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N = 8 is the second 'twice-even' regular polygon. It is also part of the 'powers of 2' family of 

polygons. Unlike the 'twice-odd' families, there is typically no relationship between N = 2k and 

N = k, so the dynamics of N = 8 are largely unrelated to the dynamics of N = 4, and N = 16 bears 

little or no relationship with N = 8.  

For regular N-gons with N even, our convention is to use a height of 1 instead of a radius of 1. 

We will also rotate them to orientate them 'upright'. This put vertex 1 at top right. In the 

notebook NTwiceEven.nb, the First Family for N = 8 is derived from the 'star' points as 

explained in N16Summary. That First Family is shown below along with the star points and 

centers. For the case of N even, we will usually refer to the generating polygon as 'Dad' instead 

of 'Mom'. 

Graphics[{poly/@FirstFamily, AbsolutePointSize[5.0], Magenta, 

Point[{star[[1]],star[[2]],star[[3]]}], Blue, Point[{cS[1],cS[2],cS[3]}]}, Axes->True] 

 

                      

The horizontal displacements between the star points and the centers is always s0/2 where s0 is 

the side of Dad. This means that star points define centers and conversely. This is true for all 

regular polygons, because the star points define the bounds for the Tangent Map. In addition 

each star point defines a scale which is independent of the size of Dad.  

scale[k_] := s0/(-2*star[k][[1]]); (*see the page on Scaling*) 

Column[Table[scale[k], {k,1,HalfN-1}]] 

1.0000000000000000000000000000 

0.41421356237309504880168872421 

0.17157287525380990239662255158 

 

scale[3] ≈ 0.17157287525380990239662255158 is also known as GenerationScale[8] which we 

sometimes shorten to GenScale. The star point that corresponds to GenScale is known as 

GenStar. This is star[[3]] on the left above.  

 

N = 8 has an infinite string of generations converging to GenStar and one of these is the 

remaining First Family member above. He is called LS[1] which is short for LeftS[1]. Note that 

LS[1] has the same size as S[1]. The large Dad on the left above is known as S[3] or simply 

DadLeft. His star points can be used to find the center of LS[1], or we can just rely on symmetry. 

 

A web scan will uncover the basic dynamics of any regular polygon. 



web[.01,5,300,0];WebPlot={};For[i=1,i<=npoints,i++,WebPlot = Union[WebPlot,Jxy[[i]]]]; 

box[{0,0},4]; (*crop region for the plot below*) 

Show[Graphics[{AbsolutePointSize[1.0],Blue,Point[WebPlot],poly[Mom],Magenta,poly/@

FirstFamily, Line[{0,0},GenStar}]},Axes->True,PlotRange->{{left,right},{bottom,top}}]] 

                                

The central region inside the ring of 8 Dads is invariant and serves as a template for the global 

dynamics. The line of symmetry shown above runs from the origin to GenStar. There is a chain 

of generations of Dads converging to GenStar and their centers all lie on this line. We can find 

these centers because GenerationScale[8] gives the scale for each generation relative to Dad, so 

the height of Dad[k] = (height of Dad)*GenScale^k = GenScale^k 

Center from height  = CFR[r_]:= (1-h)*GenStar;  center of Dad[k] = CFR[Genscale^k].  

The first two centers in this chain are shown below (actually {0,0} is the first member). 

                           

The ratio of the periods of the Dads approaches 9: The first 7 terms in the sequence are of 

periods are  16, 96, 1008, 8640, 79056, 707616, 6382208,.. By the time we reach Dad[7] the 



orbits are virtually non-periodic and their density is very uniform. Below is the first 50,000 

points in the orbit of Dad[7]: 

cDad[7] = CFR[GenScale^7] ≈ {-2.4142029962396670,-0.9999956233642322980185191} 

Orbit = V[cDad[7],50000];Graphics[{AbsolutePointSize[1.0],Point[Orbit]}] (*about 20 

seconds*) 

             

This implies that the fractal dimension of the 'web' is Ln[9]/Ln[1/GenScale] ≈ 1.24648  which is 

close to N = 5 at Ln[6]/Ln[1/GenScale[5]] ≈  1.24114. They are both sparse compared to the 

classic Sierpinski triangle at Ln[3]/Ln[2] ≈1.58496. 

 

All the regular N-gons of the form N = 2
k
 are constructible because they can be constructed from 

the square by successive angle bisections. If N is one of these ‘powers of 2’ regular polygons, 

then φ(N) (EulerPhi) = N/2 and the degree of the minimal polynomial for Cos[2Pi/N] is always 

half of this. 

For N = 8, φ(8) = 4 and MinimalPolynomial[Cos[2*Pi/8]][x] = 2x
2
-1 so Cos[Pi/4] = 1/√   

This implies that the vertex set lies in (√ ) in a fashion similar to the regular pentagon.It is no 

coincidence that the webs for both of these are self-similar fractals. 

 

 

 

 

 

 



Projections 

 

N = 8 has only one non-trivial projection  but our convention will be to show all the possible 

projections. In this case the 'redundant' P2 projection is also interesting. The projections clearly 

show the self-similar nature of the orbits.Each orbit is a 'refinement' of the previous. 

 

The three possible mappings of the vertices are stored in the matrices Wc[[1]], Wc[[2]] and 

Wc[[3]]]. These are shown below 

 

GraphicsGrid[{Table[Graphics[poly[Wc[[k]]]],{k,1,HalfN-1}]},Frame->All] 

 

 
 

Below we will show the projections for the sequence of Dads 

 

Example 1: cDad[1] = CFR[GenScale] ≈{-2.0,-0.828427124746190097603} 

This point is period 16, so the projections will have period 8 

 

Ind = IND[q1,20];  (*generate first 20 vertices in the orbit*) 

k = 9; (*Plot one more than half the period to close the plot*) 

 

Px=Table[Graphics[{poly[Mom],Blue,Line[PIM[q1,k,j]]}],{j,1,HalfN-1}]; 

(*generate the three projection using pairs of vertices from Ind*) 

Px[[1]]=Graphics[{poly[Mom],AbsolutePointSize[3.0],Blue,Point[PIM[q1,k,1]]}]; 

(*plot the P1 projection with points instead of lines*) 

 

GraphicsGrid[{{Px[[1]],Px[[2]],Px[[3]]}},Frame->All]  

 

 
 

Example 2: cDad[2] = CFR[GenScale^2] ≈ {-2.34314575050761,-0.970562748477140585} 

Period 96 so k = 49; 

 



 

Example 3: cDad[3] = CFR[GenScale^3] ≈ {-2.4020202535533,-0.994949366116653416} 

Period 1008 so k = 505; 

 

 
 

Example 4: cDad[4] = CFR[GenScale^4] ≈{-2.41212152132003,-0.99913344822277991108} 

Period 8640 so k = 4321; 

 

 
 

Example 5: cDad[5] = CFR[GenScale^5 ] ≈ {-2.413854624874471,-0.9998513232200260505} 

Period 79056 so k = 39529; 

 

 
 

 

 



 

 

These projections are increasing in scale and they are  'nested' . To see this we will plot the last 

three in different colors below using Dad[3] (magenta) ,Dad[4] (blue) and Dad[5] (black): 

 
Ind= IND[cDad[3],2000]; Px32= PIM[cDad[3],520,2]; Px33=PIM[cDad[3],520,3]; 

Ind= IND[cDad[4],10000]; Px42= PIM[cDad[4],4500,2]; Px43=PIM[cDad[3],4500,3]; 

Ind= IND[cDad[5],100000]; Px52= PIM[cDad[5],40000,2]; Px53=PIM[cDad[3],40000,3]; 

 

Graphics[{AbsolutePointSize[1.0],Line[Px52], Blue, Line[Px42],Magenta,Line[Px32]},Axes->True] 

 

 
 
 



Graphics[{AbsolutePointSize[1.0],Line[Px53], Blue, Line[Px43],Magenta,Line[Px33]},Axes->True]                        

 

 
 

 

 

 

 

 

 

 

 

          



This chain is clearly endless. Since the periods grow by a factor which approaches 9 we can  

renormalize this chain to turn this large-scale fractal structure into a Koch snowflake whose 

fractal dimension should be Ln[9]/Ln[1/GenScale] ≈ 1.24648 . The motion is clockwise. Below 

is an enlargement of the region around Mom. Note that the Blue and Black branch points are 

self-similar  

                   

Below is a similar enlargement of the 'sponge'. In the limit it should have the same fractal 

dimension as the snowflake above. cDad[3] is shown as a Magenta dot. The dynamics here are 

complicated by the redundancy so the branching is highly non-trivial. 

 

           



Richard Schwartz at Brown University obtained similar plots using Pinwheel projections. The 

projections shown above are not Pinwheel projections but they are a type of Arithmetic Graph 

that has proven useful in his quest to track unbounded orbits. For more information see the 

section on Projections, Pinwheel Maps and Arithmetic Graphs. 
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