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Drug Discovery & Development Process: General Overview

* typically a 10-17 year process to get to market
* < 10% overall success rate

Pre-clinical Clinical
Discovery . Development R
2-3 years 0.5-1 year 1-3 years 1-2years __ 5-6 years 1-2 years

Clinical Trials

| . I
« target identification » medicinal chemistry Phase IV —
« target validation « rational drug design Investigational New Drug
* assay deve|opment . b|oava||ab|||ty Aleication (“IND F|||ng")
— Z‘r:;ee;mg * systemic exposure
= @ gaesign (pharmacokinetics)
\ s * medicinal chemistry « toxicology
—_— (“hit to lead”)
» mechanism of action | « Phasel 1-2y safety & dosage 20-80 healthy volunteers
(MOA) *Phase |l 1-2y efficacy & side effects 100-300 patients
* Phase lll 3-4y long-term effects 1000-5000 patients

(*absorption, distribution, metabolism, elimination, toxicity)
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Selection Criteria Genes
Bacterial Genome Sequences Model genome Escherichia coli:
4289 genes
Haemophilus influenzae ‘ |
Mycoplasma 7 W
Streptococcus pneumoniae :
Streptococci Spectrum 246 Highly conserved genes
Chlamydia pneumoniae | in all species
Klehsiella I
Pseudomonas aeruginosa ¢ Jv
Comparison to 88 Not found in the same
human sequences form in humans
- | I
Gene function: W
essentiality - z
demonstrated Loss-of-function test 18 Essential |
in house 16 Nonessential
34 Unknown
Feasibility |3 New targeis chosen I

e Y k-]

Fig. 3. An example of a target identification cascade for a respiratory tract antibacterial drug.
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Table 1. Comparison of the screening strategies for novel antimicrobial compounds.

Whole-cell screening

. . . . Target-based screenin
(looking dlrec::i)::rz:)c:rgzms?;t;ds which kil {looking fir biochemical in..igbitars}
Advantages
Selection for compounds which penetrate cells More sensitive (can detect weak or poorly
Antimicrobial properties established penetrating compounds suitable for chemical
Highly reproducible optimizaticn)
Has been used successfully historically Easy screening

Different approach
Can target new areas of biology
Facilitates rational drug design

Disadvantages
Insensitive Need to turn an in vitro inhibitor into an
Most active compounds are toxic antibacterial drug (complicated by penetration
No rational basis for compound issues)
optimization (target unknown) Genetic validation of targets (by gene
Mixed mechanisms of action knockout or reduced expression) can be
In recent years has failed to deliver misleading
Lead Discovery: Screening ( = (( . ( (( ((( ~~~~~~~~~~~ (( B O

Natural sources (soil, plant extracts, etc.) and combinatorial chemistry provide
a large number of molecules that can be tested by automated high throughput
screening systems.

Sequencing of genomes may open new prospects to these techniques as new
potential targets will be discovered.

Screening contributed to the discovery of many valuable leads; however, with
automated high-throughput screening, the situation is more complex —
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High Throughput Screening (HTS) established as a routine method around 1995.

Based on the use of robotics to screen large libraries of compounds onto an
isolated target, a cell or a tissue so as to identify the molecules that are able to
bind (affinity screen) or elicit a biological effect (functional screen).

The more advanced techniques enable to screen 100,000 compounds per day.
HTS depends on the development of quantitative tests which are

pharmaceutically significant and adapted to the target and
which can be reproduced on a large number of samples.

384 well plate

Lead Discovery: HTS (gm;, (H (( e ({( ========== (( B O

Drugs that evolved from structures discovered through HTS:
- nevirapine, delavirdine , efavirenz (HIV non-nucleoside RT inhibitors)
- bosentan (Tracleer, endothelin receptor antagonist; pulmonary arterial hypertension)
- gefitinib (Iressa, tyrosin kinase inhibitor; antineoplastic, lung cancer)

Companies are now aware that the original concept does not deliver to the
expected extent.

Limited solubility, deposition after dilution, compound decomposition, as well as
unknown concentrations, coloured impurities, fluorescence of some compounds,
etc., produce false negatives and false positives.

In many cases, re-testing does not confirm any primary hits.

In other cases, re-testing of analogs uncovers their activity, although they were
initially found to be inactive.

Re-testing is time-, labor- and cost-intensive.




Lead Discovery: HTS

HTS Assay Validation: Z Score (zhang et al. J Biomol Screen. 1999, 4, 67)

3x(op+0,)

Zfactor =1 —
|#p — Hal
Z-factor | Interpretation
Ideal. Large dynamic range with small standard
1.0 deviations. Z-factors can never actually equal
1.0 and can never be greater than 1.0.
0.5-0.99 | Excellent assay.
0-0.5 Marginal assay.
The signal from the positive and negative
<0 controls overlap, making the assay essentially
useless for screening purposes.
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Lead Discovery: Compound Sources

* Natural product libraries

» Existing compound libraries

+ Combinatorial chemistry libraries
* Virtual libraries
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* Natural product libraries continue to be an important source of lead
compounds for drug discovery.

» Extracts of organisms from various sources are typically fractionated into
samples containing just a few compounds per fraction.

— Plant extracts
— Marine organisms
— Animal toxins
+ Cone snails
* Snake and spider venoms
* Frog and toad skin toxins and antimicrobials

+ If a fraction has evidence of biological activity, it is characterized in more
detail to identify the structure of the compound with biological activity.

— Mass spectrometry, NMR, x-ray crystallography

Lead Discovery: Existing Compound Libraries (;;.vs;;, (e o, ( (( ({( ‘‘‘‘‘‘‘‘‘‘‘‘ (( O

* Most pharmaceutical companies have large libraries of compounds
(104-108) that have been generated by their medicinal chemists over
the years (“legacy compounds”).

* Many smaller companies specialize in synthesis of custom libraries and
distribution of legacy libraries of various origin (academic, ...).
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Synthesis of a large number of compounds, a library, combining in a
systematic way, the representatives of two or more families of building blocks.

N aldehydes + M amines --> NxM products

First applied in 1963 when Merrifield performed sequential synthesis of a
tetrapeptide.

Method was then extended to the organic, organo-metallic and inorganic
chemistry with industrial applications in pharmacochemistry, catalysis,
material sciences, dyes.

Feeds the HTS monster.

But ...

Lead Discovery: Combinatorial Chemistry (;;.vs;;, (( - ( (( (g( ‘‘‘‘‘‘‘‘‘‘‘‘ (( O

Even more disappointing than HTS results was the success rate of
combinatorial libraries, especially in the early years.

Huge libraries of ill-defined mixtures of most often lipophilic and too large
compounds were tested, without any positive result.

The hit rate of libraries generally decreases with an increase in the number of
“over-decorated”, i.e. too large and too complex molecules.

Successful only after introduction of rules for drug-like properties. (—)

——>

Change strategies in the synthesis of libraries.

Automated parallel synthesis of much smaller libraries of single and pure (or
purified) compounds (often as “focused library”).

Today its main application is not so much in lead structure search but in lead
validation and in the early phases of lead optimisation.
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* Desirable biological activity, although it may be weak and even non-selective.

* Related analogs, indicating that structural modification will modulate biological
activity as well as other properties (“SAR-ability”).

These properties might be improved during optimization:
» Absence of toxic groups or groups that will produce toxic metabolites —
* Physicochemical Properties —

* “Drug-likeness” —




Toxic “Red Flags”

(t) - halogenated methanes C{X),, where X=H, F, Cl, Br, |

Physicochemical Properties

* Lipophilicity (hydrophobicity) — key parameter linking membrane permeability
with the route of clearance. Hydrophilic compounds generally show poor
permeability and hence low absorption, whereas highly lipophilic compounds
exhibit poor aqueous solubility and slow dissolution rates, leading to poor oral
absorption.

— logP — partition coefficient in octanol/water
— logD - distribution coefficient in body
(in aqueous buffer at pH 7.4 (blood pH) or 6.5 (intestinal pH))

* Solubility — low solubility is detrimental to good and complete oral absorption.
» H-bonding — important determinant of permeability. High H-bonding is related to
low permeability and absorption due to the energy required to break H-bonds

with solute molecules.

* lonisation state — affects the solubility, lipophilicity, permeability and absorption
of a compound. Charged compounds do not pass through membranes.




Drug-likeness: Lipinski’s Rules (Rule of Five)

* Proposed by C. Lipinski to describe ‘drug-like’ molecules.

* Molecules displaying good oral absorption and /or distribution
properties are likely to possess the following characteristics:
— mass < 500Da

—logP <5.0
— H-donors <5 S sl
— H-acceptors (number of N and O atoms) < 10 C.A. Lipinski

(Pfizer)

* Rules used as a guide to inform drug design, but are not unequivocal.

+ Antibiotics (—), antifungals and vitamins (drugs that are injectable or
substrates for membrane transporters) often do not adhere to these rules.

» Modified rules recommended to predict Blood Brain Barrier penetration:
— mass < 450Da
— PSA < 100A2 (polar surface area — related to logP)
— H-donors <3
— H-acceptors <6

High risk of poor bioavailability if 2 or more of these conditions are violated.
CA Lipinski, Adv. Drug Del. Rev., 1997, 23, 3

Drug-likeness: Antibiotics Are Often Misfits (g::;;, ({ . ( ( ~~~~~~~~~~~ (( O

Lipinski’s rules describe orally available drugs!
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Drug-likeness: Oral Availability — A Closer Look

Table 5. Differences in Means for Selected Properties betweenIOral and Nonoral Drugs®

oral mean absorbent mean injectable mean topical mean SAR mean clinical mean
(median) (median) (median) (median) (median) (median)
descriptor = 1202 n=118 p-value n=328 pvalue n=113 p-value n= 1139237 n=1317
0.0016 <0.0001 0.092
MW 343.7 392.3 0.49 558.2 <0.0001 368.5 0.0094 447.5 422.5
(322.5) (332.4) 0.43 (416.4) <0.0001 (379.1) 0.017 (414.6) (390.5)
0.0059 <0.0001 0.032
CLOGP 2.3 1.6 0.02 0.6 <0.0001 2.9 0.001 3.4 2.8
12.3) (2.0) 0.18 ©.7 <0.0001 (3.3) 0.0002 (3.5 (3)
0.073 <0.0001 0.06
ONs 5.5 6.5 0.99 113 <0.0001 5 0.02 7.1 7
#O and N 15) (5) 0.27 (8) <0.0001 (1) 0.12 (6) )]
<0.0001 <0.0001 0.76
OHsNHs 1.8 3 0.007 4.7 <0.0001 1.9 0.25 2.1 2.2
#OHandNH (1) (2) 0.03 (2) <0.0001 (1) 0.38 (2) 2)
0.055 0.0002 0.2
NRING 2.6 2.5 0.053 3.2 0.0007 2.9 0.026 3.5 3.3
13) (2 0.65 3 <0.0001 (3) <0.0001  (3) (3)
<0.0001 <0.0001 0.57
rothond 54 7.9 015 127 <0.0001 53 036 8.4 )
5) (4.5) 0.89 (7) <0.0001 (5) 0.62 ") (6)
0.21 <0.0001 0.71
ACC 3.2 3.6 0.48 6.2 <0.0001 3.2 0.74 4 3.9
#H-accept. 13) (3) 0.63 (5) <0.0001 (3) 0.16 (3) (3)
0.38 0.087 =0.0001
HALOGEN 0.5 0.6 0.84 0.4 0.0003 0.9 <0.0001 0.6 0.5
0) 0) 0.64 ) <0.0001 (0) 0.0002  (0) (0)

dWithin a pvalue cell, the top pvalue is from the two-sample ttest, the middle pvalie is fram the Wileoxon test, and the hatrom
pvalue is from the median test. For count-based descriptors, the ttest was performed on a (count + 0.5)'? transformation. All pvalues
for the SAR group were <0.0001 and are not included in the table. All p-values, except for the halogen count, were <0.0001 for the

clinical group and are not included in the table. Values in bold indicate that at least two of the three p-values are <005.

Vieth et al., J. Med. Chem., 2004, 47, 224
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Figure 5. Comparison of the[most frequent side chains:l (a) oral; (b) injectable. The numbers indicate the count of the drugs
containing that fragment. The means of properties are not significantly different for (a) and (b).

Vieth et al., J. Med. Chem., 2004, 47, 224
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Figure 6. Comparison oflmost frequent scaffolds: |(a) oral; (b) injectable. The numbers indicate the number of drugs containing
the fragment. The means of physical properties (CLOGP, ON, rotbond) are significantly different for (a) and (b).

Vieth et al., J. Med. Chem., 2004, 47, 224
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Analogues

J SAR

In Vitro Testing

Lead structure optimisation is an
evolutionary procedure, in which
every minor or major
improvement in certain properties

+ Intrinsic activity
+ Activity against resistant strains E » If unacceptable, discard
* Spectrum of activity

leads to a new analog, which is
further optimised until the final
candidate has all desired
properties to start its clinical
investigation.

* Traditional Medicinal Chemistry

» Combinatorial/Parallel Synthesis
(focused libraries)

In Vivo Testing

+ Acceptable in vivo activity
+ Route of administration

D If unacceptabie, discard
D If unacceptable, discard

« Acceptable toxicity profile

her Biological Characterization
+ Mechanism of action

* Pharmacodynamics

+ Useful blcod levels
+ Frequency of dosing
l + Tissue penetration

Clinical Trials

!

Registration

Figure 1. Generalized testing scheme for oxazolidinones showing
incorporation of the structure—activity relationship (SAR) componen

(Barbachyn & Ford, Angew. Chem. Int. Ed., 2003, 42, 2010)




Lead Optimisation: Assays for Antibacterials (;.s;-m (\( o H ({( ~~~~~~~~~~ (( WO

+ Target-based affinity or functional assay (if target is known).
* MIC (minimum inhibitory concentration)
» Spectrum of activity (MIC90)

Example for Ribosome-Directed Antibacterial Discovery Program:

‘ IVT Inhibition | + | Target Affinity |
Ribosome A-Site RNA
ICs0 Kb
* inhibitor potency + binding affinity
* binding specificity

* target compatibility
Growth Inhibition

Bacteria
Mmic
* inhibitor potency
+ cell penetration

Cytotoxicity l ‘ Antibacterial Spectrum ‘ ‘ Resistant Testing
Eukaryotic Cells Bacteria Bacteria
CCso MICgg MiC
* toxicity + inhibitor potency * inhibitor potency
» cell penetration » cell penetration » cell penetration
+ therapeutic index « efflux affection

Lead Optimisation: MIC (g-.e;-,, ((( = H ((( ‘‘‘‘‘‘‘‘‘‘‘ (( = O

MIC (minimum inhibitory concentration): lowest concentration of an
antimicrobial that results in the inhibition of visible growth of a microorganism
after overnight exposure

Known bacterial inoculum placed into
each tube

MIC = 4.0 pg/mL

0.25 0.5 1.0 2.0 4.0 8.0 16
pg/mL pg/mL pg/mL pg/mL |pg/mLl pg/mL pg/mL

Increasing
Antibiotic
Concentration

v




Lead Optimisation: MIC (;,m-,, (i( .

* Breakpoint: concentration above which the isolate is described at
resistant and below which is susceptible

e.g. S <8mg/L R = 8mg/L
Breakpoint = 8mg/L

+ MIC;, Median for series of MICs

* MIC,,
— MICs of population ordered from lowest to highest

MIC value of the strains that appears 90% up the series.
Antibiotic considered to be successful if > 90% of population
inhibited.

Also show if resistance is emerging i.e. 10% of population

resistant.

Lead Optimisation: Spectrum — MIC90

Table 1

Antimicrobial activity of dalbavancin compared with 15 other antimicrobials against|2644 Gram-positive coccifassociated with SSTT and CR-BSI isolated in

2004 (United States)

Organism (no. tested)antimicrobial agent

Cumulative % of isolates inhibited at MIC (pg/mL)

MIC (pg/mL)

=0.03 0.06 0.12 0.25 0.5 2 4 50% 90%
Staphvlococcus aureus (2102)

Dalbavancin 46 98 99 99 100 100 100 100 0.06 0.06
Oxacillin : 11 45 50 s1° 1 >2
Cefirlaxone 0 <1 <1 7 49 8 >32
Clindamycin 20 70 71 71 71 71 71 0.12 =8
Daptomycin 0 0 1 47 99 =99 100 100 0.5 0.5
Erythromycin <1 1 37 38 38 38 39 =8 =8
Gentamicin 95 96 =2 =2
Levofloxacin <1 4 39 56 58 38 60 68 0.25 =4
Linezolid 0 0 0 <1 28 100 100 2 2
Rifampin 97 98 98 =05 =0.5
Synercid® 43 97 =99 =09 0.5 0.5
leicoplanin <1 6 64 96 =09 =99 0.5 1
letracycline 63 92 94 95 95 =025 0.5
IMP/SMX® 96 98 08 =05 =0.5
Vancomycin 0 <1 14 98 =09 =00 1 1




Lead Discovery: Antibacterial In vivo Testing (;,:.»z;-,, (( = H ({( “““““““““““ (( O

Mouse Protection Model (systemic infection):

IV route (single dose)

u 5ma/k - (Vehicle)
100 - = . . . . 9 gA —— (5mg/kg)
- ——(2.5mg/kg)
2 80 2.5mg/kg ——(1.25mg/kg)
ha < < <> <
@ 60 -
S 40+
"0 1.25mg/kg PD50 = 2.4 mg/kg
, (50% protective dose)
0 T - = = = & &

0 1 2 3 4 5 6 7 8
Days after infection

* 10 mice per group
* Infection with E. coli ATcc-25922 by IP route

(Zhou et al., Antimicrob. Agents Chemother., 2005, 49, 4942)

Lead Optimisation: Focused Libraries (;;.vs;-m (( . H ({( ‘‘‘‘‘‘‘‘‘‘‘‘ (( O

» After identification or generation of a lead compound for a specific
target, it is often desirable to use focused libraries of high
complexity, but relatively low diversity to optimize the lead.

« Structural analysis of the lead compound(s) will suggest key
pharmacophores that are critical for target binding

— The focused library should consist of molecules that contain various
combinations and/or forms of these key pharmacophores

* Focused combinatorial libraries can be synthesized by:
— Combining the pharmacophores in different ways
— Adding various substituents to the pharmacophores
— Chemically modifying the pharmacophores in defined ways




MIC vs. Cytotoxicity

o MIC (E.coli)
O MIC (S.aureus)

Initial lead compound
64 from structure-guided
approach
32 o
E 16
(=]
=
Q
=3
4
2
1 . .
1.0 10.0 100.0
T.1.=1 CC50 [pg/mi]
Lead Optimisation: Example - 15t Iteration (;:.vs;;, ({\( = H ((( ~~~~~~~~~~~ (( = O
MIC vs. Cytotoxicity o MIC (E.coli)
O MIC (S.aureus)
u] o m} o (e)
[ ]
64 o o
"Center of mass"
32 o oo o of the library
16
(=]
=
Q
E g o
1st Iteration:
20 synthesized
4 9 tested
Cumulative:
2 21 synthesized
10 tested
1 T T
£1.0 10.0 100.0
T.1.=1

CC50 [pg/mi]




Lead Optimisation: Example — 2" [teration

MIC vs. Cytotoxicity

u] u] 0oo0ooo0o 0o O 0O 0o o000 (@] oo m
s —ao
64 oo oo u} o u} O
32 o oo o
%‘ 16 o o 00 o 00 o
)
=
Q
= 8 ¢} o
4 9
2
1 - —
/1.0 ﬁ.o 100.0
T.1.=1 10X ¢cc50 [pg/mi]

o MIC (E.coli)
O MIC (S.aureus)

2nd |teration:
65 synthesized
22 tested

Cumulative:
86 synthesized
32 tested

Lead Optimisation: Example — 34 Iteration

MIC vs. Cytotoxicity

o MIC (E.coli)
O MIC (S.aureus)

P o ] DO 00D O O 000 Oomoom,/ O oo m
8<—8
64 Ooo@on om oo /o @ o
32 [=]=) © @ Ooo WMo/ O (o) o
%‘16 o O o@D QO @ 0O 0 00 O o /0
)
=
=4
= 8 o o om D o oo o
3 Iteration:
320 synthesized
4 9 © © © © o /m 55 tested
Cumulative:
2 o o 406 synthesized
87 tested
1 . f——
/1.0 A0.0 / 100.0
T.1.=1 10X cc50 [ugimp 50X




Lead Optimisation: Example — 4t Iteration

MIC vs. Cytotoxicity o MIC (E.coli)
O MIC (S.aureus)
P o ] MODO 000 O O 000 0D oOom@P O @GECOND
8<—8 m MIC (E.coli)
64 OO0ODmOIn e oo /© eC = o@ ® MIC (S.aureus)
32 (=)=} © @ Ooo WMo/ O O m e@ = [}
%‘16 o o O o@D QO @ O O\g® O me/ @0
2
Q
= 3 o o om oeo wm /flce =
4t Iteration:
35 synthesized
4 9 (e} (e} e} o ® o D eoem @ 34 tested
Cumulative:
2 o o 441 synthesized
121 tested
1 = = T
1.0 A0.0 100.0
T.1.=1 10X ccs50 fugimn 50X

Lead Optimisation: Example — Driving Forces

MIC vs. Cytotoxicity

o

MIC (E.coli)

O MIC (S.aureus)
p o ] MODO 000 O O 000 OO ocOom@® O @GEOCOMD
8«8 m MIC (E.coli)
64 O 0DOoCoOn gl o /O 00 = O@ ® MIC (S.aureus)
Diversity
32 [=]m) © @ Ooo Wof O (o) o@ = [ ]
Structural Information
%‘ 16| ¢ © O oD QO o ©
2 &
Q
= g o o om omeo mm /fllce ) )
Diversity
4 4 o o o e @® O
2 o o
1 = - - T
1.0 A0.0 100.0
T.I.=1 10X ccs0 [ug/mn 50X




Lead Discovery/Optimisation: Comput. Design

Data base Similarity QSAR Pharmaco- girycture-based
filtering analysis ;l)hores design
Target Biological HTS HTS hits Chemistry Target Drug
selection test confirmed start structure candidate
development determined

* After target identification and the setup of an activity test: filtering databases of
existing molecules to narrow down molecules for screening.

« After HTS: similarity analysis of available ligands comparable to the positive
molecules obtained by screening.

* After the phase of synthesis chemistry has started: QSAR (qunatitative
structure activity relationship) as well as pharmacophore screening.

» After structure of the target/target complexes have been determined: structure-
guided optimisation and design of de novo ligands.

Lead Discovery/Optimisation: QSAR

Quantitative Structure-Activity Relationship (QSAR) is a mathematical
relationship between a biological activity of a molecular system and its
geometric and chemical characteristics.

QSAR attempts to find consistent relationship between biological activity and
molecular properties, so that these “rules” can be used to evaluate the
activity of new compounds.

Input: n descriptors P,..P, and the value of biological activity (EC50 for
example) for m compounds.

Biol.Act. | P, P, P,
Cpd1 07 37
Cpd2 3.2 0.4

Cpdm
The problem of QSAR is to find coefficients C0,C1,...Cn such that:
Biological activity = CO+(C1*P1)+...+(Cn*Pn)

and the prediction error is minimized for a list of given m compounds.

Partial least squares (PLS) is a technique used for computation of the
coefficients of structural descriptors.




Lead Discovery/Optimisation: Struct.-Based Desigr(
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Figure 8. Binding mode of RO-62-6091 as determined by crystal structure analysis (top structures) complexed with 5. aureus
DHFR and the modeled binding mode of (K)-9 (bottom structures) complexed with S. prievmoniae DHFR. The cofactor NADPH

is partially visible at the bortom of the binding sites.
(Wyss et al., J. Med. Chem., 2003, 46, 2304)




