Tutorial \# 7

Steady State Conduction

Problem 1 Consider a naked person standing in a room at $20^{\circ} \mathrm{C}$ with an exposed surface area of $1.7 \mathrm{~m}^{2}$. The deep body temperature of the human body is $37^{\circ} \mathrm{C}$, and the thermal conductivity of the human tissue near the skin is about $0.3 \mathrm{~W} /\left(\mathrm{m}^{\circ}{ }^{\circ} \mathrm{C}\right)$. The body is losing heat at a rate of 150 W by natural convection to the surroundings. Taking the body temperature 0.5 cm beneath the skin to be $37^{\circ} \mathrm{C}$, determine the skin temperature of the person and the convective heat transfer coefficient to the surroundings.

Solution:

Step 1: Draw a schematic diagram

$>$ The skin temperature of the person, T_{s};
$>$ Convective heat transfer coefficient, h .
Step 3: The information given in the problem statement.

- Deep body temperature, $\mathrm{T}_{\mathrm{in}}=37^{\circ} \mathrm{C}$, Room temperature, $\mathrm{T}_{0}=20^{\circ} \mathrm{C}$;
- Depth beneath the skin $\mathrm{L}=0.5 \mathrm{~cm}$, Exposed surface Area, $\mathrm{A}=1.7 \mathrm{~m}^{2}$;
- Thermal conductivity of the human tissue, $\mathrm{k}=0.3 \mathrm{~W} /\left(\mathrm{m}^{\circ} \mathrm{C}\right)$;
- Heat loss rate, $Q=150 \mathrm{~W}$

Step 4: Assumptions

- Neglect the radiation heat loss to the surroundings;
- The temperature won't change with time(steady problem).

Step 5: Solve

It's a one-dimension steady heat transfer process, and the conductivity resistance is determined as

$$
R_{\text {cond }}=\frac{L}{k A}=\frac{0.5(\mathrm{~cm})}{0.3\left(\mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}\right) \times 1.7\left(\mathrm{~m}^{2}\right)}=0.0098\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)
$$

The heat loss is

$$
\dot{Q}_{\text {tatal }}=\dot{Q}_{\text {cond }}=\dot{Q}_{\text {conv }}=150(\mathrm{~W})
$$

The conductive heat loss:

$$
\dot{Q}_{\text {cond }}=\frac{\Delta T}{R_{\text {cond }}}=\frac{T_{i n}-T_{s}}{R_{\text {cond }}}
$$

Thus,

$$
T_{s}=T_{i n}-\dot{Q}_{\text {cond }} R_{\text {cond }}=37\left({ }^{\circ} \mathrm{C}\right)-150(\mathrm{~W}) \times 0.0098\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)=35.5\left({ }^{\circ} \mathrm{C}\right)
$$

The convective heat loss to the surroundings is calculated by

$$
\dot{Q}_{\text {conv }}=\frac{\Delta T}{R_{\text {conv }}}=\frac{T_{s}-T_{0}}{\frac{1}{h A}}
$$

So, the convective heat transfer coefficient,

$$
h=\frac{Q_{\text {conv }}}{A\left(T_{s}-T_{0}\right)}=\frac{150(\mathrm{~W})}{1.7\left(\mathrm{~m}^{2}\right) \times(35.5-20)\left({ }^{\circ} \mathrm{C}\right)}=5.69\left(\mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}\right)
$$

Step 6: Conclusion statement

The skin temperature of the person will be $\mathbf{3 5 . 5}{ }^{\circ} \mathrm{C}$ and the convective heat transfer coefficient is $\underline{\mathbf{5 . 6 9} \mathrm{W} /\left(\mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}\right)}$

Problem 2 As shown in the figure, steam in a heating system flow through one side of rectangle plane $\left(10 \mathrm{~cm}^{*} 12 \mathrm{~cm}\right)$. The plane is maintained at a temperature of $150^{\circ} \mathrm{C}$. Rectangular aluminium alloy 2024-T6 fins $\left[\mathrm{k}=186 \mathrm{~W} /\left(\mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)\right]$ with a constant width of 1 cm and thickness of 0.1 cm are attached to the plane. The space between every two adjacent fins is 0.3 cm . The temperature of the surrounding air is $20^{\circ} \mathrm{C}$ and the combined convective heat transfer is $50 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}\right)$, Determine the overall effectiveness of the finned plane.

Solution:

Step 1: Draw a schematic diagram

Step 2: What to determine?
$>$ The overall effectiveness of the finned plane, ε.
Step 3: The information given in the problem statement.

- Plane surface temperature, $\mathrm{T}_{\mathrm{s}}=150^{\circ} \mathrm{C}$, Atmosphere temperature, $\mathrm{T}_{0}=20^{\circ} \mathrm{C}$;
- Plane geometry: $\mathrm{H}=10 \mathrm{~cm}$, and $\mathrm{W}=12 \mathrm{~cm}$;
- Fin: conductivity: $\mathrm{k}=186 \mathrm{~W} /\left(\mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)$, length: $\mathrm{L}=1 \mathrm{~cm}$, thickness: $\mathrm{t}=0.1 \mathrm{~cm}$, space: $\mathrm{s}=0.3 \mathrm{~cm}$, width: $\mathrm{W}=12 \mathrm{~cm}$.
- The combined convective heat transfer: $\mathrm{h}=50 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}\right)$

Step 4: Assumptions

- Neglect the radiation heat loss to the surroundings;
- The temperature won't change with time(steady problem).

Step 5: Solve

CASE 1. With fins on the plane:

The efficiency of the fins is determined from Fig 10.42 to be

$$
\xi=\left(L+\frac{t}{2}\right) \sqrt{h / k t}=\left(0.01 m+\frac{0.001}{2} m\right) \sqrt{\frac{50 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{o} \mathrm{C}}{\left(186 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}\right) \times(0.001 \mathrm{~m})}}=0.16
$$

which gives us the fin efficiency

$$
\eta_{f i n}=0.98
$$

the area of a fin is,

$$
A_{f i n}=2 W\left(L+\frac{t}{2}\right)=2 \times 0.12 m \times\left(0.01 m+\frac{0.001}{2} m\right)=0.00252 m^{2}
$$

So, the actual heat transfer rate through the fins is,

$$
\begin{aligned}
\dot{Q}_{f i n} & =\eta_{\text {fin }} h A_{\text {fin }}\left(T_{s}-T_{0}\right)=0.98 \times\left(50 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}\right) \times\left(0.00252 \mathrm{~m}^{2}\right)\left(150^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right) \\
& =16.05 \mathrm{~W}
\end{aligned}
$$

For the unfinned region, the area is

$$
A_{\text {unf in }}=W \cdot s=0.12 \mathrm{~m} \times 0.003 \mathrm{~m}=0.00036 \mathrm{~m}^{2}
$$

So, the heat transfer rate through an unfinned area is

$$
\begin{aligned}
Q_{\text {unf in }} & =h A_{\text {unf in }}\left(T_{s}-T_{0}\right)=\left(50 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}\right) \times\left(0.00036 \mathrm{~m}^{2}\right)\left(150^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right) \\
& =2.34 \mathrm{~W}
\end{aligned}
$$

the number of the fins on the plane:

$$
n=\frac{H}{t+s}=\frac{10 \mathrm{~cm}}{0.1 \mathrm{~cm}+0.3 \mathrm{~cm}}=25
$$

For the total heat transfer rate of the whole plane:

$$
Q_{\text {total, fin }}=n\left(Q_{f i n}+Q_{u n f i n}\right)=25 \times(16.05 \mathrm{~W}+2.34 \mathrm{~W})=459.75 \mathrm{~W}
$$

CASE 2. No fins on the plane

The area of the whole plane is

$$
A_{n o f ~ i n}=H \cdot W=0.1 m \times 0.12 m=0.012 \mathrm{~m}^{2}
$$

and the whole heat transfer rate is

$$
\begin{aligned}
Q_{\text {nof in }} & =h A_{\text {nof in }}\left(T_{s}-T_{0}\right) \\
& =\left(50 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}\right) \times\left(0.012 \mathrm{~m}^{2}\right)\left(150^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right) \\
& =78 \mathrm{~W}
\end{aligned}
$$

The overall effectiveness of the finned plane

$$
\varepsilon=\frac{Q_{\text {total.fin }}}{Q_{\text {nofin }}}=\frac{459.75 \mathrm{~W}}{78 \mathrm{~W}}=5.89
$$

Step 6: Conclusion statement

The overall effectiveness of the finned plane is $\underline{\mathbf{5 . 8 9}}$, which means the heat transfer rate is enhanced 5.89 times when attaching the fins.

