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9.520/6.860: Statistical Learning Theory and Applications

Rules of the game



Today’s overview

• Course description/logistic 

• Motivations for this course: a golden age for  Machine Learning, CBMM, MIT: 
Intelligence,  the Grand Vision 

• A bit of history: Statistical Learning Theory, Neuroscience 

• A bit of ML history: applications 

• Deep Learning present and future 



9.520: Statistical Learning Theory and Applications
Course focuses on algorithms and theory for supervised learning — no 
applications! 

1. Classical regularization (regularized least squares, SVM, logistic regression, square and exponential loss), 
stochastic gradient methods, implicit regularization and minimum norm solutions. Regularization 
techniques, Kernel machines, batch and online supervised learning, sparsity.  

2. Classical concepts like generalization, uniform convergence and Rademacher complexities will be 
developed, together with topics such as surrogate loss functions for classification, bounds based on 
margin, stability, and privacy. 

3. Theoretical frameworks  addressing three key puzzles in deep learning: approximation theory -- which 
functions can be represented more efficiently by deep networks than shallow networks-- optimization theory 
-- why can stochastic gradient descent easily find global minima -- and machine learning -- how 
generalization ideep networks used for classification can be explained in terms of  complexity control 
implicit in gradient descent. It will also discconnections with the architecture of the brain, which was the 
originalinspiration of the layered local connectivity of modern networks and may provide ideas for future 
developments and revolutions in networks for learning. 

http://www.mit.edu/~9.520/fall17/


9.520: Statistical Learning Theory and Applications

• Course focuses on algorithms and theory for supervised learning — no 
applications! 

• Classical regularization (regularized least squares, SVM, logistic 
regression, square and exponential loss), stochastic gradient methods, 
implicit regularization and minimum norm solutions. Regularization 
techniques, kernel machines, batch and online supervised learning, 
sparsity.  

http://www.mit.edu/~9.520/fall17/


9.520: Statistical Learning Theory and Applications

• Course focuses on algorithms and theory for supervised learning — no 
applications! 

• Classical concepts like generalization, uniform convergence and 
Rademacher complexities will be developed, together with topics such as 
surrogate loss functions for classification, bounds based on margin, stability, 
and privacy. 
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9.520: Statistical Learning Theory and Applications

• Course focuses on algorithms and theory for supervised learning — no 
applications! 

• Theoretical frameworks  addressing three key puzzles in deep learning: 
approximation theory -- which functions can be represented more efficiently by 
deep networks than shallow networks-- optimization theory -- why can 
stochastic gradient descent easily find global minima -- and machine learning -- 
how generalization ideep networks used for classification can be explained in 
terms of  complexity control implicit in gradient descent. It will also discuss 
connections with the architecture of the brain, which was the original inspiration 
of the layered local connectivity of modern networks and may provide ideas for 
future developments and revolutions in networks for learning. 

http://www.mit.edu/~9.520/fall17/


Today’s overview

• Course description/logistic 

• Motivations for this course: a golden age for new AI, the key role of Machine 
Learning, CBMM, the MIT Quest: Intelligence,  the Grand Vision 

• Bits of history: Statistical Learning Theory, Neuroscience 

• Bits of ML history: applications 

• Deep Learning 



Grand Vision of CBMM, Quest/College, this course



The problem of (human) intelligence is one of the great problems in science, 
probably the greatest. 

Research on intelligence:  
• a great intellectual mission: understand the brain, reproduce it in machines 
• will help develop intelligent machines 

The problem of intelligence: 

how the brain creates intelligence 


and how to replicate it  in machines



We aim to make progress in understanding intelligence, that is 
in understanding how the brain makes the mind, how the brain 

works and how to build intelligent machines.

The Science and the Engineering of Intelligence

Key recent advances in the engineering of intelligence   
have their roots  in basic research on the brain



Why (Natural) Science  
and  

Engineering?



Just a definition: science is natural science (Francis Crick, 1916-2004)
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Two Main Recent Success Stories in AI



DL and RL come from neuroscience 

Minsky’s SNARC

R

L


D

L



The Science of Intelligence

The science of intelligence was at the roots of today’s engineering success 

We need to make a basic effort leveraging  
the old and new  

science of intelligence:  
neuroscience, cognitive science 

and  
combine it  

with learning theory  





CBMM: the Science and Engineering of Intelligence
The Center for Brains, Minds and Machines (CBMM) is a multi-

institutional NSF Science and Technology Center dedicated to the 
study of intelligence - how the brain produces intelligent behavior 

and how we may be able to replicate intelligence in machines.

Publications 397

Research Institutions ~4

Faculty (CS+BCS+…) ~23

Researchers 223

Educational Institutions 12

Funding 2013-2023 ~$50M
Machine Learning,
Computer Science

Science + Engineering 

Cognitive 
Science

Neuroscience,
Computational 
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NSF Site Visit - May 7, 2019

EAC Meeting: March 19, 2019
Demis Hassabis, DeepMind

Charles Isbell, Jr., Georgia Tech

Christof Koch, Allen Institute


Fei-Fei Li, Stanford


Lore McGovern, MIBR, MIT

Joel Oppenheim, NYU

Pietro Perona, Caltech 
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Summer Course at Woods Hole: Our flagship initiative

Brains, Minds & Machines Summer Course 
Gabriel Kreiman + Boris Katz

A community of scholars is being formed:  



BRIDGE

CORE:  
Cutting-Edge Research on the Science + Engineering of Intelligence

Natural Science of IntelligenceEngineering of Intelligence
Future 


Intelligence Institute 
across Vassar St.?



Summary

• Motivations for this course: a golden age for new AI, the key role 
of Machine Learning, CBMM 

Summary: I told you about the present great success of ML, its connections 
with neuroscience, its limitations for full AI. I then told you that we need to 
connect  to neuroscience if we want to realize real AI, in addition to 
understanding our brain. BTW, even without this extension, the next few years 
will be a golden age for ML applications.  



Today’s overview

• Course description/logistic 

• Motivations for this course: a golden age for new AI, the key role of Machine 
Learning, CBMM, the MIT Quest: Intelligence,  the Grand Vision 

• A bit of history: Statistical Learning Theory and Applications 

• Deep Learning 



Statistical Learning Theory



INPUT OUTPUTf
Given a set of l examples (data) 

  

Question: find function f such that  

          

is a good predictor of y for a future input x (fitting the data is not enough!)

Statistical Learning Theory:

supervised learning (~1980-today)




(92,10,…)
(41,11,…)

(19,3,…)

(1,13,…)

(4,24,…)
(7,33,…)

(4,71,…)

Regression

Classification

Statistical	Learning	Theory:	
supervised	learning	



y

x

= data from f

=  approximation of   f

= function f

Intuition: Learning from data to predict well the value of the function 
where there are no data

Statistical Learning Theory:

prediction, not description




The learning problem: summary so far

There is an unknown probability distribution on the product
space Z = X � Y , written µ(z) = µ(x , y). We assume that X is
a compact domain in Euclidean space and Y a bounded subset
of R. The training set S = {(x1, y1), ..., (xn, yn)} = {z1, ...zn}

consists of n samples drawn i.i.d. from µ.

H is the hypothesis space, a space of functions f : X ⇤ Y .

A learning algorithm is a map L : Z n ⇤ H that looks at S and
selects from H a function fS : x⇤ y such that fS(x) ⇥ y in a
predictive way.

Tomaso Poggio The Learning Problem and Regularization

Statistical Learning Theory:

supervised learning




Statistical Learning Theory




Conditions for generalization and well-posedness/stability  
in learning theory 

 have deep, almost philosophical, implications: 

they can be regarded as equivalent conditions that guarantee a  
theory to be predictive and scientific 

‣  theory must be chosen from a small hypothesis set (~ Occam razor, VC dimension,…) 

‣  theory should not change much with new data...most of the time (stability)

Statistical Learning Theory:

foundational theorems

One of the key msgs of the 80’-90’ from learning theory: do not overfit the data because you will not predict well! 
Models must be constrained, their capacity controlled! 

Astronomy, not astrology!



implies

Classical algorithm:

Regularization in RKHS (eg. kernel machines)

Classical kernel machines — such as SVMs — correspond to 
shallow networks

X1

f

Xl

The regularization term controls the 
complexity of the function in terms 
of its RKHS norm



Summary

Bits of history: Statistical Learning Theory 
Summary: I told you about learning theory and predictivity. I told you 
about kernel machines and shallow networks. 



Historical perspective: 
Examples of old Applications



Kah-Kay Sung 
around ~1990



LEARNING THEORY 
+  

ALGORITHMS

COMPUTATIONAL 
 NEUROSCIENCE:  

models+experiments
How visual cortex works 

Theorems on foundations of learning 

Predictive algorithms

Face detection has been 
available in digital cameras for 
a few years now

Engineering of Learning




LEARNING THEORY 
+  

ALGORITHMS

COMPUTATIONAL 
 NEUROSCIENCE:  

models+experiments
How visual cortex works 

Theorems on foundations of learning 

Predictive algorithms

Papageorgiou&Poggio, 1997, 2000  
also Kanade&Scheiderman

Engineering of Learning


Pedestrian detection

around ~1997



2015



Third Annual NSF Site Visit, June 8 – 9, 2016

~1995
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Some other examples of 

past ML applications 


from my lab (from 1990 to ~2001)

Computer Vision 
• Face detection 
• Pedestrian detection 
• Scene understanding 
• Video categorization 
• Video compression 
• Pose estimation 
Graphics  
Speech recognition 
Speech synthesis 
Decoding the Neural Code 
Bioinformatics 
Text Classification 
Artificial Markets 
Stock option pricing 
….



New feature selection SVM: 

Only 38 training examples, 7100 features 

AML vs ALL: 40 genes 34/34 correct, 0 rejects. 
          5 genes 31/31 correct, 3 rejects of which 1 is an error.

Pomeroy, S.L., P. Tamayo, M. Gaasenbeek, L.M. Sturia, M. Angelo, M.E. 
McLaughlin, J.Y.H. Kim, L.C. Goumnerova, P.M. Black, C. Lau, J.C. Allen, D. 
Zagzag, M.M. Olson, T. Curran, C. Wetmore, J.A. Biegel, T. Poggio, S. 
Mukherjee, R. Rifkin, A. Califano, G. Stolovitzky, D.N. Louis, J.P. Mesirov, E.S. 
Lander and T.R. Golub. Prediction of Central Nervous System Embryonal 
Tumour Outcome Based on Gene Expression, Nature, 2002. 

Learning:	bioinformatics	

around ~2000



Decoding the neural code: Matrix-like read-out from the brain


Science 
around ~2005



⇒ Bear (0° view)

⇒ Bear (45° view)

Learning: image analysis


around ~1995



UNCONVENTIONAL GRAPHICS

Θ = 0° view ⇒

Θ = 45° view ⇒

Learning: image synthesis




A- more in a moment

 Tony Ezzat,Geiger, Poggio, SigGraph 2002

Mary101

Extending the same basic learning techniques (in 2D): 
Trainable Videorealistic Face Animation 

(voice is real, video is synthetic)



Phone Stream

Trajectory  
Synthesis

MMM

Phonetic Models

Image Prototypes

 1. Learning 

System learns from 4 mins 
of video face appearance 
(Morphable Model) and  
speech dynamics of the 

person

 2. Run Time 

For any speech input the system 
provides as output a synthetic video 

stream





B-Dido



C-Hikaru



D-Denglijun



E-Marylin
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G-Katie



H-Rehema



I-Rehemax



L-real-synth

A Turing test: what is real and what is synthetic?



 Tony Ezzat,Geiger, Poggio, SigGraph 2002

A Turing test: what is real and what is synthetic?



Similar to today’s GANs




Summary

• Bits of history: old applications 
Summary: I told you about old applications of ML, mainly kernel machines 
to give a feeling for how broadly powerful is the supervised learning 
approach: you can apply it to visual recognition, to decode neural data, to 
medical diagnosis, to finance, even to graphics. I also wanted to make you 
aware that ML does not start with deep learning and certainly does not 
finish with it. 



Today’s overview

• Course description/logistic 

• Motivations for this course: a golden age for new AI, the key role of Machine 
Learning, CBMM, the MIT Quest: Intelligence,  the Grand Vision 

• Bits of history: Statistical Learning Theory and Applications 

• Deep Learning bits 



Deep Learning



9.520/6.860
• classical regularization (regularized least squares, SVM, logistic regression, square and exponential loss), 

stochastic gradient methods, implicit regularization and minimum norm solutions. Regularization techniques, Kernel machines, batch and online 
supervised learning, sparsity.  

• Classical concepts like generalization, uniform convergence and Rademacher complexities will be developed, together with topics such as 
surrogate loss functions for classification, bounds based on margin,, and pstabilityrivacy. 

•Theoretical frameworks  addressing three key puzzles in deep 
learning: approximation theory -- which functions can be represented 
more efficiently by deep networks than shallow networks-- 
optimization theory -- why can stochastic gradient descent easily find 
global minima -- and machine learning -- how generalization in deep 
networks used for classification can be explained in terms of  
complexity control implicit in gradient descent. It will also discusses  
connections with the architecture of the brain, which was the original 
inspiration of the layered local connectivity of modern networks and 
may provide ideas for future developments and revolutions in 
networks for learning. 
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 Training and computation in a deep neural net
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Course, part III, Deep Learning: 

theory questions

- why depth works 
- why optimization works so nicely 
- why deep networks do not overfit and do generalize 



Deep nets : a theory is needed 
(after alchemy, chemistry) 

Many reasons for this.  
Today I will focus on bits of the puzzle  

of good generalization  
despite overfitting.



How can overparametrized  solutions generalize?



• The first observation is that classical learning theory has made clear that the number of 
parameters is not the key thing to be constrained. The norm of the parameters and related 
quantities such as VC dimension, Rademacher complexity, covering numbers are a better 
measure  of complexity of the function that has to be controlled. 

• You will see plenty of examples of this in the algorithms part of the course with 
regularization. You have seen the regularization term in one my slides. 

• But deep nets have their overparametrization magic even without a regularization term 
(equivalent to weight decay) during training. Do we have something similar in classical math? 

How can deep networks generalize?  
Where is the complexity control?



implies

Classical algorithm:

Regularization in RKHS (eg. kernel machines)

Classical kernel machines — such as SVMs — correspond to 
shallow networks

X1

f

Xl

The regularization term controls the 
complexity of the function in terms 
of its RKHS norm



!  

A covering number  is the number  of  spherical balls of  a given size 
needed to completely cover  ( ε - net) a given space, with possible overlaps.

Example: The metric space is the Euclidean space, your parameter space K 
consists of d-dimensional vectors in the space with norm < R. 

The covering numbers are  Nε (K ) = (2R d
ε

)d

Covering numbers and bits



• The first observation is that classical learning theory has made clear that the number of 
parameters is not the key thing to be constrained. The norm of the parameters and related 
quantities such as VC dimension and Rademacher complexity and covering numbers are a 
better measure  to control. 

• You will see plenty of examples of this in the algorithms part of the course with 
regularization. You have seen the term in one my slides. 

• But deep nets have their overparametrization magic even without a regularization term 
(equivalent to weight decay) during training. Do we have something similar in classical math? 

How can deep networks generalize?  
Where is the complexity control?



One of the definitions of the Moore-Penrose pseudoinverse is 

A+ = lim
δ↘0

A*A +δ I( )−1
A* = lim

δ↘0
A* AA* +δ I( )−1

. 

which can be seen (Lorenzo will explain in class 3 ) as the limit 
of a regularization λ  going to zero.
Furthermore, when you do gradient descent on a linear network
under the square loss, GD converges to the pseudoinverse if you 
start with close-to-zero weights (class 7).

Pseudoinverse



When is deep better than shallowUnconstrained optimization of deep nets with exponential loss 

Gradient descent on L = e− yn f (WK ,...,W1;xn )

n

N

∑ =  e− ynρ !f (VK ,...,V1; xn )

n

N

∑  

gives the dynamical system

"Wk
i, j = − ∂L

∂Wk
i, j = e− yn f (xn )

N

∑ yn
∂ f (xn )
∂Wk

i, j

which can be shown to be equivalent to 

ρk

.
= ρ
ρk

e−ρ !f (xn )

n=1

N

∑ !f (xn )

Vk

.
= ρ
ρk

2 e−ρ !f (xn )

n=1

N

∑ (∂
!f (xn )
∂Vk

−VkVk
T ∂ !f (xn )

∂Vk

).



When is deep better than shallow

The critical points of Vk

.
are at finite ρ

e−ρ !f (xn )

n=1

N

∑ ∂ !f (xn )
∂Vk

= e−ρ !f (xn )

n=1

N

∑ Vk
!f (xn )

Gradient descent on L = e− yn f (WK ,...,W1;xn )

n

N

∑ =  e− ynρ f (VK ,...,V1; xn )

n

N

∑  

gives a dynamical system with critical points for one effective support vector

Vk f (x*) = ∂ f (x*)
∂Vk

Unconstrained optimization of deep nets with exponential loss 



When is deep better than shallowConstrained optimization of deep nets with exponential loss 

Gradient descent on 

L = e− ynρ f (VK ,...,V1; xn ) + λk Vkk∑
n

N

∑
2

  

yields the  dynamical system 

!ρk = ρ
ρk

e− ynρ !f (VK ,...,V1;xn )

n

N

∑ yn
!f (xn ) 

"Vk = ρ(t) e− ynρ !f (VK ,...,V1;xn )

n

N

∑ yn
∂ !f (xn )
∂Vk

− 2λkVkwith

λk = 1
2
ρ(t) e− ynρ !f (VK ,...,V1;xn )

n

N

∑ !f (xn )



When is deep better than shallowConstrained optimization of deep nets with exponential loss 

The critical points of Vk

.
are at  finite ρ

e−ρ !f (xn )

n=1

N

∑ ∂ !f (xn )
∂Vk

= e−ρ !f (xn )

n=1

N

∑ Vk
!f (xn )

Gradient descent on L = e− ynρ f (VK ,...,V1; xn ) + λk Vkk∑
n

N

∑
2

  

gives a dynamical system with critical points for one effective support vector

Vk f (x*) = ∂ f (x*)
∂Vk

 



Thus constrained and unconstrained  
optimization of deep nets  

with exponential loss 
by gradient descent 

correspond to dynamical systems with 
the same critical points  

at any finite time

Similarly to GD on a linear net under the square loss 
GD here performs an implicit (vanishing) regularization. The underlying mechanism is different and more robust.



9.520/6.860
• classical regularization (regularized least squares, SVM, logistic regression, square and exponential loss), 

stochastic gradient methods, implicit regularization and minimum norm solutions. Regularization techniques, Kernel machines, batch and online 
supervised learning, sparsity.  

• Classical concepts like generalization, uniform convergence and Rademacher complexities will be developed, together with topics such as 
surrogate loss functions for classification, bounds based on margin,, and pstabilityrivacy. 

•Theoretical frameworks  addressing three key puzzles in deep 
learning: approximation theory -- which functions can be represented 
more efficiently by deep networks than shallow networks-- 
optimization theory -- why can stochastic gradient descent easily find 
global minima -- and machine learning -- how generalization in deep 
networks used for classification can be explained in terms of  
complexity control implicit in gradient descent. It will also discusses  
connections with the architecture of the brain, which was the original 
inspiration of the layered local connectivity of modern networks and 
may provide ideas for future developments and revolutions in 
networks for learning. 



Summary: the next breakthroughs

…are likely to come not from theory but  from neuroscience… 



Future >10y

NeoClassical 

-Human Intelligence (HI) is memory based 
(exMachina)


-Depth is important for vision and other 
aspects of intelligence

➡We must find biologically plausible alternative 
to GD, perhaps layer-wise learning

➡We must find alternative to batch supervised 
learning, such as implicit labeling in time 
sequences


Scientific Revolution 

-HI >>> memory

-Depth is misleading, not the norm, see mouse 
visual cortex

➡Thin recurrent networks=programs learned 
from time series

➡Cortex controls/manages routines

➡Evolution may have discovered programming 
early on…where is it in the brain?




Musings on future progress (neoclassical) 

• new architectures/class of applications  from basic DCN block  
(example GAN + RL/DL + …) 

• new semisupervised training framework, avoiding labels: implicit 
labeling…predicting next “frame”…         



 Are deep nets really correct for biology? Is idea of depth 
misleading (look at the mouse visual system!)? Backprojection in 
multilayers is a biological pain!  One layer recurrent machines are 
powerful!

Musings on “revolutionary” Breakthroughs



General musings

The evolution of computer science 

• there were programmers 

• there are now labelers, creating memory-based “intelligence” 

• there will  be bots who can learn like children do… 

The first phase of ML:   supervised learning, big data 

The next phase of ML: implicitly supervised learning,  
learning like children do, small data 

n →∞

n → 1


