after 
rotation 360°/n. The corresponding symmetry element is a line, the n-fold rotational axis Cn, 
about which the rotation is performed. The triangular pyramid NH3 molecule has a three-
fold rotation axes, denoted C3, but there are operations associated with it, one a rotation 
by 120° and the other a rotation through twice this angle (Fig. 2.6). The two operations are 
denoted C3 and      . We do not need to consider      , a rotation through 3x 120° = 360°, since it 
is equivalent to the identity. 

Table 2.6. Important symmetry operations and symmetry elements 

Symmetry element Symmetry operation Symbol 

Identity⃰⃰ E 

N-fold symmetry axis Rotation by 2π/n Cn  

Mirror plane Reflection σ 

Center of inversion Inversion i 

N-fold axis of improper 

rotation‡ 

Rotation by 2π/n followed  by 

reflection perpendicular to 

rotation axis 

Sn 

⃰ The symmetry element can be thought of as the molecule as a whole. 

‡Note the equivalences S1 = σ and S2 = i. 

An introduction to symmetry analysis 
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An introduction to symmetry analysis 

Fig. 2.6. A three-fold rotation and the corresponding C3 axis in 

NH3. There are two rotations associated with this axis. One 

through 120 ° (C3) and the other through 240 ° (C3
2). 

 

Fig. 2.7. The two vertical mirror planes σv 

and σv’ in H2O and the corresponding 

operations. Both planes cut through the C2 

axis. 

The reflection of an H2O molecule in either of the two planes 

shown in  Fig. 2.7 is a symmetry operation: corresponding 

symmetry element is a mirror plane σ. The H2O molecule has 

two mirror planes which intersect at the bisector of the HOH 

angle. Because the planes are vertical (in the sense of being 

parallel to the rotational axis of the molecule), they are labeled 

σv and σv’. The C6H6 molecule has a mirror plane σh in the 

plane of the molecule.  

The ‘h’ signifies that the plane is horizontal in the sense that the principal rotational 

axis of the molecule is perpendicular to it. This molecule also has two more sets of three  

mirror planes that intersect the six-fold axis (Fig. 2.8). In such cases, the members of 

one set are called vertical and the members of the other are called dihedral. The 

symmetry elements (and the associated operations) are denoted  σv and σd respectively.  



7 

Fig. 2.8. Some of the symmetry 

elements of the benzene ring. There is 

one horizontal reflection plane (σh) and 

two sets of vertical reflection plane (σv 

and σd); one example of each is shown. 

The inversion operation consists of imagining that each point of the molecules is taken through a 

single center and projected an equal distance on the other side (Fig. 2.9). The symmetry element is the 

center of inversion (i), the point through which projection is made. An N2 molecule has a center of 

inversion midway between the two nitrogen nuclei. The H2O molecule does not possess this element, 

but a benzene molecule and a sulfur hexafluoride molecule both do. In due coarse we shall see the 

importance of recognizing that an octahedron has a center of inversion but that a tetrahedron does not. 

Fig. 2.9. The inversion operation and 

the center of inversion  (i) in SF6 

The operation of improper rotation is composite: it 

consist of a rotation followed by a reflection in the 

plane perpendicular to the axis of rotation. Fig. 2.10 

shows a fourfold improper rotation of a tetrahedral 

CH4  molecule: in this case, the operation consists of a 

90ᴼ rotation about an axis bisecting two HCH bond 

angles followed by a reflection through a plane 

perpendicular to the rotation axis.   
Fig. 2.10 A four fold axis of improper rotation S4 

in the CH4 molecule A=1, B=2, C=3, &D=4. 

An introduction to symmetry analysis 
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Fig. 2.11 (a) An S1 axis is 

equivalent to a mirror plane and 

(b) an S2 axis is equivalent to a 

center of inversion. 

Neither the operation C4  nor the reflection σh alone is a symmetry operation for CH4, but their products  

C4 x σh is a symmetry operation, the improper rotation S4. The symmetry element, the improper rotation 

axis Sn (S4 in the example), is the corresponding combination of an n-fold rotational axis and a 

perpendicular to the mirror plane. The only Sn axes that exist are those for n = 1 and n = 2, 4, 6, …. 

Moreover, S1 is equivalent to a horizontal reflection σh and S2 is equivalent to the inversion (i) (Fig. 2.11). 

An introduction to symmetry analysis 

Example 2.6: Identifying a symmetry element 
 

Q. Which conformation of CH3CH3 molecule has an S6 axis ?  
 

Answer: We need to find a conformation that leaves the molecule 

looking the same after a 60 % rotation followed by a reflection in a 

plane perpendicular to that axis. The conformation and axis are 

shown in (5); this is the staggered conformation of the molecule, 

and also the one of lowest energy. 
 

Exercise: Identity a C3 axis of an NH4
+ ion. How many of these 

axes are there in the ion? 
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The point groups of molecules 
 The symmetry elements possessed by molecules determine the point group to which they 

belong. Assigning a molecule to a particular group depends on making a list of symmetry elements it 
possesses and then comparing it with the list that is characteristic of each point group.  

For example , if a molecule has only the identity element 

(CHBrClF is an example), we list its elements as E and look for 

the group that has only this one. In fact, the group called C1 is the 

group with only the element E, so the CHBrClF (6) molecule 

belongs to that group. The molecule CH2BrCl belongs to a 

slightly richer group: it has the elements E (all groups have that 

element) and a mirror plane. The group of elements E, σ is called 

CS, so the CH2BrCl molecule belongs to that group. This process 

can be continued, with molecules being assigned to the group that 

matches the symmetry elements they possess. Some of the more 

common groups and their names are listed in Table 2.7. Assigning 

a molecule to its group depends on listing the symmetry elements 

it possesses and then referring to the table. However, it is often 

easier to work through the tree in Fig. 2.12 and to arrive at the 

correct point group by answering the questions at each decision 

point on the correct point on the chart. (Note that we need to be 

careful to distinguish the names of the groups, C2, and so on. 

From the symbols for the symmetry elements, such as C2, and the 

corresponding operations, also C2. The context will always make 

it clear what interpretation is intended.  
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Point 

group 

Symmetry elements Examples 

C1 E SiBrClFl 

C2 E, C2 H2O2 

C8 E,  NHF2 

C2v E, C2, 2v H2O, SO2Cl2 

C3v E, C2, 3v NH3, PCl3, POCl3 

Cv E, C CO, HCl, OCS 

D2h E, 3C2, 2v, h, i N2O4, B2H6 

D3h E, C3, 3C2, 3v, h BF3, PCl5 

D4h E, C4, C2, i, S4, h, ….. XeF4, trans-MA4B2 

Dh E, C, v, ….. H2, CO2, C2H2 

Td E, 3C2, 4C3, 6, 3S4 CH4, SiCl4 

Oh E, 6C2, 4C3, 4S6, 3S4, i, ….. SF6 

Table 2.7: The composition of some common groups 
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Fig. 2.12: The decision tree for identifying a molecular point group. After passing through part (a), go to 

part (b) if necessary. 

(a) 
(b) 
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Example 2.7: Identifying the point group of a molecule 

Fig. 2.13: The symmetry elements of (a) H2O 

and (b) NH3. The   diagrams on the right are 

views from above and summarize the   

diagrams to their left.  

To what point groups do H2O and NH3 belong?  
 

Answer: The symmetry elements are shown in Fig. 2.13. 
 

(a) H2O possesses the identity (E), a two fold rotation axis 

(C2), and two vertical mirror planes (2σV). The set of 

elements       (E, C2, 2σV) corresponds to the group C2V. 
 

(b) NH3 possesses the identity (E), a three fold rotation 

axes (C3), and three vertical mirror planes (3σV). The set of 

elements (E, C3, 3σV) corresponds to the group C3V. 

 

Exercise: Identity the point groups of  (a) BF3, a trigonal 

planar molecule and D3h (b) the tetrahedral SO4
2– ion (Td). 
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Linear molecules with a center of symmetry (H2, CO2, C2H2,) (7) belong to the point group 

D∞h. A molecule that is linear but has no center of symmetry (HCl, OCS, NNO, ) (8) belongs 

to the point group C∞v.  

Tetrahedral (Td) and octahedral (Oh) molecules (Fig. 2.14), which are of great importance in 

coordination chemistry, have more than one principal axis of symmetry: a tetrahedral CH4 molecule, for 

instance, has four C3 axes, one along each C-H bond. A closely related group, the icosahedral group (Ih) 

characteristic of the icosahedron (Fig. 2.14c), is important for boron compounds. The three groups are 

quite easy to recognize: a regular tetrahedron has four equilateral triangles for its faces, an octahedron 

has eight, and an icosahedrons has 20.  

Fig. 2.14: shapes with the symmetries of the 

groups  (a) Td  (b) Oh and (c) Ih. They are all 

closely related to the symmetries of a cube. 

(9) 

(10) 

(11) 
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(13) 

(12) 

For our present purposes, the most important groups are 

C2v and C3v and the tetrahedral and octahedral groups.  

We shall also sometimes encounter C∞v and D∞h for linear 

molecules, D3h for trigonal planar molecules (such as BF3, 

9) and trigonal bipyramidal molecules such as PCl5, 10), 

and D4h for square-planar molecules (11) and octahedral 

molecules with two substituents opposite to each other, as 

in (12). This last example shows that the point group 

classification of molecule is more precise than the casual 

use of the term octahedral or tetrahedral. For instance, a 

molecule may loosely be called octahedral even if it has six 

different groups attached to the central atom. However, it 

only belongs to the octahedral point group Oh, if all six 

groups are identical (13) 
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Order: The member of elements 

in a group (G) is called the ORDER 

of the group. 

e.g., if  S is a Group,  its order    

h = 6 

Subgroup: If  a smaller sub set 

of elements of a Group fulfills all 

the group requirement (1-4 above), 

then, this subset is called a 

SUBGROUP of that Group.  
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GROUP MULTIPLICATION TABLE 

Operation  A 

(ii) 4 classes 

(iii) 4 irreps  
(iv) Subgroups  
{EC2 } {E, v } 

&{E,  v’ } 

↓
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Each irreps furnishes        vectors  
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If  ∀ А, B  G : AB = BA then G is Abelian. 

 

For an Abelian group EACH element is in a CLASS by ITSELF. 

 

Proof:  X-1AX = X-1XA = A 

 

  A is in a class by itself 

ABELIAN GROUP 

Illustration : C2v {E, C2, v (xz), v
1 (y, z)} 

 

E (x, y, z)  = (x, y, z) 

 

C2 (x, y, z)  = (-x, –y, z) 

 

v (x, y, z)  = (x, -y, z) 

 

v
1 (x, y, z)  = (-x, y, z) 

 

C2v (x, y, z)  = C2 {v (x, y, z)} 

          = C2 (x, -y, z) 

  = (-x, y, z) 

  = v
1 (x, y, z) 

 

 C2v = v
1 
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Similarly, V C2 (x, y, z) = v (-x, -y, z) = (-x, y, z) = v
1 (x, y, z) 

 

or V C2 = V
1 = C2 v    

 

 V C2 = C2 v 

 

Similarly, C2 v
1 = v

1C2 = v  and vv
1 = v

1 v = C2 

 

(SHOW) 

 

 C2v is ABELIAN. Is every element in a class by itself? 

 

C2
2 (x, y, z) = C2 C2 (x, y, z) = C2 (-x, -y, z) = (x, y, z) = E (x, y, z) 

 

 C2 C2 = E  C2
-1 = C2 

 

SIMILARLY v
-1 = v & (v

1)-1 = v
1   (SHOW) 
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H2O : C2v { E , C2 , σv(xz) , σv’(yz) } 

Symmetry Point Group  Symmetry Operation  

Symmetry 

 Element 
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NH3 : C3v { E , C3 ,C3
2 , σ1 , σ2 , σ3 } 
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  1 C3 = 2 
  C3 1 = 3  C3v is not abelian. 
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Representation: 

 
Consider the following set of simultaneous equation. 

 

 C1 = a11 b1 + a12 b2 + a13 b3 + ………. (1) 

 C2 = a21 b1 + a22 b2 + a23 b3 + ………. (2) 

 C3 = a31 b1 + a32 b2 + a33 b3 + ………. (3) 

               Using matrix notation 

C1   a11 a12 a13 b1 

C2  = a21 a22 a23 b2 

C3   a31 a32 a33 b3 

                             or ℂ = 𝔸 𝕓    

                            or in operative form  

  

        C = A b  
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Or the matrix representation of any operator A can be constructed by examining 

its effect on a vector and using equation (1)…(3) e.g.,  

 

          C2 (x, y, z) = (-x, -y, +z) 

 

-x = (-1)x + 0 y + 0 z 

 

-y = 0 x + (-1)y + 0 z 

 

+z = 0 x + 0 y + 1 z 

  -1 0 0 

 or      ℂ 2 =  0 -1 0 

  0 0 -1 

-x  x 

-y =  ℂ 2  y &  Tr  (ℂ2)  =  (-1) + (-1) + 1 =  -1 

+z  z 
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Representation of Rotation Operation 

x1 = r Cos ( + ) = r Cos  Cos  - r Sin  Sin  

          

                                     x                       y 

or x1 = Cos  x – Sin  y, Similarly, 

 

y1 = r Sin ( + ) = r Sin  Cos  + r Cos  Sin  

 

                                    y                        x 

                

or,     y1 = Sin  x + Cos  y 
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C2     =   Rz (180)    =  Cos 180 -Sin 180 = 1 0 

 

                                       Sin 180 Cos 180  0 1 

or,  X1 = Cos  - Sin   x 
 
             y1  Sin    Cos   y 

 

 

 

& Since    x1 = R2 ()         x 

 

                 y1            y 

  

R2 ()         =  Cos  -Sin  

                           Sin   Cos  

 

C3    =     R2 (120)    = -Y2 

                                                    -Y2  
2

3
2

3
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GROUP REPRESENTATION 

C2v    E                C2            v               v
1   

A1 1 1 1 1 z, x2, y2
, z

2 

A2 1 1 -1 -1 R2, xy 

B1 1 -1 1 -1 X, Ry, xz 

B2 1 -1 -1 1 y, Rx, yz 

C3 = Ȓz(120) = Cos 120 -Sin 120 

 

                            Sin 120 Cos 120 

 

C3
t =  Cos 120  Sin 120                   C3 C3

t = C3
t C3  =  1 0 

 

 -Sin 120 Cos 120    0 1 
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C3v E    C3                         C3
2                   1              2               3 

A1 1 1 1 1 1 1 

A2 1 1 1 -1 -1 -1 

E 1    0 

0    1 

      

      

ℂ 3
t 1     0 

0    -1 

ℂ31 ℂ3
21 

 (E) 2 -1 -1 0 0 0 

2

1


2

3


2

3

2

1


REPRESENTATIONS ARE  NOT UNIQUE 

If ℾ (R) is a representation ∀ R  G, so is 

ℾ(R) =      -1 ℾ(R)      ∀ R ∈ G since 

 

ℾ (R) ℾ (S) =      ℾ(R)         -1  ℾ  (S)        

 

 =     -1 ℾ (R) ℾ(S)      =      -1 ℾ (RS)     =    ℾ (RS) 

Representations are    NOT UNIQUE      indeed! VARI! With     !! 
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However, Trace or character of a matrix A, 

 

 is invariant  i.e.   

   

i.e. CHARACTER of representations is invariant and we should be decline with 

character tables and not Representation Tables. 
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Let us collect the character for each representation in a six dimensional 

(component) vector for C3v i.e. 

 

              (       1 ) = (1, 1, 1, 1, 1, 1, 1) 

 

              (     2 )  = (1, 1, 1, -1, -1, -1) 

 

&            (      )  = (2, -1, -1, 0 , 0 , 0) 

 

Notice that E(C3) = E(C3
2) same for       1 & A2. 

 

i.e. i(C3) = i(-1C3) i.e. character is a Class property. 

 

Similarly, i(1) = i(2) = i(3) for all imeps, can be easily verified that 

 

where i & j are irrep labels and h is the order of the group for C3v, h = 6. 
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Since reduction of a matrix is through similarity transform which 

 presents character 
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1

1

212

2

212

,

1ˆ

1ˆ

1ˆ

1ˆ

BRSimilarly

BRRR

orBBRRRC

ARRR

orAARRRC

x

yyyv

yyy

zzzv

zzz















Symmetry type of Rx, Ry, Rz 

σv’(yz) 
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Labels for IRREPS: 
 

1.          An One-dimensional irrep is given the symbol A or B. 

 

2. A if  (CX) = +1 

 B if  (CX) = -1 

 

3. Subscripts may be applied as follows: 

 

 (i) There are v   or x plane then 

               1 if  () = +1 

  2 if  () = -1 

 

 (ii) If there is i then 

  g if  (i) = +1 

  u if  (i) = -1 

 

4. Superscripts ‘ when h  symmetry point group 

 

 (i) if  (h) = +1 

 (ii) if  (h) = -1 

 

5. Two-dimensional irrep is given the symbol E. 

 

6. Three-dimensional irrep is given the symbol T, etc. 
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110 AorAunlessdff ji

Where  &  are the irrep labels for fi & fj respectively. 

 

Proof: 

 

Let  &  be irreps of dimension 1 

 

i.e.  (R) = 1∀ R  G 
 

&  (R) =    1∀ R  G 
 

symmetricTotally

numberadffS jiij



 
 

i.e. R Sij = +1 Sij  ∀R  G 

but, 

 



 



 


unlessRsomeforS

SRRdRffRSR

ij

ijjiij )()(
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  OdO ji  ˆ

i.e. if    

 

R Sij = -Sij = Sij = 0 

 

 for Sij  0  =  &   = A1  is required. 

 

In general, 

 

Iff 

 

A1  i  o  j 
 

i.e. if o = A1 

then, 

 

A1  I  j 
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Vibrational Modes of H2O 

C2v   E          C2         v (xz)     v
1 (yz)   

A1 1 1 1 1 Z 

A2 1 1 -1 -1 Rz 

B1 1 -1 1 -1 x, Ry 

B2 1 -1 -1 1 y, Rx 

CONSTRUCT A REPRESENTATION IN THE BASIS OF CARTESIAN DISPLACEMENTS  

(         ) FOR EACH ATOM. 
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vCR

i RR
h

a
2

)()(
1



  33119
4

1
1

Aa

3,2,1
212
 BBA aaa

 (E) = 9 
 

 (C2) = -1 
 

 (xz) = 1 
 
 (yz) =  3 

  Total Modes (T + R + V)  =  3A1 + 3B2 + 2B1 + 1A2 

 Translational Modes : xB1, yB2, zA1 

 Rotational Modes  : RxB2, RyB1, RzA2 

 Vibrational Modes  = Total – Rot – Trans 

=     (3A1 + 3B2 + 2B1 + 1A2) – (2B1 + 2B2 + 1A1 + 1A2)     

     =      1B2 + 2A1  

i.e. H2O has 2a1, type and 1b2 type  

NORMAL MODES OF VIBRATION. 
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EX1 = X1 = 1X1 + 0Y1 + 0Z1 + 0X2 + 0Y2 + 0Z2 + 0X3 + 0Y3 + 0Z3 

EY1 = Y1 = 0X1 + 1Y1 + 0Z1 + 0X2 + 0Y2 + 0Z2 + 0X3 + 0Y3 + 0Z3 

EZ1 = Z1 = 0X1 + 0Y1 + 1Z1 + 0X2 + 0Y2 + 0Z2 + 0X3 + 0Y3 + 0Z3  

OR     E X1  1    0    0    0    0    0    0    0    0  X1  

 Y1  0    1    0    0    0    0    0    0    0  Y1 

 Z1  0    0    1    0    0    0    0    0    0  Z1 

 X2  0    0    0    1    0    0    0    0    0  X2 

 Y2 = 0    0    0    0    1    0    0    0    0  Y2 

 Z2  0    0    0    0    0    1    0    0    0          Z2 

 X3  0    0    0    0    0    0    1    0    0  X3 

 Y3  0    0    0    0    0    0    0    1    0  Y3 

 Z3    0    0    0    0    0    0    0    0    1  Z3  

994

9)(





I

EEi 
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C2X1 = -X2 = 0 X1 + 0 Y1 + 0 Z1 - 1 X2 + 0 Y2 + 0 Z2 + 0 X3 + 0 Y3 + 0 Z3 

C2Y1 = -Y2 = 0 X1 + 0 Y1 + 0 Z1 + 0 X2 - 1 Y2 + 0 Z2 + 0 X3 + 0 Y3 + 0 Z3 

C2Z1 = Z2 = 0 X1 + 0 Y1 + 0 Z1 + 0 X2 + 0 Y2 + 1 Z2 + 0 X3 + 0 Y3 + 0 Z3 

C2X2 = -X1 = -1 X1 + 0 Y1 + 0 Z1 + 0 X2 + 0 Y2 + 0 Z2 + 0 X3 + 0 Y3 + 0 Z3 

C2Y2 = -Y1 = 0 X1 - 1 Y1 + 0 Z1 + 0 X2 + 0 Y2 + 0 Z2 + 0 X3 + 0 Y3 + 0 Z3 

C2Z2 = Z1 = 0 X1 + 0 Y1 + 1 Z1 + 0 X2 + 0 Y2 + 0 Z2 + 0 X3 + 0 Y3 + 0 Z3 

C2X3 = -X3 = 0 X1 + 0 Y1 + 0 Z1 + 0 X2 + 0 Y2 + 0 Z2 - 1 X3 + 0 Y3 + 0 Z3 

C2Y3 = -Y3 = 0 X1 + 0 Y1 + 0 Z1 + 0 X2 + 0 Y2 + 0 Z2 + 0 X3 - 1 Y3 + 0 Z3 

C2Z3 = +Z3 = 0 X1 + 0 Y1 + 0 Z1 + 0 X2 + 0 Y2 + 0 Z2 + 0 X3 + 0 Y3 + 1 Z3 

Or,   0    0    0   -1    0    0    0    0    0 

   0    0    0    0   -1    0    0    0    0 

   0    0    0    0    0  +1    0    0    0 

                    -1    0    0    0    0    0    0    0    0 

  ℂ2 = 0   -1    0    0    0    0    0    0    0 

                      0    0  +1    0    0    0    0    0    0 

   0    0    0    0    0    0   -1    0    0 

   0    0    0    0    0    0    0   -1    0 

   0    0    0    0    0    0    0    0  +1 

 (ℂ2) = -1 + (-1) + 1 = -1 
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WHAT KIND OF DISPLACEMENT PATTERNS DO THESE VIBRATIONAL MODES REPRESENT? 

Θ ϵ A1 

representation using r1 and r2, 

 (E) = 2  aA1 = 1 (r1 + r2) 

 (C2) = 0  aA2 = 0 

 (v) = 0  aB1 = 0 

 (v
1) = 2  aB2 = 1 (r1 - r2) 

 1 Symmetric (r1 + r2)                              STRETCH 

 1 Antisymmetric (r1 - r2)                        STRETCH 

and, 1 Symmetric ()                                         BEND 

Θ 
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νB2
s                                >                             νA1

s                >                 νA1
b 
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WHICH OF THESE MODES ARE IR/RAMAN ACTIVE? 

eqoftypesymmetry

dqzoryorxqIR

j

jj

A

mod

0)()()(: 1
1



  

0)(.),,,,()(

:

1

2221   dqetczyxyzxzproductstensorotherorxyq

Raman

jj

A



 ALL THREE MODES ARE IR ACTIVE 

and, also ALL THREE MODES ARE RAMAN ACTIVE. 

                                                                                                                Symmetry type of q j  mode 

↓ 
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H2O: Is                         from a1  b2 allowed? 

  

WHAT is the                           of the                    light ? polarization emitted 

transition 

0

0

0

:

:

:

2

1

1

21

21

21













yBy

Bx

Az

dy

dx

dz

x

z

bay

bax

baz













           TRANSITION a1  b2 is                 and will be         in  Y 
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SYMMETRY IN QUANTUM CHEMISTRY 

MOLCAOCEH i

N

i

i  



1

;

Leads to       ℂ  =  $ ℂ Є  e.g. HF or Huckel etc. 

 N X N      gets block diagonalised e.g., for C10 H8. 

10 x 10 

 Naphthalene:  
 
D2h {E, C2(x), C2(y), C2(z), i, (xy), (xz), (yz) } 
   
10 P  
 
      & $   are        UNDOABLE by HAND. 
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1, 4, 5, 8  Au , B1u, B2g, B3g 

2, 3, 6, 7  Au , B1u, B2g, B3g 

9, 10                   B1u, B3g 

 

SALC: Au 2 x 2 

 B1u 3 x 3 

 B2g 2 x 2 

 B3g 3 x 3  

 
EACH BLOCK CAN BE SOLVED SEPARATELY BY HAND. 
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QUALITATIVE MO THEORY 

21226

ˆ)(ˆ

6

EEBAbasisasAOspon

RR

h

l
P

hDR



 





 

                BENZENE  D6h 

 

           Set up Huckel Hamiltonian Matrix 



 E
x




x + 2 
         x - 2 
         x + 1  (1) 
(1)  x + 1  = 0,  

           x - 1 
   x – 1 
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SYMMETRY OF ENERGY LEVELS IN HMO THEORY 

C6H6, C6H6
-, C6H6

+ 

C4H4, C4H4
-, C4H4

+ 

C5H5, C5H5
-, C5H5

+ 



Butadiene 

Cyclobutene 

CONSERVATION OF ORBITAL SYMMETRY WOODWARD-HOFFMANN RULES 

APPLICATION TO CYCLIZATION OF 1-3 CIS BUTADIENE TO CYCLOBUTENE 

C2, V containing C2 

v
1 (plane of molecule) 

Same symmetry elements as for Butadiene 



H 

H 
H 

R 

H 

R 

1 

2 

3 

4 

H 

H 

H 

H 

R 

R 

con-rotatory 

C2 survives 

σv & σv’ don’t 



H 

H 
H 

R 

H 

R 

1 

2 

3 

4 

H 

H H 

H 

R 

R 

dis-rotatory 

σv survives 

C2 & σv’ don’t 





σ* 

σ 

π* 

π 

σ* 

σ 

π* 

π 

A 

A 

A 

A 

A 

A 

A 

A S 

S 

S 

S 

S 

S S 

S 

π4 

π3 

π2 

π1 

Cyclobutene Cyclobutene Butadiene con dis 

σv 
C2 

Photo chemically Allowed   Thermally Allowed 

Thermally disallowed Why not 1
(S) with (S)

cyclo 

Because of Non-crossing Rule 
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           +      =       

     Pij = Mij + Nij 

             =      

MATRICES 

 = M11 M12    ----- M1n 

  M21 M22    ------ M2n 

  …….. ………. ……… 

  Mn1 Mn2      ------ Mnn 

Mij 

jth column ith row  

Square M contains n2 elements 


k

    Pij =   Mik Nkj  
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Let M = 1 2 and,        N =  5 6 

  3 4   7 8 

 

           M + N = 6 8  

  10 12 

 

MN  =        P =  19 22 

  43 50 

 

                                                         NM  MN     

 

               NM =  23 34 

  31 46 
Matrices are the operators. 
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(i)    DIAGONAL MATRIX: - 

 

 Mij = 0 if i  j 

 

i.e. M =  1 0 is diagonal but          0 1    is not. 

  0 2    2 0 

SPECIAL NAME MATRICES 

(ii) THE UNIT MATRIX IS A DIAGONAL MATRIX 

 

            =                   1 0 0 

                                       0 1 0  

                                  0 0 1 

 

  

3 dimensional unit matrix 
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(iii)    THE TRANSPOSE OF A MATRIX      

Thus if       

                                 =  1 2 ;                t =  1 3 

   3 4   2 4 

  

If                                             is symmetric. 

(iv)    THE INVERSE OF A MATRIX         IS WRITTEN AS       
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THANK YOU FOR                

YOUR PATIENCE 
 


